1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally descibed in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <asm/system.h> 55 #include <linux/bitops.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/mm.h> 59 #include <linux/string.h> 60 #include <linux/socket.h> 61 #include <linux/sockios.h> 62 #include <linux/errno.h> 63 #include <linux/in.h> 64 #include <linux/inet.h> 65 #include <linux/inetdevice.h> 66 #include <linux/netdevice.h> 67 #include <linux/if_arp.h> 68 #include <linux/proc_fs.h> 69 #include <linux/rcupdate.h> 70 #include <linux/skbuff.h> 71 #include <linux/netlink.h> 72 #include <linux/init.h> 73 #include <linux/list.h> 74 #include <linux/slab.h> 75 #include <net/net_namespace.h> 76 #include <net/ip.h> 77 #include <net/protocol.h> 78 #include <net/route.h> 79 #include <net/tcp.h> 80 #include <net/sock.h> 81 #include <net/ip_fib.h> 82 #include "fib_lookup.h" 83 84 #define MAX_STAT_DEPTH 32 85 86 #define KEYLENGTH (8*sizeof(t_key)) 87 88 typedef unsigned int t_key; 89 90 #define T_TNODE 0 91 #define T_LEAF 1 92 #define NODE_TYPE_MASK 0x1UL 93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 94 95 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 96 #define IS_LEAF(n) (n->parent & T_LEAF) 97 98 struct node { 99 unsigned long parent; 100 t_key key; 101 }; 102 103 struct leaf { 104 unsigned long parent; 105 t_key key; 106 struct hlist_head list; 107 struct rcu_head rcu; 108 }; 109 110 struct leaf_info { 111 struct hlist_node hlist; 112 struct rcu_head rcu; 113 int plen; 114 struct list_head falh; 115 }; 116 117 struct tnode { 118 unsigned long parent; 119 t_key key; 120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 122 unsigned int full_children; /* KEYLENGTH bits needed */ 123 unsigned int empty_children; /* KEYLENGTH bits needed */ 124 union { 125 struct rcu_head rcu; 126 struct work_struct work; 127 struct tnode *tnode_free; 128 }; 129 struct node *child[0]; 130 }; 131 132 #ifdef CONFIG_IP_FIB_TRIE_STATS 133 struct trie_use_stats { 134 unsigned int gets; 135 unsigned int backtrack; 136 unsigned int semantic_match_passed; 137 unsigned int semantic_match_miss; 138 unsigned int null_node_hit; 139 unsigned int resize_node_skipped; 140 }; 141 #endif 142 143 struct trie_stat { 144 unsigned int totdepth; 145 unsigned int maxdepth; 146 unsigned int tnodes; 147 unsigned int leaves; 148 unsigned int nullpointers; 149 unsigned int prefixes; 150 unsigned int nodesizes[MAX_STAT_DEPTH]; 151 }; 152 153 struct trie { 154 struct node *trie; 155 #ifdef CONFIG_IP_FIB_TRIE_STATS 156 struct trie_use_stats stats; 157 #endif 158 }; 159 160 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); 161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, 162 int wasfull); 163 static struct node *resize(struct trie *t, struct tnode *tn); 164 static struct tnode *inflate(struct trie *t, struct tnode *tn); 165 static struct tnode *halve(struct trie *t, struct tnode *tn); 166 /* tnodes to free after resize(); protected by RTNL */ 167 static struct tnode *tnode_free_head; 168 static size_t tnode_free_size; 169 170 /* 171 * synchronize_rcu after call_rcu for that many pages; it should be especially 172 * useful before resizing the root node with PREEMPT_NONE configs; the value was 173 * obtained experimentally, aiming to avoid visible slowdown. 174 */ 175 static const int sync_pages = 128; 176 177 static struct kmem_cache *fn_alias_kmem __read_mostly; 178 static struct kmem_cache *trie_leaf_kmem __read_mostly; 179 180 static inline struct tnode *node_parent(struct node *node) 181 { 182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK); 183 } 184 185 static inline struct tnode *node_parent_rcu(struct node *node) 186 { 187 struct tnode *ret = node_parent(node); 188 189 return rcu_dereference_rtnl(ret); 190 } 191 192 /* Same as rcu_assign_pointer 193 * but that macro() assumes that value is a pointer. 194 */ 195 static inline void node_set_parent(struct node *node, struct tnode *ptr) 196 { 197 smp_wmb(); 198 node->parent = (unsigned long)ptr | NODE_TYPE(node); 199 } 200 201 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i) 202 { 203 BUG_ON(i >= 1U << tn->bits); 204 205 return tn->child[i]; 206 } 207 208 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i) 209 { 210 struct node *ret = tnode_get_child(tn, i); 211 212 return rcu_dereference_rtnl(ret); 213 } 214 215 static inline int tnode_child_length(const struct tnode *tn) 216 { 217 return 1 << tn->bits; 218 } 219 220 static inline t_key mask_pfx(t_key k, unsigned short l) 221 { 222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 223 } 224 225 static inline t_key tkey_extract_bits(t_key a, int offset, int bits) 226 { 227 if (offset < KEYLENGTH) 228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 229 else 230 return 0; 231 } 232 233 static inline int tkey_equals(t_key a, t_key b) 234 { 235 return a == b; 236 } 237 238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 239 { 240 if (bits == 0 || offset >= KEYLENGTH) 241 return 1; 242 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 244 } 245 246 static inline int tkey_mismatch(t_key a, int offset, t_key b) 247 { 248 t_key diff = a ^ b; 249 int i = offset; 250 251 if (!diff) 252 return 0; 253 while ((diff << i) >> (KEYLENGTH-1) == 0) 254 i++; 255 return i; 256 } 257 258 /* 259 To understand this stuff, an understanding of keys and all their bits is 260 necessary. Every node in the trie has a key associated with it, but not 261 all of the bits in that key are significant. 262 263 Consider a node 'n' and its parent 'tp'. 264 265 If n is a leaf, every bit in its key is significant. Its presence is 266 necessitated by path compression, since during a tree traversal (when 267 searching for a leaf - unless we are doing an insertion) we will completely 268 ignore all skipped bits we encounter. Thus we need to verify, at the end of 269 a potentially successful search, that we have indeed been walking the 270 correct key path. 271 272 Note that we can never "miss" the correct key in the tree if present by 273 following the wrong path. Path compression ensures that segments of the key 274 that are the same for all keys with a given prefix are skipped, but the 275 skipped part *is* identical for each node in the subtrie below the skipped 276 bit! trie_insert() in this implementation takes care of that - note the 277 call to tkey_sub_equals() in trie_insert(). 278 279 if n is an internal node - a 'tnode' here, the various parts of its key 280 have many different meanings. 281 282 Example: 283 _________________________________________________________________ 284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 285 ----------------------------------------------------------------- 286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 287 288 _________________________________________________________________ 289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 290 ----------------------------------------------------------------- 291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 292 293 tp->pos = 7 294 tp->bits = 3 295 n->pos = 15 296 n->bits = 4 297 298 First, let's just ignore the bits that come before the parent tp, that is 299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 300 not use them for anything. 301 302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 303 index into the parent's child array. That is, they will be used to find 304 'n' among tp's children. 305 306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 307 for the node n. 308 309 All the bits we have seen so far are significant to the node n. The rest 310 of the bits are really not needed or indeed known in n->key. 311 312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 313 n's child array, and will of course be different for each child. 314 315 316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 317 at this point. 318 319 */ 320 321 static inline void check_tnode(const struct tnode *tn) 322 { 323 WARN_ON(tn && tn->pos+tn->bits > 32); 324 } 325 326 static const int halve_threshold = 25; 327 static const int inflate_threshold = 50; 328 static const int halve_threshold_root = 15; 329 static const int inflate_threshold_root = 30; 330 331 static void __alias_free_mem(struct rcu_head *head) 332 { 333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 334 kmem_cache_free(fn_alias_kmem, fa); 335 } 336 337 static inline void alias_free_mem_rcu(struct fib_alias *fa) 338 { 339 call_rcu(&fa->rcu, __alias_free_mem); 340 } 341 342 static void __leaf_free_rcu(struct rcu_head *head) 343 { 344 struct leaf *l = container_of(head, struct leaf, rcu); 345 kmem_cache_free(trie_leaf_kmem, l); 346 } 347 348 static inline void free_leaf(struct leaf *l) 349 { 350 call_rcu_bh(&l->rcu, __leaf_free_rcu); 351 } 352 353 static void __leaf_info_free_rcu(struct rcu_head *head) 354 { 355 kfree(container_of(head, struct leaf_info, rcu)); 356 } 357 358 static inline void free_leaf_info(struct leaf_info *leaf) 359 { 360 call_rcu(&leaf->rcu, __leaf_info_free_rcu); 361 } 362 363 static struct tnode *tnode_alloc(size_t size) 364 { 365 if (size <= PAGE_SIZE) 366 return kzalloc(size, GFP_KERNEL); 367 else 368 return vzalloc(size); 369 } 370 371 static void __tnode_vfree(struct work_struct *arg) 372 { 373 struct tnode *tn = container_of(arg, struct tnode, work); 374 vfree(tn); 375 } 376 377 static void __tnode_free_rcu(struct rcu_head *head) 378 { 379 struct tnode *tn = container_of(head, struct tnode, rcu); 380 size_t size = sizeof(struct tnode) + 381 (sizeof(struct node *) << tn->bits); 382 383 if (size <= PAGE_SIZE) 384 kfree(tn); 385 else { 386 INIT_WORK(&tn->work, __tnode_vfree); 387 schedule_work(&tn->work); 388 } 389 } 390 391 static inline void tnode_free(struct tnode *tn) 392 { 393 if (IS_LEAF(tn)) 394 free_leaf((struct leaf *) tn); 395 else 396 call_rcu(&tn->rcu, __tnode_free_rcu); 397 } 398 399 static void tnode_free_safe(struct tnode *tn) 400 { 401 BUG_ON(IS_LEAF(tn)); 402 tn->tnode_free = tnode_free_head; 403 tnode_free_head = tn; 404 tnode_free_size += sizeof(struct tnode) + 405 (sizeof(struct node *) << tn->bits); 406 } 407 408 static void tnode_free_flush(void) 409 { 410 struct tnode *tn; 411 412 while ((tn = tnode_free_head)) { 413 tnode_free_head = tn->tnode_free; 414 tn->tnode_free = NULL; 415 tnode_free(tn); 416 } 417 418 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 419 tnode_free_size = 0; 420 synchronize_rcu(); 421 } 422 } 423 424 static struct leaf *leaf_new(void) 425 { 426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 427 if (l) { 428 l->parent = T_LEAF; 429 INIT_HLIST_HEAD(&l->list); 430 } 431 return l; 432 } 433 434 static struct leaf_info *leaf_info_new(int plen) 435 { 436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 437 if (li) { 438 li->plen = plen; 439 INIT_LIST_HEAD(&li->falh); 440 } 441 return li; 442 } 443 444 static struct tnode *tnode_new(t_key key, int pos, int bits) 445 { 446 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits); 447 struct tnode *tn = tnode_alloc(sz); 448 449 if (tn) { 450 tn->parent = T_TNODE; 451 tn->pos = pos; 452 tn->bits = bits; 453 tn->key = key; 454 tn->full_children = 0; 455 tn->empty_children = 1<<bits; 456 } 457 458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 459 sizeof(struct node) << bits); 460 return tn; 461 } 462 463 /* 464 * Check whether a tnode 'n' is "full", i.e. it is an internal node 465 * and no bits are skipped. See discussion in dyntree paper p. 6 466 */ 467 468 static inline int tnode_full(const struct tnode *tn, const struct node *n) 469 { 470 if (n == NULL || IS_LEAF(n)) 471 return 0; 472 473 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 474 } 475 476 static inline void put_child(struct trie *t, struct tnode *tn, int i, 477 struct node *n) 478 { 479 tnode_put_child_reorg(tn, i, n, -1); 480 } 481 482 /* 483 * Add a child at position i overwriting the old value. 484 * Update the value of full_children and empty_children. 485 */ 486 487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, 488 int wasfull) 489 { 490 struct node *chi = tn->child[i]; 491 int isfull; 492 493 BUG_ON(i >= 1<<tn->bits); 494 495 /* update emptyChildren */ 496 if (n == NULL && chi != NULL) 497 tn->empty_children++; 498 else if (n != NULL && chi == NULL) 499 tn->empty_children--; 500 501 /* update fullChildren */ 502 if (wasfull == -1) 503 wasfull = tnode_full(tn, chi); 504 505 isfull = tnode_full(tn, n); 506 if (wasfull && !isfull) 507 tn->full_children--; 508 else if (!wasfull && isfull) 509 tn->full_children++; 510 511 if (n) 512 node_set_parent(n, tn); 513 514 rcu_assign_pointer(tn->child[i], n); 515 } 516 517 #define MAX_WORK 10 518 static struct node *resize(struct trie *t, struct tnode *tn) 519 { 520 int i; 521 struct tnode *old_tn; 522 int inflate_threshold_use; 523 int halve_threshold_use; 524 int max_work; 525 526 if (!tn) 527 return NULL; 528 529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 530 tn, inflate_threshold, halve_threshold); 531 532 /* No children */ 533 if (tn->empty_children == tnode_child_length(tn)) { 534 tnode_free_safe(tn); 535 return NULL; 536 } 537 /* One child */ 538 if (tn->empty_children == tnode_child_length(tn) - 1) 539 goto one_child; 540 /* 541 * Double as long as the resulting node has a number of 542 * nonempty nodes that are above the threshold. 543 */ 544 545 /* 546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 547 * the Helsinki University of Technology and Matti Tikkanen of Nokia 548 * Telecommunications, page 6: 549 * "A node is doubled if the ratio of non-empty children to all 550 * children in the *doubled* node is at least 'high'." 551 * 552 * 'high' in this instance is the variable 'inflate_threshold'. It 553 * is expressed as a percentage, so we multiply it with 554 * tnode_child_length() and instead of multiplying by 2 (since the 555 * child array will be doubled by inflate()) and multiplying 556 * the left-hand side by 100 (to handle the percentage thing) we 557 * multiply the left-hand side by 50. 558 * 559 * The left-hand side may look a bit weird: tnode_child_length(tn) 560 * - tn->empty_children is of course the number of non-null children 561 * in the current node. tn->full_children is the number of "full" 562 * children, that is non-null tnodes with a skip value of 0. 563 * All of those will be doubled in the resulting inflated tnode, so 564 * we just count them one extra time here. 565 * 566 * A clearer way to write this would be: 567 * 568 * to_be_doubled = tn->full_children; 569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 570 * tn->full_children; 571 * 572 * new_child_length = tnode_child_length(tn) * 2; 573 * 574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 575 * new_child_length; 576 * if (new_fill_factor >= inflate_threshold) 577 * 578 * ...and so on, tho it would mess up the while () loop. 579 * 580 * anyway, 581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 582 * inflate_threshold 583 * 584 * avoid a division: 585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 586 * inflate_threshold * new_child_length 587 * 588 * expand not_to_be_doubled and to_be_doubled, and shorten: 589 * 100 * (tnode_child_length(tn) - tn->empty_children + 590 * tn->full_children) >= inflate_threshold * new_child_length 591 * 592 * expand new_child_length: 593 * 100 * (tnode_child_length(tn) - tn->empty_children + 594 * tn->full_children) >= 595 * inflate_threshold * tnode_child_length(tn) * 2 596 * 597 * shorten again: 598 * 50 * (tn->full_children + tnode_child_length(tn) - 599 * tn->empty_children) >= inflate_threshold * 600 * tnode_child_length(tn) 601 * 602 */ 603 604 check_tnode(tn); 605 606 /* Keep root node larger */ 607 608 if (!node_parent((struct node *)tn)) { 609 inflate_threshold_use = inflate_threshold_root; 610 halve_threshold_use = halve_threshold_root; 611 } else { 612 inflate_threshold_use = inflate_threshold; 613 halve_threshold_use = halve_threshold; 614 } 615 616 max_work = MAX_WORK; 617 while ((tn->full_children > 0 && max_work-- && 618 50 * (tn->full_children + tnode_child_length(tn) 619 - tn->empty_children) 620 >= inflate_threshold_use * tnode_child_length(tn))) { 621 622 old_tn = tn; 623 tn = inflate(t, tn); 624 625 if (IS_ERR(tn)) { 626 tn = old_tn; 627 #ifdef CONFIG_IP_FIB_TRIE_STATS 628 t->stats.resize_node_skipped++; 629 #endif 630 break; 631 } 632 } 633 634 check_tnode(tn); 635 636 /* Return if at least one inflate is run */ 637 if (max_work != MAX_WORK) 638 return (struct node *) tn; 639 640 /* 641 * Halve as long as the number of empty children in this 642 * node is above threshold. 643 */ 644 645 max_work = MAX_WORK; 646 while (tn->bits > 1 && max_work-- && 647 100 * (tnode_child_length(tn) - tn->empty_children) < 648 halve_threshold_use * tnode_child_length(tn)) { 649 650 old_tn = tn; 651 tn = halve(t, tn); 652 if (IS_ERR(tn)) { 653 tn = old_tn; 654 #ifdef CONFIG_IP_FIB_TRIE_STATS 655 t->stats.resize_node_skipped++; 656 #endif 657 break; 658 } 659 } 660 661 662 /* Only one child remains */ 663 if (tn->empty_children == tnode_child_length(tn) - 1) { 664 one_child: 665 for (i = 0; i < tnode_child_length(tn); i++) { 666 struct node *n; 667 668 n = tn->child[i]; 669 if (!n) 670 continue; 671 672 /* compress one level */ 673 674 node_set_parent(n, NULL); 675 tnode_free_safe(tn); 676 return n; 677 } 678 } 679 return (struct node *) tn; 680 } 681 682 static struct tnode *inflate(struct trie *t, struct tnode *tn) 683 { 684 struct tnode *oldtnode = tn; 685 int olen = tnode_child_length(tn); 686 int i; 687 688 pr_debug("In inflate\n"); 689 690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 691 692 if (!tn) 693 return ERR_PTR(-ENOMEM); 694 695 /* 696 * Preallocate and store tnodes before the actual work so we 697 * don't get into an inconsistent state if memory allocation 698 * fails. In case of failure we return the oldnode and inflate 699 * of tnode is ignored. 700 */ 701 702 for (i = 0; i < olen; i++) { 703 struct tnode *inode; 704 705 inode = (struct tnode *) tnode_get_child(oldtnode, i); 706 if (inode && 707 IS_TNODE(inode) && 708 inode->pos == oldtnode->pos + oldtnode->bits && 709 inode->bits > 1) { 710 struct tnode *left, *right; 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 712 713 left = tnode_new(inode->key&(~m), inode->pos + 1, 714 inode->bits - 1); 715 if (!left) 716 goto nomem; 717 718 right = tnode_new(inode->key|m, inode->pos + 1, 719 inode->bits - 1); 720 721 if (!right) { 722 tnode_free(left); 723 goto nomem; 724 } 725 726 put_child(t, tn, 2*i, (struct node *) left); 727 put_child(t, tn, 2*i+1, (struct node *) right); 728 } 729 } 730 731 for (i = 0; i < olen; i++) { 732 struct tnode *inode; 733 struct node *node = tnode_get_child(oldtnode, i); 734 struct tnode *left, *right; 735 int size, j; 736 737 /* An empty child */ 738 if (node == NULL) 739 continue; 740 741 /* A leaf or an internal node with skipped bits */ 742 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 744 tn->pos + tn->bits - 1) { 745 if (tkey_extract_bits(node->key, 746 oldtnode->pos + oldtnode->bits, 747 1) == 0) 748 put_child(t, tn, 2*i, node); 749 else 750 put_child(t, tn, 2*i+1, node); 751 continue; 752 } 753 754 /* An internal node with two children */ 755 inode = (struct tnode *) node; 756 757 if (inode->bits == 1) { 758 put_child(t, tn, 2*i, inode->child[0]); 759 put_child(t, tn, 2*i+1, inode->child[1]); 760 761 tnode_free_safe(inode); 762 continue; 763 } 764 765 /* An internal node with more than two children */ 766 767 /* We will replace this node 'inode' with two new 768 * ones, 'left' and 'right', each with half of the 769 * original children. The two new nodes will have 770 * a position one bit further down the key and this 771 * means that the "significant" part of their keys 772 * (see the discussion near the top of this file) 773 * will differ by one bit, which will be "0" in 774 * left's key and "1" in right's key. Since we are 775 * moving the key position by one step, the bit that 776 * we are moving away from - the bit at position 777 * (inode->pos) - is the one that will differ between 778 * left and right. So... we synthesize that bit in the 779 * two new keys. 780 * The mask 'm' below will be a single "one" bit at 781 * the position (inode->pos) 782 */ 783 784 /* Use the old key, but set the new significant 785 * bit to zero. 786 */ 787 788 left = (struct tnode *) tnode_get_child(tn, 2*i); 789 put_child(t, tn, 2*i, NULL); 790 791 BUG_ON(!left); 792 793 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 794 put_child(t, tn, 2*i+1, NULL); 795 796 BUG_ON(!right); 797 798 size = tnode_child_length(left); 799 for (j = 0; j < size; j++) { 800 put_child(t, left, j, inode->child[j]); 801 put_child(t, right, j, inode->child[j + size]); 802 } 803 put_child(t, tn, 2*i, resize(t, left)); 804 put_child(t, tn, 2*i+1, resize(t, right)); 805 806 tnode_free_safe(inode); 807 } 808 tnode_free_safe(oldtnode); 809 return tn; 810 nomem: 811 { 812 int size = tnode_child_length(tn); 813 int j; 814 815 for (j = 0; j < size; j++) 816 if (tn->child[j]) 817 tnode_free((struct tnode *)tn->child[j]); 818 819 tnode_free(tn); 820 821 return ERR_PTR(-ENOMEM); 822 } 823 } 824 825 static struct tnode *halve(struct trie *t, struct tnode *tn) 826 { 827 struct tnode *oldtnode = tn; 828 struct node *left, *right; 829 int i; 830 int olen = tnode_child_length(tn); 831 832 pr_debug("In halve\n"); 833 834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 835 836 if (!tn) 837 return ERR_PTR(-ENOMEM); 838 839 /* 840 * Preallocate and store tnodes before the actual work so we 841 * don't get into an inconsistent state if memory allocation 842 * fails. In case of failure we return the oldnode and halve 843 * of tnode is ignored. 844 */ 845 846 for (i = 0; i < olen; i += 2) { 847 left = tnode_get_child(oldtnode, i); 848 right = tnode_get_child(oldtnode, i+1); 849 850 /* Two nonempty children */ 851 if (left && right) { 852 struct tnode *newn; 853 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 855 856 if (!newn) 857 goto nomem; 858 859 put_child(t, tn, i/2, (struct node *)newn); 860 } 861 862 } 863 864 for (i = 0; i < olen; i += 2) { 865 struct tnode *newBinNode; 866 867 left = tnode_get_child(oldtnode, i); 868 right = tnode_get_child(oldtnode, i+1); 869 870 /* At least one of the children is empty */ 871 if (left == NULL) { 872 if (right == NULL) /* Both are empty */ 873 continue; 874 put_child(t, tn, i/2, right); 875 continue; 876 } 877 878 if (right == NULL) { 879 put_child(t, tn, i/2, left); 880 continue; 881 } 882 883 /* Two nonempty children */ 884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 885 put_child(t, tn, i/2, NULL); 886 put_child(t, newBinNode, 0, left); 887 put_child(t, newBinNode, 1, right); 888 put_child(t, tn, i/2, resize(t, newBinNode)); 889 } 890 tnode_free_safe(oldtnode); 891 return tn; 892 nomem: 893 { 894 int size = tnode_child_length(tn); 895 int j; 896 897 for (j = 0; j < size; j++) 898 if (tn->child[j]) 899 tnode_free((struct tnode *)tn->child[j]); 900 901 tnode_free(tn); 902 903 return ERR_PTR(-ENOMEM); 904 } 905 } 906 907 /* readside must use rcu_read_lock currently dump routines 908 via get_fa_head and dump */ 909 910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 911 { 912 struct hlist_head *head = &l->list; 913 struct hlist_node *node; 914 struct leaf_info *li; 915 916 hlist_for_each_entry_rcu(li, node, head, hlist) 917 if (li->plen == plen) 918 return li; 919 920 return NULL; 921 } 922 923 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 924 { 925 struct leaf_info *li = find_leaf_info(l, plen); 926 927 if (!li) 928 return NULL; 929 930 return &li->falh; 931 } 932 933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 934 { 935 struct leaf_info *li = NULL, *last = NULL; 936 struct hlist_node *node; 937 938 if (hlist_empty(head)) { 939 hlist_add_head_rcu(&new->hlist, head); 940 } else { 941 hlist_for_each_entry(li, node, head, hlist) { 942 if (new->plen > li->plen) 943 break; 944 945 last = li; 946 } 947 if (last) 948 hlist_add_after_rcu(&last->hlist, &new->hlist); 949 else 950 hlist_add_before_rcu(&new->hlist, &li->hlist); 951 } 952 } 953 954 /* rcu_read_lock needs to be hold by caller from readside */ 955 956 static struct leaf * 957 fib_find_node(struct trie *t, u32 key) 958 { 959 int pos; 960 struct tnode *tn; 961 struct node *n; 962 963 pos = 0; 964 n = rcu_dereference_rtnl(t->trie); 965 966 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 967 tn = (struct tnode *) n; 968 969 check_tnode(tn); 970 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 972 pos = tn->pos + tn->bits; 973 n = tnode_get_child_rcu(tn, 974 tkey_extract_bits(key, 975 tn->pos, 976 tn->bits)); 977 } else 978 break; 979 } 980 /* Case we have found a leaf. Compare prefixes */ 981 982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 983 return (struct leaf *)n; 984 985 return NULL; 986 } 987 988 static void trie_rebalance(struct trie *t, struct tnode *tn) 989 { 990 int wasfull; 991 t_key cindex, key; 992 struct tnode *tp; 993 994 key = tn->key; 995 996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) { 997 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 999 tn = (struct tnode *) resize(t, (struct tnode *)tn); 1000 1001 tnode_put_child_reorg((struct tnode *)tp, cindex, 1002 (struct node *)tn, wasfull); 1003 1004 tp = node_parent((struct node *) tn); 1005 if (!tp) 1006 rcu_assign_pointer(t->trie, (struct node *)tn); 1007 1008 tnode_free_flush(); 1009 if (!tp) 1010 break; 1011 tn = tp; 1012 } 1013 1014 /* Handle last (top) tnode */ 1015 if (IS_TNODE(tn)) 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1017 1018 rcu_assign_pointer(t->trie, (struct node *)tn); 1019 tnode_free_flush(); 1020 } 1021 1022 /* only used from updater-side */ 1023 1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1025 { 1026 int pos, newpos; 1027 struct tnode *tp = NULL, *tn = NULL; 1028 struct node *n; 1029 struct leaf *l; 1030 int missbit; 1031 struct list_head *fa_head = NULL; 1032 struct leaf_info *li; 1033 t_key cindex; 1034 1035 pos = 0; 1036 n = t->trie; 1037 1038 /* If we point to NULL, stop. Either the tree is empty and we should 1039 * just put a new leaf in if, or we have reached an empty child slot, 1040 * and we should just put our new leaf in that. 1041 * If we point to a T_TNODE, check if it matches our key. Note that 1042 * a T_TNODE might be skipping any number of bits - its 'pos' need 1043 * not be the parent's 'pos'+'bits'! 1044 * 1045 * If it does match the current key, get pos/bits from it, extract 1046 * the index from our key, push the T_TNODE and walk the tree. 1047 * 1048 * If it doesn't, we have to replace it with a new T_TNODE. 1049 * 1050 * If we point to a T_LEAF, it might or might not have the same key 1051 * as we do. If it does, just change the value, update the T_LEAF's 1052 * value, and return it. 1053 * If it doesn't, we need to replace it with a T_TNODE. 1054 */ 1055 1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1057 tn = (struct tnode *) n; 1058 1059 check_tnode(tn); 1060 1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1062 tp = tn; 1063 pos = tn->pos + tn->bits; 1064 n = tnode_get_child(tn, 1065 tkey_extract_bits(key, 1066 tn->pos, 1067 tn->bits)); 1068 1069 BUG_ON(n && node_parent(n) != tn); 1070 } else 1071 break; 1072 } 1073 1074 /* 1075 * n ----> NULL, LEAF or TNODE 1076 * 1077 * tp is n's (parent) ----> NULL or TNODE 1078 */ 1079 1080 BUG_ON(tp && IS_LEAF(tp)); 1081 1082 /* Case 1: n is a leaf. Compare prefixes */ 1083 1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1085 l = (struct leaf *) n; 1086 li = leaf_info_new(plen); 1087 1088 if (!li) 1089 return NULL; 1090 1091 fa_head = &li->falh; 1092 insert_leaf_info(&l->list, li); 1093 goto done; 1094 } 1095 l = leaf_new(); 1096 1097 if (!l) 1098 return NULL; 1099 1100 l->key = key; 1101 li = leaf_info_new(plen); 1102 1103 if (!li) { 1104 free_leaf(l); 1105 return NULL; 1106 } 1107 1108 fa_head = &li->falh; 1109 insert_leaf_info(&l->list, li); 1110 1111 if (t->trie && n == NULL) { 1112 /* Case 2: n is NULL, and will just insert a new leaf */ 1113 1114 node_set_parent((struct node *)l, tp); 1115 1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1117 put_child(t, (struct tnode *)tp, cindex, (struct node *)l); 1118 } else { 1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1120 /* 1121 * Add a new tnode here 1122 * first tnode need some special handling 1123 */ 1124 1125 if (tp) 1126 pos = tp->pos+tp->bits; 1127 else 1128 pos = 0; 1129 1130 if (n) { 1131 newpos = tkey_mismatch(key, pos, n->key); 1132 tn = tnode_new(n->key, newpos, 1); 1133 } else { 1134 newpos = 0; 1135 tn = tnode_new(key, newpos, 1); /* First tnode */ 1136 } 1137 1138 if (!tn) { 1139 free_leaf_info(li); 1140 free_leaf(l); 1141 return NULL; 1142 } 1143 1144 node_set_parent((struct node *)tn, tp); 1145 1146 missbit = tkey_extract_bits(key, newpos, 1); 1147 put_child(t, tn, missbit, (struct node *)l); 1148 put_child(t, tn, 1-missbit, n); 1149 1150 if (tp) { 1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1152 put_child(t, (struct tnode *)tp, cindex, 1153 (struct node *)tn); 1154 } else { 1155 rcu_assign_pointer(t->trie, (struct node *)tn); 1156 tp = tn; 1157 } 1158 } 1159 1160 if (tp && tp->pos + tp->bits > 32) 1161 pr_warning("fib_trie" 1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1163 tp, tp->pos, tp->bits, key, plen); 1164 1165 /* Rebalance the trie */ 1166 1167 trie_rebalance(t, tp); 1168 done: 1169 return fa_head; 1170 } 1171 1172 /* 1173 * Caller must hold RTNL. 1174 */ 1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1176 { 1177 struct trie *t = (struct trie *) tb->tb_data; 1178 struct fib_alias *fa, *new_fa; 1179 struct list_head *fa_head = NULL; 1180 struct fib_info *fi; 1181 int plen = cfg->fc_dst_len; 1182 u8 tos = cfg->fc_tos; 1183 u32 key, mask; 1184 int err; 1185 struct leaf *l; 1186 1187 if (plen > 32) 1188 return -EINVAL; 1189 1190 key = ntohl(cfg->fc_dst); 1191 1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1193 1194 mask = ntohl(inet_make_mask(plen)); 1195 1196 if (key & ~mask) 1197 return -EINVAL; 1198 1199 key = key & mask; 1200 1201 fi = fib_create_info(cfg); 1202 if (IS_ERR(fi)) { 1203 err = PTR_ERR(fi); 1204 goto err; 1205 } 1206 1207 l = fib_find_node(t, key); 1208 fa = NULL; 1209 1210 if (l) { 1211 fa_head = get_fa_head(l, plen); 1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1213 } 1214 1215 /* Now fa, if non-NULL, points to the first fib alias 1216 * with the same keys [prefix,tos,priority], if such key already 1217 * exists or to the node before which we will insert new one. 1218 * 1219 * If fa is NULL, we will need to allocate a new one and 1220 * insert to the head of f. 1221 * 1222 * If f is NULL, no fib node matched the destination key 1223 * and we need to allocate a new one of those as well. 1224 */ 1225 1226 if (fa && fa->fa_tos == tos && 1227 fa->fa_info->fib_priority == fi->fib_priority) { 1228 struct fib_alias *fa_first, *fa_match; 1229 1230 err = -EEXIST; 1231 if (cfg->fc_nlflags & NLM_F_EXCL) 1232 goto out; 1233 1234 /* We have 2 goals: 1235 * 1. Find exact match for type, scope, fib_info to avoid 1236 * duplicate routes 1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1238 */ 1239 fa_match = NULL; 1240 fa_first = fa; 1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1242 list_for_each_entry_continue(fa, fa_head, fa_list) { 1243 if (fa->fa_tos != tos) 1244 break; 1245 if (fa->fa_info->fib_priority != fi->fib_priority) 1246 break; 1247 if (fa->fa_type == cfg->fc_type && 1248 fa->fa_scope == cfg->fc_scope && 1249 fa->fa_info == fi) { 1250 fa_match = fa; 1251 break; 1252 } 1253 } 1254 1255 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1256 struct fib_info *fi_drop; 1257 u8 state; 1258 1259 fa = fa_first; 1260 if (fa_match) { 1261 if (fa == fa_match) 1262 err = 0; 1263 goto out; 1264 } 1265 err = -ENOBUFS; 1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1267 if (new_fa == NULL) 1268 goto out; 1269 1270 fi_drop = fa->fa_info; 1271 new_fa->fa_tos = fa->fa_tos; 1272 new_fa->fa_info = fi; 1273 new_fa->fa_type = cfg->fc_type; 1274 new_fa->fa_scope = cfg->fc_scope; 1275 state = fa->fa_state; 1276 new_fa->fa_state = state & ~FA_S_ACCESSED; 1277 1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1279 alias_free_mem_rcu(fa); 1280 1281 fib_release_info(fi_drop); 1282 if (state & FA_S_ACCESSED) 1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1286 1287 goto succeeded; 1288 } 1289 /* Error if we find a perfect match which 1290 * uses the same scope, type, and nexthop 1291 * information. 1292 */ 1293 if (fa_match) 1294 goto out; 1295 1296 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1297 fa = fa_first; 1298 } 1299 err = -ENOENT; 1300 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1301 goto out; 1302 1303 err = -ENOBUFS; 1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1305 if (new_fa == NULL) 1306 goto out; 1307 1308 new_fa->fa_info = fi; 1309 new_fa->fa_tos = tos; 1310 new_fa->fa_type = cfg->fc_type; 1311 new_fa->fa_scope = cfg->fc_scope; 1312 new_fa->fa_state = 0; 1313 /* 1314 * Insert new entry to the list. 1315 */ 1316 1317 if (!fa_head) { 1318 fa_head = fib_insert_node(t, key, plen); 1319 if (unlikely(!fa_head)) { 1320 err = -ENOMEM; 1321 goto out_free_new_fa; 1322 } 1323 } 1324 1325 list_add_tail_rcu(&new_fa->fa_list, 1326 (fa ? &fa->fa_list : fa_head)); 1327 1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1330 &cfg->fc_nlinfo, 0); 1331 succeeded: 1332 return 0; 1333 1334 out_free_new_fa: 1335 kmem_cache_free(fn_alias_kmem, new_fa); 1336 out: 1337 fib_release_info(fi); 1338 err: 1339 return err; 1340 } 1341 1342 /* should be called with rcu_read_lock */ 1343 static int check_leaf(struct trie *t, struct leaf *l, 1344 t_key key, const struct flowi *flp, 1345 struct fib_result *res, int fib_flags) 1346 { 1347 struct leaf_info *li; 1348 struct hlist_head *hhead = &l->list; 1349 struct hlist_node *node; 1350 1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1352 int err; 1353 int plen = li->plen; 1354 __be32 mask = inet_make_mask(plen); 1355 1356 if (l->key != (key & ntohl(mask))) 1357 continue; 1358 1359 err = fib_semantic_match(&li->falh, flp, res, plen, fib_flags); 1360 1361 #ifdef CONFIG_IP_FIB_TRIE_STATS 1362 if (err <= 0) 1363 t->stats.semantic_match_passed++; 1364 else 1365 t->stats.semantic_match_miss++; 1366 #endif 1367 if (err <= 0) 1368 return err; 1369 } 1370 1371 return 1; 1372 } 1373 1374 int fib_table_lookup(struct fib_table *tb, const struct flowi *flp, 1375 struct fib_result *res, int fib_flags) 1376 { 1377 struct trie *t = (struct trie *) tb->tb_data; 1378 int ret; 1379 struct node *n; 1380 struct tnode *pn; 1381 int pos, bits; 1382 t_key key = ntohl(flp->fl4_dst); 1383 int chopped_off; 1384 t_key cindex = 0; 1385 int current_prefix_length = KEYLENGTH; 1386 struct tnode *cn; 1387 t_key pref_mismatch; 1388 1389 rcu_read_lock(); 1390 1391 n = rcu_dereference(t->trie); 1392 if (!n) 1393 goto failed; 1394 1395 #ifdef CONFIG_IP_FIB_TRIE_STATS 1396 t->stats.gets++; 1397 #endif 1398 1399 /* Just a leaf? */ 1400 if (IS_LEAF(n)) { 1401 ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags); 1402 goto found; 1403 } 1404 1405 pn = (struct tnode *) n; 1406 chopped_off = 0; 1407 1408 while (pn) { 1409 pos = pn->pos; 1410 bits = pn->bits; 1411 1412 if (!chopped_off) 1413 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1414 pos, bits); 1415 1416 n = tnode_get_child_rcu(pn, cindex); 1417 1418 if (n == NULL) { 1419 #ifdef CONFIG_IP_FIB_TRIE_STATS 1420 t->stats.null_node_hit++; 1421 #endif 1422 goto backtrace; 1423 } 1424 1425 if (IS_LEAF(n)) { 1426 ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags); 1427 if (ret > 0) 1428 goto backtrace; 1429 goto found; 1430 } 1431 1432 cn = (struct tnode *)n; 1433 1434 /* 1435 * It's a tnode, and we can do some extra checks here if we 1436 * like, to avoid descending into a dead-end branch. 1437 * This tnode is in the parent's child array at index 1438 * key[p_pos..p_pos+p_bits] but potentially with some bits 1439 * chopped off, so in reality the index may be just a 1440 * subprefix, padded with zero at the end. 1441 * We can also take a look at any skipped bits in this 1442 * tnode - everything up to p_pos is supposed to be ok, 1443 * and the non-chopped bits of the index (se previous 1444 * paragraph) are also guaranteed ok, but the rest is 1445 * considered unknown. 1446 * 1447 * The skipped bits are key[pos+bits..cn->pos]. 1448 */ 1449 1450 /* If current_prefix_length < pos+bits, we are already doing 1451 * actual prefix matching, which means everything from 1452 * pos+(bits-chopped_off) onward must be zero along some 1453 * branch of this subtree - otherwise there is *no* valid 1454 * prefix present. Here we can only check the skipped 1455 * bits. Remember, since we have already indexed into the 1456 * parent's child array, we know that the bits we chopped of 1457 * *are* zero. 1458 */ 1459 1460 /* NOTA BENE: Checking only skipped bits 1461 for the new node here */ 1462 1463 if (current_prefix_length < pos+bits) { 1464 if (tkey_extract_bits(cn->key, current_prefix_length, 1465 cn->pos - current_prefix_length) 1466 || !(cn->child[0])) 1467 goto backtrace; 1468 } 1469 1470 /* 1471 * If chopped_off=0, the index is fully validated and we 1472 * only need to look at the skipped bits for this, the new, 1473 * tnode. What we actually want to do is to find out if 1474 * these skipped bits match our key perfectly, or if we will 1475 * have to count on finding a matching prefix further down, 1476 * because if we do, we would like to have some way of 1477 * verifying the existence of such a prefix at this point. 1478 */ 1479 1480 /* The only thing we can do at this point is to verify that 1481 * any such matching prefix can indeed be a prefix to our 1482 * key, and if the bits in the node we are inspecting that 1483 * do not match our key are not ZERO, this cannot be true. 1484 * Thus, find out where there is a mismatch (before cn->pos) 1485 * and verify that all the mismatching bits are zero in the 1486 * new tnode's key. 1487 */ 1488 1489 /* 1490 * Note: We aren't very concerned about the piece of 1491 * the key that precede pn->pos+pn->bits, since these 1492 * have already been checked. The bits after cn->pos 1493 * aren't checked since these are by definition 1494 * "unknown" at this point. Thus, what we want to see 1495 * is if we are about to enter the "prefix matching" 1496 * state, and in that case verify that the skipped 1497 * bits that will prevail throughout this subtree are 1498 * zero, as they have to be if we are to find a 1499 * matching prefix. 1500 */ 1501 1502 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1503 1504 /* 1505 * In short: If skipped bits in this node do not match 1506 * the search key, enter the "prefix matching" 1507 * state.directly. 1508 */ 1509 if (pref_mismatch) { 1510 int mp = KEYLENGTH - fls(pref_mismatch); 1511 1512 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1513 goto backtrace; 1514 1515 if (current_prefix_length >= cn->pos) 1516 current_prefix_length = mp; 1517 } 1518 1519 pn = (struct tnode *)n; /* Descend */ 1520 chopped_off = 0; 1521 continue; 1522 1523 backtrace: 1524 chopped_off++; 1525 1526 /* As zero don't change the child key (cindex) */ 1527 while ((chopped_off <= pn->bits) 1528 && !(cindex & (1<<(chopped_off-1)))) 1529 chopped_off++; 1530 1531 /* Decrease current_... with bits chopped off */ 1532 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1533 current_prefix_length = pn->pos + pn->bits 1534 - chopped_off; 1535 1536 /* 1537 * Either we do the actual chop off according or if we have 1538 * chopped off all bits in this tnode walk up to our parent. 1539 */ 1540 1541 if (chopped_off <= pn->bits) { 1542 cindex &= ~(1 << (chopped_off-1)); 1543 } else { 1544 struct tnode *parent = node_parent_rcu((struct node *) pn); 1545 if (!parent) 1546 goto failed; 1547 1548 /* Get Child's index */ 1549 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1550 pn = parent; 1551 chopped_off = 0; 1552 1553 #ifdef CONFIG_IP_FIB_TRIE_STATS 1554 t->stats.backtrack++; 1555 #endif 1556 goto backtrace; 1557 } 1558 } 1559 failed: 1560 ret = 1; 1561 found: 1562 rcu_read_unlock(); 1563 return ret; 1564 } 1565 1566 /* 1567 * Remove the leaf and return parent. 1568 */ 1569 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1570 { 1571 struct tnode *tp = node_parent((struct node *) l); 1572 1573 pr_debug("entering trie_leaf_remove(%p)\n", l); 1574 1575 if (tp) { 1576 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1577 put_child(t, (struct tnode *)tp, cindex, NULL); 1578 trie_rebalance(t, tp); 1579 } else 1580 rcu_assign_pointer(t->trie, NULL); 1581 1582 free_leaf(l); 1583 } 1584 1585 /* 1586 * Caller must hold RTNL. 1587 */ 1588 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1589 { 1590 struct trie *t = (struct trie *) tb->tb_data; 1591 u32 key, mask; 1592 int plen = cfg->fc_dst_len; 1593 u8 tos = cfg->fc_tos; 1594 struct fib_alias *fa, *fa_to_delete; 1595 struct list_head *fa_head; 1596 struct leaf *l; 1597 struct leaf_info *li; 1598 1599 if (plen > 32) 1600 return -EINVAL; 1601 1602 key = ntohl(cfg->fc_dst); 1603 mask = ntohl(inet_make_mask(plen)); 1604 1605 if (key & ~mask) 1606 return -EINVAL; 1607 1608 key = key & mask; 1609 l = fib_find_node(t, key); 1610 1611 if (!l) 1612 return -ESRCH; 1613 1614 fa_head = get_fa_head(l, plen); 1615 fa = fib_find_alias(fa_head, tos, 0); 1616 1617 if (!fa) 1618 return -ESRCH; 1619 1620 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1621 1622 fa_to_delete = NULL; 1623 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1624 list_for_each_entry_continue(fa, fa_head, fa_list) { 1625 struct fib_info *fi = fa->fa_info; 1626 1627 if (fa->fa_tos != tos) 1628 break; 1629 1630 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1631 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1632 fa->fa_scope == cfg->fc_scope) && 1633 (!cfg->fc_protocol || 1634 fi->fib_protocol == cfg->fc_protocol) && 1635 fib_nh_match(cfg, fi) == 0) { 1636 fa_to_delete = fa; 1637 break; 1638 } 1639 } 1640 1641 if (!fa_to_delete) 1642 return -ESRCH; 1643 1644 fa = fa_to_delete; 1645 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1646 &cfg->fc_nlinfo, 0); 1647 1648 l = fib_find_node(t, key); 1649 li = find_leaf_info(l, plen); 1650 1651 list_del_rcu(&fa->fa_list); 1652 1653 if (list_empty(fa_head)) { 1654 hlist_del_rcu(&li->hlist); 1655 free_leaf_info(li); 1656 } 1657 1658 if (hlist_empty(&l->list)) 1659 trie_leaf_remove(t, l); 1660 1661 if (fa->fa_state & FA_S_ACCESSED) 1662 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1663 1664 fib_release_info(fa->fa_info); 1665 alias_free_mem_rcu(fa); 1666 return 0; 1667 } 1668 1669 static int trie_flush_list(struct list_head *head) 1670 { 1671 struct fib_alias *fa, *fa_node; 1672 int found = 0; 1673 1674 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1675 struct fib_info *fi = fa->fa_info; 1676 1677 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1678 list_del_rcu(&fa->fa_list); 1679 fib_release_info(fa->fa_info); 1680 alias_free_mem_rcu(fa); 1681 found++; 1682 } 1683 } 1684 return found; 1685 } 1686 1687 static int trie_flush_leaf(struct leaf *l) 1688 { 1689 int found = 0; 1690 struct hlist_head *lih = &l->list; 1691 struct hlist_node *node, *tmp; 1692 struct leaf_info *li = NULL; 1693 1694 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1695 found += trie_flush_list(&li->falh); 1696 1697 if (list_empty(&li->falh)) { 1698 hlist_del_rcu(&li->hlist); 1699 free_leaf_info(li); 1700 } 1701 } 1702 return found; 1703 } 1704 1705 /* 1706 * Scan for the next right leaf starting at node p->child[idx] 1707 * Since we have back pointer, no recursion necessary. 1708 */ 1709 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c) 1710 { 1711 do { 1712 t_key idx; 1713 1714 if (c) 1715 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1716 else 1717 idx = 0; 1718 1719 while (idx < 1u << p->bits) { 1720 c = tnode_get_child_rcu(p, idx++); 1721 if (!c) 1722 continue; 1723 1724 if (IS_LEAF(c)) { 1725 prefetch(p->child[idx]); 1726 return (struct leaf *) c; 1727 } 1728 1729 /* Rescan start scanning in new node */ 1730 p = (struct tnode *) c; 1731 idx = 0; 1732 } 1733 1734 /* Node empty, walk back up to parent */ 1735 c = (struct node *) p; 1736 } while ((p = node_parent_rcu(c)) != NULL); 1737 1738 return NULL; /* Root of trie */ 1739 } 1740 1741 static struct leaf *trie_firstleaf(struct trie *t) 1742 { 1743 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1744 1745 if (!n) 1746 return NULL; 1747 1748 if (IS_LEAF(n)) /* trie is just a leaf */ 1749 return (struct leaf *) n; 1750 1751 return leaf_walk_rcu(n, NULL); 1752 } 1753 1754 static struct leaf *trie_nextleaf(struct leaf *l) 1755 { 1756 struct node *c = (struct node *) l; 1757 struct tnode *p = node_parent_rcu(c); 1758 1759 if (!p) 1760 return NULL; /* trie with just one leaf */ 1761 1762 return leaf_walk_rcu(p, c); 1763 } 1764 1765 static struct leaf *trie_leafindex(struct trie *t, int index) 1766 { 1767 struct leaf *l = trie_firstleaf(t); 1768 1769 while (l && index-- > 0) 1770 l = trie_nextleaf(l); 1771 1772 return l; 1773 } 1774 1775 1776 /* 1777 * Caller must hold RTNL. 1778 */ 1779 int fib_table_flush(struct fib_table *tb) 1780 { 1781 struct trie *t = (struct trie *) tb->tb_data; 1782 struct leaf *l, *ll = NULL; 1783 int found = 0; 1784 1785 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1786 found += trie_flush_leaf(l); 1787 1788 if (ll && hlist_empty(&ll->list)) 1789 trie_leaf_remove(t, ll); 1790 ll = l; 1791 } 1792 1793 if (ll && hlist_empty(&ll->list)) 1794 trie_leaf_remove(t, ll); 1795 1796 pr_debug("trie_flush found=%d\n", found); 1797 return found; 1798 } 1799 1800 void fib_free_table(struct fib_table *tb) 1801 { 1802 kfree(tb); 1803 } 1804 1805 void fib_table_select_default(struct fib_table *tb, 1806 const struct flowi *flp, 1807 struct fib_result *res) 1808 { 1809 struct trie *t = (struct trie *) tb->tb_data; 1810 int order, last_idx; 1811 struct fib_info *fi = NULL; 1812 struct fib_info *last_resort; 1813 struct fib_alias *fa = NULL; 1814 struct list_head *fa_head; 1815 struct leaf *l; 1816 1817 last_idx = -1; 1818 last_resort = NULL; 1819 order = -1; 1820 1821 rcu_read_lock(); 1822 1823 l = fib_find_node(t, 0); 1824 if (!l) 1825 goto out; 1826 1827 fa_head = get_fa_head(l, 0); 1828 if (!fa_head) 1829 goto out; 1830 1831 if (list_empty(fa_head)) 1832 goto out; 1833 1834 list_for_each_entry_rcu(fa, fa_head, fa_list) { 1835 struct fib_info *next_fi = fa->fa_info; 1836 1837 if (fa->fa_scope != res->scope || 1838 fa->fa_type != RTN_UNICAST) 1839 continue; 1840 1841 if (next_fi->fib_priority > res->fi->fib_priority) 1842 break; 1843 if (!next_fi->fib_nh[0].nh_gw || 1844 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) 1845 continue; 1846 1847 fib_alias_accessed(fa); 1848 1849 if (fi == NULL) { 1850 if (next_fi != res->fi) 1851 break; 1852 } else if (!fib_detect_death(fi, order, &last_resort, 1853 &last_idx, tb->tb_default)) { 1854 fib_result_assign(res, fi); 1855 tb->tb_default = order; 1856 goto out; 1857 } 1858 fi = next_fi; 1859 order++; 1860 } 1861 if (order <= 0 || fi == NULL) { 1862 tb->tb_default = -1; 1863 goto out; 1864 } 1865 1866 if (!fib_detect_death(fi, order, &last_resort, &last_idx, 1867 tb->tb_default)) { 1868 fib_result_assign(res, fi); 1869 tb->tb_default = order; 1870 goto out; 1871 } 1872 if (last_idx >= 0) 1873 fib_result_assign(res, last_resort); 1874 tb->tb_default = last_idx; 1875 out: 1876 rcu_read_unlock(); 1877 } 1878 1879 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1880 struct fib_table *tb, 1881 struct sk_buff *skb, struct netlink_callback *cb) 1882 { 1883 int i, s_i; 1884 struct fib_alias *fa; 1885 __be32 xkey = htonl(key); 1886 1887 s_i = cb->args[5]; 1888 i = 0; 1889 1890 /* rcu_read_lock is hold by caller */ 1891 1892 list_for_each_entry_rcu(fa, fah, fa_list) { 1893 if (i < s_i) { 1894 i++; 1895 continue; 1896 } 1897 1898 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1899 cb->nlh->nlmsg_seq, 1900 RTM_NEWROUTE, 1901 tb->tb_id, 1902 fa->fa_type, 1903 fa->fa_scope, 1904 xkey, 1905 plen, 1906 fa->fa_tos, 1907 fa->fa_info, NLM_F_MULTI) < 0) { 1908 cb->args[5] = i; 1909 return -1; 1910 } 1911 i++; 1912 } 1913 cb->args[5] = i; 1914 return skb->len; 1915 } 1916 1917 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1918 struct sk_buff *skb, struct netlink_callback *cb) 1919 { 1920 struct leaf_info *li; 1921 struct hlist_node *node; 1922 int i, s_i; 1923 1924 s_i = cb->args[4]; 1925 i = 0; 1926 1927 /* rcu_read_lock is hold by caller */ 1928 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1929 if (i < s_i) { 1930 i++; 1931 continue; 1932 } 1933 1934 if (i > s_i) 1935 cb->args[5] = 0; 1936 1937 if (list_empty(&li->falh)) 1938 continue; 1939 1940 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1941 cb->args[4] = i; 1942 return -1; 1943 } 1944 i++; 1945 } 1946 1947 cb->args[4] = i; 1948 return skb->len; 1949 } 1950 1951 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1952 struct netlink_callback *cb) 1953 { 1954 struct leaf *l; 1955 struct trie *t = (struct trie *) tb->tb_data; 1956 t_key key = cb->args[2]; 1957 int count = cb->args[3]; 1958 1959 rcu_read_lock(); 1960 /* Dump starting at last key. 1961 * Note: 0.0.0.0/0 (ie default) is first key. 1962 */ 1963 if (count == 0) 1964 l = trie_firstleaf(t); 1965 else { 1966 /* Normally, continue from last key, but if that is missing 1967 * fallback to using slow rescan 1968 */ 1969 l = fib_find_node(t, key); 1970 if (!l) 1971 l = trie_leafindex(t, count); 1972 } 1973 1974 while (l) { 1975 cb->args[2] = l->key; 1976 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1977 cb->args[3] = count; 1978 rcu_read_unlock(); 1979 return -1; 1980 } 1981 1982 ++count; 1983 l = trie_nextleaf(l); 1984 memset(&cb->args[4], 0, 1985 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1986 } 1987 cb->args[3] = count; 1988 rcu_read_unlock(); 1989 1990 return skb->len; 1991 } 1992 1993 void __init fib_hash_init(void) 1994 { 1995 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1996 sizeof(struct fib_alias), 1997 0, SLAB_PANIC, NULL); 1998 1999 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2000 max(sizeof(struct leaf), 2001 sizeof(struct leaf_info)), 2002 0, SLAB_PANIC, NULL); 2003 } 2004 2005 2006 /* Fix more generic FIB names for init later */ 2007 struct fib_table *fib_hash_table(u32 id) 2008 { 2009 struct fib_table *tb; 2010 struct trie *t; 2011 2012 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 2013 GFP_KERNEL); 2014 if (tb == NULL) 2015 return NULL; 2016 2017 tb->tb_id = id; 2018 tb->tb_default = -1; 2019 2020 t = (struct trie *) tb->tb_data; 2021 memset(t, 0, sizeof(*t)); 2022 2023 if (id == RT_TABLE_LOCAL) 2024 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION); 2025 2026 return tb; 2027 } 2028 2029 #ifdef CONFIG_PROC_FS 2030 /* Depth first Trie walk iterator */ 2031 struct fib_trie_iter { 2032 struct seq_net_private p; 2033 struct fib_table *tb; 2034 struct tnode *tnode; 2035 unsigned int index; 2036 unsigned int depth; 2037 }; 2038 2039 static struct node *fib_trie_get_next(struct fib_trie_iter *iter) 2040 { 2041 struct tnode *tn = iter->tnode; 2042 unsigned int cindex = iter->index; 2043 struct tnode *p; 2044 2045 /* A single entry routing table */ 2046 if (!tn) 2047 return NULL; 2048 2049 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2050 iter->tnode, iter->index, iter->depth); 2051 rescan: 2052 while (cindex < (1<<tn->bits)) { 2053 struct node *n = tnode_get_child_rcu(tn, cindex); 2054 2055 if (n) { 2056 if (IS_LEAF(n)) { 2057 iter->tnode = tn; 2058 iter->index = cindex + 1; 2059 } else { 2060 /* push down one level */ 2061 iter->tnode = (struct tnode *) n; 2062 iter->index = 0; 2063 ++iter->depth; 2064 } 2065 return n; 2066 } 2067 2068 ++cindex; 2069 } 2070 2071 /* Current node exhausted, pop back up */ 2072 p = node_parent_rcu((struct node *)tn); 2073 if (p) { 2074 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2075 tn = p; 2076 --iter->depth; 2077 goto rescan; 2078 } 2079 2080 /* got root? */ 2081 return NULL; 2082 } 2083 2084 static struct node *fib_trie_get_first(struct fib_trie_iter *iter, 2085 struct trie *t) 2086 { 2087 struct node *n; 2088 2089 if (!t) 2090 return NULL; 2091 2092 n = rcu_dereference(t->trie); 2093 if (!n) 2094 return NULL; 2095 2096 if (IS_TNODE(n)) { 2097 iter->tnode = (struct tnode *) n; 2098 iter->index = 0; 2099 iter->depth = 1; 2100 } else { 2101 iter->tnode = NULL; 2102 iter->index = 0; 2103 iter->depth = 0; 2104 } 2105 2106 return n; 2107 } 2108 2109 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2110 { 2111 struct node *n; 2112 struct fib_trie_iter iter; 2113 2114 memset(s, 0, sizeof(*s)); 2115 2116 rcu_read_lock(); 2117 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2118 if (IS_LEAF(n)) { 2119 struct leaf *l = (struct leaf *)n; 2120 struct leaf_info *li; 2121 struct hlist_node *tmp; 2122 2123 s->leaves++; 2124 s->totdepth += iter.depth; 2125 if (iter.depth > s->maxdepth) 2126 s->maxdepth = iter.depth; 2127 2128 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2129 ++s->prefixes; 2130 } else { 2131 const struct tnode *tn = (const struct tnode *) n; 2132 int i; 2133 2134 s->tnodes++; 2135 if (tn->bits < MAX_STAT_DEPTH) 2136 s->nodesizes[tn->bits]++; 2137 2138 for (i = 0; i < (1<<tn->bits); i++) 2139 if (!tn->child[i]) 2140 s->nullpointers++; 2141 } 2142 } 2143 rcu_read_unlock(); 2144 } 2145 2146 /* 2147 * This outputs /proc/net/fib_triestats 2148 */ 2149 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2150 { 2151 unsigned int i, max, pointers, bytes, avdepth; 2152 2153 if (stat->leaves) 2154 avdepth = stat->totdepth*100 / stat->leaves; 2155 else 2156 avdepth = 0; 2157 2158 seq_printf(seq, "\tAver depth: %u.%02d\n", 2159 avdepth / 100, avdepth % 100); 2160 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2161 2162 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2163 bytes = sizeof(struct leaf) * stat->leaves; 2164 2165 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2166 bytes += sizeof(struct leaf_info) * stat->prefixes; 2167 2168 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2169 bytes += sizeof(struct tnode) * stat->tnodes; 2170 2171 max = MAX_STAT_DEPTH; 2172 while (max > 0 && stat->nodesizes[max-1] == 0) 2173 max--; 2174 2175 pointers = 0; 2176 for (i = 1; i <= max; i++) 2177 if (stat->nodesizes[i] != 0) { 2178 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2179 pointers += (1<<i) * stat->nodesizes[i]; 2180 } 2181 seq_putc(seq, '\n'); 2182 seq_printf(seq, "\tPointers: %u\n", pointers); 2183 2184 bytes += sizeof(struct node *) * pointers; 2185 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2186 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2187 } 2188 2189 #ifdef CONFIG_IP_FIB_TRIE_STATS 2190 static void trie_show_usage(struct seq_file *seq, 2191 const struct trie_use_stats *stats) 2192 { 2193 seq_printf(seq, "\nCounters:\n---------\n"); 2194 seq_printf(seq, "gets = %u\n", stats->gets); 2195 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2196 seq_printf(seq, "semantic match passed = %u\n", 2197 stats->semantic_match_passed); 2198 seq_printf(seq, "semantic match miss = %u\n", 2199 stats->semantic_match_miss); 2200 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2201 seq_printf(seq, "skipped node resize = %u\n\n", 2202 stats->resize_node_skipped); 2203 } 2204 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2205 2206 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2207 { 2208 if (tb->tb_id == RT_TABLE_LOCAL) 2209 seq_puts(seq, "Local:\n"); 2210 else if (tb->tb_id == RT_TABLE_MAIN) 2211 seq_puts(seq, "Main:\n"); 2212 else 2213 seq_printf(seq, "Id %d:\n", tb->tb_id); 2214 } 2215 2216 2217 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2218 { 2219 struct net *net = (struct net *)seq->private; 2220 unsigned int h; 2221 2222 seq_printf(seq, 2223 "Basic info: size of leaf:" 2224 " %Zd bytes, size of tnode: %Zd bytes.\n", 2225 sizeof(struct leaf), sizeof(struct tnode)); 2226 2227 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2228 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2229 struct hlist_node *node; 2230 struct fib_table *tb; 2231 2232 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2233 struct trie *t = (struct trie *) tb->tb_data; 2234 struct trie_stat stat; 2235 2236 if (!t) 2237 continue; 2238 2239 fib_table_print(seq, tb); 2240 2241 trie_collect_stats(t, &stat); 2242 trie_show_stats(seq, &stat); 2243 #ifdef CONFIG_IP_FIB_TRIE_STATS 2244 trie_show_usage(seq, &t->stats); 2245 #endif 2246 } 2247 } 2248 2249 return 0; 2250 } 2251 2252 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2253 { 2254 return single_open_net(inode, file, fib_triestat_seq_show); 2255 } 2256 2257 static const struct file_operations fib_triestat_fops = { 2258 .owner = THIS_MODULE, 2259 .open = fib_triestat_seq_open, 2260 .read = seq_read, 2261 .llseek = seq_lseek, 2262 .release = single_release_net, 2263 }; 2264 2265 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2266 { 2267 struct fib_trie_iter *iter = seq->private; 2268 struct net *net = seq_file_net(seq); 2269 loff_t idx = 0; 2270 unsigned int h; 2271 2272 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2273 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2274 struct hlist_node *node; 2275 struct fib_table *tb; 2276 2277 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2278 struct node *n; 2279 2280 for (n = fib_trie_get_first(iter, 2281 (struct trie *) tb->tb_data); 2282 n; n = fib_trie_get_next(iter)) 2283 if (pos == idx++) { 2284 iter->tb = tb; 2285 return n; 2286 } 2287 } 2288 } 2289 2290 return NULL; 2291 } 2292 2293 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2294 __acquires(RCU) 2295 { 2296 rcu_read_lock(); 2297 return fib_trie_get_idx(seq, *pos); 2298 } 2299 2300 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2301 { 2302 struct fib_trie_iter *iter = seq->private; 2303 struct net *net = seq_file_net(seq); 2304 struct fib_table *tb = iter->tb; 2305 struct hlist_node *tb_node; 2306 unsigned int h; 2307 struct node *n; 2308 2309 ++*pos; 2310 /* next node in same table */ 2311 n = fib_trie_get_next(iter); 2312 if (n) 2313 return n; 2314 2315 /* walk rest of this hash chain */ 2316 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2317 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) { 2318 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2319 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2320 if (n) 2321 goto found; 2322 } 2323 2324 /* new hash chain */ 2325 while (++h < FIB_TABLE_HASHSZ) { 2326 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2327 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2328 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2329 if (n) 2330 goto found; 2331 } 2332 } 2333 return NULL; 2334 2335 found: 2336 iter->tb = tb; 2337 return n; 2338 } 2339 2340 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2341 __releases(RCU) 2342 { 2343 rcu_read_unlock(); 2344 } 2345 2346 static void seq_indent(struct seq_file *seq, int n) 2347 { 2348 while (n-- > 0) 2349 seq_puts(seq, " "); 2350 } 2351 2352 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2353 { 2354 switch (s) { 2355 case RT_SCOPE_UNIVERSE: return "universe"; 2356 case RT_SCOPE_SITE: return "site"; 2357 case RT_SCOPE_LINK: return "link"; 2358 case RT_SCOPE_HOST: return "host"; 2359 case RT_SCOPE_NOWHERE: return "nowhere"; 2360 default: 2361 snprintf(buf, len, "scope=%d", s); 2362 return buf; 2363 } 2364 } 2365 2366 static const char *const rtn_type_names[__RTN_MAX] = { 2367 [RTN_UNSPEC] = "UNSPEC", 2368 [RTN_UNICAST] = "UNICAST", 2369 [RTN_LOCAL] = "LOCAL", 2370 [RTN_BROADCAST] = "BROADCAST", 2371 [RTN_ANYCAST] = "ANYCAST", 2372 [RTN_MULTICAST] = "MULTICAST", 2373 [RTN_BLACKHOLE] = "BLACKHOLE", 2374 [RTN_UNREACHABLE] = "UNREACHABLE", 2375 [RTN_PROHIBIT] = "PROHIBIT", 2376 [RTN_THROW] = "THROW", 2377 [RTN_NAT] = "NAT", 2378 [RTN_XRESOLVE] = "XRESOLVE", 2379 }; 2380 2381 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2382 { 2383 if (t < __RTN_MAX && rtn_type_names[t]) 2384 return rtn_type_names[t]; 2385 snprintf(buf, len, "type %u", t); 2386 return buf; 2387 } 2388 2389 /* Pretty print the trie */ 2390 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2391 { 2392 const struct fib_trie_iter *iter = seq->private; 2393 struct node *n = v; 2394 2395 if (!node_parent_rcu(n)) 2396 fib_table_print(seq, iter->tb); 2397 2398 if (IS_TNODE(n)) { 2399 struct tnode *tn = (struct tnode *) n; 2400 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2401 2402 seq_indent(seq, iter->depth-1); 2403 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2404 &prf, tn->pos, tn->bits, tn->full_children, 2405 tn->empty_children); 2406 2407 } else { 2408 struct leaf *l = (struct leaf *) n; 2409 struct leaf_info *li; 2410 struct hlist_node *node; 2411 __be32 val = htonl(l->key); 2412 2413 seq_indent(seq, iter->depth); 2414 seq_printf(seq, " |-- %pI4\n", &val); 2415 2416 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2417 struct fib_alias *fa; 2418 2419 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2420 char buf1[32], buf2[32]; 2421 2422 seq_indent(seq, iter->depth+1); 2423 seq_printf(seq, " /%d %s %s", li->plen, 2424 rtn_scope(buf1, sizeof(buf1), 2425 fa->fa_scope), 2426 rtn_type(buf2, sizeof(buf2), 2427 fa->fa_type)); 2428 if (fa->fa_tos) 2429 seq_printf(seq, " tos=%d", fa->fa_tos); 2430 seq_putc(seq, '\n'); 2431 } 2432 } 2433 } 2434 2435 return 0; 2436 } 2437 2438 static const struct seq_operations fib_trie_seq_ops = { 2439 .start = fib_trie_seq_start, 2440 .next = fib_trie_seq_next, 2441 .stop = fib_trie_seq_stop, 2442 .show = fib_trie_seq_show, 2443 }; 2444 2445 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2446 { 2447 return seq_open_net(inode, file, &fib_trie_seq_ops, 2448 sizeof(struct fib_trie_iter)); 2449 } 2450 2451 static const struct file_operations fib_trie_fops = { 2452 .owner = THIS_MODULE, 2453 .open = fib_trie_seq_open, 2454 .read = seq_read, 2455 .llseek = seq_lseek, 2456 .release = seq_release_net, 2457 }; 2458 2459 struct fib_route_iter { 2460 struct seq_net_private p; 2461 struct trie *main_trie; 2462 loff_t pos; 2463 t_key key; 2464 }; 2465 2466 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2467 { 2468 struct leaf *l = NULL; 2469 struct trie *t = iter->main_trie; 2470 2471 /* use cache location of last found key */ 2472 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2473 pos -= iter->pos; 2474 else { 2475 iter->pos = 0; 2476 l = trie_firstleaf(t); 2477 } 2478 2479 while (l && pos-- > 0) { 2480 iter->pos++; 2481 l = trie_nextleaf(l); 2482 } 2483 2484 if (l) 2485 iter->key = pos; /* remember it */ 2486 else 2487 iter->pos = 0; /* forget it */ 2488 2489 return l; 2490 } 2491 2492 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2493 __acquires(RCU) 2494 { 2495 struct fib_route_iter *iter = seq->private; 2496 struct fib_table *tb; 2497 2498 rcu_read_lock(); 2499 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2500 if (!tb) 2501 return NULL; 2502 2503 iter->main_trie = (struct trie *) tb->tb_data; 2504 if (*pos == 0) 2505 return SEQ_START_TOKEN; 2506 else 2507 return fib_route_get_idx(iter, *pos - 1); 2508 } 2509 2510 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2511 { 2512 struct fib_route_iter *iter = seq->private; 2513 struct leaf *l = v; 2514 2515 ++*pos; 2516 if (v == SEQ_START_TOKEN) { 2517 iter->pos = 0; 2518 l = trie_firstleaf(iter->main_trie); 2519 } else { 2520 iter->pos++; 2521 l = trie_nextleaf(l); 2522 } 2523 2524 if (l) 2525 iter->key = l->key; 2526 else 2527 iter->pos = 0; 2528 return l; 2529 } 2530 2531 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2532 __releases(RCU) 2533 { 2534 rcu_read_unlock(); 2535 } 2536 2537 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2538 { 2539 unsigned int flags = 0; 2540 2541 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2542 flags = RTF_REJECT; 2543 if (fi && fi->fib_nh->nh_gw) 2544 flags |= RTF_GATEWAY; 2545 if (mask == htonl(0xFFFFFFFF)) 2546 flags |= RTF_HOST; 2547 flags |= RTF_UP; 2548 return flags; 2549 } 2550 2551 /* 2552 * This outputs /proc/net/route. 2553 * The format of the file is not supposed to be changed 2554 * and needs to be same as fib_hash output to avoid breaking 2555 * legacy utilities 2556 */ 2557 static int fib_route_seq_show(struct seq_file *seq, void *v) 2558 { 2559 struct leaf *l = v; 2560 struct leaf_info *li; 2561 struct hlist_node *node; 2562 2563 if (v == SEQ_START_TOKEN) { 2564 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2565 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2566 "\tWindow\tIRTT"); 2567 return 0; 2568 } 2569 2570 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2571 struct fib_alias *fa; 2572 __be32 mask, prefix; 2573 2574 mask = inet_make_mask(li->plen); 2575 prefix = htonl(l->key); 2576 2577 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2578 const struct fib_info *fi = fa->fa_info; 2579 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2580 int len; 2581 2582 if (fa->fa_type == RTN_BROADCAST 2583 || fa->fa_type == RTN_MULTICAST) 2584 continue; 2585 2586 if (fi) 2587 seq_printf(seq, 2588 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2589 "%d\t%08X\t%d\t%u\t%u%n", 2590 fi->fib_dev ? fi->fib_dev->name : "*", 2591 prefix, 2592 fi->fib_nh->nh_gw, flags, 0, 0, 2593 fi->fib_priority, 2594 mask, 2595 (fi->fib_advmss ? 2596 fi->fib_advmss + 40 : 0), 2597 fi->fib_window, 2598 fi->fib_rtt >> 3, &len); 2599 else 2600 seq_printf(seq, 2601 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2602 "%d\t%08X\t%d\t%u\t%u%n", 2603 prefix, 0, flags, 0, 0, 0, 2604 mask, 0, 0, 0, &len); 2605 2606 seq_printf(seq, "%*s\n", 127 - len, ""); 2607 } 2608 } 2609 2610 return 0; 2611 } 2612 2613 static const struct seq_operations fib_route_seq_ops = { 2614 .start = fib_route_seq_start, 2615 .next = fib_route_seq_next, 2616 .stop = fib_route_seq_stop, 2617 .show = fib_route_seq_show, 2618 }; 2619 2620 static int fib_route_seq_open(struct inode *inode, struct file *file) 2621 { 2622 return seq_open_net(inode, file, &fib_route_seq_ops, 2623 sizeof(struct fib_route_iter)); 2624 } 2625 2626 static const struct file_operations fib_route_fops = { 2627 .owner = THIS_MODULE, 2628 .open = fib_route_seq_open, 2629 .read = seq_read, 2630 .llseek = seq_lseek, 2631 .release = seq_release_net, 2632 }; 2633 2634 int __net_init fib_proc_init(struct net *net) 2635 { 2636 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2637 goto out1; 2638 2639 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2640 &fib_triestat_fops)) 2641 goto out2; 2642 2643 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2644 goto out3; 2645 2646 return 0; 2647 2648 out3: 2649 proc_net_remove(net, "fib_triestat"); 2650 out2: 2651 proc_net_remove(net, "fib_trie"); 2652 out1: 2653 return -ENOMEM; 2654 } 2655 2656 void __net_exit fib_proc_exit(struct net *net) 2657 { 2658 proc_net_remove(net, "fib_trie"); 2659 proc_net_remove(net, "fib_triestat"); 2660 proc_net_remove(net, "route"); 2661 } 2662 2663 #endif /* CONFIG_PROC_FS */ 2664