1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 void inet_get_local_port_range(struct net *net, int *low, int *high) 121 { 122 unsigned int seq; 123 124 do { 125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 126 127 *low = net->ipv4.ip_local_ports.range[0]; 128 *high = net->ipv4.ip_local_ports.range[1]; 129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 130 } 131 EXPORT_SYMBOL(inet_get_local_port_range); 132 133 static bool inet_use_bhash2_on_bind(const struct sock *sk) 134 { 135 #if IS_ENABLED(CONFIG_IPV6) 136 if (sk->sk_family == AF_INET6) { 137 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr); 138 139 return addr_type != IPV6_ADDR_ANY && 140 addr_type != IPV6_ADDR_MAPPED; 141 } 142 #endif 143 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 144 } 145 146 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 147 kuid_t sk_uid, bool relax, 148 bool reuseport_cb_ok, bool reuseport_ok) 149 { 150 int bound_dev_if2; 151 152 if (sk == sk2) 153 return false; 154 155 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 156 157 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 158 sk->sk_bound_dev_if == bound_dev_if2) { 159 if (sk->sk_reuse && sk2->sk_reuse && 160 sk2->sk_state != TCP_LISTEN) { 161 if (!relax || (!reuseport_ok && sk->sk_reuseport && 162 sk2->sk_reuseport && reuseport_cb_ok && 163 (sk2->sk_state == TCP_TIME_WAIT || 164 uid_eq(sk_uid, sock_i_uid(sk2))))) 165 return true; 166 } else if (!reuseport_ok || !sk->sk_reuseport || 167 !sk2->sk_reuseport || !reuseport_cb_ok || 168 (sk2->sk_state != TCP_TIME_WAIT && 169 !uid_eq(sk_uid, sock_i_uid(sk2)))) { 170 return true; 171 } 172 } 173 return false; 174 } 175 176 static bool inet_bhash2_conflict(const struct sock *sk, 177 const struct inet_bind2_bucket *tb2, 178 kuid_t sk_uid, 179 bool relax, bool reuseport_cb_ok, 180 bool reuseport_ok) 181 { 182 struct sock *sk2; 183 184 sk_for_each_bound_bhash2(sk2, &tb2->owners) { 185 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2)) 186 continue; 187 188 if (inet_bind_conflict(sk, sk2, sk_uid, relax, 189 reuseport_cb_ok, reuseport_ok)) 190 return true; 191 } 192 return false; 193 } 194 195 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 196 static int inet_csk_bind_conflict(const struct sock *sk, 197 const struct inet_bind_bucket *tb, 198 const struct inet_bind2_bucket *tb2, /* may be null */ 199 bool relax, bool reuseport_ok) 200 { 201 bool reuseport_cb_ok; 202 struct sock_reuseport *reuseport_cb; 203 kuid_t uid = sock_i_uid((struct sock *)sk); 204 205 rcu_read_lock(); 206 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 207 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 208 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 209 rcu_read_unlock(); 210 211 /* 212 * Unlike other sk lookup places we do not check 213 * for sk_net here, since _all_ the socks listed 214 * in tb->owners and tb2->owners list belong 215 * to the same net - the one this bucket belongs to. 216 */ 217 218 if (!inet_use_bhash2_on_bind(sk)) { 219 struct sock *sk2; 220 221 sk_for_each_bound(sk2, &tb->owners) 222 if (inet_bind_conflict(sk, sk2, uid, relax, 223 reuseport_cb_ok, reuseport_ok) && 224 inet_rcv_saddr_equal(sk, sk2, true)) 225 return true; 226 227 return false; 228 } 229 230 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 231 * ipv4) should have been checked already. We need to do these two 232 * checks separately because their spinlocks have to be acquired/released 233 * independently of each other, to prevent possible deadlocks 234 */ 235 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, 236 reuseport_ok); 237 } 238 239 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 240 * INADDR_ANY (if ipv4) socket. 241 * 242 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 243 * against concurrent binds on the port for addr any 244 */ 245 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 246 bool relax, bool reuseport_ok) 247 { 248 kuid_t uid = sock_i_uid((struct sock *)sk); 249 const struct net *net = sock_net(sk); 250 struct sock_reuseport *reuseport_cb; 251 struct inet_bind_hashbucket *head2; 252 struct inet_bind2_bucket *tb2; 253 bool reuseport_cb_ok; 254 255 rcu_read_lock(); 256 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 257 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 258 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 259 rcu_read_unlock(); 260 261 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 262 263 spin_lock(&head2->lock); 264 265 inet_bind_bucket_for_each(tb2, &head2->chain) 266 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 267 break; 268 269 if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, 270 reuseport_ok)) { 271 spin_unlock(&head2->lock); 272 return true; 273 } 274 275 spin_unlock(&head2->lock); 276 return false; 277 } 278 279 /* 280 * Find an open port number for the socket. Returns with the 281 * inet_bind_hashbucket locks held if successful. 282 */ 283 static struct inet_bind_hashbucket * 284 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 285 struct inet_bind2_bucket **tb2_ret, 286 struct inet_bind_hashbucket **head2_ret, int *port_ret) 287 { 288 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 289 int port = 0; 290 struct inet_bind_hashbucket *head, *head2; 291 struct net *net = sock_net(sk); 292 bool relax = false; 293 int i, low, high, attempt_half; 294 struct inet_bind2_bucket *tb2; 295 struct inet_bind_bucket *tb; 296 u32 remaining, offset; 297 int l3mdev; 298 299 l3mdev = inet_sk_bound_l3mdev(sk); 300 ports_exhausted: 301 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 302 other_half_scan: 303 inet_get_local_port_range(net, &low, &high); 304 high++; /* [32768, 60999] -> [32768, 61000[ */ 305 if (high - low < 4) 306 attempt_half = 0; 307 if (attempt_half) { 308 int half = low + (((high - low) >> 2) << 1); 309 310 if (attempt_half == 1) 311 high = half; 312 else 313 low = half; 314 } 315 remaining = high - low; 316 if (likely(remaining > 1)) 317 remaining &= ~1U; 318 319 offset = prandom_u32() % remaining; 320 /* __inet_hash_connect() favors ports having @low parity 321 * We do the opposite to not pollute connect() users. 322 */ 323 offset |= 1U; 324 325 other_parity_scan: 326 port = low + offset; 327 for (i = 0; i < remaining; i += 2, port += 2) { 328 if (unlikely(port >= high)) 329 port -= remaining; 330 if (inet_is_local_reserved_port(net, port)) 331 continue; 332 head = &hinfo->bhash[inet_bhashfn(net, port, 333 hinfo->bhash_size)]; 334 spin_lock_bh(&head->lock); 335 if (inet_use_bhash2_on_bind(sk)) { 336 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 337 goto next_port; 338 } 339 340 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 341 spin_lock(&head2->lock); 342 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 343 inet_bind_bucket_for_each(tb, &head->chain) 344 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 345 if (!inet_csk_bind_conflict(sk, tb, tb2, 346 relax, false)) 347 goto success; 348 spin_unlock(&head2->lock); 349 goto next_port; 350 } 351 tb = NULL; 352 goto success; 353 next_port: 354 spin_unlock_bh(&head->lock); 355 cond_resched(); 356 } 357 358 offset--; 359 if (!(offset & 1)) 360 goto other_parity_scan; 361 362 if (attempt_half == 1) { 363 /* OK we now try the upper half of the range */ 364 attempt_half = 2; 365 goto other_half_scan; 366 } 367 368 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 369 /* We still have a chance to connect to different destinations */ 370 relax = true; 371 goto ports_exhausted; 372 } 373 return NULL; 374 success: 375 *port_ret = port; 376 *tb_ret = tb; 377 *tb2_ret = tb2; 378 *head2_ret = head2; 379 return head; 380 } 381 382 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 383 struct sock *sk) 384 { 385 kuid_t uid = sock_i_uid(sk); 386 387 if (tb->fastreuseport <= 0) 388 return 0; 389 if (!sk->sk_reuseport) 390 return 0; 391 if (rcu_access_pointer(sk->sk_reuseport_cb)) 392 return 0; 393 if (!uid_eq(tb->fastuid, uid)) 394 return 0; 395 /* We only need to check the rcv_saddr if this tb was once marked 396 * without fastreuseport and then was reset, as we can only know that 397 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 398 * owners list. 399 */ 400 if (tb->fastreuseport == FASTREUSEPORT_ANY) 401 return 1; 402 #if IS_ENABLED(CONFIG_IPV6) 403 if (tb->fast_sk_family == AF_INET6) 404 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 405 inet6_rcv_saddr(sk), 406 tb->fast_rcv_saddr, 407 sk->sk_rcv_saddr, 408 tb->fast_ipv6_only, 409 ipv6_only_sock(sk), true, false); 410 #endif 411 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 412 ipv6_only_sock(sk), true, false); 413 } 414 415 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 416 struct sock *sk) 417 { 418 kuid_t uid = sock_i_uid(sk); 419 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 420 421 if (hlist_empty(&tb->owners)) { 422 tb->fastreuse = reuse; 423 if (sk->sk_reuseport) { 424 tb->fastreuseport = FASTREUSEPORT_ANY; 425 tb->fastuid = uid; 426 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 427 tb->fast_ipv6_only = ipv6_only_sock(sk); 428 tb->fast_sk_family = sk->sk_family; 429 #if IS_ENABLED(CONFIG_IPV6) 430 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 431 #endif 432 } else { 433 tb->fastreuseport = 0; 434 } 435 } else { 436 if (!reuse) 437 tb->fastreuse = 0; 438 if (sk->sk_reuseport) { 439 /* We didn't match or we don't have fastreuseport set on 440 * the tb, but we have sk_reuseport set on this socket 441 * and we know that there are no bind conflicts with 442 * this socket in this tb, so reset our tb's reuseport 443 * settings so that any subsequent sockets that match 444 * our current socket will be put on the fast path. 445 * 446 * If we reset we need to set FASTREUSEPORT_STRICT so we 447 * do extra checking for all subsequent sk_reuseport 448 * socks. 449 */ 450 if (!sk_reuseport_match(tb, sk)) { 451 tb->fastreuseport = FASTREUSEPORT_STRICT; 452 tb->fastuid = uid; 453 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 454 tb->fast_ipv6_only = ipv6_only_sock(sk); 455 tb->fast_sk_family = sk->sk_family; 456 #if IS_ENABLED(CONFIG_IPV6) 457 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 458 #endif 459 } 460 } else { 461 tb->fastreuseport = 0; 462 } 463 } 464 } 465 466 /* Obtain a reference to a local port for the given sock, 467 * if snum is zero it means select any available local port. 468 * We try to allocate an odd port (and leave even ports for connect()) 469 */ 470 int inet_csk_get_port(struct sock *sk, unsigned short snum) 471 { 472 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 473 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 474 int ret = 1, port = snum; 475 struct net *net = sock_net(sk); 476 bool found_port = false, check_bind_conflict = true; 477 bool bhash_created = false, bhash2_created = false; 478 struct inet_bind_hashbucket *head, *head2; 479 struct inet_bind2_bucket *tb2 = NULL; 480 struct inet_bind_bucket *tb = NULL; 481 bool head2_lock_acquired = false; 482 int l3mdev; 483 484 l3mdev = inet_sk_bound_l3mdev(sk); 485 486 if (!port) { 487 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 488 if (!head) 489 return ret; 490 491 head2_lock_acquired = true; 492 493 if (tb && tb2) 494 goto success; 495 found_port = true; 496 } else { 497 head = &hinfo->bhash[inet_bhashfn(net, port, 498 hinfo->bhash_size)]; 499 spin_lock_bh(&head->lock); 500 inet_bind_bucket_for_each(tb, &head->chain) 501 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 502 break; 503 } 504 505 if (!tb) { 506 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 507 head, port, l3mdev); 508 if (!tb) 509 goto fail_unlock; 510 bhash_created = true; 511 } 512 513 if (!found_port) { 514 if (!hlist_empty(&tb->owners)) { 515 if (sk->sk_reuse == SK_FORCE_REUSE || 516 (tb->fastreuse > 0 && reuse) || 517 sk_reuseport_match(tb, sk)) 518 check_bind_conflict = false; 519 } 520 521 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 522 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 523 goto fail_unlock; 524 } 525 526 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 527 spin_lock(&head2->lock); 528 head2_lock_acquired = true; 529 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 530 } 531 532 if (!tb2) { 533 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 534 net, head2, port, l3mdev, sk); 535 if (!tb2) 536 goto fail_unlock; 537 bhash2_created = true; 538 } 539 540 if (!found_port && check_bind_conflict) { 541 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 542 goto fail_unlock; 543 } 544 545 success: 546 inet_csk_update_fastreuse(tb, sk); 547 548 if (!inet_csk(sk)->icsk_bind_hash) 549 inet_bind_hash(sk, tb, tb2, port); 550 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 551 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 552 ret = 0; 553 554 fail_unlock: 555 if (ret) { 556 if (bhash_created) 557 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb); 558 if (bhash2_created) 559 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, 560 tb2); 561 } 562 if (head2_lock_acquired) 563 spin_unlock(&head2->lock); 564 spin_unlock_bh(&head->lock); 565 return ret; 566 } 567 EXPORT_SYMBOL_GPL(inet_csk_get_port); 568 569 /* 570 * Wait for an incoming connection, avoid race conditions. This must be called 571 * with the socket locked. 572 */ 573 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 574 { 575 struct inet_connection_sock *icsk = inet_csk(sk); 576 DEFINE_WAIT(wait); 577 int err; 578 579 /* 580 * True wake-one mechanism for incoming connections: only 581 * one process gets woken up, not the 'whole herd'. 582 * Since we do not 'race & poll' for established sockets 583 * anymore, the common case will execute the loop only once. 584 * 585 * Subtle issue: "add_wait_queue_exclusive()" will be added 586 * after any current non-exclusive waiters, and we know that 587 * it will always _stay_ after any new non-exclusive waiters 588 * because all non-exclusive waiters are added at the 589 * beginning of the wait-queue. As such, it's ok to "drop" 590 * our exclusiveness temporarily when we get woken up without 591 * having to remove and re-insert us on the wait queue. 592 */ 593 for (;;) { 594 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 595 TASK_INTERRUPTIBLE); 596 release_sock(sk); 597 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 598 timeo = schedule_timeout(timeo); 599 sched_annotate_sleep(); 600 lock_sock(sk); 601 err = 0; 602 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 603 break; 604 err = -EINVAL; 605 if (sk->sk_state != TCP_LISTEN) 606 break; 607 err = sock_intr_errno(timeo); 608 if (signal_pending(current)) 609 break; 610 err = -EAGAIN; 611 if (!timeo) 612 break; 613 } 614 finish_wait(sk_sleep(sk), &wait); 615 return err; 616 } 617 618 /* 619 * This will accept the next outstanding connection. 620 */ 621 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 622 { 623 struct inet_connection_sock *icsk = inet_csk(sk); 624 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 625 struct request_sock *req; 626 struct sock *newsk; 627 int error; 628 629 lock_sock(sk); 630 631 /* We need to make sure that this socket is listening, 632 * and that it has something pending. 633 */ 634 error = -EINVAL; 635 if (sk->sk_state != TCP_LISTEN) 636 goto out_err; 637 638 /* Find already established connection */ 639 if (reqsk_queue_empty(queue)) { 640 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 641 642 /* If this is a non blocking socket don't sleep */ 643 error = -EAGAIN; 644 if (!timeo) 645 goto out_err; 646 647 error = inet_csk_wait_for_connect(sk, timeo); 648 if (error) 649 goto out_err; 650 } 651 req = reqsk_queue_remove(queue, sk); 652 newsk = req->sk; 653 654 if (sk->sk_protocol == IPPROTO_TCP && 655 tcp_rsk(req)->tfo_listener) { 656 spin_lock_bh(&queue->fastopenq.lock); 657 if (tcp_rsk(req)->tfo_listener) { 658 /* We are still waiting for the final ACK from 3WHS 659 * so can't free req now. Instead, we set req->sk to 660 * NULL to signify that the child socket is taken 661 * so reqsk_fastopen_remove() will free the req 662 * when 3WHS finishes (or is aborted). 663 */ 664 req->sk = NULL; 665 req = NULL; 666 } 667 spin_unlock_bh(&queue->fastopenq.lock); 668 } 669 670 out: 671 release_sock(sk); 672 if (newsk && mem_cgroup_sockets_enabled) { 673 int amt; 674 675 /* atomically get the memory usage, set and charge the 676 * newsk->sk_memcg. 677 */ 678 lock_sock(newsk); 679 680 /* The socket has not been accepted yet, no need to look at 681 * newsk->sk_wmem_queued. 682 */ 683 amt = sk_mem_pages(newsk->sk_forward_alloc + 684 atomic_read(&newsk->sk_rmem_alloc)); 685 mem_cgroup_sk_alloc(newsk); 686 if (newsk->sk_memcg && amt) 687 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, 688 GFP_KERNEL | __GFP_NOFAIL); 689 690 release_sock(newsk); 691 } 692 if (req) 693 reqsk_put(req); 694 return newsk; 695 out_err: 696 newsk = NULL; 697 req = NULL; 698 *err = error; 699 goto out; 700 } 701 EXPORT_SYMBOL(inet_csk_accept); 702 703 /* 704 * Using different timers for retransmit, delayed acks and probes 705 * We may wish use just one timer maintaining a list of expire jiffies 706 * to optimize. 707 */ 708 void inet_csk_init_xmit_timers(struct sock *sk, 709 void (*retransmit_handler)(struct timer_list *t), 710 void (*delack_handler)(struct timer_list *t), 711 void (*keepalive_handler)(struct timer_list *t)) 712 { 713 struct inet_connection_sock *icsk = inet_csk(sk); 714 715 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 716 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 717 timer_setup(&sk->sk_timer, keepalive_handler, 0); 718 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 719 } 720 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 721 722 void inet_csk_clear_xmit_timers(struct sock *sk) 723 { 724 struct inet_connection_sock *icsk = inet_csk(sk); 725 726 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 727 728 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 729 sk_stop_timer(sk, &icsk->icsk_delack_timer); 730 sk_stop_timer(sk, &sk->sk_timer); 731 } 732 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 733 734 void inet_csk_delete_keepalive_timer(struct sock *sk) 735 { 736 sk_stop_timer(sk, &sk->sk_timer); 737 } 738 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 739 740 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 741 { 742 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 743 } 744 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 745 746 struct dst_entry *inet_csk_route_req(const struct sock *sk, 747 struct flowi4 *fl4, 748 const struct request_sock *req) 749 { 750 const struct inet_request_sock *ireq = inet_rsk(req); 751 struct net *net = read_pnet(&ireq->ireq_net); 752 struct ip_options_rcu *opt; 753 struct rtable *rt; 754 755 rcu_read_lock(); 756 opt = rcu_dereference(ireq->ireq_opt); 757 758 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 759 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 760 sk->sk_protocol, inet_sk_flowi_flags(sk), 761 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 762 ireq->ir_loc_addr, ireq->ir_rmt_port, 763 htons(ireq->ir_num), sk->sk_uid); 764 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 765 rt = ip_route_output_flow(net, fl4, sk); 766 if (IS_ERR(rt)) 767 goto no_route; 768 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 769 goto route_err; 770 rcu_read_unlock(); 771 return &rt->dst; 772 773 route_err: 774 ip_rt_put(rt); 775 no_route: 776 rcu_read_unlock(); 777 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 778 return NULL; 779 } 780 EXPORT_SYMBOL_GPL(inet_csk_route_req); 781 782 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 783 struct sock *newsk, 784 const struct request_sock *req) 785 { 786 const struct inet_request_sock *ireq = inet_rsk(req); 787 struct net *net = read_pnet(&ireq->ireq_net); 788 struct inet_sock *newinet = inet_sk(newsk); 789 struct ip_options_rcu *opt; 790 struct flowi4 *fl4; 791 struct rtable *rt; 792 793 opt = rcu_dereference(ireq->ireq_opt); 794 fl4 = &newinet->cork.fl.u.ip4; 795 796 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 797 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 798 sk->sk_protocol, inet_sk_flowi_flags(sk), 799 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 800 ireq->ir_loc_addr, ireq->ir_rmt_port, 801 htons(ireq->ir_num), sk->sk_uid); 802 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 803 rt = ip_route_output_flow(net, fl4, sk); 804 if (IS_ERR(rt)) 805 goto no_route; 806 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 807 goto route_err; 808 return &rt->dst; 809 810 route_err: 811 ip_rt_put(rt); 812 no_route: 813 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 814 return NULL; 815 } 816 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 817 818 /* Decide when to expire the request and when to resend SYN-ACK */ 819 static void syn_ack_recalc(struct request_sock *req, 820 const int max_syn_ack_retries, 821 const u8 rskq_defer_accept, 822 int *expire, int *resend) 823 { 824 if (!rskq_defer_accept) { 825 *expire = req->num_timeout >= max_syn_ack_retries; 826 *resend = 1; 827 return; 828 } 829 *expire = req->num_timeout >= max_syn_ack_retries && 830 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 831 /* Do not resend while waiting for data after ACK, 832 * start to resend on end of deferring period to give 833 * last chance for data or ACK to create established socket. 834 */ 835 *resend = !inet_rsk(req)->acked || 836 req->num_timeout >= rskq_defer_accept - 1; 837 } 838 839 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 840 { 841 int err = req->rsk_ops->rtx_syn_ack(parent, req); 842 843 if (!err) 844 req->num_retrans++; 845 return err; 846 } 847 EXPORT_SYMBOL(inet_rtx_syn_ack); 848 849 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 850 struct sock *sk) 851 { 852 struct sock *req_sk, *nreq_sk; 853 struct request_sock *nreq; 854 855 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 856 if (!nreq) { 857 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 858 859 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 860 sock_put(sk); 861 return NULL; 862 } 863 864 req_sk = req_to_sk(req); 865 nreq_sk = req_to_sk(nreq); 866 867 memcpy(nreq_sk, req_sk, 868 offsetof(struct sock, sk_dontcopy_begin)); 869 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 870 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end)); 871 872 sk_node_init(&nreq_sk->sk_node); 873 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 874 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 875 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 876 #endif 877 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 878 879 nreq->rsk_listener = sk; 880 881 /* We need not acquire fastopenq->lock 882 * because the child socket is locked in inet_csk_listen_stop(). 883 */ 884 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 885 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 886 887 return nreq; 888 } 889 890 static void reqsk_queue_migrated(struct request_sock_queue *queue, 891 const struct request_sock *req) 892 { 893 if (req->num_timeout == 0) 894 atomic_inc(&queue->young); 895 atomic_inc(&queue->qlen); 896 } 897 898 static void reqsk_migrate_reset(struct request_sock *req) 899 { 900 req->saved_syn = NULL; 901 #if IS_ENABLED(CONFIG_IPV6) 902 inet_rsk(req)->ipv6_opt = NULL; 903 inet_rsk(req)->pktopts = NULL; 904 #else 905 inet_rsk(req)->ireq_opt = NULL; 906 #endif 907 } 908 909 /* return true if req was found in the ehash table */ 910 static bool reqsk_queue_unlink(struct request_sock *req) 911 { 912 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 913 bool found = false; 914 915 if (sk_hashed(req_to_sk(req))) { 916 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 917 918 spin_lock(lock); 919 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 920 spin_unlock(lock); 921 } 922 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 923 reqsk_put(req); 924 return found; 925 } 926 927 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 928 { 929 bool unlinked = reqsk_queue_unlink(req); 930 931 if (unlinked) { 932 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 933 reqsk_put(req); 934 } 935 return unlinked; 936 } 937 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 938 939 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 940 { 941 inet_csk_reqsk_queue_drop(sk, req); 942 reqsk_put(req); 943 } 944 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 945 946 static void reqsk_timer_handler(struct timer_list *t) 947 { 948 struct request_sock *req = from_timer(req, t, rsk_timer); 949 struct request_sock *nreq = NULL, *oreq = req; 950 struct sock *sk_listener = req->rsk_listener; 951 struct inet_connection_sock *icsk; 952 struct request_sock_queue *queue; 953 struct net *net; 954 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 955 956 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 957 struct sock *nsk; 958 959 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 960 if (!nsk) 961 goto drop; 962 963 nreq = inet_reqsk_clone(req, nsk); 964 if (!nreq) 965 goto drop; 966 967 /* The new timer for the cloned req can decrease the 2 968 * by calling inet_csk_reqsk_queue_drop_and_put(), so 969 * hold another count to prevent use-after-free and 970 * call reqsk_put() just before return. 971 */ 972 refcount_set(&nreq->rsk_refcnt, 2 + 1); 973 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 974 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 975 976 req = nreq; 977 sk_listener = nsk; 978 } 979 980 icsk = inet_csk(sk_listener); 981 net = sock_net(sk_listener); 982 max_syn_ack_retries = icsk->icsk_syn_retries ? : 983 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 984 /* Normally all the openreqs are young and become mature 985 * (i.e. converted to established socket) for first timeout. 986 * If synack was not acknowledged for 1 second, it means 987 * one of the following things: synack was lost, ack was lost, 988 * rtt is high or nobody planned to ack (i.e. synflood). 989 * When server is a bit loaded, queue is populated with old 990 * open requests, reducing effective size of queue. 991 * When server is well loaded, queue size reduces to zero 992 * after several minutes of work. It is not synflood, 993 * it is normal operation. The solution is pruning 994 * too old entries overriding normal timeout, when 995 * situation becomes dangerous. 996 * 997 * Essentially, we reserve half of room for young 998 * embrions; and abort old ones without pity, if old 999 * ones are about to clog our table. 1000 */ 1001 queue = &icsk->icsk_accept_queue; 1002 qlen = reqsk_queue_len(queue); 1003 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1004 int young = reqsk_queue_len_young(queue) << 1; 1005 1006 while (max_syn_ack_retries > 2) { 1007 if (qlen < young) 1008 break; 1009 max_syn_ack_retries--; 1010 young <<= 1; 1011 } 1012 } 1013 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1014 &expire, &resend); 1015 req->rsk_ops->syn_ack_timeout(req); 1016 if (!expire && 1017 (!resend || 1018 !inet_rtx_syn_ack(sk_listener, req) || 1019 inet_rsk(req)->acked)) { 1020 if (req->num_timeout++ == 0) 1021 atomic_dec(&queue->young); 1022 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1023 1024 if (!nreq) 1025 return; 1026 1027 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1028 /* delete timer */ 1029 inet_csk_reqsk_queue_drop(sk_listener, nreq); 1030 goto no_ownership; 1031 } 1032 1033 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1034 reqsk_migrate_reset(oreq); 1035 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1036 reqsk_put(oreq); 1037 1038 reqsk_put(nreq); 1039 return; 1040 } 1041 1042 /* Even if we can clone the req, we may need not retransmit any more 1043 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1044 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1045 */ 1046 if (nreq) { 1047 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1048 no_ownership: 1049 reqsk_migrate_reset(nreq); 1050 reqsk_queue_removed(queue, nreq); 1051 __reqsk_free(nreq); 1052 } 1053 1054 drop: 1055 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq); 1056 } 1057 1058 static void reqsk_queue_hash_req(struct request_sock *req, 1059 unsigned long timeout) 1060 { 1061 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1062 mod_timer(&req->rsk_timer, jiffies + timeout); 1063 1064 inet_ehash_insert(req_to_sk(req), NULL, NULL); 1065 /* before letting lookups find us, make sure all req fields 1066 * are committed to memory and refcnt initialized. 1067 */ 1068 smp_wmb(); 1069 refcount_set(&req->rsk_refcnt, 2 + 1); 1070 } 1071 1072 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1073 unsigned long timeout) 1074 { 1075 reqsk_queue_hash_req(req, timeout); 1076 inet_csk_reqsk_queue_added(sk); 1077 } 1078 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 1079 1080 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1081 const gfp_t priority) 1082 { 1083 struct inet_connection_sock *icsk = inet_csk(newsk); 1084 1085 if (!icsk->icsk_ulp_ops) 1086 return; 1087 1088 if (icsk->icsk_ulp_ops->clone) 1089 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1090 } 1091 1092 /** 1093 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1094 * @sk: the socket to clone 1095 * @req: request_sock 1096 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1097 * 1098 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1099 */ 1100 struct sock *inet_csk_clone_lock(const struct sock *sk, 1101 const struct request_sock *req, 1102 const gfp_t priority) 1103 { 1104 struct sock *newsk = sk_clone_lock(sk, priority); 1105 1106 if (newsk) { 1107 struct inet_connection_sock *newicsk = inet_csk(newsk); 1108 1109 inet_sk_set_state(newsk, TCP_SYN_RECV); 1110 newicsk->icsk_bind_hash = NULL; 1111 newicsk->icsk_bind2_hash = NULL; 1112 1113 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 1114 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 1115 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 1116 1117 /* listeners have SOCK_RCU_FREE, not the children */ 1118 sock_reset_flag(newsk, SOCK_RCU_FREE); 1119 1120 inet_sk(newsk)->mc_list = NULL; 1121 1122 newsk->sk_mark = inet_rsk(req)->ir_mark; 1123 atomic64_set(&newsk->sk_cookie, 1124 atomic64_read(&inet_rsk(req)->ir_cookie)); 1125 1126 newicsk->icsk_retransmits = 0; 1127 newicsk->icsk_backoff = 0; 1128 newicsk->icsk_probes_out = 0; 1129 newicsk->icsk_probes_tstamp = 0; 1130 1131 /* Deinitialize accept_queue to trap illegal accesses. */ 1132 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 1133 1134 inet_clone_ulp(req, newsk, priority); 1135 1136 security_inet_csk_clone(newsk, req); 1137 } 1138 return newsk; 1139 } 1140 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 1141 1142 /* 1143 * At this point, there should be no process reference to this 1144 * socket, and thus no user references at all. Therefore we 1145 * can assume the socket waitqueue is inactive and nobody will 1146 * try to jump onto it. 1147 */ 1148 void inet_csk_destroy_sock(struct sock *sk) 1149 { 1150 WARN_ON(sk->sk_state != TCP_CLOSE); 1151 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1152 1153 /* It cannot be in hash table! */ 1154 WARN_ON(!sk_unhashed(sk)); 1155 1156 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1157 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1158 1159 sk->sk_prot->destroy(sk); 1160 1161 sk_stream_kill_queues(sk); 1162 1163 xfrm_sk_free_policy(sk); 1164 1165 sk_refcnt_debug_release(sk); 1166 1167 this_cpu_dec(*sk->sk_prot->orphan_count); 1168 1169 sock_put(sk); 1170 } 1171 EXPORT_SYMBOL(inet_csk_destroy_sock); 1172 1173 /* This function allows to force a closure of a socket after the call to 1174 * tcp/dccp_create_openreq_child(). 1175 */ 1176 void inet_csk_prepare_forced_close(struct sock *sk) 1177 __releases(&sk->sk_lock.slock) 1178 { 1179 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1180 bh_unlock_sock(sk); 1181 sock_put(sk); 1182 inet_csk_prepare_for_destroy_sock(sk); 1183 inet_sk(sk)->inet_num = 0; 1184 } 1185 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1186 1187 int inet_csk_listen_start(struct sock *sk) 1188 { 1189 struct inet_connection_sock *icsk = inet_csk(sk); 1190 struct inet_sock *inet = inet_sk(sk); 1191 int err = -EADDRINUSE; 1192 1193 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1194 1195 sk->sk_ack_backlog = 0; 1196 inet_csk_delack_init(sk); 1197 1198 if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT) 1199 sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1200 1201 /* There is race window here: we announce ourselves listening, 1202 * but this transition is still not validated by get_port(). 1203 * It is OK, because this socket enters to hash table only 1204 * after validation is complete. 1205 */ 1206 inet_sk_state_store(sk, TCP_LISTEN); 1207 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 1208 inet->inet_sport = htons(inet->inet_num); 1209 1210 sk_dst_reset(sk); 1211 err = sk->sk_prot->hash(sk); 1212 1213 if (likely(!err)) 1214 return 0; 1215 } 1216 1217 inet_sk_set_state(sk, TCP_CLOSE); 1218 return err; 1219 } 1220 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 1221 1222 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1223 struct sock *child) 1224 { 1225 sk->sk_prot->disconnect(child, O_NONBLOCK); 1226 1227 sock_orphan(child); 1228 1229 this_cpu_inc(*sk->sk_prot->orphan_count); 1230 1231 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1232 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1233 BUG_ON(sk != req->rsk_listener); 1234 1235 /* Paranoid, to prevent race condition if 1236 * an inbound pkt destined for child is 1237 * blocked by sock lock in tcp_v4_rcv(). 1238 * Also to satisfy an assertion in 1239 * tcp_v4_destroy_sock(). 1240 */ 1241 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1242 } 1243 inet_csk_destroy_sock(child); 1244 } 1245 1246 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1247 struct request_sock *req, 1248 struct sock *child) 1249 { 1250 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1251 1252 spin_lock(&queue->rskq_lock); 1253 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1254 inet_child_forget(sk, req, child); 1255 child = NULL; 1256 } else { 1257 req->sk = child; 1258 req->dl_next = NULL; 1259 if (queue->rskq_accept_head == NULL) 1260 WRITE_ONCE(queue->rskq_accept_head, req); 1261 else 1262 queue->rskq_accept_tail->dl_next = req; 1263 queue->rskq_accept_tail = req; 1264 sk_acceptq_added(sk); 1265 } 1266 spin_unlock(&queue->rskq_lock); 1267 return child; 1268 } 1269 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1270 1271 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1272 struct request_sock *req, bool own_req) 1273 { 1274 if (own_req) { 1275 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1276 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1277 1278 if (sk != req->rsk_listener) { 1279 /* another listening sk has been selected, 1280 * migrate the req to it. 1281 */ 1282 struct request_sock *nreq; 1283 1284 /* hold a refcnt for the nreq->rsk_listener 1285 * which is assigned in inet_reqsk_clone() 1286 */ 1287 sock_hold(sk); 1288 nreq = inet_reqsk_clone(req, sk); 1289 if (!nreq) { 1290 inet_child_forget(sk, req, child); 1291 goto child_put; 1292 } 1293 1294 refcount_set(&nreq->rsk_refcnt, 1); 1295 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1296 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1297 reqsk_migrate_reset(req); 1298 reqsk_put(req); 1299 return child; 1300 } 1301 1302 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1303 reqsk_migrate_reset(nreq); 1304 __reqsk_free(nreq); 1305 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1306 return child; 1307 } 1308 } 1309 /* Too bad, another child took ownership of the request, undo. */ 1310 child_put: 1311 bh_unlock_sock(child); 1312 sock_put(child); 1313 return NULL; 1314 } 1315 EXPORT_SYMBOL(inet_csk_complete_hashdance); 1316 1317 /* 1318 * This routine closes sockets which have been at least partially 1319 * opened, but not yet accepted. 1320 */ 1321 void inet_csk_listen_stop(struct sock *sk) 1322 { 1323 struct inet_connection_sock *icsk = inet_csk(sk); 1324 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1325 struct request_sock *next, *req; 1326 1327 /* Following specs, it would be better either to send FIN 1328 * (and enter FIN-WAIT-1, it is normal close) 1329 * or to send active reset (abort). 1330 * Certainly, it is pretty dangerous while synflood, but it is 1331 * bad justification for our negligence 8) 1332 * To be honest, we are not able to make either 1333 * of the variants now. --ANK 1334 */ 1335 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1336 struct sock *child = req->sk, *nsk; 1337 struct request_sock *nreq; 1338 1339 local_bh_disable(); 1340 bh_lock_sock(child); 1341 WARN_ON(sock_owned_by_user(child)); 1342 sock_hold(child); 1343 1344 nsk = reuseport_migrate_sock(sk, child, NULL); 1345 if (nsk) { 1346 nreq = inet_reqsk_clone(req, nsk); 1347 if (nreq) { 1348 refcount_set(&nreq->rsk_refcnt, 1); 1349 1350 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1351 __NET_INC_STATS(sock_net(nsk), 1352 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1353 reqsk_migrate_reset(req); 1354 } else { 1355 __NET_INC_STATS(sock_net(nsk), 1356 LINUX_MIB_TCPMIGRATEREQFAILURE); 1357 reqsk_migrate_reset(nreq); 1358 __reqsk_free(nreq); 1359 } 1360 1361 /* inet_csk_reqsk_queue_add() has already 1362 * called inet_child_forget() on failure case. 1363 */ 1364 goto skip_child_forget; 1365 } 1366 } 1367 1368 inet_child_forget(sk, req, child); 1369 skip_child_forget: 1370 reqsk_put(req); 1371 bh_unlock_sock(child); 1372 local_bh_enable(); 1373 sock_put(child); 1374 1375 cond_resched(); 1376 } 1377 if (queue->fastopenq.rskq_rst_head) { 1378 /* Free all the reqs queued in rskq_rst_head. */ 1379 spin_lock_bh(&queue->fastopenq.lock); 1380 req = queue->fastopenq.rskq_rst_head; 1381 queue->fastopenq.rskq_rst_head = NULL; 1382 spin_unlock_bh(&queue->fastopenq.lock); 1383 while (req != NULL) { 1384 next = req->dl_next; 1385 reqsk_put(req); 1386 req = next; 1387 } 1388 } 1389 WARN_ON_ONCE(sk->sk_ack_backlog); 1390 } 1391 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1392 1393 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1394 { 1395 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1396 const struct inet_sock *inet = inet_sk(sk); 1397 1398 sin->sin_family = AF_INET; 1399 sin->sin_addr.s_addr = inet->inet_daddr; 1400 sin->sin_port = inet->inet_dport; 1401 } 1402 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1403 1404 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1405 { 1406 const struct inet_sock *inet = inet_sk(sk); 1407 const struct ip_options_rcu *inet_opt; 1408 __be32 daddr = inet->inet_daddr; 1409 struct flowi4 *fl4; 1410 struct rtable *rt; 1411 1412 rcu_read_lock(); 1413 inet_opt = rcu_dereference(inet->inet_opt); 1414 if (inet_opt && inet_opt->opt.srr) 1415 daddr = inet_opt->opt.faddr; 1416 fl4 = &fl->u.ip4; 1417 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1418 inet->inet_saddr, inet->inet_dport, 1419 inet->inet_sport, sk->sk_protocol, 1420 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1421 if (IS_ERR(rt)) 1422 rt = NULL; 1423 if (rt) 1424 sk_setup_caps(sk, &rt->dst); 1425 rcu_read_unlock(); 1426 1427 return &rt->dst; 1428 } 1429 1430 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1431 { 1432 struct dst_entry *dst = __sk_dst_check(sk, 0); 1433 struct inet_sock *inet = inet_sk(sk); 1434 1435 if (!dst) { 1436 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1437 if (!dst) 1438 goto out; 1439 } 1440 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1441 1442 dst = __sk_dst_check(sk, 0); 1443 if (!dst) 1444 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1445 out: 1446 return dst; 1447 } 1448 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1449