1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 /** 121 * inet_sk_get_local_port_range - fetch ephemeral ports range 122 * @sk: socket 123 * @low: pointer to low port 124 * @high: pointer to high port 125 * 126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range) 127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option. 128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket. 129 */ 130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high) 131 { 132 int lo, hi, sk_lo, sk_hi; 133 bool local_range = false; 134 u32 sk_range; 135 136 inet_get_local_port_range(sock_net(sk), &lo, &hi); 137 138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range); 139 if (unlikely(sk_range)) { 140 sk_lo = sk_range & 0xffff; 141 sk_hi = sk_range >> 16; 142 143 if (lo <= sk_lo && sk_lo <= hi) 144 lo = sk_lo; 145 if (lo <= sk_hi && sk_hi <= hi) 146 hi = sk_hi; 147 local_range = true; 148 } 149 150 *low = lo; 151 *high = hi; 152 return local_range; 153 } 154 EXPORT_SYMBOL(inet_sk_get_local_port_range); 155 156 static bool inet_use_bhash2_on_bind(const struct sock *sk) 157 { 158 #if IS_ENABLED(CONFIG_IPV6) 159 if (sk->sk_family == AF_INET6) { 160 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr); 161 162 if (addr_type == IPV6_ADDR_ANY) 163 return false; 164 165 if (addr_type != IPV6_ADDR_MAPPED) 166 return true; 167 } 168 #endif 169 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 170 } 171 172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 173 kuid_t sk_uid, bool relax, 174 bool reuseport_cb_ok, bool reuseport_ok) 175 { 176 int bound_dev_if2; 177 178 if (sk == sk2) 179 return false; 180 181 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 182 183 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 184 sk->sk_bound_dev_if == bound_dev_if2) { 185 if (sk->sk_reuse && sk2->sk_reuse && 186 sk2->sk_state != TCP_LISTEN) { 187 if (!relax || (!reuseport_ok && sk->sk_reuseport && 188 sk2->sk_reuseport && reuseport_cb_ok && 189 (sk2->sk_state == TCP_TIME_WAIT || 190 uid_eq(sk_uid, sock_i_uid(sk2))))) 191 return true; 192 } else if (!reuseport_ok || !sk->sk_reuseport || 193 !sk2->sk_reuseport || !reuseport_cb_ok || 194 (sk2->sk_state != TCP_TIME_WAIT && 195 !uid_eq(sk_uid, sock_i_uid(sk2)))) { 196 return true; 197 } 198 } 199 return false; 200 } 201 202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2, 203 kuid_t sk_uid, bool relax, 204 bool reuseport_cb_ok, bool reuseport_ok) 205 { 206 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2)) 207 return false; 208 209 return inet_bind_conflict(sk, sk2, sk_uid, relax, 210 reuseport_cb_ok, reuseport_ok); 211 } 212 213 static bool inet_bhash2_conflict(const struct sock *sk, 214 const struct inet_bind2_bucket *tb2, 215 kuid_t sk_uid, 216 bool relax, bool reuseport_cb_ok, 217 bool reuseport_ok) 218 { 219 struct sock *sk2; 220 221 sk_for_each_bound(sk2, &tb2->owners) { 222 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax, 223 reuseport_cb_ok, reuseport_ok)) 224 return true; 225 } 226 227 return false; 228 } 229 230 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \ 231 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \ 232 sk_for_each_bound(sk2, &(__tb2)->owners) 233 234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 235 static int inet_csk_bind_conflict(const struct sock *sk, 236 const struct inet_bind_bucket *tb, 237 const struct inet_bind2_bucket *tb2, /* may be null */ 238 bool relax, bool reuseport_ok) 239 { 240 kuid_t uid = sock_i_uid((struct sock *)sk); 241 struct sock_reuseport *reuseport_cb; 242 bool reuseport_cb_ok; 243 struct sock *sk2; 244 245 rcu_read_lock(); 246 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 247 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 248 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 249 rcu_read_unlock(); 250 251 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 252 * ipv4) should have been checked already. We need to do these two 253 * checks separately because their spinlocks have to be acquired/released 254 * independently of each other, to prevent possible deadlocks 255 */ 256 if (inet_use_bhash2_on_bind(sk)) 257 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, 258 reuseport_cb_ok, reuseport_ok); 259 260 /* Unlike other sk lookup places we do not check 261 * for sk_net here, since _all_ the socks listed 262 * in tb->owners and tb2->owners list belong 263 * to the same net - the one this bucket belongs to. 264 */ 265 sk_for_each_bound_bhash(sk2, tb2, tb) { 266 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok)) 267 continue; 268 269 if (inet_rcv_saddr_equal(sk, sk2, true)) 270 return true; 271 } 272 273 return false; 274 } 275 276 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 277 * INADDR_ANY (if ipv4) socket. 278 * 279 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 280 * against concurrent binds on the port for addr any 281 */ 282 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 283 bool relax, bool reuseport_ok) 284 { 285 kuid_t uid = sock_i_uid((struct sock *)sk); 286 const struct net *net = sock_net(sk); 287 struct sock_reuseport *reuseport_cb; 288 struct inet_bind_hashbucket *head2; 289 struct inet_bind2_bucket *tb2; 290 bool reuseport_cb_ok; 291 292 rcu_read_lock(); 293 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 294 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 295 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 296 rcu_read_unlock(); 297 298 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 299 300 spin_lock(&head2->lock); 301 302 inet_bind_bucket_for_each(tb2, &head2->chain) 303 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 304 break; 305 306 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, 307 reuseport_ok)) { 308 spin_unlock(&head2->lock); 309 return true; 310 } 311 312 spin_unlock(&head2->lock); 313 return false; 314 } 315 316 /* 317 * Find an open port number for the socket. Returns with the 318 * inet_bind_hashbucket locks held if successful. 319 */ 320 static struct inet_bind_hashbucket * 321 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 322 struct inet_bind2_bucket **tb2_ret, 323 struct inet_bind_hashbucket **head2_ret, int *port_ret) 324 { 325 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 326 int i, low, high, attempt_half, port, l3mdev; 327 struct inet_bind_hashbucket *head, *head2; 328 struct net *net = sock_net(sk); 329 struct inet_bind2_bucket *tb2; 330 struct inet_bind_bucket *tb; 331 u32 remaining, offset; 332 bool relax = false; 333 334 l3mdev = inet_sk_bound_l3mdev(sk); 335 ports_exhausted: 336 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 337 other_half_scan: 338 inet_sk_get_local_port_range(sk, &low, &high); 339 high++; /* [32768, 60999] -> [32768, 61000[ */ 340 if (high - low < 4) 341 attempt_half = 0; 342 if (attempt_half) { 343 int half = low + (((high - low) >> 2) << 1); 344 345 if (attempt_half == 1) 346 high = half; 347 else 348 low = half; 349 } 350 remaining = high - low; 351 if (likely(remaining > 1)) 352 remaining &= ~1U; 353 354 offset = get_random_u32_below(remaining); 355 /* __inet_hash_connect() favors ports having @low parity 356 * We do the opposite to not pollute connect() users. 357 */ 358 offset |= 1U; 359 360 other_parity_scan: 361 port = low + offset; 362 for (i = 0; i < remaining; i += 2, port += 2) { 363 if (unlikely(port >= high)) 364 port -= remaining; 365 if (inet_is_local_reserved_port(net, port)) 366 continue; 367 head = &hinfo->bhash[inet_bhashfn(net, port, 368 hinfo->bhash_size)]; 369 spin_lock_bh(&head->lock); 370 if (inet_use_bhash2_on_bind(sk)) { 371 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 372 goto next_port; 373 } 374 375 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 376 spin_lock(&head2->lock); 377 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 378 inet_bind_bucket_for_each(tb, &head->chain) 379 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 380 if (!inet_csk_bind_conflict(sk, tb, tb2, 381 relax, false)) 382 goto success; 383 spin_unlock(&head2->lock); 384 goto next_port; 385 } 386 tb = NULL; 387 goto success; 388 next_port: 389 spin_unlock_bh(&head->lock); 390 cond_resched(); 391 } 392 393 offset--; 394 if (!(offset & 1)) 395 goto other_parity_scan; 396 397 if (attempt_half == 1) { 398 /* OK we now try the upper half of the range */ 399 attempt_half = 2; 400 goto other_half_scan; 401 } 402 403 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 404 /* We still have a chance to connect to different destinations */ 405 relax = true; 406 goto ports_exhausted; 407 } 408 return NULL; 409 success: 410 *port_ret = port; 411 *tb_ret = tb; 412 *tb2_ret = tb2; 413 *head2_ret = head2; 414 return head; 415 } 416 417 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 418 struct sock *sk) 419 { 420 kuid_t uid = sock_i_uid(sk); 421 422 if (tb->fastreuseport <= 0) 423 return 0; 424 if (!sk->sk_reuseport) 425 return 0; 426 if (rcu_access_pointer(sk->sk_reuseport_cb)) 427 return 0; 428 if (!uid_eq(tb->fastuid, uid)) 429 return 0; 430 /* We only need to check the rcv_saddr if this tb was once marked 431 * without fastreuseport and then was reset, as we can only know that 432 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 433 * owners list. 434 */ 435 if (tb->fastreuseport == FASTREUSEPORT_ANY) 436 return 1; 437 #if IS_ENABLED(CONFIG_IPV6) 438 if (tb->fast_sk_family == AF_INET6) 439 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 440 inet6_rcv_saddr(sk), 441 tb->fast_rcv_saddr, 442 sk->sk_rcv_saddr, 443 tb->fast_ipv6_only, 444 ipv6_only_sock(sk), true, false); 445 #endif 446 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 447 ipv6_only_sock(sk), true, false); 448 } 449 450 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 451 struct sock *sk) 452 { 453 kuid_t uid = sock_i_uid(sk); 454 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 455 456 if (hlist_empty(&tb->bhash2)) { 457 tb->fastreuse = reuse; 458 if (sk->sk_reuseport) { 459 tb->fastreuseport = FASTREUSEPORT_ANY; 460 tb->fastuid = uid; 461 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 462 tb->fast_ipv6_only = ipv6_only_sock(sk); 463 tb->fast_sk_family = sk->sk_family; 464 #if IS_ENABLED(CONFIG_IPV6) 465 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 466 #endif 467 } else { 468 tb->fastreuseport = 0; 469 } 470 } else { 471 if (!reuse) 472 tb->fastreuse = 0; 473 if (sk->sk_reuseport) { 474 /* We didn't match or we don't have fastreuseport set on 475 * the tb, but we have sk_reuseport set on this socket 476 * and we know that there are no bind conflicts with 477 * this socket in this tb, so reset our tb's reuseport 478 * settings so that any subsequent sockets that match 479 * our current socket will be put on the fast path. 480 * 481 * If we reset we need to set FASTREUSEPORT_STRICT so we 482 * do extra checking for all subsequent sk_reuseport 483 * socks. 484 */ 485 if (!sk_reuseport_match(tb, sk)) { 486 tb->fastreuseport = FASTREUSEPORT_STRICT; 487 tb->fastuid = uid; 488 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 489 tb->fast_ipv6_only = ipv6_only_sock(sk); 490 tb->fast_sk_family = sk->sk_family; 491 #if IS_ENABLED(CONFIG_IPV6) 492 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 493 #endif 494 } 495 } else { 496 tb->fastreuseport = 0; 497 } 498 } 499 } 500 501 /* Obtain a reference to a local port for the given sock, 502 * if snum is zero it means select any available local port. 503 * We try to allocate an odd port (and leave even ports for connect()) 504 */ 505 int inet_csk_get_port(struct sock *sk, unsigned short snum) 506 { 507 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 508 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 509 bool found_port = false, check_bind_conflict = true; 510 bool bhash_created = false, bhash2_created = false; 511 int ret = -EADDRINUSE, port = snum, l3mdev; 512 struct inet_bind_hashbucket *head, *head2; 513 struct inet_bind2_bucket *tb2 = NULL; 514 struct inet_bind_bucket *tb = NULL; 515 bool head2_lock_acquired = false; 516 struct net *net = sock_net(sk); 517 518 l3mdev = inet_sk_bound_l3mdev(sk); 519 520 if (!port) { 521 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 522 if (!head) 523 return ret; 524 525 head2_lock_acquired = true; 526 527 if (tb && tb2) 528 goto success; 529 found_port = true; 530 } else { 531 head = &hinfo->bhash[inet_bhashfn(net, port, 532 hinfo->bhash_size)]; 533 spin_lock_bh(&head->lock); 534 inet_bind_bucket_for_each(tb, &head->chain) 535 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 536 break; 537 } 538 539 if (!tb) { 540 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 541 head, port, l3mdev); 542 if (!tb) 543 goto fail_unlock; 544 bhash_created = true; 545 } 546 547 if (!found_port) { 548 if (!hlist_empty(&tb->bhash2)) { 549 if (sk->sk_reuse == SK_FORCE_REUSE || 550 (tb->fastreuse > 0 && reuse) || 551 sk_reuseport_match(tb, sk)) 552 check_bind_conflict = false; 553 } 554 555 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 556 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 557 goto fail_unlock; 558 } 559 560 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 561 spin_lock(&head2->lock); 562 head2_lock_acquired = true; 563 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 564 } 565 566 if (!tb2) { 567 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 568 net, head2, tb, sk); 569 if (!tb2) 570 goto fail_unlock; 571 bhash2_created = true; 572 } 573 574 if (!found_port && check_bind_conflict) { 575 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 576 goto fail_unlock; 577 } 578 579 success: 580 inet_csk_update_fastreuse(tb, sk); 581 582 if (!inet_csk(sk)->icsk_bind_hash) 583 inet_bind_hash(sk, tb, tb2, port); 584 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 585 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 586 ret = 0; 587 588 fail_unlock: 589 if (ret) { 590 if (bhash2_created) 591 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2); 592 if (bhash_created) 593 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb); 594 } 595 if (head2_lock_acquired) 596 spin_unlock(&head2->lock); 597 spin_unlock_bh(&head->lock); 598 return ret; 599 } 600 EXPORT_SYMBOL_GPL(inet_csk_get_port); 601 602 /* 603 * Wait for an incoming connection, avoid race conditions. This must be called 604 * with the socket locked. 605 */ 606 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 607 { 608 struct inet_connection_sock *icsk = inet_csk(sk); 609 DEFINE_WAIT(wait); 610 int err; 611 612 /* 613 * True wake-one mechanism for incoming connections: only 614 * one process gets woken up, not the 'whole herd'. 615 * Since we do not 'race & poll' for established sockets 616 * anymore, the common case will execute the loop only once. 617 * 618 * Subtle issue: "add_wait_queue_exclusive()" will be added 619 * after any current non-exclusive waiters, and we know that 620 * it will always _stay_ after any new non-exclusive waiters 621 * because all non-exclusive waiters are added at the 622 * beginning of the wait-queue. As such, it's ok to "drop" 623 * our exclusiveness temporarily when we get woken up without 624 * having to remove and re-insert us on the wait queue. 625 */ 626 for (;;) { 627 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 628 TASK_INTERRUPTIBLE); 629 release_sock(sk); 630 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 631 timeo = schedule_timeout(timeo); 632 sched_annotate_sleep(); 633 lock_sock(sk); 634 err = 0; 635 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 636 break; 637 err = -EINVAL; 638 if (sk->sk_state != TCP_LISTEN) 639 break; 640 err = sock_intr_errno(timeo); 641 if (signal_pending(current)) 642 break; 643 err = -EAGAIN; 644 if (!timeo) 645 break; 646 } 647 finish_wait(sk_sleep(sk), &wait); 648 return err; 649 } 650 651 /* 652 * This will accept the next outstanding connection. 653 */ 654 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 655 { 656 struct inet_connection_sock *icsk = inet_csk(sk); 657 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 658 struct request_sock *req; 659 struct sock *newsk; 660 int error; 661 662 lock_sock(sk); 663 664 /* We need to make sure that this socket is listening, 665 * and that it has something pending. 666 */ 667 error = -EINVAL; 668 if (sk->sk_state != TCP_LISTEN) 669 goto out_err; 670 671 /* Find already established connection */ 672 if (reqsk_queue_empty(queue)) { 673 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 674 675 /* If this is a non blocking socket don't sleep */ 676 error = -EAGAIN; 677 if (!timeo) 678 goto out_err; 679 680 error = inet_csk_wait_for_connect(sk, timeo); 681 if (error) 682 goto out_err; 683 } 684 req = reqsk_queue_remove(queue, sk); 685 newsk = req->sk; 686 687 if (sk->sk_protocol == IPPROTO_TCP && 688 tcp_rsk(req)->tfo_listener) { 689 spin_lock_bh(&queue->fastopenq.lock); 690 if (tcp_rsk(req)->tfo_listener) { 691 /* We are still waiting for the final ACK from 3WHS 692 * so can't free req now. Instead, we set req->sk to 693 * NULL to signify that the child socket is taken 694 * so reqsk_fastopen_remove() will free the req 695 * when 3WHS finishes (or is aborted). 696 */ 697 req->sk = NULL; 698 req = NULL; 699 } 700 spin_unlock_bh(&queue->fastopenq.lock); 701 } 702 703 out: 704 release_sock(sk); 705 if (newsk && mem_cgroup_sockets_enabled) { 706 int amt = 0; 707 708 /* atomically get the memory usage, set and charge the 709 * newsk->sk_memcg. 710 */ 711 lock_sock(newsk); 712 713 mem_cgroup_sk_alloc(newsk); 714 if (newsk->sk_memcg) { 715 /* The socket has not been accepted yet, no need 716 * to look at newsk->sk_wmem_queued. 717 */ 718 amt = sk_mem_pages(newsk->sk_forward_alloc + 719 atomic_read(&newsk->sk_rmem_alloc)); 720 } 721 722 if (amt) 723 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, 724 GFP_KERNEL | __GFP_NOFAIL); 725 726 release_sock(newsk); 727 } 728 if (req) 729 reqsk_put(req); 730 731 if (newsk) 732 inet_init_csk_locks(newsk); 733 734 return newsk; 735 out_err: 736 newsk = NULL; 737 req = NULL; 738 *err = error; 739 goto out; 740 } 741 EXPORT_SYMBOL(inet_csk_accept); 742 743 /* 744 * Using different timers for retransmit, delayed acks and probes 745 * We may wish use just one timer maintaining a list of expire jiffies 746 * to optimize. 747 */ 748 void inet_csk_init_xmit_timers(struct sock *sk, 749 void (*retransmit_handler)(struct timer_list *t), 750 void (*delack_handler)(struct timer_list *t), 751 void (*keepalive_handler)(struct timer_list *t)) 752 { 753 struct inet_connection_sock *icsk = inet_csk(sk); 754 755 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 756 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 757 timer_setup(&sk->sk_timer, keepalive_handler, 0); 758 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 759 } 760 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 761 762 void inet_csk_clear_xmit_timers(struct sock *sk) 763 { 764 struct inet_connection_sock *icsk = inet_csk(sk); 765 766 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 767 768 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 769 sk_stop_timer(sk, &icsk->icsk_delack_timer); 770 sk_stop_timer(sk, &sk->sk_timer); 771 } 772 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 773 774 void inet_csk_clear_xmit_timers_sync(struct sock *sk) 775 { 776 struct inet_connection_sock *icsk = inet_csk(sk); 777 778 /* ongoing timer handlers need to acquire socket lock. */ 779 sock_not_owned_by_me(sk); 780 781 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 782 783 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer); 784 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer); 785 sk_stop_timer_sync(sk, &sk->sk_timer); 786 } 787 788 void inet_csk_delete_keepalive_timer(struct sock *sk) 789 { 790 sk_stop_timer(sk, &sk->sk_timer); 791 } 792 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 793 794 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 795 { 796 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 797 } 798 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 799 800 struct dst_entry *inet_csk_route_req(const struct sock *sk, 801 struct flowi4 *fl4, 802 const struct request_sock *req) 803 { 804 const struct inet_request_sock *ireq = inet_rsk(req); 805 struct net *net = read_pnet(&ireq->ireq_net); 806 struct ip_options_rcu *opt; 807 struct rtable *rt; 808 809 rcu_read_lock(); 810 opt = rcu_dereference(ireq->ireq_opt); 811 812 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 813 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 814 sk->sk_protocol, inet_sk_flowi_flags(sk), 815 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 816 ireq->ir_loc_addr, ireq->ir_rmt_port, 817 htons(ireq->ir_num), sk->sk_uid); 818 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 819 rt = ip_route_output_flow(net, fl4, sk); 820 if (IS_ERR(rt)) 821 goto no_route; 822 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 823 goto route_err; 824 rcu_read_unlock(); 825 return &rt->dst; 826 827 route_err: 828 ip_rt_put(rt); 829 no_route: 830 rcu_read_unlock(); 831 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 832 return NULL; 833 } 834 EXPORT_SYMBOL_GPL(inet_csk_route_req); 835 836 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 837 struct sock *newsk, 838 const struct request_sock *req) 839 { 840 const struct inet_request_sock *ireq = inet_rsk(req); 841 struct net *net = read_pnet(&ireq->ireq_net); 842 struct inet_sock *newinet = inet_sk(newsk); 843 struct ip_options_rcu *opt; 844 struct flowi4 *fl4; 845 struct rtable *rt; 846 847 opt = rcu_dereference(ireq->ireq_opt); 848 fl4 = &newinet->cork.fl.u.ip4; 849 850 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 851 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 852 sk->sk_protocol, inet_sk_flowi_flags(sk), 853 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 854 ireq->ir_loc_addr, ireq->ir_rmt_port, 855 htons(ireq->ir_num), sk->sk_uid); 856 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 857 rt = ip_route_output_flow(net, fl4, sk); 858 if (IS_ERR(rt)) 859 goto no_route; 860 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 861 goto route_err; 862 return &rt->dst; 863 864 route_err: 865 ip_rt_put(rt); 866 no_route: 867 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 868 return NULL; 869 } 870 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 871 872 /* Decide when to expire the request and when to resend SYN-ACK */ 873 static void syn_ack_recalc(struct request_sock *req, 874 const int max_syn_ack_retries, 875 const u8 rskq_defer_accept, 876 int *expire, int *resend) 877 { 878 if (!rskq_defer_accept) { 879 *expire = req->num_timeout >= max_syn_ack_retries; 880 *resend = 1; 881 return; 882 } 883 *expire = req->num_timeout >= max_syn_ack_retries && 884 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 885 /* Do not resend while waiting for data after ACK, 886 * start to resend on end of deferring period to give 887 * last chance for data or ACK to create established socket. 888 */ 889 *resend = !inet_rsk(req)->acked || 890 req->num_timeout >= rskq_defer_accept - 1; 891 } 892 893 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 894 { 895 int err = req->rsk_ops->rtx_syn_ack(parent, req); 896 897 if (!err) 898 req->num_retrans++; 899 return err; 900 } 901 EXPORT_SYMBOL(inet_rtx_syn_ack); 902 903 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 904 struct sock *sk) 905 { 906 struct sock *req_sk, *nreq_sk; 907 struct request_sock *nreq; 908 909 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 910 if (!nreq) { 911 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 912 913 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 914 sock_put(sk); 915 return NULL; 916 } 917 918 req_sk = req_to_sk(req); 919 nreq_sk = req_to_sk(nreq); 920 921 memcpy(nreq_sk, req_sk, 922 offsetof(struct sock, sk_dontcopy_begin)); 923 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 924 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end), 925 /* alloc is larger than struct, see above */); 926 927 sk_node_init(&nreq_sk->sk_node); 928 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 929 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 930 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 931 #endif 932 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 933 934 nreq->rsk_listener = sk; 935 936 /* We need not acquire fastopenq->lock 937 * because the child socket is locked in inet_csk_listen_stop(). 938 */ 939 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 940 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 941 942 return nreq; 943 } 944 945 static void reqsk_queue_migrated(struct request_sock_queue *queue, 946 const struct request_sock *req) 947 { 948 if (req->num_timeout == 0) 949 atomic_inc(&queue->young); 950 atomic_inc(&queue->qlen); 951 } 952 953 static void reqsk_migrate_reset(struct request_sock *req) 954 { 955 req->saved_syn = NULL; 956 #if IS_ENABLED(CONFIG_IPV6) 957 inet_rsk(req)->ipv6_opt = NULL; 958 inet_rsk(req)->pktopts = NULL; 959 #else 960 inet_rsk(req)->ireq_opt = NULL; 961 #endif 962 } 963 964 /* return true if req was found in the ehash table */ 965 static bool reqsk_queue_unlink(struct request_sock *req) 966 { 967 struct sock *sk = req_to_sk(req); 968 bool found = false; 969 970 if (sk_hashed(sk)) { 971 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk); 972 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 973 974 spin_lock(lock); 975 found = __sk_nulls_del_node_init_rcu(sk); 976 spin_unlock(lock); 977 } 978 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 979 reqsk_put(req); 980 return found; 981 } 982 983 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 984 { 985 bool unlinked = reqsk_queue_unlink(req); 986 987 if (unlinked) { 988 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 989 reqsk_put(req); 990 } 991 return unlinked; 992 } 993 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 994 995 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 996 { 997 inet_csk_reqsk_queue_drop(sk, req); 998 reqsk_put(req); 999 } 1000 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 1001 1002 static void reqsk_timer_handler(struct timer_list *t) 1003 { 1004 struct request_sock *req = from_timer(req, t, rsk_timer); 1005 struct request_sock *nreq = NULL, *oreq = req; 1006 struct sock *sk_listener = req->rsk_listener; 1007 struct inet_connection_sock *icsk; 1008 struct request_sock_queue *queue; 1009 struct net *net; 1010 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 1011 1012 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 1013 struct sock *nsk; 1014 1015 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 1016 if (!nsk) 1017 goto drop; 1018 1019 nreq = inet_reqsk_clone(req, nsk); 1020 if (!nreq) 1021 goto drop; 1022 1023 /* The new timer for the cloned req can decrease the 2 1024 * by calling inet_csk_reqsk_queue_drop_and_put(), so 1025 * hold another count to prevent use-after-free and 1026 * call reqsk_put() just before return. 1027 */ 1028 refcount_set(&nreq->rsk_refcnt, 2 + 1); 1029 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1030 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 1031 1032 req = nreq; 1033 sk_listener = nsk; 1034 } 1035 1036 icsk = inet_csk(sk_listener); 1037 net = sock_net(sk_listener); 1038 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? : 1039 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 1040 /* Normally all the openreqs are young and become mature 1041 * (i.e. converted to established socket) for first timeout. 1042 * If synack was not acknowledged for 1 second, it means 1043 * one of the following things: synack was lost, ack was lost, 1044 * rtt is high or nobody planned to ack (i.e. synflood). 1045 * When server is a bit loaded, queue is populated with old 1046 * open requests, reducing effective size of queue. 1047 * When server is well loaded, queue size reduces to zero 1048 * after several minutes of work. It is not synflood, 1049 * it is normal operation. The solution is pruning 1050 * too old entries overriding normal timeout, when 1051 * situation becomes dangerous. 1052 * 1053 * Essentially, we reserve half of room for young 1054 * embrions; and abort old ones without pity, if old 1055 * ones are about to clog our table. 1056 */ 1057 queue = &icsk->icsk_accept_queue; 1058 qlen = reqsk_queue_len(queue); 1059 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1060 int young = reqsk_queue_len_young(queue) << 1; 1061 1062 while (max_syn_ack_retries > 2) { 1063 if (qlen < young) 1064 break; 1065 max_syn_ack_retries--; 1066 young <<= 1; 1067 } 1068 } 1069 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1070 &expire, &resend); 1071 req->rsk_ops->syn_ack_timeout(req); 1072 if (!expire && 1073 (!resend || 1074 !inet_rtx_syn_ack(sk_listener, req) || 1075 inet_rsk(req)->acked)) { 1076 if (req->num_timeout++ == 0) 1077 atomic_dec(&queue->young); 1078 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1079 1080 if (!nreq) 1081 return; 1082 1083 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1084 /* delete timer */ 1085 inet_csk_reqsk_queue_drop(sk_listener, nreq); 1086 goto no_ownership; 1087 } 1088 1089 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1090 reqsk_migrate_reset(oreq); 1091 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1092 reqsk_put(oreq); 1093 1094 reqsk_put(nreq); 1095 return; 1096 } 1097 1098 /* Even if we can clone the req, we may need not retransmit any more 1099 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1100 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1101 */ 1102 if (nreq) { 1103 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1104 no_ownership: 1105 reqsk_migrate_reset(nreq); 1106 reqsk_queue_removed(queue, nreq); 1107 __reqsk_free(nreq); 1108 } 1109 1110 drop: 1111 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq); 1112 } 1113 1114 static void reqsk_queue_hash_req(struct request_sock *req, 1115 unsigned long timeout) 1116 { 1117 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1118 mod_timer(&req->rsk_timer, jiffies + timeout); 1119 1120 inet_ehash_insert(req_to_sk(req), NULL, NULL); 1121 /* before letting lookups find us, make sure all req fields 1122 * are committed to memory and refcnt initialized. 1123 */ 1124 smp_wmb(); 1125 refcount_set(&req->rsk_refcnt, 2 + 1); 1126 } 1127 1128 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1129 unsigned long timeout) 1130 { 1131 reqsk_queue_hash_req(req, timeout); 1132 inet_csk_reqsk_queue_added(sk); 1133 } 1134 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 1135 1136 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1137 const gfp_t priority) 1138 { 1139 struct inet_connection_sock *icsk = inet_csk(newsk); 1140 1141 if (!icsk->icsk_ulp_ops) 1142 return; 1143 1144 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1145 } 1146 1147 /** 1148 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1149 * @sk: the socket to clone 1150 * @req: request_sock 1151 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1152 * 1153 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1154 */ 1155 struct sock *inet_csk_clone_lock(const struct sock *sk, 1156 const struct request_sock *req, 1157 const gfp_t priority) 1158 { 1159 struct sock *newsk = sk_clone_lock(sk, priority); 1160 1161 if (newsk) { 1162 struct inet_connection_sock *newicsk = inet_csk(newsk); 1163 1164 inet_sk_set_state(newsk, TCP_SYN_RECV); 1165 newicsk->icsk_bind_hash = NULL; 1166 newicsk->icsk_bind2_hash = NULL; 1167 1168 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 1169 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 1170 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 1171 1172 /* listeners have SOCK_RCU_FREE, not the children */ 1173 sock_reset_flag(newsk, SOCK_RCU_FREE); 1174 1175 inet_sk(newsk)->mc_list = NULL; 1176 1177 newsk->sk_mark = inet_rsk(req)->ir_mark; 1178 atomic64_set(&newsk->sk_cookie, 1179 atomic64_read(&inet_rsk(req)->ir_cookie)); 1180 1181 newicsk->icsk_retransmits = 0; 1182 newicsk->icsk_backoff = 0; 1183 newicsk->icsk_probes_out = 0; 1184 newicsk->icsk_probes_tstamp = 0; 1185 1186 /* Deinitialize accept_queue to trap illegal accesses. */ 1187 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 1188 1189 inet_clone_ulp(req, newsk, priority); 1190 1191 security_inet_csk_clone(newsk, req); 1192 } 1193 return newsk; 1194 } 1195 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 1196 1197 /* 1198 * At this point, there should be no process reference to this 1199 * socket, and thus no user references at all. Therefore we 1200 * can assume the socket waitqueue is inactive and nobody will 1201 * try to jump onto it. 1202 */ 1203 void inet_csk_destroy_sock(struct sock *sk) 1204 { 1205 WARN_ON(sk->sk_state != TCP_CLOSE); 1206 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1207 1208 /* It cannot be in hash table! */ 1209 WARN_ON(!sk_unhashed(sk)); 1210 1211 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1212 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1213 1214 sk->sk_prot->destroy(sk); 1215 1216 sk_stream_kill_queues(sk); 1217 1218 xfrm_sk_free_policy(sk); 1219 1220 this_cpu_dec(*sk->sk_prot->orphan_count); 1221 1222 sock_put(sk); 1223 } 1224 EXPORT_SYMBOL(inet_csk_destroy_sock); 1225 1226 /* This function allows to force a closure of a socket after the call to 1227 * tcp/dccp_create_openreq_child(). 1228 */ 1229 void inet_csk_prepare_forced_close(struct sock *sk) 1230 __releases(&sk->sk_lock.slock) 1231 { 1232 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1233 bh_unlock_sock(sk); 1234 sock_put(sk); 1235 inet_csk_prepare_for_destroy_sock(sk); 1236 inet_sk(sk)->inet_num = 0; 1237 } 1238 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1239 1240 static int inet_ulp_can_listen(const struct sock *sk) 1241 { 1242 const struct inet_connection_sock *icsk = inet_csk(sk); 1243 1244 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone) 1245 return -EINVAL; 1246 1247 return 0; 1248 } 1249 1250 int inet_csk_listen_start(struct sock *sk) 1251 { 1252 struct inet_connection_sock *icsk = inet_csk(sk); 1253 struct inet_sock *inet = inet_sk(sk); 1254 int err; 1255 1256 err = inet_ulp_can_listen(sk); 1257 if (unlikely(err)) 1258 return err; 1259 1260 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1261 1262 sk->sk_ack_backlog = 0; 1263 inet_csk_delack_init(sk); 1264 1265 /* There is race window here: we announce ourselves listening, 1266 * but this transition is still not validated by get_port(). 1267 * It is OK, because this socket enters to hash table only 1268 * after validation is complete. 1269 */ 1270 inet_sk_state_store(sk, TCP_LISTEN); 1271 err = sk->sk_prot->get_port(sk, inet->inet_num); 1272 if (!err) { 1273 inet->inet_sport = htons(inet->inet_num); 1274 1275 sk_dst_reset(sk); 1276 err = sk->sk_prot->hash(sk); 1277 1278 if (likely(!err)) 1279 return 0; 1280 } 1281 1282 inet_sk_set_state(sk, TCP_CLOSE); 1283 return err; 1284 } 1285 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 1286 1287 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1288 struct sock *child) 1289 { 1290 sk->sk_prot->disconnect(child, O_NONBLOCK); 1291 1292 sock_orphan(child); 1293 1294 this_cpu_inc(*sk->sk_prot->orphan_count); 1295 1296 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1297 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1298 BUG_ON(sk != req->rsk_listener); 1299 1300 /* Paranoid, to prevent race condition if 1301 * an inbound pkt destined for child is 1302 * blocked by sock lock in tcp_v4_rcv(). 1303 * Also to satisfy an assertion in 1304 * tcp_v4_destroy_sock(). 1305 */ 1306 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1307 } 1308 inet_csk_destroy_sock(child); 1309 } 1310 1311 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1312 struct request_sock *req, 1313 struct sock *child) 1314 { 1315 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1316 1317 spin_lock(&queue->rskq_lock); 1318 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1319 inet_child_forget(sk, req, child); 1320 child = NULL; 1321 } else { 1322 req->sk = child; 1323 req->dl_next = NULL; 1324 if (queue->rskq_accept_head == NULL) 1325 WRITE_ONCE(queue->rskq_accept_head, req); 1326 else 1327 queue->rskq_accept_tail->dl_next = req; 1328 queue->rskq_accept_tail = req; 1329 sk_acceptq_added(sk); 1330 } 1331 spin_unlock(&queue->rskq_lock); 1332 return child; 1333 } 1334 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1335 1336 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1337 struct request_sock *req, bool own_req) 1338 { 1339 if (own_req) { 1340 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1341 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1342 1343 if (sk != req->rsk_listener) { 1344 /* another listening sk has been selected, 1345 * migrate the req to it. 1346 */ 1347 struct request_sock *nreq; 1348 1349 /* hold a refcnt for the nreq->rsk_listener 1350 * which is assigned in inet_reqsk_clone() 1351 */ 1352 sock_hold(sk); 1353 nreq = inet_reqsk_clone(req, sk); 1354 if (!nreq) { 1355 inet_child_forget(sk, req, child); 1356 goto child_put; 1357 } 1358 1359 refcount_set(&nreq->rsk_refcnt, 1); 1360 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1361 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1362 reqsk_migrate_reset(req); 1363 reqsk_put(req); 1364 return child; 1365 } 1366 1367 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1368 reqsk_migrate_reset(nreq); 1369 __reqsk_free(nreq); 1370 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1371 return child; 1372 } 1373 } 1374 /* Too bad, another child took ownership of the request, undo. */ 1375 child_put: 1376 bh_unlock_sock(child); 1377 sock_put(child); 1378 return NULL; 1379 } 1380 EXPORT_SYMBOL(inet_csk_complete_hashdance); 1381 1382 /* 1383 * This routine closes sockets which have been at least partially 1384 * opened, but not yet accepted. 1385 */ 1386 void inet_csk_listen_stop(struct sock *sk) 1387 { 1388 struct inet_connection_sock *icsk = inet_csk(sk); 1389 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1390 struct request_sock *next, *req; 1391 1392 /* Following specs, it would be better either to send FIN 1393 * (and enter FIN-WAIT-1, it is normal close) 1394 * or to send active reset (abort). 1395 * Certainly, it is pretty dangerous while synflood, but it is 1396 * bad justification for our negligence 8) 1397 * To be honest, we are not able to make either 1398 * of the variants now. --ANK 1399 */ 1400 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1401 struct sock *child = req->sk, *nsk; 1402 struct request_sock *nreq; 1403 1404 local_bh_disable(); 1405 bh_lock_sock(child); 1406 WARN_ON(sock_owned_by_user(child)); 1407 sock_hold(child); 1408 1409 nsk = reuseport_migrate_sock(sk, child, NULL); 1410 if (nsk) { 1411 nreq = inet_reqsk_clone(req, nsk); 1412 if (nreq) { 1413 refcount_set(&nreq->rsk_refcnt, 1); 1414 1415 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1416 __NET_INC_STATS(sock_net(nsk), 1417 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1418 reqsk_migrate_reset(req); 1419 } else { 1420 __NET_INC_STATS(sock_net(nsk), 1421 LINUX_MIB_TCPMIGRATEREQFAILURE); 1422 reqsk_migrate_reset(nreq); 1423 __reqsk_free(nreq); 1424 } 1425 1426 /* inet_csk_reqsk_queue_add() has already 1427 * called inet_child_forget() on failure case. 1428 */ 1429 goto skip_child_forget; 1430 } 1431 } 1432 1433 inet_child_forget(sk, req, child); 1434 skip_child_forget: 1435 reqsk_put(req); 1436 bh_unlock_sock(child); 1437 local_bh_enable(); 1438 sock_put(child); 1439 1440 cond_resched(); 1441 } 1442 if (queue->fastopenq.rskq_rst_head) { 1443 /* Free all the reqs queued in rskq_rst_head. */ 1444 spin_lock_bh(&queue->fastopenq.lock); 1445 req = queue->fastopenq.rskq_rst_head; 1446 queue->fastopenq.rskq_rst_head = NULL; 1447 spin_unlock_bh(&queue->fastopenq.lock); 1448 while (req != NULL) { 1449 next = req->dl_next; 1450 reqsk_put(req); 1451 req = next; 1452 } 1453 } 1454 WARN_ON_ONCE(sk->sk_ack_backlog); 1455 } 1456 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1457 1458 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1459 { 1460 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1461 const struct inet_sock *inet = inet_sk(sk); 1462 1463 sin->sin_family = AF_INET; 1464 sin->sin_addr.s_addr = inet->inet_daddr; 1465 sin->sin_port = inet->inet_dport; 1466 } 1467 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1468 1469 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1470 { 1471 const struct inet_sock *inet = inet_sk(sk); 1472 const struct ip_options_rcu *inet_opt; 1473 __be32 daddr = inet->inet_daddr; 1474 struct flowi4 *fl4; 1475 struct rtable *rt; 1476 1477 rcu_read_lock(); 1478 inet_opt = rcu_dereference(inet->inet_opt); 1479 if (inet_opt && inet_opt->opt.srr) 1480 daddr = inet_opt->opt.faddr; 1481 fl4 = &fl->u.ip4; 1482 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1483 inet->inet_saddr, inet->inet_dport, 1484 inet->inet_sport, sk->sk_protocol, 1485 ip_sock_rt_tos(sk), sk->sk_bound_dev_if); 1486 if (IS_ERR(rt)) 1487 rt = NULL; 1488 if (rt) 1489 sk_setup_caps(sk, &rt->dst); 1490 rcu_read_unlock(); 1491 1492 return &rt->dst; 1493 } 1494 1495 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1496 { 1497 struct dst_entry *dst = __sk_dst_check(sk, 0); 1498 struct inet_sock *inet = inet_sk(sk); 1499 1500 if (!dst) { 1501 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1502 if (!dst) 1503 goto out; 1504 } 1505 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1506 1507 dst = __sk_dst_check(sk, 0); 1508 if (!dst) 1509 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1510 out: 1511 return dst; 1512 } 1513 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1514