1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 /** 121 * inet_sk_get_local_port_range - fetch ephemeral ports range 122 * @sk: socket 123 * @low: pointer to low port 124 * @high: pointer to high port 125 * 126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range) 127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option. 128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket. 129 */ 130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high) 131 { 132 int lo, hi, sk_lo, sk_hi; 133 bool local_range = false; 134 u32 sk_range; 135 136 inet_get_local_port_range(sock_net(sk), &lo, &hi); 137 138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range); 139 if (unlikely(sk_range)) { 140 sk_lo = sk_range & 0xffff; 141 sk_hi = sk_range >> 16; 142 143 if (lo <= sk_lo && sk_lo <= hi) 144 lo = sk_lo; 145 if (lo <= sk_hi && sk_hi <= hi) 146 hi = sk_hi; 147 local_range = true; 148 } 149 150 *low = lo; 151 *high = hi; 152 return local_range; 153 } 154 EXPORT_SYMBOL(inet_sk_get_local_port_range); 155 156 static bool inet_use_bhash2_on_bind(const struct sock *sk) 157 { 158 #if IS_ENABLED(CONFIG_IPV6) 159 if (sk->sk_family == AF_INET6) { 160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) 161 return false; 162 163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 164 return true; 165 } 166 #endif 167 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 168 } 169 170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 171 kuid_t sk_uid, bool relax, 172 bool reuseport_cb_ok, bool reuseport_ok) 173 { 174 int bound_dev_if2; 175 176 if (sk == sk2) 177 return false; 178 179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 180 181 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 182 sk->sk_bound_dev_if == bound_dev_if2) { 183 if (sk->sk_reuse && sk2->sk_reuse && 184 sk2->sk_state != TCP_LISTEN) { 185 if (!relax || (!reuseport_ok && sk->sk_reuseport && 186 sk2->sk_reuseport && reuseport_cb_ok && 187 (sk2->sk_state == TCP_TIME_WAIT || 188 uid_eq(sk_uid, sock_i_uid(sk2))))) 189 return true; 190 } else if (!reuseport_ok || !sk->sk_reuseport || 191 !sk2->sk_reuseport || !reuseport_cb_ok || 192 (sk2->sk_state != TCP_TIME_WAIT && 193 !uid_eq(sk_uid, sock_i_uid(sk2)))) { 194 return true; 195 } 196 } 197 return false; 198 } 199 200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2, 201 kuid_t sk_uid, bool relax, 202 bool reuseport_cb_ok, bool reuseport_ok) 203 { 204 if (ipv6_only_sock(sk2)) { 205 if (sk->sk_family == AF_INET) 206 return false; 207 208 #if IS_ENABLED(CONFIG_IPV6) 209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) 210 return false; 211 #endif 212 } 213 214 return inet_bind_conflict(sk, sk2, sk_uid, relax, 215 reuseport_cb_ok, reuseport_ok); 216 } 217 218 static bool inet_bhash2_conflict(const struct sock *sk, 219 const struct inet_bind2_bucket *tb2, 220 kuid_t sk_uid, 221 bool relax, bool reuseport_cb_ok, 222 bool reuseport_ok) 223 { 224 struct sock *sk2; 225 226 sk_for_each_bound(sk2, &tb2->owners) { 227 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax, 228 reuseport_cb_ok, reuseport_ok)) 229 return true; 230 } 231 232 return false; 233 } 234 235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \ 236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \ 237 sk_for_each_bound((__sk), &(__tb2)->owners) 238 239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 240 static int inet_csk_bind_conflict(const struct sock *sk, 241 const struct inet_bind_bucket *tb, 242 const struct inet_bind2_bucket *tb2, /* may be null */ 243 bool relax, bool reuseport_ok) 244 { 245 kuid_t uid = sock_i_uid((struct sock *)sk); 246 struct sock_reuseport *reuseport_cb; 247 bool reuseport_cb_ok; 248 struct sock *sk2; 249 250 rcu_read_lock(); 251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 254 rcu_read_unlock(); 255 256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 257 * ipv4) should have been checked already. We need to do these two 258 * checks separately because their spinlocks have to be acquired/released 259 * independently of each other, to prevent possible deadlocks 260 */ 261 if (inet_use_bhash2_on_bind(sk)) 262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, 263 reuseport_cb_ok, reuseport_ok); 264 265 /* Unlike other sk lookup places we do not check 266 * for sk_net here, since _all_ the socks listed 267 * in tb->owners and tb2->owners list belong 268 * to the same net - the one this bucket belongs to. 269 */ 270 sk_for_each_bound_bhash(sk2, tb2, tb) { 271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok)) 272 continue; 273 274 if (inet_rcv_saddr_equal(sk, sk2, true)) 275 return true; 276 } 277 278 return false; 279 } 280 281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 282 * INADDR_ANY (if ipv4) socket. 283 * 284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 285 * against concurrent binds on the port for addr any 286 */ 287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 288 bool relax, bool reuseport_ok) 289 { 290 kuid_t uid = sock_i_uid((struct sock *)sk); 291 const struct net *net = sock_net(sk); 292 struct sock_reuseport *reuseport_cb; 293 struct inet_bind_hashbucket *head2; 294 struct inet_bind2_bucket *tb2; 295 bool conflict = false; 296 bool reuseport_cb_ok; 297 298 rcu_read_lock(); 299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 302 rcu_read_unlock(); 303 304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 305 306 spin_lock(&head2->lock); 307 308 inet_bind_bucket_for_each(tb2, &head2->chain) { 309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 310 continue; 311 312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok)) 313 continue; 314 315 conflict = true; 316 break; 317 } 318 319 spin_unlock(&head2->lock); 320 321 return conflict; 322 } 323 324 /* 325 * Find an open port number for the socket. Returns with the 326 * inet_bind_hashbucket locks held if successful. 327 */ 328 static struct inet_bind_hashbucket * 329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 330 struct inet_bind2_bucket **tb2_ret, 331 struct inet_bind_hashbucket **head2_ret, int *port_ret) 332 { 333 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 334 int i, low, high, attempt_half, port, l3mdev; 335 struct inet_bind_hashbucket *head, *head2; 336 struct net *net = sock_net(sk); 337 struct inet_bind2_bucket *tb2; 338 struct inet_bind_bucket *tb; 339 u32 remaining, offset; 340 bool relax = false; 341 342 l3mdev = inet_sk_bound_l3mdev(sk); 343 ports_exhausted: 344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 345 other_half_scan: 346 inet_sk_get_local_port_range(sk, &low, &high); 347 high++; /* [32768, 60999] -> [32768, 61000[ */ 348 if (high - low < 4) 349 attempt_half = 0; 350 if (attempt_half) { 351 int half = low + (((high - low) >> 2) << 1); 352 353 if (attempt_half == 1) 354 high = half; 355 else 356 low = half; 357 } 358 remaining = high - low; 359 if (likely(remaining > 1)) 360 remaining &= ~1U; 361 362 offset = get_random_u32_below(remaining); 363 /* __inet_hash_connect() favors ports having @low parity 364 * We do the opposite to not pollute connect() users. 365 */ 366 offset |= 1U; 367 368 other_parity_scan: 369 port = low + offset; 370 for (i = 0; i < remaining; i += 2, port += 2) { 371 if (unlikely(port >= high)) 372 port -= remaining; 373 if (inet_is_local_reserved_port(net, port)) 374 continue; 375 head = &hinfo->bhash[inet_bhashfn(net, port, 376 hinfo->bhash_size)]; 377 spin_lock_bh(&head->lock); 378 if (inet_use_bhash2_on_bind(sk)) { 379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 380 goto next_port; 381 } 382 383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 384 spin_lock(&head2->lock); 385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 386 inet_bind_bucket_for_each(tb, &head->chain) 387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 388 if (!inet_csk_bind_conflict(sk, tb, tb2, 389 relax, false)) 390 goto success; 391 spin_unlock(&head2->lock); 392 goto next_port; 393 } 394 tb = NULL; 395 goto success; 396 next_port: 397 spin_unlock_bh(&head->lock); 398 cond_resched(); 399 } 400 401 offset--; 402 if (!(offset & 1)) 403 goto other_parity_scan; 404 405 if (attempt_half == 1) { 406 /* OK we now try the upper half of the range */ 407 attempt_half = 2; 408 goto other_half_scan; 409 } 410 411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 412 /* We still have a chance to connect to different destinations */ 413 relax = true; 414 goto ports_exhausted; 415 } 416 return NULL; 417 success: 418 *port_ret = port; 419 *tb_ret = tb; 420 *tb2_ret = tb2; 421 *head2_ret = head2; 422 return head; 423 } 424 425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 426 struct sock *sk) 427 { 428 kuid_t uid = sock_i_uid(sk); 429 430 if (tb->fastreuseport <= 0) 431 return 0; 432 if (!sk->sk_reuseport) 433 return 0; 434 if (rcu_access_pointer(sk->sk_reuseport_cb)) 435 return 0; 436 if (!uid_eq(tb->fastuid, uid)) 437 return 0; 438 /* We only need to check the rcv_saddr if this tb was once marked 439 * without fastreuseport and then was reset, as we can only know that 440 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 441 * owners list. 442 */ 443 if (tb->fastreuseport == FASTREUSEPORT_ANY) 444 return 1; 445 #if IS_ENABLED(CONFIG_IPV6) 446 if (tb->fast_sk_family == AF_INET6) 447 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 448 inet6_rcv_saddr(sk), 449 tb->fast_rcv_saddr, 450 sk->sk_rcv_saddr, 451 tb->fast_ipv6_only, 452 ipv6_only_sock(sk), true, false); 453 #endif 454 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 455 ipv6_only_sock(sk), true, false); 456 } 457 458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 459 struct sock *sk) 460 { 461 kuid_t uid = sock_i_uid(sk); 462 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 463 464 if (hlist_empty(&tb->bhash2)) { 465 tb->fastreuse = reuse; 466 if (sk->sk_reuseport) { 467 tb->fastreuseport = FASTREUSEPORT_ANY; 468 tb->fastuid = uid; 469 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 470 tb->fast_ipv6_only = ipv6_only_sock(sk); 471 tb->fast_sk_family = sk->sk_family; 472 #if IS_ENABLED(CONFIG_IPV6) 473 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 474 #endif 475 } else { 476 tb->fastreuseport = 0; 477 } 478 } else { 479 if (!reuse) 480 tb->fastreuse = 0; 481 if (sk->sk_reuseport) { 482 /* We didn't match or we don't have fastreuseport set on 483 * the tb, but we have sk_reuseport set on this socket 484 * and we know that there are no bind conflicts with 485 * this socket in this tb, so reset our tb's reuseport 486 * settings so that any subsequent sockets that match 487 * our current socket will be put on the fast path. 488 * 489 * If we reset we need to set FASTREUSEPORT_STRICT so we 490 * do extra checking for all subsequent sk_reuseport 491 * socks. 492 */ 493 if (!sk_reuseport_match(tb, sk)) { 494 tb->fastreuseport = FASTREUSEPORT_STRICT; 495 tb->fastuid = uid; 496 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 497 tb->fast_ipv6_only = ipv6_only_sock(sk); 498 tb->fast_sk_family = sk->sk_family; 499 #if IS_ENABLED(CONFIG_IPV6) 500 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 501 #endif 502 } 503 } else { 504 tb->fastreuseport = 0; 505 } 506 } 507 } 508 509 /* Obtain a reference to a local port for the given sock, 510 * if snum is zero it means select any available local port. 511 * We try to allocate an odd port (and leave even ports for connect()) 512 */ 513 int inet_csk_get_port(struct sock *sk, unsigned short snum) 514 { 515 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 516 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 517 bool found_port = false, check_bind_conflict = true; 518 bool bhash_created = false, bhash2_created = false; 519 int ret = -EADDRINUSE, port = snum, l3mdev; 520 struct inet_bind_hashbucket *head, *head2; 521 struct inet_bind2_bucket *tb2 = NULL; 522 struct inet_bind_bucket *tb = NULL; 523 bool head2_lock_acquired = false; 524 struct net *net = sock_net(sk); 525 526 l3mdev = inet_sk_bound_l3mdev(sk); 527 528 if (!port) { 529 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 530 if (!head) 531 return ret; 532 533 head2_lock_acquired = true; 534 535 if (tb && tb2) 536 goto success; 537 found_port = true; 538 } else { 539 head = &hinfo->bhash[inet_bhashfn(net, port, 540 hinfo->bhash_size)]; 541 spin_lock_bh(&head->lock); 542 inet_bind_bucket_for_each(tb, &head->chain) 543 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 544 break; 545 } 546 547 if (!tb) { 548 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 549 head, port, l3mdev); 550 if (!tb) 551 goto fail_unlock; 552 bhash_created = true; 553 } 554 555 if (!found_port) { 556 if (!hlist_empty(&tb->bhash2)) { 557 if (sk->sk_reuse == SK_FORCE_REUSE || 558 (tb->fastreuse > 0 && reuse) || 559 sk_reuseport_match(tb, sk)) 560 check_bind_conflict = false; 561 } 562 563 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 564 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 565 goto fail_unlock; 566 } 567 568 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 569 spin_lock(&head2->lock); 570 head2_lock_acquired = true; 571 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 572 } 573 574 if (!tb2) { 575 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 576 net, head2, tb, sk); 577 if (!tb2) 578 goto fail_unlock; 579 bhash2_created = true; 580 } 581 582 if (!found_port && check_bind_conflict) { 583 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 584 goto fail_unlock; 585 } 586 587 success: 588 inet_csk_update_fastreuse(tb, sk); 589 590 if (!inet_csk(sk)->icsk_bind_hash) 591 inet_bind_hash(sk, tb, tb2, port); 592 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 593 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 594 ret = 0; 595 596 fail_unlock: 597 if (ret) { 598 if (bhash2_created) 599 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2); 600 if (bhash_created) 601 inet_bind_bucket_destroy(tb); 602 } 603 if (head2_lock_acquired) 604 spin_unlock(&head2->lock); 605 spin_unlock_bh(&head->lock); 606 return ret; 607 } 608 EXPORT_SYMBOL_GPL(inet_csk_get_port); 609 610 /* 611 * Wait for an incoming connection, avoid race conditions. This must be called 612 * with the socket locked. 613 */ 614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 615 { 616 struct inet_connection_sock *icsk = inet_csk(sk); 617 DEFINE_WAIT(wait); 618 int err; 619 620 /* 621 * True wake-one mechanism for incoming connections: only 622 * one process gets woken up, not the 'whole herd'. 623 * Since we do not 'race & poll' for established sockets 624 * anymore, the common case will execute the loop only once. 625 * 626 * Subtle issue: "add_wait_queue_exclusive()" will be added 627 * after any current non-exclusive waiters, and we know that 628 * it will always _stay_ after any new non-exclusive waiters 629 * because all non-exclusive waiters are added at the 630 * beginning of the wait-queue. As such, it's ok to "drop" 631 * our exclusiveness temporarily when we get woken up without 632 * having to remove and re-insert us on the wait queue. 633 */ 634 for (;;) { 635 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 636 TASK_INTERRUPTIBLE); 637 release_sock(sk); 638 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 639 timeo = schedule_timeout(timeo); 640 sched_annotate_sleep(); 641 lock_sock(sk); 642 err = 0; 643 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 644 break; 645 err = -EINVAL; 646 if (sk->sk_state != TCP_LISTEN) 647 break; 648 err = sock_intr_errno(timeo); 649 if (signal_pending(current)) 650 break; 651 err = -EAGAIN; 652 if (!timeo) 653 break; 654 } 655 finish_wait(sk_sleep(sk), &wait); 656 return err; 657 } 658 659 /* 660 * This will accept the next outstanding connection. 661 */ 662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg) 663 { 664 struct inet_connection_sock *icsk = inet_csk(sk); 665 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 666 struct request_sock *req; 667 struct sock *newsk; 668 int error; 669 670 lock_sock(sk); 671 672 /* We need to make sure that this socket is listening, 673 * and that it has something pending. 674 */ 675 error = -EINVAL; 676 if (sk->sk_state != TCP_LISTEN) 677 goto out_err; 678 679 /* Find already established connection */ 680 if (reqsk_queue_empty(queue)) { 681 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 682 683 /* If this is a non blocking socket don't sleep */ 684 error = -EAGAIN; 685 if (!timeo) 686 goto out_err; 687 688 error = inet_csk_wait_for_connect(sk, timeo); 689 if (error) 690 goto out_err; 691 } 692 req = reqsk_queue_remove(queue, sk); 693 arg->is_empty = reqsk_queue_empty(queue); 694 newsk = req->sk; 695 696 if (sk->sk_protocol == IPPROTO_TCP && 697 tcp_rsk(req)->tfo_listener) { 698 spin_lock_bh(&queue->fastopenq.lock); 699 if (tcp_rsk(req)->tfo_listener) { 700 /* We are still waiting for the final ACK from 3WHS 701 * so can't free req now. Instead, we set req->sk to 702 * NULL to signify that the child socket is taken 703 * so reqsk_fastopen_remove() will free the req 704 * when 3WHS finishes (or is aborted). 705 */ 706 req->sk = NULL; 707 req = NULL; 708 } 709 spin_unlock_bh(&queue->fastopenq.lock); 710 } 711 712 out: 713 release_sock(sk); 714 if (newsk && mem_cgroup_sockets_enabled) { 715 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 716 int amt = 0; 717 718 /* atomically get the memory usage, set and charge the 719 * newsk->sk_memcg. 720 */ 721 lock_sock(newsk); 722 723 mem_cgroup_sk_alloc(newsk); 724 if (newsk->sk_memcg) { 725 /* The socket has not been accepted yet, no need 726 * to look at newsk->sk_wmem_queued. 727 */ 728 amt = sk_mem_pages(newsk->sk_forward_alloc + 729 atomic_read(&newsk->sk_rmem_alloc)); 730 } 731 732 if (amt) 733 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp); 734 kmem_cache_charge(newsk, gfp); 735 736 release_sock(newsk); 737 } 738 if (req) 739 reqsk_put(req); 740 741 if (newsk) 742 inet_init_csk_locks(newsk); 743 744 return newsk; 745 out_err: 746 newsk = NULL; 747 req = NULL; 748 arg->err = error; 749 goto out; 750 } 751 EXPORT_SYMBOL(inet_csk_accept); 752 753 /* 754 * Using different timers for retransmit, delayed acks and probes 755 * We may wish use just one timer maintaining a list of expire jiffies 756 * to optimize. 757 */ 758 void inet_csk_init_xmit_timers(struct sock *sk, 759 void (*retransmit_handler)(struct timer_list *t), 760 void (*delack_handler)(struct timer_list *t), 761 void (*keepalive_handler)(struct timer_list *t)) 762 { 763 struct inet_connection_sock *icsk = inet_csk(sk); 764 765 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 766 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 767 timer_setup(&sk->sk_timer, keepalive_handler, 0); 768 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 769 } 770 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 771 772 void inet_csk_clear_xmit_timers(struct sock *sk) 773 { 774 struct inet_connection_sock *icsk = inet_csk(sk); 775 776 smp_store_release(&icsk->icsk_pending, 0); 777 smp_store_release(&icsk->icsk_ack.pending, 0); 778 779 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 780 sk_stop_timer(sk, &icsk->icsk_delack_timer); 781 sk_stop_timer(sk, &sk->sk_timer); 782 } 783 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 784 785 void inet_csk_clear_xmit_timers_sync(struct sock *sk) 786 { 787 struct inet_connection_sock *icsk = inet_csk(sk); 788 789 /* ongoing timer handlers need to acquire socket lock. */ 790 sock_not_owned_by_me(sk); 791 792 smp_store_release(&icsk->icsk_pending, 0); 793 smp_store_release(&icsk->icsk_ack.pending, 0); 794 795 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer); 796 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer); 797 sk_stop_timer_sync(sk, &sk->sk_timer); 798 } 799 800 struct dst_entry *inet_csk_route_req(const struct sock *sk, 801 struct flowi4 *fl4, 802 const struct request_sock *req) 803 { 804 const struct inet_request_sock *ireq = inet_rsk(req); 805 struct net *net = read_pnet(&ireq->ireq_net); 806 struct ip_options_rcu *opt; 807 struct rtable *rt; 808 809 rcu_read_lock(); 810 opt = rcu_dereference(ireq->ireq_opt); 811 812 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 813 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 814 sk->sk_protocol, inet_sk_flowi_flags(sk), 815 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 816 ireq->ir_loc_addr, ireq->ir_rmt_port, 817 htons(ireq->ir_num), sk->sk_uid); 818 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 819 rt = ip_route_output_flow(net, fl4, sk); 820 if (IS_ERR(rt)) 821 goto no_route; 822 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 823 goto route_err; 824 rcu_read_unlock(); 825 return &rt->dst; 826 827 route_err: 828 ip_rt_put(rt); 829 no_route: 830 rcu_read_unlock(); 831 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 832 return NULL; 833 } 834 EXPORT_SYMBOL_GPL(inet_csk_route_req); 835 836 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 837 struct sock *newsk, 838 const struct request_sock *req) 839 { 840 const struct inet_request_sock *ireq = inet_rsk(req); 841 struct net *net = read_pnet(&ireq->ireq_net); 842 struct inet_sock *newinet = inet_sk(newsk); 843 struct ip_options_rcu *opt; 844 struct flowi4 *fl4; 845 struct rtable *rt; 846 847 opt = rcu_dereference(ireq->ireq_opt); 848 fl4 = &newinet->cork.fl.u.ip4; 849 850 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 851 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 852 sk->sk_protocol, inet_sk_flowi_flags(sk), 853 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 854 ireq->ir_loc_addr, ireq->ir_rmt_port, 855 htons(ireq->ir_num), sk->sk_uid); 856 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 857 rt = ip_route_output_flow(net, fl4, sk); 858 if (IS_ERR(rt)) 859 goto no_route; 860 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 861 goto route_err; 862 return &rt->dst; 863 864 route_err: 865 ip_rt_put(rt); 866 no_route: 867 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 868 return NULL; 869 } 870 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 871 872 /* Decide when to expire the request and when to resend SYN-ACK */ 873 static void syn_ack_recalc(struct request_sock *req, 874 const int max_syn_ack_retries, 875 const u8 rskq_defer_accept, 876 int *expire, int *resend) 877 { 878 if (!rskq_defer_accept) { 879 *expire = req->num_timeout >= max_syn_ack_retries; 880 *resend = 1; 881 return; 882 } 883 *expire = req->num_timeout >= max_syn_ack_retries && 884 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 885 /* Do not resend while waiting for data after ACK, 886 * start to resend on end of deferring period to give 887 * last chance for data or ACK to create established socket. 888 */ 889 *resend = !inet_rsk(req)->acked || 890 req->num_timeout >= rskq_defer_accept - 1; 891 } 892 893 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 894 { 895 int err = req->rsk_ops->rtx_syn_ack(parent, req); 896 897 if (!err) 898 req->num_retrans++; 899 return err; 900 } 901 EXPORT_SYMBOL(inet_rtx_syn_ack); 902 903 static struct request_sock * 904 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener, 905 bool attach_listener) 906 { 907 struct request_sock *req; 908 909 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN); 910 if (!req) 911 return NULL; 912 req->rsk_listener = NULL; 913 if (attach_listener) { 914 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) { 915 kmem_cache_free(ops->slab, req); 916 return NULL; 917 } 918 req->rsk_listener = sk_listener; 919 } 920 req->rsk_ops = ops; 921 req_to_sk(req)->sk_prot = sk_listener->sk_prot; 922 sk_node_init(&req_to_sk(req)->sk_node); 923 sk_tx_queue_clear(req_to_sk(req)); 924 req->saved_syn = NULL; 925 req->syncookie = 0; 926 req->timeout = 0; 927 req->num_timeout = 0; 928 req->num_retrans = 0; 929 req->sk = NULL; 930 refcount_set(&req->rsk_refcnt, 0); 931 932 return req; 933 } 934 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__)) 935 936 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 937 struct sock *sk_listener, 938 bool attach_listener) 939 { 940 struct request_sock *req = reqsk_alloc(ops, sk_listener, 941 attach_listener); 942 943 if (req) { 944 struct inet_request_sock *ireq = inet_rsk(req); 945 946 ireq->ireq_opt = NULL; 947 #if IS_ENABLED(CONFIG_IPV6) 948 ireq->pktopts = NULL; 949 #endif 950 atomic64_set(&ireq->ir_cookie, 0); 951 ireq->ireq_state = TCP_NEW_SYN_RECV; 952 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 953 ireq->ireq_family = sk_listener->sk_family; 954 req->timeout = TCP_TIMEOUT_INIT; 955 } 956 957 return req; 958 } 959 EXPORT_SYMBOL(inet_reqsk_alloc); 960 961 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 962 struct sock *sk) 963 { 964 struct sock *req_sk, *nreq_sk; 965 struct request_sock *nreq; 966 967 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 968 if (!nreq) { 969 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 970 971 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 972 sock_put(sk); 973 return NULL; 974 } 975 976 req_sk = req_to_sk(req); 977 nreq_sk = req_to_sk(nreq); 978 979 memcpy(nreq_sk, req_sk, 980 offsetof(struct sock, sk_dontcopy_begin)); 981 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 982 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end), 983 /* alloc is larger than struct, see above */); 984 985 sk_node_init(&nreq_sk->sk_node); 986 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 987 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 988 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 989 #endif 990 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 991 992 nreq->rsk_listener = sk; 993 994 /* We need not acquire fastopenq->lock 995 * because the child socket is locked in inet_csk_listen_stop(). 996 */ 997 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 998 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 999 1000 return nreq; 1001 } 1002 1003 static void reqsk_queue_migrated(struct request_sock_queue *queue, 1004 const struct request_sock *req) 1005 { 1006 if (req->num_timeout == 0) 1007 atomic_inc(&queue->young); 1008 atomic_inc(&queue->qlen); 1009 } 1010 1011 static void reqsk_migrate_reset(struct request_sock *req) 1012 { 1013 req->saved_syn = NULL; 1014 #if IS_ENABLED(CONFIG_IPV6) 1015 inet_rsk(req)->ipv6_opt = NULL; 1016 inet_rsk(req)->pktopts = NULL; 1017 #else 1018 inet_rsk(req)->ireq_opt = NULL; 1019 #endif 1020 } 1021 1022 /* return true if req was found in the ehash table */ 1023 static bool reqsk_queue_unlink(struct request_sock *req) 1024 { 1025 struct sock *sk = req_to_sk(req); 1026 bool found = false; 1027 1028 if (sk_hashed(sk)) { 1029 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk); 1030 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 1031 1032 spin_lock(lock); 1033 found = __sk_nulls_del_node_init_rcu(sk); 1034 spin_unlock(lock); 1035 } 1036 1037 return found; 1038 } 1039 1040 static bool __inet_csk_reqsk_queue_drop(struct sock *sk, 1041 struct request_sock *req, 1042 bool from_timer) 1043 { 1044 bool unlinked = reqsk_queue_unlink(req); 1045 1046 if (!from_timer && timer_delete_sync(&req->rsk_timer)) 1047 reqsk_put(req); 1048 1049 if (unlinked) { 1050 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 1051 reqsk_put(req); 1052 } 1053 1054 return unlinked; 1055 } 1056 1057 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 1058 { 1059 return __inet_csk_reqsk_queue_drop(sk, req, false); 1060 } 1061 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 1062 1063 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 1064 { 1065 inet_csk_reqsk_queue_drop(sk, req); 1066 reqsk_put(req); 1067 } 1068 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 1069 1070 static void reqsk_timer_handler(struct timer_list *t) 1071 { 1072 struct request_sock *req = from_timer(req, t, rsk_timer); 1073 struct request_sock *nreq = NULL, *oreq = req; 1074 struct sock *sk_listener = req->rsk_listener; 1075 struct inet_connection_sock *icsk; 1076 struct request_sock_queue *queue; 1077 struct net *net; 1078 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 1079 1080 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 1081 struct sock *nsk; 1082 1083 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 1084 if (!nsk) 1085 goto drop; 1086 1087 nreq = inet_reqsk_clone(req, nsk); 1088 if (!nreq) 1089 goto drop; 1090 1091 /* The new timer for the cloned req can decrease the 2 1092 * by calling inet_csk_reqsk_queue_drop_and_put(), so 1093 * hold another count to prevent use-after-free and 1094 * call reqsk_put() just before return. 1095 */ 1096 refcount_set(&nreq->rsk_refcnt, 2 + 1); 1097 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1098 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 1099 1100 req = nreq; 1101 sk_listener = nsk; 1102 } 1103 1104 icsk = inet_csk(sk_listener); 1105 net = sock_net(sk_listener); 1106 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? : 1107 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 1108 /* Normally all the openreqs are young and become mature 1109 * (i.e. converted to established socket) for first timeout. 1110 * If synack was not acknowledged for 1 second, it means 1111 * one of the following things: synack was lost, ack was lost, 1112 * rtt is high or nobody planned to ack (i.e. synflood). 1113 * When server is a bit loaded, queue is populated with old 1114 * open requests, reducing effective size of queue. 1115 * When server is well loaded, queue size reduces to zero 1116 * after several minutes of work. It is not synflood, 1117 * it is normal operation. The solution is pruning 1118 * too old entries overriding normal timeout, when 1119 * situation becomes dangerous. 1120 * 1121 * Essentially, we reserve half of room for young 1122 * embrions; and abort old ones without pity, if old 1123 * ones are about to clog our table. 1124 */ 1125 queue = &icsk->icsk_accept_queue; 1126 qlen = reqsk_queue_len(queue); 1127 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1128 int young = reqsk_queue_len_young(queue) << 1; 1129 1130 while (max_syn_ack_retries > 2) { 1131 if (qlen < young) 1132 break; 1133 max_syn_ack_retries--; 1134 young <<= 1; 1135 } 1136 } 1137 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1138 &expire, &resend); 1139 req->rsk_ops->syn_ack_timeout(req); 1140 if (!expire && 1141 (!resend || 1142 !inet_rtx_syn_ack(sk_listener, req) || 1143 inet_rsk(req)->acked)) { 1144 if (req->num_timeout++ == 0) 1145 atomic_dec(&queue->young); 1146 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1147 1148 if (!nreq) 1149 return; 1150 1151 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1152 /* delete timer */ 1153 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true); 1154 goto no_ownership; 1155 } 1156 1157 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1158 reqsk_migrate_reset(oreq); 1159 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1160 reqsk_put(oreq); 1161 1162 reqsk_put(nreq); 1163 return; 1164 } 1165 1166 /* Even if we can clone the req, we may need not retransmit any more 1167 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1168 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1169 */ 1170 if (nreq) { 1171 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1172 no_ownership: 1173 reqsk_migrate_reset(nreq); 1174 reqsk_queue_removed(queue, nreq); 1175 __reqsk_free(nreq); 1176 } 1177 1178 drop: 1179 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true); 1180 reqsk_put(oreq); 1181 } 1182 1183 static bool reqsk_queue_hash_req(struct request_sock *req, 1184 unsigned long timeout) 1185 { 1186 bool found_dup_sk = false; 1187 1188 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk)) 1189 return false; 1190 1191 /* The timer needs to be setup after a successful insertion. */ 1192 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1193 mod_timer(&req->rsk_timer, jiffies + timeout); 1194 1195 /* before letting lookups find us, make sure all req fields 1196 * are committed to memory and refcnt initialized. 1197 */ 1198 smp_wmb(); 1199 refcount_set(&req->rsk_refcnt, 2 + 1); 1200 return true; 1201 } 1202 1203 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1204 unsigned long timeout) 1205 { 1206 if (!reqsk_queue_hash_req(req, timeout)) 1207 return false; 1208 1209 inet_csk_reqsk_queue_added(sk); 1210 return true; 1211 } 1212 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 1213 1214 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1215 const gfp_t priority) 1216 { 1217 struct inet_connection_sock *icsk = inet_csk(newsk); 1218 1219 if (!icsk->icsk_ulp_ops) 1220 return; 1221 1222 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1223 } 1224 1225 /** 1226 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1227 * @sk: the socket to clone 1228 * @req: request_sock 1229 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1230 * 1231 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1232 */ 1233 struct sock *inet_csk_clone_lock(const struct sock *sk, 1234 const struct request_sock *req, 1235 const gfp_t priority) 1236 { 1237 struct sock *newsk = sk_clone_lock(sk, priority); 1238 struct inet_connection_sock *newicsk; 1239 struct inet_request_sock *ireq; 1240 struct inet_sock *newinet; 1241 1242 if (!newsk) 1243 return NULL; 1244 1245 newicsk = inet_csk(newsk); 1246 newinet = inet_sk(newsk); 1247 ireq = inet_rsk(req); 1248 1249 newicsk->icsk_bind_hash = NULL; 1250 newicsk->icsk_bind2_hash = NULL; 1251 1252 newinet->inet_dport = ireq->ir_rmt_port; 1253 newinet->inet_num = ireq->ir_num; 1254 newinet->inet_sport = htons(ireq->ir_num); 1255 1256 newsk->sk_bound_dev_if = ireq->ir_iif; 1257 1258 newsk->sk_daddr = ireq->ir_rmt_addr; 1259 newsk->sk_rcv_saddr = ireq->ir_loc_addr; 1260 newinet->inet_saddr = ireq->ir_loc_addr; 1261 1262 #if IS_ENABLED(CONFIG_IPV6) 1263 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr; 1264 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr; 1265 #endif 1266 1267 /* listeners have SOCK_RCU_FREE, not the children */ 1268 sock_reset_flag(newsk, SOCK_RCU_FREE); 1269 1270 inet_sk(newsk)->mc_list = NULL; 1271 1272 newsk->sk_mark = inet_rsk(req)->ir_mark; 1273 atomic64_set(&newsk->sk_cookie, 1274 atomic64_read(&inet_rsk(req)->ir_cookie)); 1275 1276 newicsk->icsk_retransmits = 0; 1277 newicsk->icsk_backoff = 0; 1278 newicsk->icsk_probes_out = 0; 1279 newicsk->icsk_probes_tstamp = 0; 1280 1281 /* Deinitialize accept_queue to trap illegal accesses. */ 1282 memset(&newicsk->icsk_accept_queue, 0, 1283 sizeof(newicsk->icsk_accept_queue)); 1284 1285 inet_sk_set_state(newsk, TCP_SYN_RECV); 1286 1287 inet_clone_ulp(req, newsk, priority); 1288 1289 security_inet_csk_clone(newsk, req); 1290 1291 return newsk; 1292 } 1293 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 1294 1295 /* 1296 * At this point, there should be no process reference to this 1297 * socket, and thus no user references at all. Therefore we 1298 * can assume the socket waitqueue is inactive and nobody will 1299 * try to jump onto it. 1300 */ 1301 void inet_csk_destroy_sock(struct sock *sk) 1302 { 1303 WARN_ON(sk->sk_state != TCP_CLOSE); 1304 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1305 1306 /* It cannot be in hash table! */ 1307 WARN_ON(!sk_unhashed(sk)); 1308 1309 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1310 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1311 1312 sk->sk_prot->destroy(sk); 1313 1314 sk_stream_kill_queues(sk); 1315 1316 xfrm_sk_free_policy(sk); 1317 1318 this_cpu_dec(*sk->sk_prot->orphan_count); 1319 1320 sock_put(sk); 1321 } 1322 EXPORT_SYMBOL(inet_csk_destroy_sock); 1323 1324 /* This function allows to force a closure of a socket after the call to 1325 * tcp/dccp_create_openreq_child(). 1326 */ 1327 void inet_csk_prepare_forced_close(struct sock *sk) 1328 __releases(&sk->sk_lock.slock) 1329 { 1330 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1331 bh_unlock_sock(sk); 1332 sock_put(sk); 1333 inet_csk_prepare_for_destroy_sock(sk); 1334 inet_sk(sk)->inet_num = 0; 1335 } 1336 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1337 1338 static int inet_ulp_can_listen(const struct sock *sk) 1339 { 1340 const struct inet_connection_sock *icsk = inet_csk(sk); 1341 1342 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone) 1343 return -EINVAL; 1344 1345 return 0; 1346 } 1347 1348 int inet_csk_listen_start(struct sock *sk) 1349 { 1350 struct inet_connection_sock *icsk = inet_csk(sk); 1351 struct inet_sock *inet = inet_sk(sk); 1352 int err; 1353 1354 err = inet_ulp_can_listen(sk); 1355 if (unlikely(err)) 1356 return err; 1357 1358 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1359 1360 sk->sk_ack_backlog = 0; 1361 inet_csk_delack_init(sk); 1362 1363 /* There is race window here: we announce ourselves listening, 1364 * but this transition is still not validated by get_port(). 1365 * It is OK, because this socket enters to hash table only 1366 * after validation is complete. 1367 */ 1368 inet_sk_state_store(sk, TCP_LISTEN); 1369 err = sk->sk_prot->get_port(sk, inet->inet_num); 1370 if (!err) { 1371 inet->inet_sport = htons(inet->inet_num); 1372 1373 sk_dst_reset(sk); 1374 err = sk->sk_prot->hash(sk); 1375 1376 if (likely(!err)) 1377 return 0; 1378 } 1379 1380 inet_sk_set_state(sk, TCP_CLOSE); 1381 return err; 1382 } 1383 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 1384 1385 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1386 struct sock *child) 1387 { 1388 sk->sk_prot->disconnect(child, O_NONBLOCK); 1389 1390 sock_orphan(child); 1391 1392 this_cpu_inc(*sk->sk_prot->orphan_count); 1393 1394 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1395 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1396 BUG_ON(sk != req->rsk_listener); 1397 1398 /* Paranoid, to prevent race condition if 1399 * an inbound pkt destined for child is 1400 * blocked by sock lock in tcp_v4_rcv(). 1401 * Also to satisfy an assertion in 1402 * tcp_v4_destroy_sock(). 1403 */ 1404 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1405 } 1406 inet_csk_destroy_sock(child); 1407 } 1408 1409 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1410 struct request_sock *req, 1411 struct sock *child) 1412 { 1413 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1414 1415 spin_lock(&queue->rskq_lock); 1416 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1417 inet_child_forget(sk, req, child); 1418 child = NULL; 1419 } else { 1420 req->sk = child; 1421 req->dl_next = NULL; 1422 if (queue->rskq_accept_head == NULL) 1423 WRITE_ONCE(queue->rskq_accept_head, req); 1424 else 1425 queue->rskq_accept_tail->dl_next = req; 1426 queue->rskq_accept_tail = req; 1427 sk_acceptq_added(sk); 1428 } 1429 spin_unlock(&queue->rskq_lock); 1430 return child; 1431 } 1432 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1433 1434 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1435 struct request_sock *req, bool own_req) 1436 { 1437 if (own_req) { 1438 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1439 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1440 1441 if (sk != req->rsk_listener) { 1442 /* another listening sk has been selected, 1443 * migrate the req to it. 1444 */ 1445 struct request_sock *nreq; 1446 1447 /* hold a refcnt for the nreq->rsk_listener 1448 * which is assigned in inet_reqsk_clone() 1449 */ 1450 sock_hold(sk); 1451 nreq = inet_reqsk_clone(req, sk); 1452 if (!nreq) { 1453 inet_child_forget(sk, req, child); 1454 goto child_put; 1455 } 1456 1457 refcount_set(&nreq->rsk_refcnt, 1); 1458 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1459 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1460 reqsk_migrate_reset(req); 1461 reqsk_put(req); 1462 return child; 1463 } 1464 1465 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1466 reqsk_migrate_reset(nreq); 1467 __reqsk_free(nreq); 1468 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1469 return child; 1470 } 1471 } 1472 /* Too bad, another child took ownership of the request, undo. */ 1473 child_put: 1474 bh_unlock_sock(child); 1475 sock_put(child); 1476 return NULL; 1477 } 1478 EXPORT_SYMBOL(inet_csk_complete_hashdance); 1479 1480 /* 1481 * This routine closes sockets which have been at least partially 1482 * opened, but not yet accepted. 1483 */ 1484 void inet_csk_listen_stop(struct sock *sk) 1485 { 1486 struct inet_connection_sock *icsk = inet_csk(sk); 1487 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1488 struct request_sock *next, *req; 1489 1490 /* Following specs, it would be better either to send FIN 1491 * (and enter FIN-WAIT-1, it is normal close) 1492 * or to send active reset (abort). 1493 * Certainly, it is pretty dangerous while synflood, but it is 1494 * bad justification for our negligence 8) 1495 * To be honest, we are not able to make either 1496 * of the variants now. --ANK 1497 */ 1498 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1499 struct sock *child = req->sk, *nsk; 1500 struct request_sock *nreq; 1501 1502 local_bh_disable(); 1503 bh_lock_sock(child); 1504 WARN_ON(sock_owned_by_user(child)); 1505 sock_hold(child); 1506 1507 nsk = reuseport_migrate_sock(sk, child, NULL); 1508 if (nsk) { 1509 nreq = inet_reqsk_clone(req, nsk); 1510 if (nreq) { 1511 refcount_set(&nreq->rsk_refcnt, 1); 1512 1513 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1514 __NET_INC_STATS(sock_net(nsk), 1515 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1516 reqsk_migrate_reset(req); 1517 } else { 1518 __NET_INC_STATS(sock_net(nsk), 1519 LINUX_MIB_TCPMIGRATEREQFAILURE); 1520 reqsk_migrate_reset(nreq); 1521 __reqsk_free(nreq); 1522 } 1523 1524 /* inet_csk_reqsk_queue_add() has already 1525 * called inet_child_forget() on failure case. 1526 */ 1527 goto skip_child_forget; 1528 } 1529 } 1530 1531 inet_child_forget(sk, req, child); 1532 skip_child_forget: 1533 reqsk_put(req); 1534 bh_unlock_sock(child); 1535 local_bh_enable(); 1536 sock_put(child); 1537 1538 cond_resched(); 1539 } 1540 if (queue->fastopenq.rskq_rst_head) { 1541 /* Free all the reqs queued in rskq_rst_head. */ 1542 spin_lock_bh(&queue->fastopenq.lock); 1543 req = queue->fastopenq.rskq_rst_head; 1544 queue->fastopenq.rskq_rst_head = NULL; 1545 spin_unlock_bh(&queue->fastopenq.lock); 1546 while (req != NULL) { 1547 next = req->dl_next; 1548 reqsk_put(req); 1549 req = next; 1550 } 1551 } 1552 WARN_ON_ONCE(sk->sk_ack_backlog); 1553 } 1554 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1555 1556 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1557 { 1558 const struct inet_sock *inet = inet_sk(sk); 1559 struct flowi4 *fl4; 1560 struct rtable *rt; 1561 1562 rcu_read_lock(); 1563 fl4 = &fl->u.ip4; 1564 inet_sk_init_flowi4(inet, fl4); 1565 rt = ip_route_output_flow(sock_net(sk), fl4, sk); 1566 if (IS_ERR(rt)) 1567 rt = NULL; 1568 if (rt) 1569 sk_setup_caps(sk, &rt->dst); 1570 rcu_read_unlock(); 1571 1572 return &rt->dst; 1573 } 1574 1575 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1576 { 1577 struct dst_entry *dst = __sk_dst_check(sk, 0); 1578 struct inet_sock *inet = inet_sk(sk); 1579 1580 if (!dst) { 1581 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1582 if (!dst) 1583 goto out; 1584 } 1585 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1586 1587 dst = __sk_dst_check(sk, 0); 1588 if (!dst) 1589 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1590 out: 1591 return dst; 1592 } 1593 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1594