1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 void inet_get_local_port_range(const struct net *net, int *low, int *high) 121 { 122 unsigned int seq; 123 124 do { 125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 126 127 *low = net->ipv4.ip_local_ports.range[0]; 128 *high = net->ipv4.ip_local_ports.range[1]; 129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 130 } 131 EXPORT_SYMBOL(inet_get_local_port_range); 132 133 void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high) 134 { 135 const struct inet_sock *inet = inet_sk(sk); 136 const struct net *net = sock_net(sk); 137 int lo, hi, sk_lo, sk_hi; 138 139 inet_get_local_port_range(net, &lo, &hi); 140 141 sk_lo = inet->local_port_range.lo; 142 sk_hi = inet->local_port_range.hi; 143 144 if (unlikely(lo <= sk_lo && sk_lo <= hi)) 145 lo = sk_lo; 146 if (unlikely(lo <= sk_hi && sk_hi <= hi)) 147 hi = sk_hi; 148 149 *low = lo; 150 *high = hi; 151 } 152 EXPORT_SYMBOL(inet_sk_get_local_port_range); 153 154 static bool inet_use_bhash2_on_bind(const struct sock *sk) 155 { 156 #if IS_ENABLED(CONFIG_IPV6) 157 if (sk->sk_family == AF_INET6) { 158 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr); 159 160 return addr_type != IPV6_ADDR_ANY && 161 addr_type != IPV6_ADDR_MAPPED; 162 } 163 #endif 164 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 165 } 166 167 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 168 kuid_t sk_uid, bool relax, 169 bool reuseport_cb_ok, bool reuseport_ok) 170 { 171 int bound_dev_if2; 172 173 if (sk == sk2) 174 return false; 175 176 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 177 178 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 179 sk->sk_bound_dev_if == bound_dev_if2) { 180 if (sk->sk_reuse && sk2->sk_reuse && 181 sk2->sk_state != TCP_LISTEN) { 182 if (!relax || (!reuseport_ok && sk->sk_reuseport && 183 sk2->sk_reuseport && reuseport_cb_ok && 184 (sk2->sk_state == TCP_TIME_WAIT || 185 uid_eq(sk_uid, sock_i_uid(sk2))))) 186 return true; 187 } else if (!reuseport_ok || !sk->sk_reuseport || 188 !sk2->sk_reuseport || !reuseport_cb_ok || 189 (sk2->sk_state != TCP_TIME_WAIT && 190 !uid_eq(sk_uid, sock_i_uid(sk2)))) { 191 return true; 192 } 193 } 194 return false; 195 } 196 197 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2, 198 kuid_t sk_uid, bool relax, 199 bool reuseport_cb_ok, bool reuseport_ok) 200 { 201 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2)) 202 return false; 203 204 return inet_bind_conflict(sk, sk2, sk_uid, relax, 205 reuseport_cb_ok, reuseport_ok); 206 } 207 208 static bool inet_bhash2_conflict(const struct sock *sk, 209 const struct inet_bind2_bucket *tb2, 210 kuid_t sk_uid, 211 bool relax, bool reuseport_cb_ok, 212 bool reuseport_ok) 213 { 214 struct inet_timewait_sock *tw2; 215 struct sock *sk2; 216 217 sk_for_each_bound_bhash2(sk2, &tb2->owners) { 218 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax, 219 reuseport_cb_ok, reuseport_ok)) 220 return true; 221 } 222 223 twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) { 224 sk2 = (struct sock *)tw2; 225 226 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax, 227 reuseport_cb_ok, reuseport_ok)) 228 return true; 229 } 230 231 return false; 232 } 233 234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 235 static int inet_csk_bind_conflict(const struct sock *sk, 236 const struct inet_bind_bucket *tb, 237 const struct inet_bind2_bucket *tb2, /* may be null */ 238 bool relax, bool reuseport_ok) 239 { 240 bool reuseport_cb_ok; 241 struct sock_reuseport *reuseport_cb; 242 kuid_t uid = sock_i_uid((struct sock *)sk); 243 244 rcu_read_lock(); 245 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 246 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 247 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 248 rcu_read_unlock(); 249 250 /* 251 * Unlike other sk lookup places we do not check 252 * for sk_net here, since _all_ the socks listed 253 * in tb->owners and tb2->owners list belong 254 * to the same net - the one this bucket belongs to. 255 */ 256 257 if (!inet_use_bhash2_on_bind(sk)) { 258 struct sock *sk2; 259 260 sk_for_each_bound(sk2, &tb->owners) 261 if (inet_bind_conflict(sk, sk2, uid, relax, 262 reuseport_cb_ok, reuseport_ok) && 263 inet_rcv_saddr_equal(sk, sk2, true)) 264 return true; 265 266 return false; 267 } 268 269 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 270 * ipv4) should have been checked already. We need to do these two 271 * checks separately because their spinlocks have to be acquired/released 272 * independently of each other, to prevent possible deadlocks 273 */ 274 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, 275 reuseport_ok); 276 } 277 278 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 279 * INADDR_ANY (if ipv4) socket. 280 * 281 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 282 * against concurrent binds on the port for addr any 283 */ 284 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 285 bool relax, bool reuseport_ok) 286 { 287 kuid_t uid = sock_i_uid((struct sock *)sk); 288 const struct net *net = sock_net(sk); 289 struct sock_reuseport *reuseport_cb; 290 struct inet_bind_hashbucket *head2; 291 struct inet_bind2_bucket *tb2; 292 bool reuseport_cb_ok; 293 294 rcu_read_lock(); 295 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 296 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 297 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 298 rcu_read_unlock(); 299 300 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 301 302 spin_lock(&head2->lock); 303 304 inet_bind_bucket_for_each(tb2, &head2->chain) 305 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 306 break; 307 308 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, 309 reuseport_ok)) { 310 spin_unlock(&head2->lock); 311 return true; 312 } 313 314 spin_unlock(&head2->lock); 315 return false; 316 } 317 318 /* 319 * Find an open port number for the socket. Returns with the 320 * inet_bind_hashbucket locks held if successful. 321 */ 322 static struct inet_bind_hashbucket * 323 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 324 struct inet_bind2_bucket **tb2_ret, 325 struct inet_bind_hashbucket **head2_ret, int *port_ret) 326 { 327 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 328 int i, low, high, attempt_half, port, l3mdev; 329 struct inet_bind_hashbucket *head, *head2; 330 struct net *net = sock_net(sk); 331 struct inet_bind2_bucket *tb2; 332 struct inet_bind_bucket *tb; 333 u32 remaining, offset; 334 bool relax = false; 335 336 l3mdev = inet_sk_bound_l3mdev(sk); 337 ports_exhausted: 338 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 339 other_half_scan: 340 inet_sk_get_local_port_range(sk, &low, &high); 341 high++; /* [32768, 60999] -> [32768, 61000[ */ 342 if (high - low < 4) 343 attempt_half = 0; 344 if (attempt_half) { 345 int half = low + (((high - low) >> 2) << 1); 346 347 if (attempt_half == 1) 348 high = half; 349 else 350 low = half; 351 } 352 remaining = high - low; 353 if (likely(remaining > 1)) 354 remaining &= ~1U; 355 356 offset = get_random_u32_below(remaining); 357 /* __inet_hash_connect() favors ports having @low parity 358 * We do the opposite to not pollute connect() users. 359 */ 360 offset |= 1U; 361 362 other_parity_scan: 363 port = low + offset; 364 for (i = 0; i < remaining; i += 2, port += 2) { 365 if (unlikely(port >= high)) 366 port -= remaining; 367 if (inet_is_local_reserved_port(net, port)) 368 continue; 369 head = &hinfo->bhash[inet_bhashfn(net, port, 370 hinfo->bhash_size)]; 371 spin_lock_bh(&head->lock); 372 if (inet_use_bhash2_on_bind(sk)) { 373 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 374 goto next_port; 375 } 376 377 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 378 spin_lock(&head2->lock); 379 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 380 inet_bind_bucket_for_each(tb, &head->chain) 381 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 382 if (!inet_csk_bind_conflict(sk, tb, tb2, 383 relax, false)) 384 goto success; 385 spin_unlock(&head2->lock); 386 goto next_port; 387 } 388 tb = NULL; 389 goto success; 390 next_port: 391 spin_unlock_bh(&head->lock); 392 cond_resched(); 393 } 394 395 offset--; 396 if (!(offset & 1)) 397 goto other_parity_scan; 398 399 if (attempt_half == 1) { 400 /* OK we now try the upper half of the range */ 401 attempt_half = 2; 402 goto other_half_scan; 403 } 404 405 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 406 /* We still have a chance to connect to different destinations */ 407 relax = true; 408 goto ports_exhausted; 409 } 410 return NULL; 411 success: 412 *port_ret = port; 413 *tb_ret = tb; 414 *tb2_ret = tb2; 415 *head2_ret = head2; 416 return head; 417 } 418 419 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 420 struct sock *sk) 421 { 422 kuid_t uid = sock_i_uid(sk); 423 424 if (tb->fastreuseport <= 0) 425 return 0; 426 if (!sk->sk_reuseport) 427 return 0; 428 if (rcu_access_pointer(sk->sk_reuseport_cb)) 429 return 0; 430 if (!uid_eq(tb->fastuid, uid)) 431 return 0; 432 /* We only need to check the rcv_saddr if this tb was once marked 433 * without fastreuseport and then was reset, as we can only know that 434 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 435 * owners list. 436 */ 437 if (tb->fastreuseport == FASTREUSEPORT_ANY) 438 return 1; 439 #if IS_ENABLED(CONFIG_IPV6) 440 if (tb->fast_sk_family == AF_INET6) 441 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 442 inet6_rcv_saddr(sk), 443 tb->fast_rcv_saddr, 444 sk->sk_rcv_saddr, 445 tb->fast_ipv6_only, 446 ipv6_only_sock(sk), true, false); 447 #endif 448 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 449 ipv6_only_sock(sk), true, false); 450 } 451 452 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 453 struct sock *sk) 454 { 455 kuid_t uid = sock_i_uid(sk); 456 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 457 458 if (hlist_empty(&tb->owners)) { 459 tb->fastreuse = reuse; 460 if (sk->sk_reuseport) { 461 tb->fastreuseport = FASTREUSEPORT_ANY; 462 tb->fastuid = uid; 463 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 464 tb->fast_ipv6_only = ipv6_only_sock(sk); 465 tb->fast_sk_family = sk->sk_family; 466 #if IS_ENABLED(CONFIG_IPV6) 467 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 468 #endif 469 } else { 470 tb->fastreuseport = 0; 471 } 472 } else { 473 if (!reuse) 474 tb->fastreuse = 0; 475 if (sk->sk_reuseport) { 476 /* We didn't match or we don't have fastreuseport set on 477 * the tb, but we have sk_reuseport set on this socket 478 * and we know that there are no bind conflicts with 479 * this socket in this tb, so reset our tb's reuseport 480 * settings so that any subsequent sockets that match 481 * our current socket will be put on the fast path. 482 * 483 * If we reset we need to set FASTREUSEPORT_STRICT so we 484 * do extra checking for all subsequent sk_reuseport 485 * socks. 486 */ 487 if (!sk_reuseport_match(tb, sk)) { 488 tb->fastreuseport = FASTREUSEPORT_STRICT; 489 tb->fastuid = uid; 490 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 491 tb->fast_ipv6_only = ipv6_only_sock(sk); 492 tb->fast_sk_family = sk->sk_family; 493 #if IS_ENABLED(CONFIG_IPV6) 494 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 495 #endif 496 } 497 } else { 498 tb->fastreuseport = 0; 499 } 500 } 501 } 502 503 /* Obtain a reference to a local port for the given sock, 504 * if snum is zero it means select any available local port. 505 * We try to allocate an odd port (and leave even ports for connect()) 506 */ 507 int inet_csk_get_port(struct sock *sk, unsigned short snum) 508 { 509 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 510 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 511 bool found_port = false, check_bind_conflict = true; 512 bool bhash_created = false, bhash2_created = false; 513 int ret = -EADDRINUSE, port = snum, l3mdev; 514 struct inet_bind_hashbucket *head, *head2; 515 struct inet_bind2_bucket *tb2 = NULL; 516 struct inet_bind_bucket *tb = NULL; 517 bool head2_lock_acquired = false; 518 struct net *net = sock_net(sk); 519 520 l3mdev = inet_sk_bound_l3mdev(sk); 521 522 if (!port) { 523 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 524 if (!head) 525 return ret; 526 527 head2_lock_acquired = true; 528 529 if (tb && tb2) 530 goto success; 531 found_port = true; 532 } else { 533 head = &hinfo->bhash[inet_bhashfn(net, port, 534 hinfo->bhash_size)]; 535 spin_lock_bh(&head->lock); 536 inet_bind_bucket_for_each(tb, &head->chain) 537 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 538 break; 539 } 540 541 if (!tb) { 542 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 543 head, port, l3mdev); 544 if (!tb) 545 goto fail_unlock; 546 bhash_created = true; 547 } 548 549 if (!found_port) { 550 if (!hlist_empty(&tb->owners)) { 551 if (sk->sk_reuse == SK_FORCE_REUSE || 552 (tb->fastreuse > 0 && reuse) || 553 sk_reuseport_match(tb, sk)) 554 check_bind_conflict = false; 555 } 556 557 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 558 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 559 goto fail_unlock; 560 } 561 562 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 563 spin_lock(&head2->lock); 564 head2_lock_acquired = true; 565 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 566 } 567 568 if (!tb2) { 569 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 570 net, head2, port, l3mdev, sk); 571 if (!tb2) 572 goto fail_unlock; 573 bhash2_created = true; 574 } 575 576 if (!found_port && check_bind_conflict) { 577 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 578 goto fail_unlock; 579 } 580 581 success: 582 inet_csk_update_fastreuse(tb, sk); 583 584 if (!inet_csk(sk)->icsk_bind_hash) 585 inet_bind_hash(sk, tb, tb2, port); 586 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 587 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 588 ret = 0; 589 590 fail_unlock: 591 if (ret) { 592 if (bhash_created) 593 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb); 594 if (bhash2_created) 595 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, 596 tb2); 597 } 598 if (head2_lock_acquired) 599 spin_unlock(&head2->lock); 600 spin_unlock_bh(&head->lock); 601 return ret; 602 } 603 EXPORT_SYMBOL_GPL(inet_csk_get_port); 604 605 /* 606 * Wait for an incoming connection, avoid race conditions. This must be called 607 * with the socket locked. 608 */ 609 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 610 { 611 struct inet_connection_sock *icsk = inet_csk(sk); 612 DEFINE_WAIT(wait); 613 int err; 614 615 /* 616 * True wake-one mechanism for incoming connections: only 617 * one process gets woken up, not the 'whole herd'. 618 * Since we do not 'race & poll' for established sockets 619 * anymore, the common case will execute the loop only once. 620 * 621 * Subtle issue: "add_wait_queue_exclusive()" will be added 622 * after any current non-exclusive waiters, and we know that 623 * it will always _stay_ after any new non-exclusive waiters 624 * because all non-exclusive waiters are added at the 625 * beginning of the wait-queue. As such, it's ok to "drop" 626 * our exclusiveness temporarily when we get woken up without 627 * having to remove and re-insert us on the wait queue. 628 */ 629 for (;;) { 630 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 631 TASK_INTERRUPTIBLE); 632 release_sock(sk); 633 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 634 timeo = schedule_timeout(timeo); 635 sched_annotate_sleep(); 636 lock_sock(sk); 637 err = 0; 638 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 639 break; 640 err = -EINVAL; 641 if (sk->sk_state != TCP_LISTEN) 642 break; 643 err = sock_intr_errno(timeo); 644 if (signal_pending(current)) 645 break; 646 err = -EAGAIN; 647 if (!timeo) 648 break; 649 } 650 finish_wait(sk_sleep(sk), &wait); 651 return err; 652 } 653 654 /* 655 * This will accept the next outstanding connection. 656 */ 657 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 658 { 659 struct inet_connection_sock *icsk = inet_csk(sk); 660 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 661 struct request_sock *req; 662 struct sock *newsk; 663 int error; 664 665 lock_sock(sk); 666 667 /* We need to make sure that this socket is listening, 668 * and that it has something pending. 669 */ 670 error = -EINVAL; 671 if (sk->sk_state != TCP_LISTEN) 672 goto out_err; 673 674 /* Find already established connection */ 675 if (reqsk_queue_empty(queue)) { 676 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 677 678 /* If this is a non blocking socket don't sleep */ 679 error = -EAGAIN; 680 if (!timeo) 681 goto out_err; 682 683 error = inet_csk_wait_for_connect(sk, timeo); 684 if (error) 685 goto out_err; 686 } 687 req = reqsk_queue_remove(queue, sk); 688 newsk = req->sk; 689 690 if (sk->sk_protocol == IPPROTO_TCP && 691 tcp_rsk(req)->tfo_listener) { 692 spin_lock_bh(&queue->fastopenq.lock); 693 if (tcp_rsk(req)->tfo_listener) { 694 /* We are still waiting for the final ACK from 3WHS 695 * so can't free req now. Instead, we set req->sk to 696 * NULL to signify that the child socket is taken 697 * so reqsk_fastopen_remove() will free the req 698 * when 3WHS finishes (or is aborted). 699 */ 700 req->sk = NULL; 701 req = NULL; 702 } 703 spin_unlock_bh(&queue->fastopenq.lock); 704 } 705 706 out: 707 release_sock(sk); 708 if (newsk && mem_cgroup_sockets_enabled) { 709 int amt = 0; 710 711 /* atomically get the memory usage, set and charge the 712 * newsk->sk_memcg. 713 */ 714 lock_sock(newsk); 715 716 mem_cgroup_sk_alloc(newsk); 717 if (newsk->sk_memcg) { 718 /* The socket has not been accepted yet, no need 719 * to look at newsk->sk_wmem_queued. 720 */ 721 amt = sk_mem_pages(newsk->sk_forward_alloc + 722 atomic_read(&newsk->sk_rmem_alloc)); 723 } 724 725 if (amt) 726 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, 727 GFP_KERNEL | __GFP_NOFAIL); 728 729 release_sock(newsk); 730 } 731 if (req) 732 reqsk_put(req); 733 return newsk; 734 out_err: 735 newsk = NULL; 736 req = NULL; 737 *err = error; 738 goto out; 739 } 740 EXPORT_SYMBOL(inet_csk_accept); 741 742 /* 743 * Using different timers for retransmit, delayed acks and probes 744 * We may wish use just one timer maintaining a list of expire jiffies 745 * to optimize. 746 */ 747 void inet_csk_init_xmit_timers(struct sock *sk, 748 void (*retransmit_handler)(struct timer_list *t), 749 void (*delack_handler)(struct timer_list *t), 750 void (*keepalive_handler)(struct timer_list *t)) 751 { 752 struct inet_connection_sock *icsk = inet_csk(sk); 753 754 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 755 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 756 timer_setup(&sk->sk_timer, keepalive_handler, 0); 757 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 758 } 759 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 760 761 void inet_csk_clear_xmit_timers(struct sock *sk) 762 { 763 struct inet_connection_sock *icsk = inet_csk(sk); 764 765 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 766 767 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 768 sk_stop_timer(sk, &icsk->icsk_delack_timer); 769 sk_stop_timer(sk, &sk->sk_timer); 770 } 771 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 772 773 void inet_csk_delete_keepalive_timer(struct sock *sk) 774 { 775 sk_stop_timer(sk, &sk->sk_timer); 776 } 777 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 778 779 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 780 { 781 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 782 } 783 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 784 785 struct dst_entry *inet_csk_route_req(const struct sock *sk, 786 struct flowi4 *fl4, 787 const struct request_sock *req) 788 { 789 const struct inet_request_sock *ireq = inet_rsk(req); 790 struct net *net = read_pnet(&ireq->ireq_net); 791 struct ip_options_rcu *opt; 792 struct rtable *rt; 793 794 rcu_read_lock(); 795 opt = rcu_dereference(ireq->ireq_opt); 796 797 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 798 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 799 sk->sk_protocol, inet_sk_flowi_flags(sk), 800 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 801 ireq->ir_loc_addr, ireq->ir_rmt_port, 802 htons(ireq->ir_num), sk->sk_uid); 803 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 804 rt = ip_route_output_flow(net, fl4, sk); 805 if (IS_ERR(rt)) 806 goto no_route; 807 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 808 goto route_err; 809 rcu_read_unlock(); 810 return &rt->dst; 811 812 route_err: 813 ip_rt_put(rt); 814 no_route: 815 rcu_read_unlock(); 816 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 817 return NULL; 818 } 819 EXPORT_SYMBOL_GPL(inet_csk_route_req); 820 821 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 822 struct sock *newsk, 823 const struct request_sock *req) 824 { 825 const struct inet_request_sock *ireq = inet_rsk(req); 826 struct net *net = read_pnet(&ireq->ireq_net); 827 struct inet_sock *newinet = inet_sk(newsk); 828 struct ip_options_rcu *opt; 829 struct flowi4 *fl4; 830 struct rtable *rt; 831 832 opt = rcu_dereference(ireq->ireq_opt); 833 fl4 = &newinet->cork.fl.u.ip4; 834 835 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 836 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 837 sk->sk_protocol, inet_sk_flowi_flags(sk), 838 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 839 ireq->ir_loc_addr, ireq->ir_rmt_port, 840 htons(ireq->ir_num), sk->sk_uid); 841 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 842 rt = ip_route_output_flow(net, fl4, sk); 843 if (IS_ERR(rt)) 844 goto no_route; 845 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 846 goto route_err; 847 return &rt->dst; 848 849 route_err: 850 ip_rt_put(rt); 851 no_route: 852 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 853 return NULL; 854 } 855 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 856 857 /* Decide when to expire the request and when to resend SYN-ACK */ 858 static void syn_ack_recalc(struct request_sock *req, 859 const int max_syn_ack_retries, 860 const u8 rskq_defer_accept, 861 int *expire, int *resend) 862 { 863 if (!rskq_defer_accept) { 864 *expire = req->num_timeout >= max_syn_ack_retries; 865 *resend = 1; 866 return; 867 } 868 *expire = req->num_timeout >= max_syn_ack_retries && 869 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 870 /* Do not resend while waiting for data after ACK, 871 * start to resend on end of deferring period to give 872 * last chance for data or ACK to create established socket. 873 */ 874 *resend = !inet_rsk(req)->acked || 875 req->num_timeout >= rskq_defer_accept - 1; 876 } 877 878 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 879 { 880 int err = req->rsk_ops->rtx_syn_ack(parent, req); 881 882 if (!err) 883 req->num_retrans++; 884 return err; 885 } 886 EXPORT_SYMBOL(inet_rtx_syn_ack); 887 888 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 889 struct sock *sk) 890 { 891 struct sock *req_sk, *nreq_sk; 892 struct request_sock *nreq; 893 894 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 895 if (!nreq) { 896 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 897 898 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 899 sock_put(sk); 900 return NULL; 901 } 902 903 req_sk = req_to_sk(req); 904 nreq_sk = req_to_sk(nreq); 905 906 memcpy(nreq_sk, req_sk, 907 offsetof(struct sock, sk_dontcopy_begin)); 908 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 909 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end)); 910 911 sk_node_init(&nreq_sk->sk_node); 912 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 913 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 914 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 915 #endif 916 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 917 918 nreq->rsk_listener = sk; 919 920 /* We need not acquire fastopenq->lock 921 * because the child socket is locked in inet_csk_listen_stop(). 922 */ 923 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 924 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 925 926 return nreq; 927 } 928 929 static void reqsk_queue_migrated(struct request_sock_queue *queue, 930 const struct request_sock *req) 931 { 932 if (req->num_timeout == 0) 933 atomic_inc(&queue->young); 934 atomic_inc(&queue->qlen); 935 } 936 937 static void reqsk_migrate_reset(struct request_sock *req) 938 { 939 req->saved_syn = NULL; 940 #if IS_ENABLED(CONFIG_IPV6) 941 inet_rsk(req)->ipv6_opt = NULL; 942 inet_rsk(req)->pktopts = NULL; 943 #else 944 inet_rsk(req)->ireq_opt = NULL; 945 #endif 946 } 947 948 /* return true if req was found in the ehash table */ 949 static bool reqsk_queue_unlink(struct request_sock *req) 950 { 951 struct sock *sk = req_to_sk(req); 952 bool found = false; 953 954 if (sk_hashed(sk)) { 955 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk); 956 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 957 958 spin_lock(lock); 959 found = __sk_nulls_del_node_init_rcu(sk); 960 spin_unlock(lock); 961 } 962 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 963 reqsk_put(req); 964 return found; 965 } 966 967 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 968 { 969 bool unlinked = reqsk_queue_unlink(req); 970 971 if (unlinked) { 972 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 973 reqsk_put(req); 974 } 975 return unlinked; 976 } 977 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 978 979 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 980 { 981 inet_csk_reqsk_queue_drop(sk, req); 982 reqsk_put(req); 983 } 984 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 985 986 static void reqsk_timer_handler(struct timer_list *t) 987 { 988 struct request_sock *req = from_timer(req, t, rsk_timer); 989 struct request_sock *nreq = NULL, *oreq = req; 990 struct sock *sk_listener = req->rsk_listener; 991 struct inet_connection_sock *icsk; 992 struct request_sock_queue *queue; 993 struct net *net; 994 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 995 996 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 997 struct sock *nsk; 998 999 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 1000 if (!nsk) 1001 goto drop; 1002 1003 nreq = inet_reqsk_clone(req, nsk); 1004 if (!nreq) 1005 goto drop; 1006 1007 /* The new timer for the cloned req can decrease the 2 1008 * by calling inet_csk_reqsk_queue_drop_and_put(), so 1009 * hold another count to prevent use-after-free and 1010 * call reqsk_put() just before return. 1011 */ 1012 refcount_set(&nreq->rsk_refcnt, 2 + 1); 1013 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1014 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 1015 1016 req = nreq; 1017 sk_listener = nsk; 1018 } 1019 1020 icsk = inet_csk(sk_listener); 1021 net = sock_net(sk_listener); 1022 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? : 1023 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 1024 /* Normally all the openreqs are young and become mature 1025 * (i.e. converted to established socket) for first timeout. 1026 * If synack was not acknowledged for 1 second, it means 1027 * one of the following things: synack was lost, ack was lost, 1028 * rtt is high or nobody planned to ack (i.e. synflood). 1029 * When server is a bit loaded, queue is populated with old 1030 * open requests, reducing effective size of queue. 1031 * When server is well loaded, queue size reduces to zero 1032 * after several minutes of work. It is not synflood, 1033 * it is normal operation. The solution is pruning 1034 * too old entries overriding normal timeout, when 1035 * situation becomes dangerous. 1036 * 1037 * Essentially, we reserve half of room for young 1038 * embrions; and abort old ones without pity, if old 1039 * ones are about to clog our table. 1040 */ 1041 queue = &icsk->icsk_accept_queue; 1042 qlen = reqsk_queue_len(queue); 1043 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1044 int young = reqsk_queue_len_young(queue) << 1; 1045 1046 while (max_syn_ack_retries > 2) { 1047 if (qlen < young) 1048 break; 1049 max_syn_ack_retries--; 1050 young <<= 1; 1051 } 1052 } 1053 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1054 &expire, &resend); 1055 req->rsk_ops->syn_ack_timeout(req); 1056 if (!expire && 1057 (!resend || 1058 !inet_rtx_syn_ack(sk_listener, req) || 1059 inet_rsk(req)->acked)) { 1060 if (req->num_timeout++ == 0) 1061 atomic_dec(&queue->young); 1062 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1063 1064 if (!nreq) 1065 return; 1066 1067 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1068 /* delete timer */ 1069 inet_csk_reqsk_queue_drop(sk_listener, nreq); 1070 goto no_ownership; 1071 } 1072 1073 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1074 reqsk_migrate_reset(oreq); 1075 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1076 reqsk_put(oreq); 1077 1078 reqsk_put(nreq); 1079 return; 1080 } 1081 1082 /* Even if we can clone the req, we may need not retransmit any more 1083 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1084 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1085 */ 1086 if (nreq) { 1087 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1088 no_ownership: 1089 reqsk_migrate_reset(nreq); 1090 reqsk_queue_removed(queue, nreq); 1091 __reqsk_free(nreq); 1092 } 1093 1094 drop: 1095 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq); 1096 } 1097 1098 static void reqsk_queue_hash_req(struct request_sock *req, 1099 unsigned long timeout) 1100 { 1101 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1102 mod_timer(&req->rsk_timer, jiffies + timeout); 1103 1104 inet_ehash_insert(req_to_sk(req), NULL, NULL); 1105 /* before letting lookups find us, make sure all req fields 1106 * are committed to memory and refcnt initialized. 1107 */ 1108 smp_wmb(); 1109 refcount_set(&req->rsk_refcnt, 2 + 1); 1110 } 1111 1112 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1113 unsigned long timeout) 1114 { 1115 reqsk_queue_hash_req(req, timeout); 1116 inet_csk_reqsk_queue_added(sk); 1117 } 1118 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 1119 1120 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1121 const gfp_t priority) 1122 { 1123 struct inet_connection_sock *icsk = inet_csk(newsk); 1124 1125 if (!icsk->icsk_ulp_ops) 1126 return; 1127 1128 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1129 } 1130 1131 /** 1132 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1133 * @sk: the socket to clone 1134 * @req: request_sock 1135 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1136 * 1137 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1138 */ 1139 struct sock *inet_csk_clone_lock(const struct sock *sk, 1140 const struct request_sock *req, 1141 const gfp_t priority) 1142 { 1143 struct sock *newsk = sk_clone_lock(sk, priority); 1144 1145 if (newsk) { 1146 struct inet_connection_sock *newicsk = inet_csk(newsk); 1147 1148 inet_sk_set_state(newsk, TCP_SYN_RECV); 1149 newicsk->icsk_bind_hash = NULL; 1150 newicsk->icsk_bind2_hash = NULL; 1151 1152 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 1153 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 1154 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 1155 1156 /* listeners have SOCK_RCU_FREE, not the children */ 1157 sock_reset_flag(newsk, SOCK_RCU_FREE); 1158 1159 inet_sk(newsk)->mc_list = NULL; 1160 1161 newsk->sk_mark = inet_rsk(req)->ir_mark; 1162 atomic64_set(&newsk->sk_cookie, 1163 atomic64_read(&inet_rsk(req)->ir_cookie)); 1164 1165 newicsk->icsk_retransmits = 0; 1166 newicsk->icsk_backoff = 0; 1167 newicsk->icsk_probes_out = 0; 1168 newicsk->icsk_probes_tstamp = 0; 1169 1170 /* Deinitialize accept_queue to trap illegal accesses. */ 1171 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 1172 1173 inet_clone_ulp(req, newsk, priority); 1174 1175 security_inet_csk_clone(newsk, req); 1176 } 1177 return newsk; 1178 } 1179 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 1180 1181 /* 1182 * At this point, there should be no process reference to this 1183 * socket, and thus no user references at all. Therefore we 1184 * can assume the socket waitqueue is inactive and nobody will 1185 * try to jump onto it. 1186 */ 1187 void inet_csk_destroy_sock(struct sock *sk) 1188 { 1189 WARN_ON(sk->sk_state != TCP_CLOSE); 1190 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1191 1192 /* It cannot be in hash table! */ 1193 WARN_ON(!sk_unhashed(sk)); 1194 1195 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1196 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1197 1198 sk->sk_prot->destroy(sk); 1199 1200 sk_stream_kill_queues(sk); 1201 1202 xfrm_sk_free_policy(sk); 1203 1204 this_cpu_dec(*sk->sk_prot->orphan_count); 1205 1206 sock_put(sk); 1207 } 1208 EXPORT_SYMBOL(inet_csk_destroy_sock); 1209 1210 /* This function allows to force a closure of a socket after the call to 1211 * tcp/dccp_create_openreq_child(). 1212 */ 1213 void inet_csk_prepare_forced_close(struct sock *sk) 1214 __releases(&sk->sk_lock.slock) 1215 { 1216 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1217 bh_unlock_sock(sk); 1218 sock_put(sk); 1219 inet_csk_prepare_for_destroy_sock(sk); 1220 inet_sk(sk)->inet_num = 0; 1221 } 1222 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1223 1224 static int inet_ulp_can_listen(const struct sock *sk) 1225 { 1226 const struct inet_connection_sock *icsk = inet_csk(sk); 1227 1228 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone) 1229 return -EINVAL; 1230 1231 return 0; 1232 } 1233 1234 int inet_csk_listen_start(struct sock *sk) 1235 { 1236 struct inet_connection_sock *icsk = inet_csk(sk); 1237 struct inet_sock *inet = inet_sk(sk); 1238 int err; 1239 1240 err = inet_ulp_can_listen(sk); 1241 if (unlikely(err)) 1242 return err; 1243 1244 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1245 1246 sk->sk_ack_backlog = 0; 1247 inet_csk_delack_init(sk); 1248 1249 /* There is race window here: we announce ourselves listening, 1250 * but this transition is still not validated by get_port(). 1251 * It is OK, because this socket enters to hash table only 1252 * after validation is complete. 1253 */ 1254 inet_sk_state_store(sk, TCP_LISTEN); 1255 err = sk->sk_prot->get_port(sk, inet->inet_num); 1256 if (!err) { 1257 inet->inet_sport = htons(inet->inet_num); 1258 1259 sk_dst_reset(sk); 1260 err = sk->sk_prot->hash(sk); 1261 1262 if (likely(!err)) 1263 return 0; 1264 } 1265 1266 inet_sk_set_state(sk, TCP_CLOSE); 1267 return err; 1268 } 1269 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 1270 1271 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1272 struct sock *child) 1273 { 1274 sk->sk_prot->disconnect(child, O_NONBLOCK); 1275 1276 sock_orphan(child); 1277 1278 this_cpu_inc(*sk->sk_prot->orphan_count); 1279 1280 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1281 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1282 BUG_ON(sk != req->rsk_listener); 1283 1284 /* Paranoid, to prevent race condition if 1285 * an inbound pkt destined for child is 1286 * blocked by sock lock in tcp_v4_rcv(). 1287 * Also to satisfy an assertion in 1288 * tcp_v4_destroy_sock(). 1289 */ 1290 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1291 } 1292 inet_csk_destroy_sock(child); 1293 } 1294 1295 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1296 struct request_sock *req, 1297 struct sock *child) 1298 { 1299 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1300 1301 spin_lock(&queue->rskq_lock); 1302 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1303 inet_child_forget(sk, req, child); 1304 child = NULL; 1305 } else { 1306 req->sk = child; 1307 req->dl_next = NULL; 1308 if (queue->rskq_accept_head == NULL) 1309 WRITE_ONCE(queue->rskq_accept_head, req); 1310 else 1311 queue->rskq_accept_tail->dl_next = req; 1312 queue->rskq_accept_tail = req; 1313 sk_acceptq_added(sk); 1314 } 1315 spin_unlock(&queue->rskq_lock); 1316 return child; 1317 } 1318 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1319 1320 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1321 struct request_sock *req, bool own_req) 1322 { 1323 if (own_req) { 1324 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1325 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1326 1327 if (sk != req->rsk_listener) { 1328 /* another listening sk has been selected, 1329 * migrate the req to it. 1330 */ 1331 struct request_sock *nreq; 1332 1333 /* hold a refcnt for the nreq->rsk_listener 1334 * which is assigned in inet_reqsk_clone() 1335 */ 1336 sock_hold(sk); 1337 nreq = inet_reqsk_clone(req, sk); 1338 if (!nreq) { 1339 inet_child_forget(sk, req, child); 1340 goto child_put; 1341 } 1342 1343 refcount_set(&nreq->rsk_refcnt, 1); 1344 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1345 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1346 reqsk_migrate_reset(req); 1347 reqsk_put(req); 1348 return child; 1349 } 1350 1351 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1352 reqsk_migrate_reset(nreq); 1353 __reqsk_free(nreq); 1354 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1355 return child; 1356 } 1357 } 1358 /* Too bad, another child took ownership of the request, undo. */ 1359 child_put: 1360 bh_unlock_sock(child); 1361 sock_put(child); 1362 return NULL; 1363 } 1364 EXPORT_SYMBOL(inet_csk_complete_hashdance); 1365 1366 /* 1367 * This routine closes sockets which have been at least partially 1368 * opened, but not yet accepted. 1369 */ 1370 void inet_csk_listen_stop(struct sock *sk) 1371 { 1372 struct inet_connection_sock *icsk = inet_csk(sk); 1373 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1374 struct request_sock *next, *req; 1375 1376 /* Following specs, it would be better either to send FIN 1377 * (and enter FIN-WAIT-1, it is normal close) 1378 * or to send active reset (abort). 1379 * Certainly, it is pretty dangerous while synflood, but it is 1380 * bad justification for our negligence 8) 1381 * To be honest, we are not able to make either 1382 * of the variants now. --ANK 1383 */ 1384 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1385 struct sock *child = req->sk, *nsk; 1386 struct request_sock *nreq; 1387 1388 local_bh_disable(); 1389 bh_lock_sock(child); 1390 WARN_ON(sock_owned_by_user(child)); 1391 sock_hold(child); 1392 1393 nsk = reuseport_migrate_sock(sk, child, NULL); 1394 if (nsk) { 1395 nreq = inet_reqsk_clone(req, nsk); 1396 if (nreq) { 1397 refcount_set(&nreq->rsk_refcnt, 1); 1398 1399 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1400 __NET_INC_STATS(sock_net(nsk), 1401 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1402 reqsk_migrate_reset(req); 1403 } else { 1404 __NET_INC_STATS(sock_net(nsk), 1405 LINUX_MIB_TCPMIGRATEREQFAILURE); 1406 reqsk_migrate_reset(nreq); 1407 __reqsk_free(nreq); 1408 } 1409 1410 /* inet_csk_reqsk_queue_add() has already 1411 * called inet_child_forget() on failure case. 1412 */ 1413 goto skip_child_forget; 1414 } 1415 } 1416 1417 inet_child_forget(sk, req, child); 1418 skip_child_forget: 1419 reqsk_put(req); 1420 bh_unlock_sock(child); 1421 local_bh_enable(); 1422 sock_put(child); 1423 1424 cond_resched(); 1425 } 1426 if (queue->fastopenq.rskq_rst_head) { 1427 /* Free all the reqs queued in rskq_rst_head. */ 1428 spin_lock_bh(&queue->fastopenq.lock); 1429 req = queue->fastopenq.rskq_rst_head; 1430 queue->fastopenq.rskq_rst_head = NULL; 1431 spin_unlock_bh(&queue->fastopenq.lock); 1432 while (req != NULL) { 1433 next = req->dl_next; 1434 reqsk_put(req); 1435 req = next; 1436 } 1437 } 1438 WARN_ON_ONCE(sk->sk_ack_backlog); 1439 } 1440 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1441 1442 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1443 { 1444 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1445 const struct inet_sock *inet = inet_sk(sk); 1446 1447 sin->sin_family = AF_INET; 1448 sin->sin_addr.s_addr = inet->inet_daddr; 1449 sin->sin_port = inet->inet_dport; 1450 } 1451 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1452 1453 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1454 { 1455 const struct inet_sock *inet = inet_sk(sk); 1456 const struct ip_options_rcu *inet_opt; 1457 __be32 daddr = inet->inet_daddr; 1458 struct flowi4 *fl4; 1459 struct rtable *rt; 1460 1461 rcu_read_lock(); 1462 inet_opt = rcu_dereference(inet->inet_opt); 1463 if (inet_opt && inet_opt->opt.srr) 1464 daddr = inet_opt->opt.faddr; 1465 fl4 = &fl->u.ip4; 1466 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1467 inet->inet_saddr, inet->inet_dport, 1468 inet->inet_sport, sk->sk_protocol, 1469 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1470 if (IS_ERR(rt)) 1471 rt = NULL; 1472 if (rt) 1473 sk_setup_caps(sk, &rt->dst); 1474 rcu_read_unlock(); 1475 1476 return &rt->dst; 1477 } 1478 1479 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1480 { 1481 struct dst_entry *dst = __sk_dst_check(sk, 0); 1482 struct inet_sock *inet = inet_sk(sk); 1483 1484 if (!dst) { 1485 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1486 if (!dst) 1487 goto out; 1488 } 1489 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1490 1491 dst = __sk_dst_check(sk, 0); 1492 if (!dst) 1493 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1494 out: 1495 return dst; 1496 } 1497 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1498