1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 #include <linux/cache.h> 39 #include <linux/uaccess.h> 40 #include <linux/bitops.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/mm.h> 44 #include <linux/string.h> 45 #include <linux/socket.h> 46 #include <linux/sockios.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/inetdevice.h> 51 #include <linux/netdevice.h> 52 #include <linux/if_arp.h> 53 #include <linux/proc_fs.h> 54 #include <linux/rcupdate.h> 55 #include <linux/rcupdate_wait.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/init.h> 59 #include <linux/list.h> 60 #include <linux/slab.h> 61 #include <linux/export.h> 62 #include <linux/vmalloc.h> 63 #include <linux/notifier.h> 64 #include <net/net_namespace.h> 65 #include <net/inet_dscp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/tcp.h> 70 #include <net/sock.h> 71 #include <net/ip_fib.h> 72 #include <net/fib_notifier.h> 73 #include <trace/events/fib.h> 74 #include "fib_lookup.h" 75 76 static int call_fib_entry_notifier(struct notifier_block *nb, 77 enum fib_event_type event_type, u32 dst, 78 int dst_len, struct fib_alias *fa, 79 struct netlink_ext_ack *extack) 80 { 81 struct fib_entry_notifier_info info = { 82 .info.extack = extack, 83 .dst = dst, 84 .dst_len = dst_len, 85 .fi = fa->fa_info, 86 .dscp = fa->fa_dscp, 87 .type = fa->fa_type, 88 .tb_id = fa->tb_id, 89 }; 90 return call_fib4_notifier(nb, event_type, &info.info); 91 } 92 93 static int call_fib_entry_notifiers(struct net *net, 94 enum fib_event_type event_type, u32 dst, 95 int dst_len, struct fib_alias *fa, 96 struct netlink_ext_ack *extack) 97 { 98 struct fib_entry_notifier_info info = { 99 .info.extack = extack, 100 .dst = dst, 101 .dst_len = dst_len, 102 .fi = fa->fa_info, 103 .dscp = fa->fa_dscp, 104 .type = fa->fa_type, 105 .tb_id = fa->tb_id, 106 }; 107 return call_fib4_notifiers(net, event_type, &info.info); 108 } 109 110 #define MAX_STAT_DEPTH 32 111 112 #define KEYLENGTH (8*sizeof(t_key)) 113 #define KEY_MAX ((t_key)~0) 114 115 typedef unsigned int t_key; 116 117 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 118 #define IS_TNODE(n) ((n)->bits) 119 #define IS_LEAF(n) (!(n)->bits) 120 121 struct key_vector { 122 t_key key; 123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 125 unsigned char slen; 126 union { 127 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 128 struct hlist_head leaf; 129 /* This array is valid if (pos | bits) > 0 (TNODE) */ 130 DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode); 131 }; 132 }; 133 134 struct tnode { 135 struct rcu_head rcu; 136 t_key empty_children; /* KEYLENGTH bits needed */ 137 t_key full_children; /* KEYLENGTH bits needed */ 138 struct key_vector __rcu *parent; 139 struct key_vector kv[1]; 140 #define tn_bits kv[0].bits 141 }; 142 143 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 144 #define LEAF_SIZE TNODE_SIZE(1) 145 146 #ifdef CONFIG_IP_FIB_TRIE_STATS 147 struct trie_use_stats { 148 unsigned int gets; 149 unsigned int backtrack; 150 unsigned int semantic_match_passed; 151 unsigned int semantic_match_miss; 152 unsigned int null_node_hit; 153 unsigned int resize_node_skipped; 154 }; 155 #endif 156 157 struct trie_stat { 158 unsigned int totdepth; 159 unsigned int maxdepth; 160 unsigned int tnodes; 161 unsigned int leaves; 162 unsigned int nullpointers; 163 unsigned int prefixes; 164 unsigned int nodesizes[MAX_STAT_DEPTH]; 165 }; 166 167 struct trie { 168 struct key_vector kv[1]; 169 #ifdef CONFIG_IP_FIB_TRIE_STATS 170 struct trie_use_stats __percpu *stats; 171 #endif 172 }; 173 174 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 175 static unsigned int tnode_free_size; 176 177 /* 178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 179 * especially useful before resizing the root node with PREEMPT_NONE configs; 180 * the value was obtained experimentally, aiming to avoid visible slowdown. 181 */ 182 unsigned int sysctl_fib_sync_mem = 512 * 1024; 183 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 184 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 185 186 static struct kmem_cache *fn_alias_kmem __ro_after_init; 187 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 188 189 static inline struct tnode *tn_info(struct key_vector *kv) 190 { 191 return container_of(kv, struct tnode, kv[0]); 192 } 193 194 /* caller must hold RTNL */ 195 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 196 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 197 198 /* caller must hold RCU read lock or RTNL */ 199 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 200 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 201 202 /* wrapper for rcu_assign_pointer */ 203 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 204 { 205 if (n) 206 rcu_assign_pointer(tn_info(n)->parent, tp); 207 } 208 209 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 210 211 /* This provides us with the number of children in this node, in the case of a 212 * leaf this will return 0 meaning none of the children are accessible. 213 */ 214 static inline unsigned long child_length(const struct key_vector *tn) 215 { 216 return (1ul << tn->bits) & ~(1ul); 217 } 218 219 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 220 221 static inline unsigned long get_index(t_key key, struct key_vector *kv) 222 { 223 unsigned long index = key ^ kv->key; 224 225 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 226 return 0; 227 228 return index >> kv->pos; 229 } 230 231 /* To understand this stuff, an understanding of keys and all their bits is 232 * necessary. Every node in the trie has a key associated with it, but not 233 * all of the bits in that key are significant. 234 * 235 * Consider a node 'n' and its parent 'tp'. 236 * 237 * If n is a leaf, every bit in its key is significant. Its presence is 238 * necessitated by path compression, since during a tree traversal (when 239 * searching for a leaf - unless we are doing an insertion) we will completely 240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 241 * a potentially successful search, that we have indeed been walking the 242 * correct key path. 243 * 244 * Note that we can never "miss" the correct key in the tree if present by 245 * following the wrong path. Path compression ensures that segments of the key 246 * that are the same for all keys with a given prefix are skipped, but the 247 * skipped part *is* identical for each node in the subtrie below the skipped 248 * bit! trie_insert() in this implementation takes care of that. 249 * 250 * if n is an internal node - a 'tnode' here, the various parts of its key 251 * have many different meanings. 252 * 253 * Example: 254 * _________________________________________________________________ 255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 256 * ----------------------------------------------------------------- 257 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 258 * 259 * _________________________________________________________________ 260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 261 * ----------------------------------------------------------------- 262 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 263 * 264 * tp->pos = 22 265 * tp->bits = 3 266 * n->pos = 13 267 * n->bits = 4 268 * 269 * First, let's just ignore the bits that come before the parent tp, that is 270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 271 * point we do not use them for anything. 272 * 273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 274 * index into the parent's child array. That is, they will be used to find 275 * 'n' among tp's children. 276 * 277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 278 * for the node n. 279 * 280 * All the bits we have seen so far are significant to the node n. The rest 281 * of the bits are really not needed or indeed known in n->key. 282 * 283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 284 * n's child array, and will of course be different for each child. 285 * 286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 287 * at this point. 288 */ 289 290 static const int halve_threshold = 25; 291 static const int inflate_threshold = 50; 292 static const int halve_threshold_root = 15; 293 static const int inflate_threshold_root = 30; 294 295 static inline void alias_free_mem_rcu(struct fib_alias *fa) 296 { 297 kfree_rcu(fa, rcu); 298 } 299 300 #define TNODE_VMALLOC_MAX \ 301 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 302 303 static void __node_free_rcu(struct rcu_head *head) 304 { 305 struct tnode *n = container_of(head, struct tnode, rcu); 306 307 if (!n->tn_bits) 308 kmem_cache_free(trie_leaf_kmem, n); 309 else 310 kvfree(n); 311 } 312 313 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 314 315 static struct tnode *tnode_alloc(int bits) 316 { 317 size_t size; 318 319 /* verify bits is within bounds */ 320 if (bits > TNODE_VMALLOC_MAX) 321 return NULL; 322 323 /* determine size and verify it is non-zero and didn't overflow */ 324 size = TNODE_SIZE(1ul << bits); 325 326 if (size <= PAGE_SIZE) 327 return kzalloc(size, GFP_KERNEL); 328 else 329 return vzalloc(size); 330 } 331 332 static inline void empty_child_inc(struct key_vector *n) 333 { 334 tn_info(n)->empty_children++; 335 336 if (!tn_info(n)->empty_children) 337 tn_info(n)->full_children++; 338 } 339 340 static inline void empty_child_dec(struct key_vector *n) 341 { 342 if (!tn_info(n)->empty_children) 343 tn_info(n)->full_children--; 344 345 tn_info(n)->empty_children--; 346 } 347 348 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 349 { 350 struct key_vector *l; 351 struct tnode *kv; 352 353 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 354 if (!kv) 355 return NULL; 356 357 /* initialize key vector */ 358 l = kv->kv; 359 l->key = key; 360 l->pos = 0; 361 l->bits = 0; 362 l->slen = fa->fa_slen; 363 364 /* link leaf to fib alias */ 365 INIT_HLIST_HEAD(&l->leaf); 366 hlist_add_head(&fa->fa_list, &l->leaf); 367 368 return l; 369 } 370 371 static struct key_vector *tnode_new(t_key key, int pos, int bits) 372 { 373 unsigned int shift = pos + bits; 374 struct key_vector *tn; 375 struct tnode *tnode; 376 377 /* verify bits and pos their msb bits clear and values are valid */ 378 BUG_ON(!bits || (shift > KEYLENGTH)); 379 380 tnode = tnode_alloc(bits); 381 if (!tnode) 382 return NULL; 383 384 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 385 sizeof(struct key_vector *) << bits); 386 387 if (bits == KEYLENGTH) 388 tnode->full_children = 1; 389 else 390 tnode->empty_children = 1ul << bits; 391 392 tn = tnode->kv; 393 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 394 tn->pos = pos; 395 tn->bits = bits; 396 tn->slen = pos; 397 398 return tn; 399 } 400 401 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 402 * and no bits are skipped. See discussion in dyntree paper p. 6 403 */ 404 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 405 { 406 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 407 } 408 409 /* Add a child at position i overwriting the old value. 410 * Update the value of full_children and empty_children. 411 */ 412 static void put_child(struct key_vector *tn, unsigned long i, 413 struct key_vector *n) 414 { 415 struct key_vector *chi = get_child(tn, i); 416 int isfull, wasfull; 417 418 BUG_ON(i >= child_length(tn)); 419 420 /* update emptyChildren, overflow into fullChildren */ 421 if (!n && chi) 422 empty_child_inc(tn); 423 if (n && !chi) 424 empty_child_dec(tn); 425 426 /* update fullChildren */ 427 wasfull = tnode_full(tn, chi); 428 isfull = tnode_full(tn, n); 429 430 if (wasfull && !isfull) 431 tn_info(tn)->full_children--; 432 else if (!wasfull && isfull) 433 tn_info(tn)->full_children++; 434 435 if (n && (tn->slen < n->slen)) 436 tn->slen = n->slen; 437 438 rcu_assign_pointer(tn->tnode[i], n); 439 } 440 441 static void update_children(struct key_vector *tn) 442 { 443 unsigned long i; 444 445 /* update all of the child parent pointers */ 446 for (i = child_length(tn); i;) { 447 struct key_vector *inode = get_child(tn, --i); 448 449 if (!inode) 450 continue; 451 452 /* Either update the children of a tnode that 453 * already belongs to us or update the child 454 * to point to ourselves. 455 */ 456 if (node_parent(inode) == tn) 457 update_children(inode); 458 else 459 node_set_parent(inode, tn); 460 } 461 } 462 463 static inline void put_child_root(struct key_vector *tp, t_key key, 464 struct key_vector *n) 465 { 466 if (IS_TRIE(tp)) 467 rcu_assign_pointer(tp->tnode[0], n); 468 else 469 put_child(tp, get_index(key, tp), n); 470 } 471 472 static inline void tnode_free_init(struct key_vector *tn) 473 { 474 tn_info(tn)->rcu.next = NULL; 475 } 476 477 static inline void tnode_free_append(struct key_vector *tn, 478 struct key_vector *n) 479 { 480 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 481 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 482 } 483 484 static void tnode_free(struct key_vector *tn) 485 { 486 struct callback_head *head = &tn_info(tn)->rcu; 487 488 while (head) { 489 head = head->next; 490 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 491 node_free(tn); 492 493 tn = container_of(head, struct tnode, rcu)->kv; 494 } 495 496 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) { 497 tnode_free_size = 0; 498 synchronize_net(); 499 } 500 } 501 502 static struct key_vector *replace(struct trie *t, 503 struct key_vector *oldtnode, 504 struct key_vector *tn) 505 { 506 struct key_vector *tp = node_parent(oldtnode); 507 unsigned long i; 508 509 /* setup the parent pointer out of and back into this node */ 510 NODE_INIT_PARENT(tn, tp); 511 put_child_root(tp, tn->key, tn); 512 513 /* update all of the child parent pointers */ 514 update_children(tn); 515 516 /* all pointers should be clean so we are done */ 517 tnode_free(oldtnode); 518 519 /* resize children now that oldtnode is freed */ 520 for (i = child_length(tn); i;) { 521 struct key_vector *inode = get_child(tn, --i); 522 523 /* resize child node */ 524 if (tnode_full(tn, inode)) 525 tn = resize(t, inode); 526 } 527 528 return tp; 529 } 530 531 static struct key_vector *inflate(struct trie *t, 532 struct key_vector *oldtnode) 533 { 534 struct key_vector *tn; 535 unsigned long i; 536 t_key m; 537 538 pr_debug("In inflate\n"); 539 540 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 541 if (!tn) 542 goto notnode; 543 544 /* prepare oldtnode to be freed */ 545 tnode_free_init(oldtnode); 546 547 /* Assemble all of the pointers in our cluster, in this case that 548 * represents all of the pointers out of our allocated nodes that 549 * point to existing tnodes and the links between our allocated 550 * nodes. 551 */ 552 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 553 struct key_vector *inode = get_child(oldtnode, --i); 554 struct key_vector *node0, *node1; 555 unsigned long j, k; 556 557 /* An empty child */ 558 if (!inode) 559 continue; 560 561 /* A leaf or an internal node with skipped bits */ 562 if (!tnode_full(oldtnode, inode)) { 563 put_child(tn, get_index(inode->key, tn), inode); 564 continue; 565 } 566 567 /* drop the node in the old tnode free list */ 568 tnode_free_append(oldtnode, inode); 569 570 /* An internal node with two children */ 571 if (inode->bits == 1) { 572 put_child(tn, 2 * i + 1, get_child(inode, 1)); 573 put_child(tn, 2 * i, get_child(inode, 0)); 574 continue; 575 } 576 577 /* We will replace this node 'inode' with two new 578 * ones, 'node0' and 'node1', each with half of the 579 * original children. The two new nodes will have 580 * a position one bit further down the key and this 581 * means that the "significant" part of their keys 582 * (see the discussion near the top of this file) 583 * will differ by one bit, which will be "0" in 584 * node0's key and "1" in node1's key. Since we are 585 * moving the key position by one step, the bit that 586 * we are moving away from - the bit at position 587 * (tn->pos) - is the one that will differ between 588 * node0 and node1. So... we synthesize that bit in the 589 * two new keys. 590 */ 591 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 592 if (!node1) 593 goto nomem; 594 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 595 596 tnode_free_append(tn, node1); 597 if (!node0) 598 goto nomem; 599 tnode_free_append(tn, node0); 600 601 /* populate child pointers in new nodes */ 602 for (k = child_length(inode), j = k / 2; j;) { 603 put_child(node1, --j, get_child(inode, --k)); 604 put_child(node0, j, get_child(inode, j)); 605 put_child(node1, --j, get_child(inode, --k)); 606 put_child(node0, j, get_child(inode, j)); 607 } 608 609 /* link new nodes to parent */ 610 NODE_INIT_PARENT(node1, tn); 611 NODE_INIT_PARENT(node0, tn); 612 613 /* link parent to nodes */ 614 put_child(tn, 2 * i + 1, node1); 615 put_child(tn, 2 * i, node0); 616 } 617 618 /* setup the parent pointers into and out of this node */ 619 return replace(t, oldtnode, tn); 620 nomem: 621 /* all pointers should be clean so we are done */ 622 tnode_free(tn); 623 notnode: 624 return NULL; 625 } 626 627 static struct key_vector *halve(struct trie *t, 628 struct key_vector *oldtnode) 629 { 630 struct key_vector *tn; 631 unsigned long i; 632 633 pr_debug("In halve\n"); 634 635 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 636 if (!tn) 637 goto notnode; 638 639 /* prepare oldtnode to be freed */ 640 tnode_free_init(oldtnode); 641 642 /* Assemble all of the pointers in our cluster, in this case that 643 * represents all of the pointers out of our allocated nodes that 644 * point to existing tnodes and the links between our allocated 645 * nodes. 646 */ 647 for (i = child_length(oldtnode); i;) { 648 struct key_vector *node1 = get_child(oldtnode, --i); 649 struct key_vector *node0 = get_child(oldtnode, --i); 650 struct key_vector *inode; 651 652 /* At least one of the children is empty */ 653 if (!node1 || !node0) { 654 put_child(tn, i / 2, node1 ? : node0); 655 continue; 656 } 657 658 /* Two nonempty children */ 659 inode = tnode_new(node0->key, oldtnode->pos, 1); 660 if (!inode) 661 goto nomem; 662 tnode_free_append(tn, inode); 663 664 /* initialize pointers out of node */ 665 put_child(inode, 1, node1); 666 put_child(inode, 0, node0); 667 NODE_INIT_PARENT(inode, tn); 668 669 /* link parent to node */ 670 put_child(tn, i / 2, inode); 671 } 672 673 /* setup the parent pointers into and out of this node */ 674 return replace(t, oldtnode, tn); 675 nomem: 676 /* all pointers should be clean so we are done */ 677 tnode_free(tn); 678 notnode: 679 return NULL; 680 } 681 682 static struct key_vector *collapse(struct trie *t, 683 struct key_vector *oldtnode) 684 { 685 struct key_vector *n, *tp; 686 unsigned long i; 687 688 /* scan the tnode looking for that one child that might still exist */ 689 for (n = NULL, i = child_length(oldtnode); !n && i;) 690 n = get_child(oldtnode, --i); 691 692 /* compress one level */ 693 tp = node_parent(oldtnode); 694 put_child_root(tp, oldtnode->key, n); 695 node_set_parent(n, tp); 696 697 /* drop dead node */ 698 node_free(oldtnode); 699 700 return tp; 701 } 702 703 static unsigned char update_suffix(struct key_vector *tn) 704 { 705 unsigned char slen = tn->pos; 706 unsigned long stride, i; 707 unsigned char slen_max; 708 709 /* only vector 0 can have a suffix length greater than or equal to 710 * tn->pos + tn->bits, the second highest node will have a suffix 711 * length at most of tn->pos + tn->bits - 1 712 */ 713 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 714 715 /* search though the list of children looking for nodes that might 716 * have a suffix greater than the one we currently have. This is 717 * why we start with a stride of 2 since a stride of 1 would 718 * represent the nodes with suffix length equal to tn->pos 719 */ 720 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 721 struct key_vector *n = get_child(tn, i); 722 723 if (!n || (n->slen <= slen)) 724 continue; 725 726 /* update stride and slen based on new value */ 727 stride <<= (n->slen - slen); 728 slen = n->slen; 729 i &= ~(stride - 1); 730 731 /* stop searching if we have hit the maximum possible value */ 732 if (slen >= slen_max) 733 break; 734 } 735 736 tn->slen = slen; 737 738 return slen; 739 } 740 741 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 742 * the Helsinki University of Technology and Matti Tikkanen of Nokia 743 * Telecommunications, page 6: 744 * "A node is doubled if the ratio of non-empty children to all 745 * children in the *doubled* node is at least 'high'." 746 * 747 * 'high' in this instance is the variable 'inflate_threshold'. It 748 * is expressed as a percentage, so we multiply it with 749 * child_length() and instead of multiplying by 2 (since the 750 * child array will be doubled by inflate()) and multiplying 751 * the left-hand side by 100 (to handle the percentage thing) we 752 * multiply the left-hand side by 50. 753 * 754 * The left-hand side may look a bit weird: child_length(tn) 755 * - tn->empty_children is of course the number of non-null children 756 * in the current node. tn->full_children is the number of "full" 757 * children, that is non-null tnodes with a skip value of 0. 758 * All of those will be doubled in the resulting inflated tnode, so 759 * we just count them one extra time here. 760 * 761 * A clearer way to write this would be: 762 * 763 * to_be_doubled = tn->full_children; 764 * not_to_be_doubled = child_length(tn) - tn->empty_children - 765 * tn->full_children; 766 * 767 * new_child_length = child_length(tn) * 2; 768 * 769 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 770 * new_child_length; 771 * if (new_fill_factor >= inflate_threshold) 772 * 773 * ...and so on, tho it would mess up the while () loop. 774 * 775 * anyway, 776 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 777 * inflate_threshold 778 * 779 * avoid a division: 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 781 * inflate_threshold * new_child_length 782 * 783 * expand not_to_be_doubled and to_be_doubled, and shorten: 784 * 100 * (child_length(tn) - tn->empty_children + 785 * tn->full_children) >= inflate_threshold * new_child_length 786 * 787 * expand new_child_length: 788 * 100 * (child_length(tn) - tn->empty_children + 789 * tn->full_children) >= 790 * inflate_threshold * child_length(tn) * 2 791 * 792 * shorten again: 793 * 50 * (tn->full_children + child_length(tn) - 794 * tn->empty_children) >= inflate_threshold * 795 * child_length(tn) 796 * 797 */ 798 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 799 { 800 unsigned long used = child_length(tn); 801 unsigned long threshold = used; 802 803 /* Keep root node larger */ 804 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 805 used -= tn_info(tn)->empty_children; 806 used += tn_info(tn)->full_children; 807 808 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 809 810 return (used > 1) && tn->pos && ((50 * used) >= threshold); 811 } 812 813 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 814 { 815 unsigned long used = child_length(tn); 816 unsigned long threshold = used; 817 818 /* Keep root node larger */ 819 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 820 used -= tn_info(tn)->empty_children; 821 822 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 823 824 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 825 } 826 827 static inline bool should_collapse(struct key_vector *tn) 828 { 829 unsigned long used = child_length(tn); 830 831 used -= tn_info(tn)->empty_children; 832 833 /* account for bits == KEYLENGTH case */ 834 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 835 used -= KEY_MAX; 836 837 /* One child or none, time to drop us from the trie */ 838 return used < 2; 839 } 840 841 #define MAX_WORK 10 842 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 843 { 844 #ifdef CONFIG_IP_FIB_TRIE_STATS 845 struct trie_use_stats __percpu *stats = t->stats; 846 #endif 847 struct key_vector *tp = node_parent(tn); 848 unsigned long cindex = get_index(tn->key, tp); 849 int max_work = MAX_WORK; 850 851 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 852 tn, inflate_threshold, halve_threshold); 853 854 /* track the tnode via the pointer from the parent instead of 855 * doing it ourselves. This way we can let RCU fully do its 856 * thing without us interfering 857 */ 858 BUG_ON(tn != get_child(tp, cindex)); 859 860 /* Double as long as the resulting node has a number of 861 * nonempty nodes that are above the threshold. 862 */ 863 while (should_inflate(tp, tn) && max_work) { 864 tp = inflate(t, tn); 865 if (!tp) { 866 #ifdef CONFIG_IP_FIB_TRIE_STATS 867 this_cpu_inc(stats->resize_node_skipped); 868 #endif 869 break; 870 } 871 872 max_work--; 873 tn = get_child(tp, cindex); 874 } 875 876 /* update parent in case inflate failed */ 877 tp = node_parent(tn); 878 879 /* Return if at least one inflate is run */ 880 if (max_work != MAX_WORK) 881 return tp; 882 883 /* Halve as long as the number of empty children in this 884 * node is above threshold. 885 */ 886 while (should_halve(tp, tn) && max_work) { 887 tp = halve(t, tn); 888 if (!tp) { 889 #ifdef CONFIG_IP_FIB_TRIE_STATS 890 this_cpu_inc(stats->resize_node_skipped); 891 #endif 892 break; 893 } 894 895 max_work--; 896 tn = get_child(tp, cindex); 897 } 898 899 /* Only one child remains */ 900 if (should_collapse(tn)) 901 return collapse(t, tn); 902 903 /* update parent in case halve failed */ 904 return node_parent(tn); 905 } 906 907 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 908 { 909 unsigned char node_slen = tn->slen; 910 911 while ((node_slen > tn->pos) && (node_slen > slen)) { 912 slen = update_suffix(tn); 913 if (node_slen == slen) 914 break; 915 916 tn = node_parent(tn); 917 node_slen = tn->slen; 918 } 919 } 920 921 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 922 { 923 while (tn->slen < slen) { 924 tn->slen = slen; 925 tn = node_parent(tn); 926 } 927 } 928 929 /* rcu_read_lock needs to be hold by caller from readside */ 930 static struct key_vector *fib_find_node(struct trie *t, 931 struct key_vector **tp, u32 key) 932 { 933 struct key_vector *pn, *n = t->kv; 934 unsigned long index = 0; 935 936 do { 937 pn = n; 938 n = get_child_rcu(n, index); 939 940 if (!n) 941 break; 942 943 index = get_cindex(key, n); 944 945 /* This bit of code is a bit tricky but it combines multiple 946 * checks into a single check. The prefix consists of the 947 * prefix plus zeros for the bits in the cindex. The index 948 * is the difference between the key and this value. From 949 * this we can actually derive several pieces of data. 950 * if (index >= (1ul << bits)) 951 * we have a mismatch in skip bits and failed 952 * else 953 * we know the value is cindex 954 * 955 * This check is safe even if bits == KEYLENGTH due to the 956 * fact that we can only allocate a node with 32 bits if a 957 * long is greater than 32 bits. 958 */ 959 if (index >= (1ul << n->bits)) { 960 n = NULL; 961 break; 962 } 963 964 /* keep searching until we find a perfect match leaf or NULL */ 965 } while (IS_TNODE(n)); 966 967 *tp = pn; 968 969 return n; 970 } 971 972 /* Return the first fib alias matching DSCP with 973 * priority less than or equal to PRIO. 974 * If 'find_first' is set, return the first matching 975 * fib alias, regardless of DSCP and priority. 976 */ 977 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 978 dscp_t dscp, u32 prio, u32 tb_id, 979 bool find_first) 980 { 981 struct fib_alias *fa; 982 983 if (!fah) 984 return NULL; 985 986 hlist_for_each_entry(fa, fah, fa_list) { 987 /* Avoid Sparse warning when using dscp_t in inequalities */ 988 u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp); 989 u8 __dscp = inet_dscp_to_dsfield(dscp); 990 991 if (fa->fa_slen < slen) 992 continue; 993 if (fa->fa_slen != slen) 994 break; 995 if (fa->tb_id > tb_id) 996 continue; 997 if (fa->tb_id != tb_id) 998 break; 999 if (find_first) 1000 return fa; 1001 if (__fa_dscp > __dscp) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static struct fib_alias * 1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1012 { 1013 u8 slen = KEYLENGTH - fri->dst_len; 1014 struct key_vector *l, *tp; 1015 struct fib_table *tb; 1016 struct fib_alias *fa; 1017 struct trie *t; 1018 1019 tb = fib_get_table(net, fri->tb_id); 1020 if (!tb) 1021 return NULL; 1022 1023 t = (struct trie *)tb->tb_data; 1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1025 if (!l) 1026 return NULL; 1027 1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1030 fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi && 1031 fa->fa_type == fri->type) 1032 return fa; 1033 } 1034 1035 return NULL; 1036 } 1037 1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1039 { 1040 u8 fib_notify_on_flag_change; 1041 struct fib_alias *fa_match; 1042 struct sk_buff *skb; 1043 int err; 1044 1045 rcu_read_lock(); 1046 1047 fa_match = fib_find_matching_alias(net, fri); 1048 if (!fa_match) 1049 goto out; 1050 1051 /* These are paired with the WRITE_ONCE() happening in this function. 1052 * The reason is that we are only protected by RCU at this point. 1053 */ 1054 if (READ_ONCE(fa_match->offload) == fri->offload && 1055 READ_ONCE(fa_match->trap) == fri->trap && 1056 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1057 goto out; 1058 1059 WRITE_ONCE(fa_match->offload, fri->offload); 1060 WRITE_ONCE(fa_match->trap, fri->trap); 1061 1062 fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change); 1063 1064 /* 2 means send notifications only if offload_failed was changed. */ 1065 if (fib_notify_on_flag_change == 2 && 1066 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1067 goto out; 1068 1069 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed); 1070 1071 if (!fib_notify_on_flag_change) 1072 goto out; 1073 1074 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC); 1075 if (!skb) { 1076 err = -ENOBUFS; 1077 goto errout; 1078 } 1079 1080 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0); 1081 if (err < 0) { 1082 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */ 1083 WARN_ON(err == -EMSGSIZE); 1084 kfree_skb(skb); 1085 goto errout; 1086 } 1087 1088 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC); 1089 goto out; 1090 1091 errout: 1092 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err); 1093 out: 1094 rcu_read_unlock(); 1095 } 1096 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1097 1098 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1099 { 1100 while (!IS_TRIE(tn)) 1101 tn = resize(t, tn); 1102 } 1103 1104 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1105 struct fib_alias *new, t_key key) 1106 { 1107 struct key_vector *n, *l; 1108 1109 l = leaf_new(key, new); 1110 if (!l) 1111 goto noleaf; 1112 1113 /* retrieve child from parent node */ 1114 n = get_child(tp, get_index(key, tp)); 1115 1116 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1117 * 1118 * Add a new tnode here 1119 * first tnode need some special handling 1120 * leaves us in position for handling as case 3 1121 */ 1122 if (n) { 1123 struct key_vector *tn; 1124 1125 tn = tnode_new(key, __fls(key ^ n->key), 1); 1126 if (!tn) 1127 goto notnode; 1128 1129 /* initialize routes out of node */ 1130 NODE_INIT_PARENT(tn, tp); 1131 put_child(tn, get_index(key, tn) ^ 1, n); 1132 1133 /* start adding routes into the node */ 1134 put_child_root(tp, key, tn); 1135 node_set_parent(n, tn); 1136 1137 /* parent now has a NULL spot where the leaf can go */ 1138 tp = tn; 1139 } 1140 1141 /* Case 3: n is NULL, and will just insert a new leaf */ 1142 node_push_suffix(tp, new->fa_slen); 1143 NODE_INIT_PARENT(l, tp); 1144 put_child_root(tp, key, l); 1145 trie_rebalance(t, tp); 1146 1147 return 0; 1148 notnode: 1149 node_free(l); 1150 noleaf: 1151 return -ENOMEM; 1152 } 1153 1154 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1155 struct key_vector *l, struct fib_alias *new, 1156 struct fib_alias *fa, t_key key) 1157 { 1158 if (!l) 1159 return fib_insert_node(t, tp, new, key); 1160 1161 if (fa) { 1162 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1163 } else { 1164 struct fib_alias *last; 1165 1166 hlist_for_each_entry(last, &l->leaf, fa_list) { 1167 if (new->fa_slen < last->fa_slen) 1168 break; 1169 if ((new->fa_slen == last->fa_slen) && 1170 (new->tb_id > last->tb_id)) 1171 break; 1172 fa = last; 1173 } 1174 1175 if (fa) 1176 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1177 else 1178 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1179 } 1180 1181 /* if we added to the tail node then we need to update slen */ 1182 if (l->slen < new->fa_slen) { 1183 l->slen = new->fa_slen; 1184 node_push_suffix(tp, new->fa_slen); 1185 } 1186 1187 return 0; 1188 } 1189 1190 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1191 { 1192 if (plen > KEYLENGTH) { 1193 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1194 return false; 1195 } 1196 1197 if ((plen < KEYLENGTH) && (key << plen)) { 1198 NL_SET_ERR_MSG(extack, 1199 "Invalid prefix for given prefix length"); 1200 return false; 1201 } 1202 1203 return true; 1204 } 1205 1206 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1207 struct key_vector *l, struct fib_alias *old); 1208 1209 /* Caller must hold RTNL. */ 1210 int fib_table_insert(struct net *net, struct fib_table *tb, 1211 struct fib_config *cfg, struct netlink_ext_ack *extack) 1212 { 1213 struct trie *t = (struct trie *)tb->tb_data; 1214 struct fib_alias *fa, *new_fa; 1215 struct key_vector *l, *tp; 1216 u16 nlflags = NLM_F_EXCL; 1217 struct fib_info *fi; 1218 u8 plen = cfg->fc_dst_len; 1219 u8 slen = KEYLENGTH - plen; 1220 dscp_t dscp; 1221 u32 key; 1222 int err; 1223 1224 key = ntohl(cfg->fc_dst); 1225 1226 if (!fib_valid_key_len(key, plen, extack)) 1227 return -EINVAL; 1228 1229 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1230 1231 fi = fib_create_info(cfg, extack); 1232 if (IS_ERR(fi)) { 1233 err = PTR_ERR(fi); 1234 goto err; 1235 } 1236 1237 dscp = cfg->fc_dscp; 1238 l = fib_find_node(t, &tp, key); 1239 fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority, 1240 tb->tb_id, false) : NULL; 1241 1242 /* Now fa, if non-NULL, points to the first fib alias 1243 * with the same keys [prefix,dscp,priority], if such key already 1244 * exists or to the node before which we will insert new one. 1245 * 1246 * If fa is NULL, we will need to allocate a new one and 1247 * insert to the tail of the section matching the suffix length 1248 * of the new alias. 1249 */ 1250 1251 if (fa && fa->fa_dscp == dscp && 1252 fa->fa_info->fib_priority == fi->fib_priority) { 1253 struct fib_alias *fa_first, *fa_match; 1254 1255 err = -EEXIST; 1256 if (cfg->fc_nlflags & NLM_F_EXCL) 1257 goto out; 1258 1259 nlflags &= ~NLM_F_EXCL; 1260 1261 /* We have 2 goals: 1262 * 1. Find exact match for type, scope, fib_info to avoid 1263 * duplicate routes 1264 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1265 */ 1266 fa_match = NULL; 1267 fa_first = fa; 1268 hlist_for_each_entry_from(fa, fa_list) { 1269 if ((fa->fa_slen != slen) || 1270 (fa->tb_id != tb->tb_id) || 1271 (fa->fa_dscp != dscp)) 1272 break; 1273 if (fa->fa_info->fib_priority != fi->fib_priority) 1274 break; 1275 if (fa->fa_type == cfg->fc_type && 1276 fa->fa_info == fi) { 1277 fa_match = fa; 1278 break; 1279 } 1280 } 1281 1282 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1283 struct fib_info *fi_drop; 1284 u8 state; 1285 1286 nlflags |= NLM_F_REPLACE; 1287 fa = fa_first; 1288 if (fa_match) { 1289 if (fa == fa_match) 1290 err = 0; 1291 goto out; 1292 } 1293 err = -ENOBUFS; 1294 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1295 if (!new_fa) 1296 goto out; 1297 1298 fi_drop = fa->fa_info; 1299 new_fa->fa_dscp = fa->fa_dscp; 1300 new_fa->fa_info = fi; 1301 new_fa->fa_type = cfg->fc_type; 1302 state = fa->fa_state; 1303 new_fa->fa_state = state & ~FA_S_ACCESSED; 1304 new_fa->fa_slen = fa->fa_slen; 1305 new_fa->tb_id = tb->tb_id; 1306 new_fa->fa_default = -1; 1307 new_fa->offload = 0; 1308 new_fa->trap = 0; 1309 new_fa->offload_failed = 0; 1310 1311 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1312 1313 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1314 tb->tb_id, true) == new_fa) { 1315 enum fib_event_type fib_event; 1316 1317 fib_event = FIB_EVENT_ENTRY_REPLACE; 1318 err = call_fib_entry_notifiers(net, fib_event, 1319 key, plen, 1320 new_fa, extack); 1321 if (err) { 1322 hlist_replace_rcu(&new_fa->fa_list, 1323 &fa->fa_list); 1324 goto out_free_new_fa; 1325 } 1326 } 1327 1328 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1329 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1330 1331 alias_free_mem_rcu(fa); 1332 1333 fib_release_info(fi_drop); 1334 if (state & FA_S_ACCESSED) 1335 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1336 1337 goto succeeded; 1338 } 1339 /* Error if we find a perfect match which 1340 * uses the same scope, type, and nexthop 1341 * information. 1342 */ 1343 if (fa_match) 1344 goto out; 1345 1346 if (cfg->fc_nlflags & NLM_F_APPEND) 1347 nlflags |= NLM_F_APPEND; 1348 else 1349 fa = fa_first; 1350 } 1351 err = -ENOENT; 1352 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1353 goto out; 1354 1355 nlflags |= NLM_F_CREATE; 1356 err = -ENOBUFS; 1357 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1358 if (!new_fa) 1359 goto out; 1360 1361 new_fa->fa_info = fi; 1362 new_fa->fa_dscp = dscp; 1363 new_fa->fa_type = cfg->fc_type; 1364 new_fa->fa_state = 0; 1365 new_fa->fa_slen = slen; 1366 new_fa->tb_id = tb->tb_id; 1367 new_fa->fa_default = -1; 1368 new_fa->offload = 0; 1369 new_fa->trap = 0; 1370 new_fa->offload_failed = 0; 1371 1372 /* Insert new entry to the list. */ 1373 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1374 if (err) 1375 goto out_free_new_fa; 1376 1377 /* The alias was already inserted, so the node must exist. */ 1378 l = l ? l : fib_find_node(t, &tp, key); 1379 if (WARN_ON_ONCE(!l)) { 1380 err = -ENOENT; 1381 goto out_free_new_fa; 1382 } 1383 1384 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1385 new_fa) { 1386 enum fib_event_type fib_event; 1387 1388 fib_event = FIB_EVENT_ENTRY_REPLACE; 1389 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1390 new_fa, extack); 1391 if (err) 1392 goto out_remove_new_fa; 1393 } 1394 1395 if (!plen) 1396 tb->tb_num_default++; 1397 1398 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1399 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1400 &cfg->fc_nlinfo, nlflags); 1401 succeeded: 1402 return 0; 1403 1404 out_remove_new_fa: 1405 fib_remove_alias(t, tp, l, new_fa); 1406 out_free_new_fa: 1407 kmem_cache_free(fn_alias_kmem, new_fa); 1408 out: 1409 fib_release_info(fi); 1410 err: 1411 return err; 1412 } 1413 1414 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1415 { 1416 t_key prefix = n->key; 1417 1418 return (key ^ prefix) & (prefix | -prefix); 1419 } 1420 1421 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, 1422 const struct flowi4 *flp) 1423 { 1424 if (nhc->nhc_flags & RTNH_F_DEAD) 1425 return false; 1426 1427 if (ip_ignore_linkdown(nhc->nhc_dev) && 1428 nhc->nhc_flags & RTNH_F_LINKDOWN && 1429 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1430 return false; 1431 1432 if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif) 1433 return false; 1434 1435 return true; 1436 } 1437 1438 /* should be called with rcu_read_lock */ 1439 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1440 struct fib_result *res, int fib_flags) 1441 { 1442 struct trie *t = (struct trie *) tb->tb_data; 1443 #ifdef CONFIG_IP_FIB_TRIE_STATS 1444 struct trie_use_stats __percpu *stats = t->stats; 1445 #endif 1446 const t_key key = ntohl(flp->daddr); 1447 struct key_vector *n, *pn; 1448 struct fib_alias *fa; 1449 unsigned long index; 1450 t_key cindex; 1451 1452 pn = t->kv; 1453 cindex = 0; 1454 1455 n = get_child_rcu(pn, cindex); 1456 if (!n) { 1457 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1458 return -EAGAIN; 1459 } 1460 1461 #ifdef CONFIG_IP_FIB_TRIE_STATS 1462 this_cpu_inc(stats->gets); 1463 #endif 1464 1465 /* Step 1: Travel to the longest prefix match in the trie */ 1466 for (;;) { 1467 index = get_cindex(key, n); 1468 1469 /* This bit of code is a bit tricky but it combines multiple 1470 * checks into a single check. The prefix consists of the 1471 * prefix plus zeros for the "bits" in the prefix. The index 1472 * is the difference between the key and this value. From 1473 * this we can actually derive several pieces of data. 1474 * if (index >= (1ul << bits)) 1475 * we have a mismatch in skip bits and failed 1476 * else 1477 * we know the value is cindex 1478 * 1479 * This check is safe even if bits == KEYLENGTH due to the 1480 * fact that we can only allocate a node with 32 bits if a 1481 * long is greater than 32 bits. 1482 */ 1483 if (index >= (1ul << n->bits)) 1484 break; 1485 1486 /* we have found a leaf. Prefixes have already been compared */ 1487 if (IS_LEAF(n)) 1488 goto found; 1489 1490 /* only record pn and cindex if we are going to be chopping 1491 * bits later. Otherwise we are just wasting cycles. 1492 */ 1493 if (n->slen > n->pos) { 1494 pn = n; 1495 cindex = index; 1496 } 1497 1498 n = get_child_rcu(n, index); 1499 if (unlikely(!n)) 1500 goto backtrace; 1501 } 1502 1503 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1504 for (;;) { 1505 /* record the pointer where our next node pointer is stored */ 1506 struct key_vector __rcu **cptr = n->tnode; 1507 1508 /* This test verifies that none of the bits that differ 1509 * between the key and the prefix exist in the region of 1510 * the lsb and higher in the prefix. 1511 */ 1512 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1513 goto backtrace; 1514 1515 /* exit out and process leaf */ 1516 if (unlikely(IS_LEAF(n))) 1517 break; 1518 1519 /* Don't bother recording parent info. Since we are in 1520 * prefix match mode we will have to come back to wherever 1521 * we started this traversal anyway 1522 */ 1523 1524 while ((n = rcu_dereference(*cptr)) == NULL) { 1525 backtrace: 1526 #ifdef CONFIG_IP_FIB_TRIE_STATS 1527 if (!n) 1528 this_cpu_inc(stats->null_node_hit); 1529 #endif 1530 /* If we are at cindex 0 there are no more bits for 1531 * us to strip at this level so we must ascend back 1532 * up one level to see if there are any more bits to 1533 * be stripped there. 1534 */ 1535 while (!cindex) { 1536 t_key pkey = pn->key; 1537 1538 /* If we don't have a parent then there is 1539 * nothing for us to do as we do not have any 1540 * further nodes to parse. 1541 */ 1542 if (IS_TRIE(pn)) { 1543 trace_fib_table_lookup(tb->tb_id, flp, 1544 NULL, -EAGAIN); 1545 return -EAGAIN; 1546 } 1547 #ifdef CONFIG_IP_FIB_TRIE_STATS 1548 this_cpu_inc(stats->backtrack); 1549 #endif 1550 /* Get Child's index */ 1551 pn = node_parent_rcu(pn); 1552 cindex = get_index(pkey, pn); 1553 } 1554 1555 /* strip the least significant bit from the cindex */ 1556 cindex &= cindex - 1; 1557 1558 /* grab pointer for next child node */ 1559 cptr = &pn->tnode[cindex]; 1560 } 1561 } 1562 1563 found: 1564 /* this line carries forward the xor from earlier in the function */ 1565 index = key ^ n->key; 1566 1567 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1568 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1569 struct fib_info *fi = fa->fa_info; 1570 struct fib_nh_common *nhc; 1571 int nhsel, err; 1572 1573 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1574 if (index >= (1ul << fa->fa_slen)) 1575 continue; 1576 } 1577 if (fa->fa_dscp && !fib_dscp_masked_match(fa->fa_dscp, flp)) 1578 continue; 1579 /* Paired with WRITE_ONCE() in fib_release_info() */ 1580 if (READ_ONCE(fi->fib_dead)) 1581 continue; 1582 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1583 continue; 1584 fib_alias_accessed(fa); 1585 err = fib_props[fa->fa_type].error; 1586 if (unlikely(err < 0)) { 1587 out_reject: 1588 #ifdef CONFIG_IP_FIB_TRIE_STATS 1589 this_cpu_inc(stats->semantic_match_passed); 1590 #endif 1591 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1592 return err; 1593 } 1594 if (fi->fib_flags & RTNH_F_DEAD) 1595 continue; 1596 1597 if (unlikely(fi->nh)) { 1598 if (nexthop_is_blackhole(fi->nh)) { 1599 err = fib_props[RTN_BLACKHOLE].error; 1600 goto out_reject; 1601 } 1602 1603 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, 1604 &nhsel); 1605 if (nhc) 1606 goto set_result; 1607 goto miss; 1608 } 1609 1610 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1611 nhc = fib_info_nhc(fi, nhsel); 1612 1613 if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) 1614 continue; 1615 set_result: 1616 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1617 refcount_inc(&fi->fib_clntref); 1618 1619 res->prefix = htonl(n->key); 1620 res->prefixlen = KEYLENGTH - fa->fa_slen; 1621 res->nh_sel = nhsel; 1622 res->nhc = nhc; 1623 res->type = fa->fa_type; 1624 res->scope = fi->fib_scope; 1625 res->dscp = fa->fa_dscp; 1626 res->fi = fi; 1627 res->table = tb; 1628 res->fa_head = &n->leaf; 1629 #ifdef CONFIG_IP_FIB_TRIE_STATS 1630 this_cpu_inc(stats->semantic_match_passed); 1631 #endif 1632 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1633 1634 return err; 1635 } 1636 } 1637 miss: 1638 #ifdef CONFIG_IP_FIB_TRIE_STATS 1639 this_cpu_inc(stats->semantic_match_miss); 1640 #endif 1641 goto backtrace; 1642 } 1643 EXPORT_SYMBOL_GPL(fib_table_lookup); 1644 1645 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1646 struct key_vector *l, struct fib_alias *old) 1647 { 1648 /* record the location of the previous list_info entry */ 1649 struct hlist_node **pprev = old->fa_list.pprev; 1650 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1651 1652 /* remove the fib_alias from the list */ 1653 hlist_del_rcu(&old->fa_list); 1654 1655 /* if we emptied the list this leaf will be freed and we can sort 1656 * out parent suffix lengths as a part of trie_rebalance 1657 */ 1658 if (hlist_empty(&l->leaf)) { 1659 if (tp->slen == l->slen) 1660 node_pull_suffix(tp, tp->pos); 1661 put_child_root(tp, l->key, NULL); 1662 node_free(l); 1663 trie_rebalance(t, tp); 1664 return; 1665 } 1666 1667 /* only access fa if it is pointing at the last valid hlist_node */ 1668 if (*pprev) 1669 return; 1670 1671 /* update the trie with the latest suffix length */ 1672 l->slen = fa->fa_slen; 1673 node_pull_suffix(tp, fa->fa_slen); 1674 } 1675 1676 static void fib_notify_alias_delete(struct net *net, u32 key, 1677 struct hlist_head *fah, 1678 struct fib_alias *fa_to_delete, 1679 struct netlink_ext_ack *extack) 1680 { 1681 struct fib_alias *fa_next, *fa_to_notify; 1682 u32 tb_id = fa_to_delete->tb_id; 1683 u8 slen = fa_to_delete->fa_slen; 1684 enum fib_event_type fib_event; 1685 1686 /* Do not notify if we do not care about the route. */ 1687 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1688 return; 1689 1690 /* Determine if the route should be replaced by the next route in the 1691 * list. 1692 */ 1693 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1694 struct fib_alias, fa_list); 1695 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1696 fib_event = FIB_EVENT_ENTRY_REPLACE; 1697 fa_to_notify = fa_next; 1698 } else { 1699 fib_event = FIB_EVENT_ENTRY_DEL; 1700 fa_to_notify = fa_to_delete; 1701 } 1702 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1703 fa_to_notify, extack); 1704 } 1705 1706 /* Caller must hold RTNL. */ 1707 int fib_table_delete(struct net *net, struct fib_table *tb, 1708 struct fib_config *cfg, struct netlink_ext_ack *extack) 1709 { 1710 struct trie *t = (struct trie *) tb->tb_data; 1711 struct fib_alias *fa, *fa_to_delete; 1712 struct key_vector *l, *tp; 1713 u8 plen = cfg->fc_dst_len; 1714 u8 slen = KEYLENGTH - plen; 1715 dscp_t dscp; 1716 u32 key; 1717 1718 key = ntohl(cfg->fc_dst); 1719 1720 if (!fib_valid_key_len(key, plen, extack)) 1721 return -EINVAL; 1722 1723 l = fib_find_node(t, &tp, key); 1724 if (!l) 1725 return -ESRCH; 1726 1727 dscp = cfg->fc_dscp; 1728 fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false); 1729 if (!fa) 1730 return -ESRCH; 1731 1732 pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen, 1733 inet_dscp_to_dsfield(dscp), t); 1734 1735 fa_to_delete = NULL; 1736 hlist_for_each_entry_from(fa, fa_list) { 1737 struct fib_info *fi = fa->fa_info; 1738 1739 if ((fa->fa_slen != slen) || 1740 (fa->tb_id != tb->tb_id) || 1741 (fa->fa_dscp != dscp)) 1742 break; 1743 1744 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1745 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1746 fa->fa_info->fib_scope == cfg->fc_scope) && 1747 (!cfg->fc_prefsrc || 1748 fi->fib_prefsrc == cfg->fc_prefsrc) && 1749 (!cfg->fc_protocol || 1750 fi->fib_protocol == cfg->fc_protocol) && 1751 fib_nh_match(net, cfg, fi, extack) == 0 && 1752 fib_metrics_match(cfg, fi)) { 1753 fa_to_delete = fa; 1754 break; 1755 } 1756 } 1757 1758 if (!fa_to_delete) 1759 return -ESRCH; 1760 1761 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1762 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1763 &cfg->fc_nlinfo, 0); 1764 1765 if (!plen) 1766 tb->tb_num_default--; 1767 1768 fib_remove_alias(t, tp, l, fa_to_delete); 1769 1770 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1771 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1772 1773 fib_release_info(fa_to_delete->fa_info); 1774 alias_free_mem_rcu(fa_to_delete); 1775 return 0; 1776 } 1777 1778 /* Scan for the next leaf starting at the provided key value */ 1779 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1780 { 1781 struct key_vector *pn, *n = *tn; 1782 unsigned long cindex; 1783 1784 /* this loop is meant to try and find the key in the trie */ 1785 do { 1786 /* record parent and next child index */ 1787 pn = n; 1788 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1789 1790 if (cindex >> pn->bits) 1791 break; 1792 1793 /* descend into the next child */ 1794 n = get_child_rcu(pn, cindex++); 1795 if (!n) 1796 break; 1797 1798 /* guarantee forward progress on the keys */ 1799 if (IS_LEAF(n) && (n->key >= key)) 1800 goto found; 1801 } while (IS_TNODE(n)); 1802 1803 /* this loop will search for the next leaf with a greater key */ 1804 while (!IS_TRIE(pn)) { 1805 /* if we exhausted the parent node we will need to climb */ 1806 if (cindex >= (1ul << pn->bits)) { 1807 t_key pkey = pn->key; 1808 1809 pn = node_parent_rcu(pn); 1810 cindex = get_index(pkey, pn) + 1; 1811 continue; 1812 } 1813 1814 /* grab the next available node */ 1815 n = get_child_rcu(pn, cindex++); 1816 if (!n) 1817 continue; 1818 1819 /* no need to compare keys since we bumped the index */ 1820 if (IS_LEAF(n)) 1821 goto found; 1822 1823 /* Rescan start scanning in new node */ 1824 pn = n; 1825 cindex = 0; 1826 } 1827 1828 *tn = pn; 1829 return NULL; /* Root of trie */ 1830 found: 1831 /* if we are at the limit for keys just return NULL for the tnode */ 1832 *tn = pn; 1833 return n; 1834 } 1835 1836 static void fib_trie_free(struct fib_table *tb) 1837 { 1838 struct trie *t = (struct trie *)tb->tb_data; 1839 struct key_vector *pn = t->kv; 1840 unsigned long cindex = 1; 1841 struct hlist_node *tmp; 1842 struct fib_alias *fa; 1843 1844 /* walk trie in reverse order and free everything */ 1845 for (;;) { 1846 struct key_vector *n; 1847 1848 if (!(cindex--)) { 1849 t_key pkey = pn->key; 1850 1851 if (IS_TRIE(pn)) 1852 break; 1853 1854 n = pn; 1855 pn = node_parent(pn); 1856 1857 /* drop emptied tnode */ 1858 put_child_root(pn, n->key, NULL); 1859 node_free(n); 1860 1861 cindex = get_index(pkey, pn); 1862 1863 continue; 1864 } 1865 1866 /* grab the next available node */ 1867 n = get_child(pn, cindex); 1868 if (!n) 1869 continue; 1870 1871 if (IS_TNODE(n)) { 1872 /* record pn and cindex for leaf walking */ 1873 pn = n; 1874 cindex = 1ul << n->bits; 1875 1876 continue; 1877 } 1878 1879 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1880 hlist_del_rcu(&fa->fa_list); 1881 alias_free_mem_rcu(fa); 1882 } 1883 1884 put_child_root(pn, n->key, NULL); 1885 node_free(n); 1886 } 1887 1888 #ifdef CONFIG_IP_FIB_TRIE_STATS 1889 free_percpu(t->stats); 1890 #endif 1891 kfree(tb); 1892 } 1893 1894 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1895 { 1896 struct trie *ot = (struct trie *)oldtb->tb_data; 1897 struct key_vector *l, *tp = ot->kv; 1898 struct fib_table *local_tb; 1899 struct fib_alias *fa; 1900 struct trie *lt; 1901 t_key key = 0; 1902 1903 if (oldtb->tb_data == oldtb->__data) 1904 return oldtb; 1905 1906 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1907 if (!local_tb) 1908 return NULL; 1909 1910 lt = (struct trie *)local_tb->tb_data; 1911 1912 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1913 struct key_vector *local_l = NULL, *local_tp; 1914 1915 hlist_for_each_entry(fa, &l->leaf, fa_list) { 1916 struct fib_alias *new_fa; 1917 1918 if (local_tb->tb_id != fa->tb_id) 1919 continue; 1920 1921 /* clone fa for new local table */ 1922 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1923 if (!new_fa) 1924 goto out; 1925 1926 memcpy(new_fa, fa, sizeof(*fa)); 1927 1928 /* insert clone into table */ 1929 if (!local_l) 1930 local_l = fib_find_node(lt, &local_tp, l->key); 1931 1932 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1933 NULL, l->key)) { 1934 kmem_cache_free(fn_alias_kmem, new_fa); 1935 goto out; 1936 } 1937 } 1938 1939 /* stop loop if key wrapped back to 0 */ 1940 key = l->key + 1; 1941 if (key < l->key) 1942 break; 1943 } 1944 1945 return local_tb; 1946 out: 1947 fib_trie_free(local_tb); 1948 1949 return NULL; 1950 } 1951 1952 /* Caller must hold RTNL */ 1953 void fib_table_flush_external(struct fib_table *tb) 1954 { 1955 struct trie *t = (struct trie *)tb->tb_data; 1956 struct key_vector *pn = t->kv; 1957 unsigned long cindex = 1; 1958 struct hlist_node *tmp; 1959 struct fib_alias *fa; 1960 1961 /* walk trie in reverse order */ 1962 for (;;) { 1963 unsigned char slen = 0; 1964 struct key_vector *n; 1965 1966 if (!(cindex--)) { 1967 t_key pkey = pn->key; 1968 1969 /* cannot resize the trie vector */ 1970 if (IS_TRIE(pn)) 1971 break; 1972 1973 /* update the suffix to address pulled leaves */ 1974 if (pn->slen > pn->pos) 1975 update_suffix(pn); 1976 1977 /* resize completed node */ 1978 pn = resize(t, pn); 1979 cindex = get_index(pkey, pn); 1980 1981 continue; 1982 } 1983 1984 /* grab the next available node */ 1985 n = get_child(pn, cindex); 1986 if (!n) 1987 continue; 1988 1989 if (IS_TNODE(n)) { 1990 /* record pn and cindex for leaf walking */ 1991 pn = n; 1992 cindex = 1ul << n->bits; 1993 1994 continue; 1995 } 1996 1997 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1998 /* if alias was cloned to local then we just 1999 * need to remove the local copy from main 2000 */ 2001 if (tb->tb_id != fa->tb_id) { 2002 hlist_del_rcu(&fa->fa_list); 2003 alias_free_mem_rcu(fa); 2004 continue; 2005 } 2006 2007 /* record local slen */ 2008 slen = fa->fa_slen; 2009 } 2010 2011 /* update leaf slen */ 2012 n->slen = slen; 2013 2014 if (hlist_empty(&n->leaf)) { 2015 put_child_root(pn, n->key, NULL); 2016 node_free(n); 2017 } 2018 } 2019 } 2020 2021 /* Caller must hold RTNL. */ 2022 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 2023 { 2024 struct trie *t = (struct trie *)tb->tb_data; 2025 struct nl_info info = { .nl_net = net }; 2026 struct key_vector *pn = t->kv; 2027 unsigned long cindex = 1; 2028 struct hlist_node *tmp; 2029 struct fib_alias *fa; 2030 int found = 0; 2031 2032 /* walk trie in reverse order */ 2033 for (;;) { 2034 unsigned char slen = 0; 2035 struct key_vector *n; 2036 2037 if (!(cindex--)) { 2038 t_key pkey = pn->key; 2039 2040 /* cannot resize the trie vector */ 2041 if (IS_TRIE(pn)) 2042 break; 2043 2044 /* update the suffix to address pulled leaves */ 2045 if (pn->slen > pn->pos) 2046 update_suffix(pn); 2047 2048 /* resize completed node */ 2049 pn = resize(t, pn); 2050 cindex = get_index(pkey, pn); 2051 2052 continue; 2053 } 2054 2055 /* grab the next available node */ 2056 n = get_child(pn, cindex); 2057 if (!n) 2058 continue; 2059 2060 if (IS_TNODE(n)) { 2061 /* record pn and cindex for leaf walking */ 2062 pn = n; 2063 cindex = 1ul << n->bits; 2064 2065 continue; 2066 } 2067 2068 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2069 struct fib_info *fi = fa->fa_info; 2070 2071 if (!fi || tb->tb_id != fa->tb_id || 2072 (!(fi->fib_flags & RTNH_F_DEAD) && 2073 !fib_props[fa->fa_type].error)) { 2074 slen = fa->fa_slen; 2075 continue; 2076 } 2077 2078 /* Do not flush error routes if network namespace is 2079 * not being dismantled 2080 */ 2081 if (!flush_all && fib_props[fa->fa_type].error) { 2082 slen = fa->fa_slen; 2083 continue; 2084 } 2085 2086 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2087 NULL); 2088 if (fi->pfsrc_removed) 2089 rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa, 2090 KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0); 2091 hlist_del_rcu(&fa->fa_list); 2092 fib_release_info(fa->fa_info); 2093 alias_free_mem_rcu(fa); 2094 found++; 2095 } 2096 2097 /* update leaf slen */ 2098 n->slen = slen; 2099 2100 if (hlist_empty(&n->leaf)) { 2101 put_child_root(pn, n->key, NULL); 2102 node_free(n); 2103 } 2104 } 2105 2106 pr_debug("trie_flush found=%d\n", found); 2107 return found; 2108 } 2109 2110 /* derived from fib_trie_free */ 2111 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2112 struct nl_info *info) 2113 { 2114 struct trie *t = (struct trie *)tb->tb_data; 2115 struct key_vector *pn = t->kv; 2116 unsigned long cindex = 1; 2117 struct fib_alias *fa; 2118 2119 for (;;) { 2120 struct key_vector *n; 2121 2122 if (!(cindex--)) { 2123 t_key pkey = pn->key; 2124 2125 if (IS_TRIE(pn)) 2126 break; 2127 2128 pn = node_parent(pn); 2129 cindex = get_index(pkey, pn); 2130 continue; 2131 } 2132 2133 /* grab the next available node */ 2134 n = get_child(pn, cindex); 2135 if (!n) 2136 continue; 2137 2138 if (IS_TNODE(n)) { 2139 /* record pn and cindex for leaf walking */ 2140 pn = n; 2141 cindex = 1ul << n->bits; 2142 2143 continue; 2144 } 2145 2146 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2147 struct fib_info *fi = fa->fa_info; 2148 2149 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2150 continue; 2151 2152 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2153 KEYLENGTH - fa->fa_slen, tb->tb_id, 2154 info, NLM_F_REPLACE); 2155 } 2156 } 2157 } 2158 2159 void fib_info_notify_update(struct net *net, struct nl_info *info) 2160 { 2161 unsigned int h; 2162 2163 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2164 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2165 struct fib_table *tb; 2166 2167 hlist_for_each_entry_rcu(tb, head, tb_hlist, 2168 lockdep_rtnl_is_held()) 2169 __fib_info_notify_update(net, tb, info); 2170 } 2171 } 2172 2173 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2174 struct notifier_block *nb, 2175 struct netlink_ext_ack *extack) 2176 { 2177 struct fib_alias *fa; 2178 int last_slen = -1; 2179 int err; 2180 2181 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2182 struct fib_info *fi = fa->fa_info; 2183 2184 if (!fi) 2185 continue; 2186 2187 /* local and main table can share the same trie, 2188 * so don't notify twice for the same entry. 2189 */ 2190 if (tb->tb_id != fa->tb_id) 2191 continue; 2192 2193 if (fa->fa_slen == last_slen) 2194 continue; 2195 2196 last_slen = fa->fa_slen; 2197 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2198 l->key, KEYLENGTH - fa->fa_slen, 2199 fa, extack); 2200 if (err) 2201 return err; 2202 } 2203 return 0; 2204 } 2205 2206 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2207 struct netlink_ext_ack *extack) 2208 { 2209 struct trie *t = (struct trie *)tb->tb_data; 2210 struct key_vector *l, *tp = t->kv; 2211 t_key key = 0; 2212 int err; 2213 2214 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2215 err = fib_leaf_notify(l, tb, nb, extack); 2216 if (err) 2217 return err; 2218 2219 key = l->key + 1; 2220 /* stop in case of wrap around */ 2221 if (key < l->key) 2222 break; 2223 } 2224 return 0; 2225 } 2226 2227 int fib_notify(struct net *net, struct notifier_block *nb, 2228 struct netlink_ext_ack *extack) 2229 { 2230 unsigned int h; 2231 int err; 2232 2233 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2234 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2235 struct fib_table *tb; 2236 2237 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2238 err = fib_table_notify(tb, nb, extack); 2239 if (err) 2240 return err; 2241 } 2242 } 2243 return 0; 2244 } 2245 2246 static void __trie_free_rcu(struct rcu_head *head) 2247 { 2248 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2249 #ifdef CONFIG_IP_FIB_TRIE_STATS 2250 struct trie *t = (struct trie *)tb->tb_data; 2251 2252 if (tb->tb_data == tb->__data) 2253 free_percpu(t->stats); 2254 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2255 kfree(tb); 2256 } 2257 2258 void fib_free_table(struct fib_table *tb) 2259 { 2260 call_rcu(&tb->rcu, __trie_free_rcu); 2261 } 2262 2263 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2264 struct sk_buff *skb, struct netlink_callback *cb, 2265 struct fib_dump_filter *filter) 2266 { 2267 unsigned int flags = NLM_F_MULTI; 2268 __be32 xkey = htonl(l->key); 2269 int i, s_i, i_fa, s_fa, err; 2270 struct fib_alias *fa; 2271 2272 if (filter->filter_set || 2273 !filter->dump_exceptions || !filter->dump_routes) 2274 flags |= NLM_F_DUMP_FILTERED; 2275 2276 s_i = cb->args[4]; 2277 s_fa = cb->args[5]; 2278 i = 0; 2279 2280 /* rcu_read_lock is hold by caller */ 2281 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2282 struct fib_info *fi = fa->fa_info; 2283 2284 if (i < s_i) 2285 goto next; 2286 2287 i_fa = 0; 2288 2289 if (tb->tb_id != fa->tb_id) 2290 goto next; 2291 2292 if (filter->filter_set) { 2293 if (filter->rt_type && fa->fa_type != filter->rt_type) 2294 goto next; 2295 2296 if ((filter->protocol && 2297 fi->fib_protocol != filter->protocol)) 2298 goto next; 2299 2300 if (filter->dev && 2301 !fib_info_nh_uses_dev(fi, filter->dev)) 2302 goto next; 2303 } 2304 2305 if (filter->dump_routes) { 2306 if (!s_fa) { 2307 struct fib_rt_info fri; 2308 2309 fri.fi = fi; 2310 fri.tb_id = tb->tb_id; 2311 fri.dst = xkey; 2312 fri.dst_len = KEYLENGTH - fa->fa_slen; 2313 fri.dscp = fa->fa_dscp; 2314 fri.type = fa->fa_type; 2315 fri.offload = READ_ONCE(fa->offload); 2316 fri.trap = READ_ONCE(fa->trap); 2317 fri.offload_failed = READ_ONCE(fa->offload_failed); 2318 err = fib_dump_info(skb, 2319 NETLINK_CB(cb->skb).portid, 2320 cb->nlh->nlmsg_seq, 2321 RTM_NEWROUTE, &fri, flags); 2322 if (err < 0) 2323 goto stop; 2324 } 2325 2326 i_fa++; 2327 } 2328 2329 if (filter->dump_exceptions) { 2330 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2331 &i_fa, s_fa, flags); 2332 if (err < 0) 2333 goto stop; 2334 } 2335 2336 next: 2337 i++; 2338 } 2339 2340 cb->args[4] = i; 2341 return skb->len; 2342 2343 stop: 2344 cb->args[4] = i; 2345 cb->args[5] = i_fa; 2346 return err; 2347 } 2348 2349 /* rcu_read_lock needs to be hold by caller from readside */ 2350 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2351 struct netlink_callback *cb, struct fib_dump_filter *filter) 2352 { 2353 struct trie *t = (struct trie *)tb->tb_data; 2354 struct key_vector *l, *tp = t->kv; 2355 /* Dump starting at last key. 2356 * Note: 0.0.0.0/0 (ie default) is first key. 2357 */ 2358 int count = cb->args[2]; 2359 t_key key = cb->args[3]; 2360 2361 /* First time here, count and key are both always 0. Count > 0 2362 * and key == 0 means the dump has wrapped around and we are done. 2363 */ 2364 if (count && !key) 2365 return 0; 2366 2367 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2368 int err; 2369 2370 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2371 if (err < 0) { 2372 cb->args[3] = key; 2373 cb->args[2] = count; 2374 return err; 2375 } 2376 2377 ++count; 2378 key = l->key + 1; 2379 2380 memset(&cb->args[4], 0, 2381 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2382 2383 /* stop loop if key wrapped back to 0 */ 2384 if (key < l->key) 2385 break; 2386 } 2387 2388 cb->args[3] = key; 2389 cb->args[2] = count; 2390 2391 return 0; 2392 } 2393 2394 void __init fib_trie_init(void) 2395 { 2396 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2397 sizeof(struct fib_alias), 2398 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2399 2400 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2401 LEAF_SIZE, 2402 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2403 } 2404 2405 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2406 { 2407 struct fib_table *tb; 2408 struct trie *t; 2409 size_t sz = sizeof(*tb); 2410 2411 if (!alias) 2412 sz += sizeof(struct trie); 2413 2414 tb = kzalloc(sz, GFP_KERNEL); 2415 if (!tb) 2416 return NULL; 2417 2418 tb->tb_id = id; 2419 tb->tb_num_default = 0; 2420 tb->tb_data = (alias ? alias->__data : tb->__data); 2421 2422 if (alias) 2423 return tb; 2424 2425 t = (struct trie *) tb->tb_data; 2426 t->kv[0].pos = KEYLENGTH; 2427 t->kv[0].slen = KEYLENGTH; 2428 #ifdef CONFIG_IP_FIB_TRIE_STATS 2429 t->stats = alloc_percpu(struct trie_use_stats); 2430 if (!t->stats) { 2431 kfree(tb); 2432 tb = NULL; 2433 } 2434 #endif 2435 2436 return tb; 2437 } 2438 2439 #ifdef CONFIG_PROC_FS 2440 /* Depth first Trie walk iterator */ 2441 struct fib_trie_iter { 2442 struct seq_net_private p; 2443 struct fib_table *tb; 2444 struct key_vector *tnode; 2445 unsigned int index; 2446 unsigned int depth; 2447 }; 2448 2449 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2450 { 2451 unsigned long cindex = iter->index; 2452 struct key_vector *pn = iter->tnode; 2453 t_key pkey; 2454 2455 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2456 iter->tnode, iter->index, iter->depth); 2457 2458 while (!IS_TRIE(pn)) { 2459 while (cindex < child_length(pn)) { 2460 struct key_vector *n = get_child_rcu(pn, cindex++); 2461 2462 if (!n) 2463 continue; 2464 2465 if (IS_LEAF(n)) { 2466 iter->tnode = pn; 2467 iter->index = cindex; 2468 } else { 2469 /* push down one level */ 2470 iter->tnode = n; 2471 iter->index = 0; 2472 ++iter->depth; 2473 } 2474 2475 return n; 2476 } 2477 2478 /* Current node exhausted, pop back up */ 2479 pkey = pn->key; 2480 pn = node_parent_rcu(pn); 2481 cindex = get_index(pkey, pn) + 1; 2482 --iter->depth; 2483 } 2484 2485 /* record root node so further searches know we are done */ 2486 iter->tnode = pn; 2487 iter->index = 0; 2488 2489 return NULL; 2490 } 2491 2492 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2493 struct trie *t) 2494 { 2495 struct key_vector *n, *pn; 2496 2497 if (!t) 2498 return NULL; 2499 2500 pn = t->kv; 2501 n = rcu_dereference(pn->tnode[0]); 2502 if (!n) 2503 return NULL; 2504 2505 if (IS_TNODE(n)) { 2506 iter->tnode = n; 2507 iter->index = 0; 2508 iter->depth = 1; 2509 } else { 2510 iter->tnode = pn; 2511 iter->index = 0; 2512 iter->depth = 0; 2513 } 2514 2515 return n; 2516 } 2517 2518 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2519 { 2520 struct key_vector *n; 2521 struct fib_trie_iter iter; 2522 2523 memset(s, 0, sizeof(*s)); 2524 2525 rcu_read_lock(); 2526 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2527 if (IS_LEAF(n)) { 2528 struct fib_alias *fa; 2529 2530 s->leaves++; 2531 s->totdepth += iter.depth; 2532 if (iter.depth > s->maxdepth) 2533 s->maxdepth = iter.depth; 2534 2535 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2536 ++s->prefixes; 2537 } else { 2538 s->tnodes++; 2539 if (n->bits < MAX_STAT_DEPTH) 2540 s->nodesizes[n->bits]++; 2541 s->nullpointers += tn_info(n)->empty_children; 2542 } 2543 } 2544 rcu_read_unlock(); 2545 } 2546 2547 /* 2548 * This outputs /proc/net/fib_triestats 2549 */ 2550 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2551 { 2552 unsigned int i, max, pointers, bytes, avdepth; 2553 2554 if (stat->leaves) 2555 avdepth = stat->totdepth*100 / stat->leaves; 2556 else 2557 avdepth = 0; 2558 2559 seq_printf(seq, "\tAver depth: %u.%02d\n", 2560 avdepth / 100, avdepth % 100); 2561 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2562 2563 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2564 bytes = LEAF_SIZE * stat->leaves; 2565 2566 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2567 bytes += sizeof(struct fib_alias) * stat->prefixes; 2568 2569 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2570 bytes += TNODE_SIZE(0) * stat->tnodes; 2571 2572 max = MAX_STAT_DEPTH; 2573 while (max > 0 && stat->nodesizes[max-1] == 0) 2574 max--; 2575 2576 pointers = 0; 2577 for (i = 1; i < max; i++) 2578 if (stat->nodesizes[i] != 0) { 2579 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2580 pointers += (1<<i) * stat->nodesizes[i]; 2581 } 2582 seq_putc(seq, '\n'); 2583 seq_printf(seq, "\tPointers: %u\n", pointers); 2584 2585 bytes += sizeof(struct key_vector *) * pointers; 2586 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2587 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2588 } 2589 2590 #ifdef CONFIG_IP_FIB_TRIE_STATS 2591 static void trie_show_usage(struct seq_file *seq, 2592 const struct trie_use_stats __percpu *stats) 2593 { 2594 struct trie_use_stats s = { 0 }; 2595 int cpu; 2596 2597 /* loop through all of the CPUs and gather up the stats */ 2598 for_each_possible_cpu(cpu) { 2599 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2600 2601 s.gets += pcpu->gets; 2602 s.backtrack += pcpu->backtrack; 2603 s.semantic_match_passed += pcpu->semantic_match_passed; 2604 s.semantic_match_miss += pcpu->semantic_match_miss; 2605 s.null_node_hit += pcpu->null_node_hit; 2606 s.resize_node_skipped += pcpu->resize_node_skipped; 2607 } 2608 2609 seq_printf(seq, "\nCounters:\n---------\n"); 2610 seq_printf(seq, "gets = %u\n", s.gets); 2611 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2612 seq_printf(seq, "semantic match passed = %u\n", 2613 s.semantic_match_passed); 2614 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2615 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2616 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2617 } 2618 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2619 2620 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2621 { 2622 if (tb->tb_id == RT_TABLE_LOCAL) 2623 seq_puts(seq, "Local:\n"); 2624 else if (tb->tb_id == RT_TABLE_MAIN) 2625 seq_puts(seq, "Main:\n"); 2626 else 2627 seq_printf(seq, "Id %d:\n", tb->tb_id); 2628 } 2629 2630 2631 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2632 { 2633 struct net *net = seq->private; 2634 unsigned int h; 2635 2636 seq_printf(seq, 2637 "Basic info: size of leaf:" 2638 " %zd bytes, size of tnode: %zd bytes.\n", 2639 LEAF_SIZE, TNODE_SIZE(0)); 2640 2641 rcu_read_lock(); 2642 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2643 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2644 struct fib_table *tb; 2645 2646 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2647 struct trie *t = (struct trie *) tb->tb_data; 2648 struct trie_stat stat; 2649 2650 if (!t) 2651 continue; 2652 2653 fib_table_print(seq, tb); 2654 2655 trie_collect_stats(t, &stat); 2656 trie_show_stats(seq, &stat); 2657 #ifdef CONFIG_IP_FIB_TRIE_STATS 2658 trie_show_usage(seq, t->stats); 2659 #endif 2660 } 2661 cond_resched_rcu(); 2662 } 2663 rcu_read_unlock(); 2664 2665 return 0; 2666 } 2667 2668 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2669 { 2670 struct fib_trie_iter *iter = seq->private; 2671 struct net *net = seq_file_net(seq); 2672 loff_t idx = 0; 2673 unsigned int h; 2674 2675 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2676 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2677 struct fib_table *tb; 2678 2679 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2680 struct key_vector *n; 2681 2682 for (n = fib_trie_get_first(iter, 2683 (struct trie *) tb->tb_data); 2684 n; n = fib_trie_get_next(iter)) 2685 if (pos == idx++) { 2686 iter->tb = tb; 2687 return n; 2688 } 2689 } 2690 } 2691 2692 return NULL; 2693 } 2694 2695 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2696 __acquires(RCU) 2697 { 2698 rcu_read_lock(); 2699 return fib_trie_get_idx(seq, *pos); 2700 } 2701 2702 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2703 { 2704 struct fib_trie_iter *iter = seq->private; 2705 struct net *net = seq_file_net(seq); 2706 struct fib_table *tb = iter->tb; 2707 struct hlist_node *tb_node; 2708 unsigned int h; 2709 struct key_vector *n; 2710 2711 ++*pos; 2712 /* next node in same table */ 2713 n = fib_trie_get_next(iter); 2714 if (n) 2715 return n; 2716 2717 /* walk rest of this hash chain */ 2718 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2719 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2720 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2721 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2722 if (n) 2723 goto found; 2724 } 2725 2726 /* new hash chain */ 2727 while (++h < FIB_TABLE_HASHSZ) { 2728 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2729 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2730 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2731 if (n) 2732 goto found; 2733 } 2734 } 2735 return NULL; 2736 2737 found: 2738 iter->tb = tb; 2739 return n; 2740 } 2741 2742 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2743 __releases(RCU) 2744 { 2745 rcu_read_unlock(); 2746 } 2747 2748 static void seq_indent(struct seq_file *seq, int n) 2749 { 2750 while (n-- > 0) 2751 seq_puts(seq, " "); 2752 } 2753 2754 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2755 { 2756 switch (s) { 2757 case RT_SCOPE_UNIVERSE: return "universe"; 2758 case RT_SCOPE_SITE: return "site"; 2759 case RT_SCOPE_LINK: return "link"; 2760 case RT_SCOPE_HOST: return "host"; 2761 case RT_SCOPE_NOWHERE: return "nowhere"; 2762 default: 2763 snprintf(buf, len, "scope=%d", s); 2764 return buf; 2765 } 2766 } 2767 2768 static const char *const rtn_type_names[__RTN_MAX] = { 2769 [RTN_UNSPEC] = "UNSPEC", 2770 [RTN_UNICAST] = "UNICAST", 2771 [RTN_LOCAL] = "LOCAL", 2772 [RTN_BROADCAST] = "BROADCAST", 2773 [RTN_ANYCAST] = "ANYCAST", 2774 [RTN_MULTICAST] = "MULTICAST", 2775 [RTN_BLACKHOLE] = "BLACKHOLE", 2776 [RTN_UNREACHABLE] = "UNREACHABLE", 2777 [RTN_PROHIBIT] = "PROHIBIT", 2778 [RTN_THROW] = "THROW", 2779 [RTN_NAT] = "NAT", 2780 [RTN_XRESOLVE] = "XRESOLVE", 2781 }; 2782 2783 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2784 { 2785 if (t < __RTN_MAX && rtn_type_names[t]) 2786 return rtn_type_names[t]; 2787 snprintf(buf, len, "type %u", t); 2788 return buf; 2789 } 2790 2791 /* Pretty print the trie */ 2792 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2793 { 2794 const struct fib_trie_iter *iter = seq->private; 2795 struct key_vector *n = v; 2796 2797 if (IS_TRIE(node_parent_rcu(n))) 2798 fib_table_print(seq, iter->tb); 2799 2800 if (IS_TNODE(n)) { 2801 __be32 prf = htonl(n->key); 2802 2803 seq_indent(seq, iter->depth-1); 2804 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2805 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2806 tn_info(n)->full_children, 2807 tn_info(n)->empty_children); 2808 } else { 2809 __be32 val = htonl(n->key); 2810 struct fib_alias *fa; 2811 2812 seq_indent(seq, iter->depth); 2813 seq_printf(seq, " |-- %pI4\n", &val); 2814 2815 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2816 char buf1[32], buf2[32]; 2817 2818 seq_indent(seq, iter->depth + 1); 2819 seq_printf(seq, " /%zu %s %s", 2820 KEYLENGTH - fa->fa_slen, 2821 rtn_scope(buf1, sizeof(buf1), 2822 fa->fa_info->fib_scope), 2823 rtn_type(buf2, sizeof(buf2), 2824 fa->fa_type)); 2825 if (fa->fa_dscp) 2826 seq_printf(seq, " tos=%d", 2827 inet_dscp_to_dsfield(fa->fa_dscp)); 2828 seq_putc(seq, '\n'); 2829 } 2830 } 2831 2832 return 0; 2833 } 2834 2835 static const struct seq_operations fib_trie_seq_ops = { 2836 .start = fib_trie_seq_start, 2837 .next = fib_trie_seq_next, 2838 .stop = fib_trie_seq_stop, 2839 .show = fib_trie_seq_show, 2840 }; 2841 2842 struct fib_route_iter { 2843 struct seq_net_private p; 2844 struct fib_table *main_tb; 2845 struct key_vector *tnode; 2846 loff_t pos; 2847 t_key key; 2848 }; 2849 2850 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2851 loff_t pos) 2852 { 2853 struct key_vector *l, **tp = &iter->tnode; 2854 t_key key; 2855 2856 /* use cached location of previously found key */ 2857 if (iter->pos > 0 && pos >= iter->pos) { 2858 key = iter->key; 2859 } else { 2860 iter->pos = 1; 2861 key = 0; 2862 } 2863 2864 pos -= iter->pos; 2865 2866 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2867 key = l->key + 1; 2868 iter->pos++; 2869 l = NULL; 2870 2871 /* handle unlikely case of a key wrap */ 2872 if (!key) 2873 break; 2874 } 2875 2876 if (l) 2877 iter->key = l->key; /* remember it */ 2878 else 2879 iter->pos = 0; /* forget it */ 2880 2881 return l; 2882 } 2883 2884 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2885 __acquires(RCU) 2886 { 2887 struct fib_route_iter *iter = seq->private; 2888 struct fib_table *tb; 2889 struct trie *t; 2890 2891 rcu_read_lock(); 2892 2893 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2894 if (!tb) 2895 return NULL; 2896 2897 iter->main_tb = tb; 2898 t = (struct trie *)tb->tb_data; 2899 iter->tnode = t->kv; 2900 2901 if (*pos != 0) 2902 return fib_route_get_idx(iter, *pos); 2903 2904 iter->pos = 0; 2905 iter->key = KEY_MAX; 2906 2907 return SEQ_START_TOKEN; 2908 } 2909 2910 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2911 { 2912 struct fib_route_iter *iter = seq->private; 2913 struct key_vector *l = NULL; 2914 t_key key = iter->key + 1; 2915 2916 ++*pos; 2917 2918 /* only allow key of 0 for start of sequence */ 2919 if ((v == SEQ_START_TOKEN) || key) 2920 l = leaf_walk_rcu(&iter->tnode, key); 2921 2922 if (l) { 2923 iter->key = l->key; 2924 iter->pos++; 2925 } else { 2926 iter->pos = 0; 2927 } 2928 2929 return l; 2930 } 2931 2932 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2933 __releases(RCU) 2934 { 2935 rcu_read_unlock(); 2936 } 2937 2938 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2939 { 2940 unsigned int flags = 0; 2941 2942 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2943 flags = RTF_REJECT; 2944 if (fi) { 2945 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2946 2947 if (nhc->nhc_gw.ipv4) 2948 flags |= RTF_GATEWAY; 2949 } 2950 if (mask == htonl(0xFFFFFFFF)) 2951 flags |= RTF_HOST; 2952 flags |= RTF_UP; 2953 return flags; 2954 } 2955 2956 /* 2957 * This outputs /proc/net/route. 2958 * The format of the file is not supposed to be changed 2959 * and needs to be same as fib_hash output to avoid breaking 2960 * legacy utilities 2961 */ 2962 static int fib_route_seq_show(struct seq_file *seq, void *v) 2963 { 2964 struct fib_route_iter *iter = seq->private; 2965 struct fib_table *tb = iter->main_tb; 2966 struct fib_alias *fa; 2967 struct key_vector *l = v; 2968 __be32 prefix; 2969 2970 if (v == SEQ_START_TOKEN) { 2971 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2972 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2973 "\tWindow\tIRTT"); 2974 return 0; 2975 } 2976 2977 prefix = htonl(l->key); 2978 2979 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2980 struct fib_info *fi = fa->fa_info; 2981 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2982 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2983 2984 if ((fa->fa_type == RTN_BROADCAST) || 2985 (fa->fa_type == RTN_MULTICAST)) 2986 continue; 2987 2988 if (fa->tb_id != tb->tb_id) 2989 continue; 2990 2991 seq_setwidth(seq, 127); 2992 2993 if (fi) { 2994 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2995 __be32 gw = 0; 2996 2997 if (nhc->nhc_gw_family == AF_INET) 2998 gw = nhc->nhc_gw.ipv4; 2999 3000 seq_printf(seq, 3001 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 3002 "%d\t%08X\t%d\t%u\t%u", 3003 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 3004 prefix, gw, flags, 0, 0, 3005 fi->fib_priority, 3006 mask, 3007 (fi->fib_advmss ? 3008 fi->fib_advmss + 40 : 0), 3009 fi->fib_window, 3010 fi->fib_rtt >> 3); 3011 } else { 3012 seq_printf(seq, 3013 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 3014 "%d\t%08X\t%d\t%u\t%u", 3015 prefix, 0, flags, 0, 0, 0, 3016 mask, 0, 0, 0); 3017 } 3018 seq_pad(seq, '\n'); 3019 } 3020 3021 return 0; 3022 } 3023 3024 static const struct seq_operations fib_route_seq_ops = { 3025 .start = fib_route_seq_start, 3026 .next = fib_route_seq_next, 3027 .stop = fib_route_seq_stop, 3028 .show = fib_route_seq_show, 3029 }; 3030 3031 int __net_init fib_proc_init(struct net *net) 3032 { 3033 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 3034 sizeof(struct fib_trie_iter))) 3035 goto out1; 3036 3037 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 3038 fib_triestat_seq_show, NULL)) 3039 goto out2; 3040 3041 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 3042 sizeof(struct fib_route_iter))) 3043 goto out3; 3044 3045 return 0; 3046 3047 out3: 3048 remove_proc_entry("fib_triestat", net->proc_net); 3049 out2: 3050 remove_proc_entry("fib_trie", net->proc_net); 3051 out1: 3052 return -ENOMEM; 3053 } 3054 3055 void __net_exit fib_proc_exit(struct net *net) 3056 { 3057 remove_proc_entry("fib_trie", net->proc_net); 3058 remove_proc_entry("fib_triestat", net->proc_net); 3059 remove_proc_entry("route", net->proc_net); 3060 } 3061 3062 #endif /* CONFIG_PROC_FS */ 3063