xref: /linux/net/ipv4/fib_trie.c (revision f3449bf31d352f70c80a7993c272a7854ae98086)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally descibed in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83 
84 #define MAX_STAT_DEPTH 32
85 
86 #define KEYLENGTH (8*sizeof(t_key))
87 
88 typedef unsigned int t_key;
89 
90 #define T_TNODE 0
91 #define T_LEAF  1
92 #define NODE_TYPE_MASK	0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94 
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97 
98 struct node {
99 	unsigned long parent;
100 	t_key key;
101 };
102 
103 struct leaf {
104 	unsigned long parent;
105 	t_key key;
106 	struct hlist_head list;
107 	struct rcu_head rcu;
108 };
109 
110 struct leaf_info {
111 	struct hlist_node hlist;
112 	struct rcu_head rcu;
113 	int plen;
114 	struct list_head falh;
115 };
116 
117 struct tnode {
118 	unsigned long parent;
119 	t_key key;
120 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
121 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned int full_children;	/* KEYLENGTH bits needed */
123 	unsigned int empty_children;	/* KEYLENGTH bits needed */
124 	union {
125 		struct rcu_head rcu;
126 		struct work_struct work;
127 		struct tnode *tnode_free;
128 	};
129 	struct node *child[0];
130 };
131 
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 	unsigned int gets;
135 	unsigned int backtrack;
136 	unsigned int semantic_match_passed;
137 	unsigned int semantic_match_miss;
138 	unsigned int null_node_hit;
139 	unsigned int resize_node_skipped;
140 };
141 #endif
142 
143 struct trie_stat {
144 	unsigned int totdepth;
145 	unsigned int maxdepth;
146 	unsigned int tnodes;
147 	unsigned int leaves;
148 	unsigned int nullpointers;
149 	unsigned int prefixes;
150 	unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152 
153 struct trie {
154 	struct node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 	struct trie_use_stats stats;
157 #endif
158 };
159 
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 				  int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
169 
170 /*
171  * synchronize_rcu after call_rcu for that many pages; it should be especially
172  * useful before resizing the root node with PREEMPT_NONE configs; the value was
173  * obtained experimentally, aiming to avoid visible slowdown.
174  */
175 static const int sync_pages = 128;
176 
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179 
180 static inline struct tnode *node_parent(struct node *node)
181 {
182 	return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183 }
184 
185 static inline struct tnode *node_parent_rcu(struct node *node)
186 {
187 	struct tnode *ret = node_parent(node);
188 
189 	return rcu_dereference_rtnl(ret);
190 }
191 
192 /* Same as rcu_assign_pointer
193  * but that macro() assumes that value is a pointer.
194  */
195 static inline void node_set_parent(struct node *node, struct tnode *ptr)
196 {
197 	smp_wmb();
198 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
199 }
200 
201 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
202 {
203 	BUG_ON(i >= 1U << tn->bits);
204 
205 	return tn->child[i];
206 }
207 
208 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209 {
210 	struct node *ret = tnode_get_child(tn, i);
211 
212 	return rcu_dereference_rtnl(ret);
213 }
214 
215 static inline int tnode_child_length(const struct tnode *tn)
216 {
217 	return 1 << tn->bits;
218 }
219 
220 static inline t_key mask_pfx(t_key k, unsigned short l)
221 {
222 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223 }
224 
225 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
226 {
227 	if (offset < KEYLENGTH)
228 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 	else
230 		return 0;
231 }
232 
233 static inline int tkey_equals(t_key a, t_key b)
234 {
235 	return a == b;
236 }
237 
238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239 {
240 	if (bits == 0 || offset >= KEYLENGTH)
241 		return 1;
242 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
244 }
245 
246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
247 {
248 	t_key diff = a ^ b;
249 	int i = offset;
250 
251 	if (!diff)
252 		return 0;
253 	while ((diff << i) >> (KEYLENGTH-1) == 0)
254 		i++;
255 	return i;
256 }
257 
258 /*
259   To understand this stuff, an understanding of keys and all their bits is
260   necessary. Every node in the trie has a key associated with it, but not
261   all of the bits in that key are significant.
262 
263   Consider a node 'n' and its parent 'tp'.
264 
265   If n is a leaf, every bit in its key is significant. Its presence is
266   necessitated by path compression, since during a tree traversal (when
267   searching for a leaf - unless we are doing an insertion) we will completely
268   ignore all skipped bits we encounter. Thus we need to verify, at the end of
269   a potentially successful search, that we have indeed been walking the
270   correct key path.
271 
272   Note that we can never "miss" the correct key in the tree if present by
273   following the wrong path. Path compression ensures that segments of the key
274   that are the same for all keys with a given prefix are skipped, but the
275   skipped part *is* identical for each node in the subtrie below the skipped
276   bit! trie_insert() in this implementation takes care of that - note the
277   call to tkey_sub_equals() in trie_insert().
278 
279   if n is an internal node - a 'tnode' here, the various parts of its key
280   have many different meanings.
281 
282   Example:
283   _________________________________________________________________
284   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285   -----------------------------------------------------------------
286     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
287 
288   _________________________________________________________________
289   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290   -----------------------------------------------------------------
291    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
292 
293   tp->pos = 7
294   tp->bits = 3
295   n->pos = 15
296   n->bits = 4
297 
298   First, let's just ignore the bits that come before the parent tp, that is
299   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300   not use them for anything.
301 
302   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303   index into the parent's child array. That is, they will be used to find
304   'n' among tp's children.
305 
306   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307   for the node n.
308 
309   All the bits we have seen so far are significant to the node n. The rest
310   of the bits are really not needed or indeed known in n->key.
311 
312   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313   n's child array, and will of course be different for each child.
314 
315 
316   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317   at this point.
318 
319 */
320 
321 static inline void check_tnode(const struct tnode *tn)
322 {
323 	WARN_ON(tn && tn->pos+tn->bits > 32);
324 }
325 
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
330 
331 static void __alias_free_mem(struct rcu_head *head)
332 {
333 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 	kmem_cache_free(fn_alias_kmem, fa);
335 }
336 
337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
338 {
339 	call_rcu(&fa->rcu, __alias_free_mem);
340 }
341 
342 static void __leaf_free_rcu(struct rcu_head *head)
343 {
344 	struct leaf *l = container_of(head, struct leaf, rcu);
345 	kmem_cache_free(trie_leaf_kmem, l);
346 }
347 
348 static inline void free_leaf(struct leaf *l)
349 {
350 	call_rcu_bh(&l->rcu, __leaf_free_rcu);
351 }
352 
353 static void __leaf_info_free_rcu(struct rcu_head *head)
354 {
355 	kfree(container_of(head, struct leaf_info, rcu));
356 }
357 
358 static inline void free_leaf_info(struct leaf_info *leaf)
359 {
360 	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361 }
362 
363 static struct tnode *tnode_alloc(size_t size)
364 {
365 	if (size <= PAGE_SIZE)
366 		return kzalloc(size, GFP_KERNEL);
367 	else
368 		return vzalloc(size);
369 }
370 
371 static void __tnode_vfree(struct work_struct *arg)
372 {
373 	struct tnode *tn = container_of(arg, struct tnode, work);
374 	vfree(tn);
375 }
376 
377 static void __tnode_free_rcu(struct rcu_head *head)
378 {
379 	struct tnode *tn = container_of(head, struct tnode, rcu);
380 	size_t size = sizeof(struct tnode) +
381 		      (sizeof(struct node *) << tn->bits);
382 
383 	if (size <= PAGE_SIZE)
384 		kfree(tn);
385 	else {
386 		INIT_WORK(&tn->work, __tnode_vfree);
387 		schedule_work(&tn->work);
388 	}
389 }
390 
391 static inline void tnode_free(struct tnode *tn)
392 {
393 	if (IS_LEAF(tn))
394 		free_leaf((struct leaf *) tn);
395 	else
396 		call_rcu(&tn->rcu, __tnode_free_rcu);
397 }
398 
399 static void tnode_free_safe(struct tnode *tn)
400 {
401 	BUG_ON(IS_LEAF(tn));
402 	tn->tnode_free = tnode_free_head;
403 	tnode_free_head = tn;
404 	tnode_free_size += sizeof(struct tnode) +
405 			   (sizeof(struct node *) << tn->bits);
406 }
407 
408 static void tnode_free_flush(void)
409 {
410 	struct tnode *tn;
411 
412 	while ((tn = tnode_free_head)) {
413 		tnode_free_head = tn->tnode_free;
414 		tn->tnode_free = NULL;
415 		tnode_free(tn);
416 	}
417 
418 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 		tnode_free_size = 0;
420 		synchronize_rcu();
421 	}
422 }
423 
424 static struct leaf *leaf_new(void)
425 {
426 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 	if (l) {
428 		l->parent = T_LEAF;
429 		INIT_HLIST_HEAD(&l->list);
430 	}
431 	return l;
432 }
433 
434 static struct leaf_info *leaf_info_new(int plen)
435 {
436 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
437 	if (li) {
438 		li->plen = plen;
439 		INIT_LIST_HEAD(&li->falh);
440 	}
441 	return li;
442 }
443 
444 static struct tnode *tnode_new(t_key key, int pos, int bits)
445 {
446 	size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
447 	struct tnode *tn = tnode_alloc(sz);
448 
449 	if (tn) {
450 		tn->parent = T_TNODE;
451 		tn->pos = pos;
452 		tn->bits = bits;
453 		tn->key = key;
454 		tn->full_children = 0;
455 		tn->empty_children = 1<<bits;
456 	}
457 
458 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 		 sizeof(struct node) << bits);
460 	return tn;
461 }
462 
463 /*
464  * Check whether a tnode 'n' is "full", i.e. it is an internal node
465  * and no bits are skipped. See discussion in dyntree paper p. 6
466  */
467 
468 static inline int tnode_full(const struct tnode *tn, const struct node *n)
469 {
470 	if (n == NULL || IS_LEAF(n))
471 		return 0;
472 
473 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474 }
475 
476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 			     struct node *n)
478 {
479 	tnode_put_child_reorg(tn, i, n, -1);
480 }
481 
482  /*
483   * Add a child at position i overwriting the old value.
484   * Update the value of full_children and empty_children.
485   */
486 
487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
488 				  int wasfull)
489 {
490 	struct node *chi = tn->child[i];
491 	int isfull;
492 
493 	BUG_ON(i >= 1<<tn->bits);
494 
495 	/* update emptyChildren */
496 	if (n == NULL && chi != NULL)
497 		tn->empty_children++;
498 	else if (n != NULL && chi == NULL)
499 		tn->empty_children--;
500 
501 	/* update fullChildren */
502 	if (wasfull == -1)
503 		wasfull = tnode_full(tn, chi);
504 
505 	isfull = tnode_full(tn, n);
506 	if (wasfull && !isfull)
507 		tn->full_children--;
508 	else if (!wasfull && isfull)
509 		tn->full_children++;
510 
511 	if (n)
512 		node_set_parent(n, tn);
513 
514 	rcu_assign_pointer(tn->child[i], n);
515 }
516 
517 #define MAX_WORK 10
518 static struct node *resize(struct trie *t, struct tnode *tn)
519 {
520 	int i;
521 	struct tnode *old_tn;
522 	int inflate_threshold_use;
523 	int halve_threshold_use;
524 	int max_work;
525 
526 	if (!tn)
527 		return NULL;
528 
529 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 		 tn, inflate_threshold, halve_threshold);
531 
532 	/* No children */
533 	if (tn->empty_children == tnode_child_length(tn)) {
534 		tnode_free_safe(tn);
535 		return NULL;
536 	}
537 	/* One child */
538 	if (tn->empty_children == tnode_child_length(tn) - 1)
539 		goto one_child;
540 	/*
541 	 * Double as long as the resulting node has a number of
542 	 * nonempty nodes that are above the threshold.
543 	 */
544 
545 	/*
546 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 	 * Telecommunications, page 6:
549 	 * "A node is doubled if the ratio of non-empty children to all
550 	 * children in the *doubled* node is at least 'high'."
551 	 *
552 	 * 'high' in this instance is the variable 'inflate_threshold'. It
553 	 * is expressed as a percentage, so we multiply it with
554 	 * tnode_child_length() and instead of multiplying by 2 (since the
555 	 * child array will be doubled by inflate()) and multiplying
556 	 * the left-hand side by 100 (to handle the percentage thing) we
557 	 * multiply the left-hand side by 50.
558 	 *
559 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 	 * - tn->empty_children is of course the number of non-null children
561 	 * in the current node. tn->full_children is the number of "full"
562 	 * children, that is non-null tnodes with a skip value of 0.
563 	 * All of those will be doubled in the resulting inflated tnode, so
564 	 * we just count them one extra time here.
565 	 *
566 	 * A clearer way to write this would be:
567 	 *
568 	 * to_be_doubled = tn->full_children;
569 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 	 *     tn->full_children;
571 	 *
572 	 * new_child_length = tnode_child_length(tn) * 2;
573 	 *
574 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 	 *      new_child_length;
576 	 * if (new_fill_factor >= inflate_threshold)
577 	 *
578 	 * ...and so on, tho it would mess up the while () loop.
579 	 *
580 	 * anyway,
581 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 	 *      inflate_threshold
583 	 *
584 	 * avoid a division:
585 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 	 *      inflate_threshold * new_child_length
587 	 *
588 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 	 *    tn->full_children) >= inflate_threshold * new_child_length
591 	 *
592 	 * expand new_child_length:
593 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 	 *    tn->full_children) >=
595 	 *      inflate_threshold * tnode_child_length(tn) * 2
596 	 *
597 	 * shorten again:
598 	 * 50 * (tn->full_children + tnode_child_length(tn) -
599 	 *    tn->empty_children) >= inflate_threshold *
600 	 *    tnode_child_length(tn)
601 	 *
602 	 */
603 
604 	check_tnode(tn);
605 
606 	/* Keep root node larger  */
607 
608 	if (!node_parent((struct node *)tn)) {
609 		inflate_threshold_use = inflate_threshold_root;
610 		halve_threshold_use = halve_threshold_root;
611 	} else {
612 		inflate_threshold_use = inflate_threshold;
613 		halve_threshold_use = halve_threshold;
614 	}
615 
616 	max_work = MAX_WORK;
617 	while ((tn->full_children > 0 &&  max_work-- &&
618 		50 * (tn->full_children + tnode_child_length(tn)
619 		      - tn->empty_children)
620 		>= inflate_threshold_use * tnode_child_length(tn))) {
621 
622 		old_tn = tn;
623 		tn = inflate(t, tn);
624 
625 		if (IS_ERR(tn)) {
626 			tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 			t->stats.resize_node_skipped++;
629 #endif
630 			break;
631 		}
632 	}
633 
634 	check_tnode(tn);
635 
636 	/* Return if at least one inflate is run */
637 	if (max_work != MAX_WORK)
638 		return (struct node *) tn;
639 
640 	/*
641 	 * Halve as long as the number of empty children in this
642 	 * node is above threshold.
643 	 */
644 
645 	max_work = MAX_WORK;
646 	while (tn->bits > 1 &&  max_work-- &&
647 	       100 * (tnode_child_length(tn) - tn->empty_children) <
648 	       halve_threshold_use * tnode_child_length(tn)) {
649 
650 		old_tn = tn;
651 		tn = halve(t, tn);
652 		if (IS_ERR(tn)) {
653 			tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 			t->stats.resize_node_skipped++;
656 #endif
657 			break;
658 		}
659 	}
660 
661 
662 	/* Only one child remains */
663 	if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 		for (i = 0; i < tnode_child_length(tn); i++) {
666 			struct node *n;
667 
668 			n = tn->child[i];
669 			if (!n)
670 				continue;
671 
672 			/* compress one level */
673 
674 			node_set_parent(n, NULL);
675 			tnode_free_safe(tn);
676 			return n;
677 		}
678 	}
679 	return (struct node *) tn;
680 }
681 
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
683 {
684 	struct tnode *oldtnode = tn;
685 	int olen = tnode_child_length(tn);
686 	int i;
687 
688 	pr_debug("In inflate\n");
689 
690 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691 
692 	if (!tn)
693 		return ERR_PTR(-ENOMEM);
694 
695 	/*
696 	 * Preallocate and store tnodes before the actual work so we
697 	 * don't get into an inconsistent state if memory allocation
698 	 * fails. In case of failure we return the oldnode and  inflate
699 	 * of tnode is ignored.
700 	 */
701 
702 	for (i = 0; i < olen; i++) {
703 		struct tnode *inode;
704 
705 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 		if (inode &&
707 		    IS_TNODE(inode) &&
708 		    inode->pos == oldtnode->pos + oldtnode->bits &&
709 		    inode->bits > 1) {
710 			struct tnode *left, *right;
711 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
712 
713 			left = tnode_new(inode->key&(~m), inode->pos + 1,
714 					 inode->bits - 1);
715 			if (!left)
716 				goto nomem;
717 
718 			right = tnode_new(inode->key|m, inode->pos + 1,
719 					  inode->bits - 1);
720 
721 			if (!right) {
722 				tnode_free(left);
723 				goto nomem;
724 			}
725 
726 			put_child(t, tn, 2*i, (struct node *) left);
727 			put_child(t, tn, 2*i+1, (struct node *) right);
728 		}
729 	}
730 
731 	for (i = 0; i < olen; i++) {
732 		struct tnode *inode;
733 		struct node *node = tnode_get_child(oldtnode, i);
734 		struct tnode *left, *right;
735 		int size, j;
736 
737 		/* An empty child */
738 		if (node == NULL)
739 			continue;
740 
741 		/* A leaf or an internal node with skipped bits */
742 
743 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 		   tn->pos + tn->bits - 1) {
745 			if (tkey_extract_bits(node->key,
746 					      oldtnode->pos + oldtnode->bits,
747 					      1) == 0)
748 				put_child(t, tn, 2*i, node);
749 			else
750 				put_child(t, tn, 2*i+1, node);
751 			continue;
752 		}
753 
754 		/* An internal node with two children */
755 		inode = (struct tnode *) node;
756 
757 		if (inode->bits == 1) {
758 			put_child(t, tn, 2*i, inode->child[0]);
759 			put_child(t, tn, 2*i+1, inode->child[1]);
760 
761 			tnode_free_safe(inode);
762 			continue;
763 		}
764 
765 		/* An internal node with more than two children */
766 
767 		/* We will replace this node 'inode' with two new
768 		 * ones, 'left' and 'right', each with half of the
769 		 * original children. The two new nodes will have
770 		 * a position one bit further down the key and this
771 		 * means that the "significant" part of their keys
772 		 * (see the discussion near the top of this file)
773 		 * will differ by one bit, which will be "0" in
774 		 * left's key and "1" in right's key. Since we are
775 		 * moving the key position by one step, the bit that
776 		 * we are moving away from - the bit at position
777 		 * (inode->pos) - is the one that will differ between
778 		 * left and right. So... we synthesize that bit in the
779 		 * two  new keys.
780 		 * The mask 'm' below will be a single "one" bit at
781 		 * the position (inode->pos)
782 		 */
783 
784 		/* Use the old key, but set the new significant
785 		 *   bit to zero.
786 		 */
787 
788 		left = (struct tnode *) tnode_get_child(tn, 2*i);
789 		put_child(t, tn, 2*i, NULL);
790 
791 		BUG_ON(!left);
792 
793 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 		put_child(t, tn, 2*i+1, NULL);
795 
796 		BUG_ON(!right);
797 
798 		size = tnode_child_length(left);
799 		for (j = 0; j < size; j++) {
800 			put_child(t, left, j, inode->child[j]);
801 			put_child(t, right, j, inode->child[j + size]);
802 		}
803 		put_child(t, tn, 2*i, resize(t, left));
804 		put_child(t, tn, 2*i+1, resize(t, right));
805 
806 		tnode_free_safe(inode);
807 	}
808 	tnode_free_safe(oldtnode);
809 	return tn;
810 nomem:
811 	{
812 		int size = tnode_child_length(tn);
813 		int j;
814 
815 		for (j = 0; j < size; j++)
816 			if (tn->child[j])
817 				tnode_free((struct tnode *)tn->child[j]);
818 
819 		tnode_free(tn);
820 
821 		return ERR_PTR(-ENOMEM);
822 	}
823 }
824 
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
826 {
827 	struct tnode *oldtnode = tn;
828 	struct node *left, *right;
829 	int i;
830 	int olen = tnode_child_length(tn);
831 
832 	pr_debug("In halve\n");
833 
834 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
835 
836 	if (!tn)
837 		return ERR_PTR(-ENOMEM);
838 
839 	/*
840 	 * Preallocate and store tnodes before the actual work so we
841 	 * don't get into an inconsistent state if memory allocation
842 	 * fails. In case of failure we return the oldnode and halve
843 	 * of tnode is ignored.
844 	 */
845 
846 	for (i = 0; i < olen; i += 2) {
847 		left = tnode_get_child(oldtnode, i);
848 		right = tnode_get_child(oldtnode, i+1);
849 
850 		/* Two nonempty children */
851 		if (left && right) {
852 			struct tnode *newn;
853 
854 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
855 
856 			if (!newn)
857 				goto nomem;
858 
859 			put_child(t, tn, i/2, (struct node *)newn);
860 		}
861 
862 	}
863 
864 	for (i = 0; i < olen; i += 2) {
865 		struct tnode *newBinNode;
866 
867 		left = tnode_get_child(oldtnode, i);
868 		right = tnode_get_child(oldtnode, i+1);
869 
870 		/* At least one of the children is empty */
871 		if (left == NULL) {
872 			if (right == NULL)    /* Both are empty */
873 				continue;
874 			put_child(t, tn, i/2, right);
875 			continue;
876 		}
877 
878 		if (right == NULL) {
879 			put_child(t, tn, i/2, left);
880 			continue;
881 		}
882 
883 		/* Two nonempty children */
884 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 		put_child(t, tn, i/2, NULL);
886 		put_child(t, newBinNode, 0, left);
887 		put_child(t, newBinNode, 1, right);
888 		put_child(t, tn, i/2, resize(t, newBinNode));
889 	}
890 	tnode_free_safe(oldtnode);
891 	return tn;
892 nomem:
893 	{
894 		int size = tnode_child_length(tn);
895 		int j;
896 
897 		for (j = 0; j < size; j++)
898 			if (tn->child[j])
899 				tnode_free((struct tnode *)tn->child[j]);
900 
901 		tnode_free(tn);
902 
903 		return ERR_PTR(-ENOMEM);
904 	}
905 }
906 
907 /* readside must use rcu_read_lock currently dump routines
908  via get_fa_head and dump */
909 
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911 {
912 	struct hlist_head *head = &l->list;
913 	struct hlist_node *node;
914 	struct leaf_info *li;
915 
916 	hlist_for_each_entry_rcu(li, node, head, hlist)
917 		if (li->plen == plen)
918 			return li;
919 
920 	return NULL;
921 }
922 
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
924 {
925 	struct leaf_info *li = find_leaf_info(l, plen);
926 
927 	if (!li)
928 		return NULL;
929 
930 	return &li->falh;
931 }
932 
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934 {
935 	struct leaf_info *li = NULL, *last = NULL;
936 	struct hlist_node *node;
937 
938 	if (hlist_empty(head)) {
939 		hlist_add_head_rcu(&new->hlist, head);
940 	} else {
941 		hlist_for_each_entry(li, node, head, hlist) {
942 			if (new->plen > li->plen)
943 				break;
944 
945 			last = li;
946 		}
947 		if (last)
948 			hlist_add_after_rcu(&last->hlist, &new->hlist);
949 		else
950 			hlist_add_before_rcu(&new->hlist, &li->hlist);
951 	}
952 }
953 
954 /* rcu_read_lock needs to be hold by caller from readside */
955 
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
958 {
959 	int pos;
960 	struct tnode *tn;
961 	struct node *n;
962 
963 	pos = 0;
964 	n = rcu_dereference_rtnl(t->trie);
965 
966 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
967 		tn = (struct tnode *) n;
968 
969 		check_tnode(tn);
970 
971 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 			pos = tn->pos + tn->bits;
973 			n = tnode_get_child_rcu(tn,
974 						tkey_extract_bits(key,
975 								  tn->pos,
976 								  tn->bits));
977 		} else
978 			break;
979 	}
980 	/* Case we have found a leaf. Compare prefixes */
981 
982 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 		return (struct leaf *)n;
984 
985 	return NULL;
986 }
987 
988 static void trie_rebalance(struct trie *t, struct tnode *tn)
989 {
990 	int wasfull;
991 	t_key cindex, key;
992 	struct tnode *tp;
993 
994 	key = tn->key;
995 
996 	while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
997 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000 
1001 		tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 				      (struct node *)tn, wasfull);
1003 
1004 		tp = node_parent((struct node *) tn);
1005 		if (!tp)
1006 			rcu_assign_pointer(t->trie, (struct node *)tn);
1007 
1008 		tnode_free_flush();
1009 		if (!tp)
1010 			break;
1011 		tn = tp;
1012 	}
1013 
1014 	/* Handle last (top) tnode */
1015 	if (IS_TNODE(tn))
1016 		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1017 
1018 	rcu_assign_pointer(t->trie, (struct node *)tn);
1019 	tnode_free_flush();
1020 }
1021 
1022 /* only used from updater-side */
1023 
1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1025 {
1026 	int pos, newpos;
1027 	struct tnode *tp = NULL, *tn = NULL;
1028 	struct node *n;
1029 	struct leaf *l;
1030 	int missbit;
1031 	struct list_head *fa_head = NULL;
1032 	struct leaf_info *li;
1033 	t_key cindex;
1034 
1035 	pos = 0;
1036 	n = t->trie;
1037 
1038 	/* If we point to NULL, stop. Either the tree is empty and we should
1039 	 * just put a new leaf in if, or we have reached an empty child slot,
1040 	 * and we should just put our new leaf in that.
1041 	 * If we point to a T_TNODE, check if it matches our key. Note that
1042 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 	 * not be the parent's 'pos'+'bits'!
1044 	 *
1045 	 * If it does match the current key, get pos/bits from it, extract
1046 	 * the index from our key, push the T_TNODE and walk the tree.
1047 	 *
1048 	 * If it doesn't, we have to replace it with a new T_TNODE.
1049 	 *
1050 	 * If we point to a T_LEAF, it might or might not have the same key
1051 	 * as we do. If it does, just change the value, update the T_LEAF's
1052 	 * value, and return it.
1053 	 * If it doesn't, we need to replace it with a T_TNODE.
1054 	 */
1055 
1056 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1057 		tn = (struct tnode *) n;
1058 
1059 		check_tnode(tn);
1060 
1061 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1062 			tp = tn;
1063 			pos = tn->pos + tn->bits;
1064 			n = tnode_get_child(tn,
1065 					    tkey_extract_bits(key,
1066 							      tn->pos,
1067 							      tn->bits));
1068 
1069 			BUG_ON(n && node_parent(n) != tn);
1070 		} else
1071 			break;
1072 	}
1073 
1074 	/*
1075 	 * n  ----> NULL, LEAF or TNODE
1076 	 *
1077 	 * tp is n's (parent) ----> NULL or TNODE
1078 	 */
1079 
1080 	BUG_ON(tp && IS_LEAF(tp));
1081 
1082 	/* Case 1: n is a leaf. Compare prefixes */
1083 
1084 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1085 		l = (struct leaf *) n;
1086 		li = leaf_info_new(plen);
1087 
1088 		if (!li)
1089 			return NULL;
1090 
1091 		fa_head = &li->falh;
1092 		insert_leaf_info(&l->list, li);
1093 		goto done;
1094 	}
1095 	l = leaf_new();
1096 
1097 	if (!l)
1098 		return NULL;
1099 
1100 	l->key = key;
1101 	li = leaf_info_new(plen);
1102 
1103 	if (!li) {
1104 		free_leaf(l);
1105 		return NULL;
1106 	}
1107 
1108 	fa_head = &li->falh;
1109 	insert_leaf_info(&l->list, li);
1110 
1111 	if (t->trie && n == NULL) {
1112 		/* Case 2: n is NULL, and will just insert a new leaf */
1113 
1114 		node_set_parent((struct node *)l, tp);
1115 
1116 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 		put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1118 	} else {
1119 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1120 		/*
1121 		 *  Add a new tnode here
1122 		 *  first tnode need some special handling
1123 		 */
1124 
1125 		if (tp)
1126 			pos = tp->pos+tp->bits;
1127 		else
1128 			pos = 0;
1129 
1130 		if (n) {
1131 			newpos = tkey_mismatch(key, pos, n->key);
1132 			tn = tnode_new(n->key, newpos, 1);
1133 		} else {
1134 			newpos = 0;
1135 			tn = tnode_new(key, newpos, 1); /* First tnode */
1136 		}
1137 
1138 		if (!tn) {
1139 			free_leaf_info(li);
1140 			free_leaf(l);
1141 			return NULL;
1142 		}
1143 
1144 		node_set_parent((struct node *)tn, tp);
1145 
1146 		missbit = tkey_extract_bits(key, newpos, 1);
1147 		put_child(t, tn, missbit, (struct node *)l);
1148 		put_child(t, tn, 1-missbit, n);
1149 
1150 		if (tp) {
1151 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1152 			put_child(t, (struct tnode *)tp, cindex,
1153 				  (struct node *)tn);
1154 		} else {
1155 			rcu_assign_pointer(t->trie, (struct node *)tn);
1156 			tp = tn;
1157 		}
1158 	}
1159 
1160 	if (tp && tp->pos + tp->bits > 32)
1161 		pr_warning("fib_trie"
1162 			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 			   tp, tp->pos, tp->bits, key, plen);
1164 
1165 	/* Rebalance the trie */
1166 
1167 	trie_rebalance(t, tp);
1168 done:
1169 	return fa_head;
1170 }
1171 
1172 /*
1173  * Caller must hold RTNL.
1174  */
1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1176 {
1177 	struct trie *t = (struct trie *) tb->tb_data;
1178 	struct fib_alias *fa, *new_fa;
1179 	struct list_head *fa_head = NULL;
1180 	struct fib_info *fi;
1181 	int plen = cfg->fc_dst_len;
1182 	u8 tos = cfg->fc_tos;
1183 	u32 key, mask;
1184 	int err;
1185 	struct leaf *l;
1186 
1187 	if (plen > 32)
1188 		return -EINVAL;
1189 
1190 	key = ntohl(cfg->fc_dst);
1191 
1192 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1193 
1194 	mask = ntohl(inet_make_mask(plen));
1195 
1196 	if (key & ~mask)
1197 		return -EINVAL;
1198 
1199 	key = key & mask;
1200 
1201 	fi = fib_create_info(cfg);
1202 	if (IS_ERR(fi)) {
1203 		err = PTR_ERR(fi);
1204 		goto err;
1205 	}
1206 
1207 	l = fib_find_node(t, key);
1208 	fa = NULL;
1209 
1210 	if (l) {
1211 		fa_head = get_fa_head(l, plen);
1212 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 	}
1214 
1215 	/* Now fa, if non-NULL, points to the first fib alias
1216 	 * with the same keys [prefix,tos,priority], if such key already
1217 	 * exists or to the node before which we will insert new one.
1218 	 *
1219 	 * If fa is NULL, we will need to allocate a new one and
1220 	 * insert to the head of f.
1221 	 *
1222 	 * If f is NULL, no fib node matched the destination key
1223 	 * and we need to allocate a new one of those as well.
1224 	 */
1225 
1226 	if (fa && fa->fa_tos == tos &&
1227 	    fa->fa_info->fib_priority == fi->fib_priority) {
1228 		struct fib_alias *fa_first, *fa_match;
1229 
1230 		err = -EEXIST;
1231 		if (cfg->fc_nlflags & NLM_F_EXCL)
1232 			goto out;
1233 
1234 		/* We have 2 goals:
1235 		 * 1. Find exact match for type, scope, fib_info to avoid
1236 		 * duplicate routes
1237 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 		 */
1239 		fa_match = NULL;
1240 		fa_first = fa;
1241 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 		list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 			if (fa->fa_tos != tos)
1244 				break;
1245 			if (fa->fa_info->fib_priority != fi->fib_priority)
1246 				break;
1247 			if (fa->fa_type == cfg->fc_type &&
1248 			    fa->fa_scope == cfg->fc_scope &&
1249 			    fa->fa_info == fi) {
1250 				fa_match = fa;
1251 				break;
1252 			}
1253 		}
1254 
1255 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1256 			struct fib_info *fi_drop;
1257 			u8 state;
1258 
1259 			fa = fa_first;
1260 			if (fa_match) {
1261 				if (fa == fa_match)
1262 					err = 0;
1263 				goto out;
1264 			}
1265 			err = -ENOBUFS;
1266 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1267 			if (new_fa == NULL)
1268 				goto out;
1269 
1270 			fi_drop = fa->fa_info;
1271 			new_fa->fa_tos = fa->fa_tos;
1272 			new_fa->fa_info = fi;
1273 			new_fa->fa_type = cfg->fc_type;
1274 			new_fa->fa_scope = cfg->fc_scope;
1275 			state = fa->fa_state;
1276 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1277 
1278 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 			alias_free_mem_rcu(fa);
1280 
1281 			fib_release_info(fi_drop);
1282 			if (state & FA_S_ACCESSED)
1283 				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1284 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1286 
1287 			goto succeeded;
1288 		}
1289 		/* Error if we find a perfect match which
1290 		 * uses the same scope, type, and nexthop
1291 		 * information.
1292 		 */
1293 		if (fa_match)
1294 			goto out;
1295 
1296 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1297 			fa = fa_first;
1298 	}
1299 	err = -ENOENT;
1300 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1301 		goto out;
1302 
1303 	err = -ENOBUFS;
1304 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1305 	if (new_fa == NULL)
1306 		goto out;
1307 
1308 	new_fa->fa_info = fi;
1309 	new_fa->fa_tos = tos;
1310 	new_fa->fa_type = cfg->fc_type;
1311 	new_fa->fa_scope = cfg->fc_scope;
1312 	new_fa->fa_state = 0;
1313 	/*
1314 	 * Insert new entry to the list.
1315 	 */
1316 
1317 	if (!fa_head) {
1318 		fa_head = fib_insert_node(t, key, plen);
1319 		if (unlikely(!fa_head)) {
1320 			err = -ENOMEM;
1321 			goto out_free_new_fa;
1322 		}
1323 	}
1324 
1325 	list_add_tail_rcu(&new_fa->fa_list,
1326 			  (fa ? &fa->fa_list : fa_head));
1327 
1328 	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1329 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1330 		  &cfg->fc_nlinfo, 0);
1331 succeeded:
1332 	return 0;
1333 
1334 out_free_new_fa:
1335 	kmem_cache_free(fn_alias_kmem, new_fa);
1336 out:
1337 	fib_release_info(fi);
1338 err:
1339 	return err;
1340 }
1341 
1342 /* should be called with rcu_read_lock */
1343 static int check_leaf(struct trie *t, struct leaf *l,
1344 		      t_key key,  const struct flowi *flp,
1345 		      struct fib_result *res, int fib_flags)
1346 {
1347 	struct leaf_info *li;
1348 	struct hlist_head *hhead = &l->list;
1349 	struct hlist_node *node;
1350 
1351 	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1352 		int err;
1353 		int plen = li->plen;
1354 		__be32 mask = inet_make_mask(plen);
1355 
1356 		if (l->key != (key & ntohl(mask)))
1357 			continue;
1358 
1359 		err = fib_semantic_match(&li->falh, flp, res, plen, fib_flags);
1360 
1361 #ifdef CONFIG_IP_FIB_TRIE_STATS
1362 		if (err <= 0)
1363 			t->stats.semantic_match_passed++;
1364 		else
1365 			t->stats.semantic_match_miss++;
1366 #endif
1367 		if (err <= 0)
1368 			return err;
1369 	}
1370 
1371 	return 1;
1372 }
1373 
1374 int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1375 		     struct fib_result *res, int fib_flags)
1376 {
1377 	struct trie *t = (struct trie *) tb->tb_data;
1378 	int ret;
1379 	struct node *n;
1380 	struct tnode *pn;
1381 	int pos, bits;
1382 	t_key key = ntohl(flp->fl4_dst);
1383 	int chopped_off;
1384 	t_key cindex = 0;
1385 	int current_prefix_length = KEYLENGTH;
1386 	struct tnode *cn;
1387 	t_key pref_mismatch;
1388 
1389 	rcu_read_lock();
1390 
1391 	n = rcu_dereference(t->trie);
1392 	if (!n)
1393 		goto failed;
1394 
1395 #ifdef CONFIG_IP_FIB_TRIE_STATS
1396 	t->stats.gets++;
1397 #endif
1398 
1399 	/* Just a leaf? */
1400 	if (IS_LEAF(n)) {
1401 		ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags);
1402 		goto found;
1403 	}
1404 
1405 	pn = (struct tnode *) n;
1406 	chopped_off = 0;
1407 
1408 	while (pn) {
1409 		pos = pn->pos;
1410 		bits = pn->bits;
1411 
1412 		if (!chopped_off)
1413 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1414 						   pos, bits);
1415 
1416 		n = tnode_get_child_rcu(pn, cindex);
1417 
1418 		if (n == NULL) {
1419 #ifdef CONFIG_IP_FIB_TRIE_STATS
1420 			t->stats.null_node_hit++;
1421 #endif
1422 			goto backtrace;
1423 		}
1424 
1425 		if (IS_LEAF(n)) {
1426 			ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags);
1427 			if (ret > 0)
1428 				goto backtrace;
1429 			goto found;
1430 		}
1431 
1432 		cn = (struct tnode *)n;
1433 
1434 		/*
1435 		 * It's a tnode, and we can do some extra checks here if we
1436 		 * like, to avoid descending into a dead-end branch.
1437 		 * This tnode is in the parent's child array at index
1438 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1439 		 * chopped off, so in reality the index may be just a
1440 		 * subprefix, padded with zero at the end.
1441 		 * We can also take a look at any skipped bits in this
1442 		 * tnode - everything up to p_pos is supposed to be ok,
1443 		 * and the non-chopped bits of the index (se previous
1444 		 * paragraph) are also guaranteed ok, but the rest is
1445 		 * considered unknown.
1446 		 *
1447 		 * The skipped bits are key[pos+bits..cn->pos].
1448 		 */
1449 
1450 		/* If current_prefix_length < pos+bits, we are already doing
1451 		 * actual prefix  matching, which means everything from
1452 		 * pos+(bits-chopped_off) onward must be zero along some
1453 		 * branch of this subtree - otherwise there is *no* valid
1454 		 * prefix present. Here we can only check the skipped
1455 		 * bits. Remember, since we have already indexed into the
1456 		 * parent's child array, we know that the bits we chopped of
1457 		 * *are* zero.
1458 		 */
1459 
1460 		/* NOTA BENE: Checking only skipped bits
1461 		   for the new node here */
1462 
1463 		if (current_prefix_length < pos+bits) {
1464 			if (tkey_extract_bits(cn->key, current_prefix_length,
1465 						cn->pos - current_prefix_length)
1466 			    || !(cn->child[0]))
1467 				goto backtrace;
1468 		}
1469 
1470 		/*
1471 		 * If chopped_off=0, the index is fully validated and we
1472 		 * only need to look at the skipped bits for this, the new,
1473 		 * tnode. What we actually want to do is to find out if
1474 		 * these skipped bits match our key perfectly, or if we will
1475 		 * have to count on finding a matching prefix further down,
1476 		 * because if we do, we would like to have some way of
1477 		 * verifying the existence of such a prefix at this point.
1478 		 */
1479 
1480 		/* The only thing we can do at this point is to verify that
1481 		 * any such matching prefix can indeed be a prefix to our
1482 		 * key, and if the bits in the node we are inspecting that
1483 		 * do not match our key are not ZERO, this cannot be true.
1484 		 * Thus, find out where there is a mismatch (before cn->pos)
1485 		 * and verify that all the mismatching bits are zero in the
1486 		 * new tnode's key.
1487 		 */
1488 
1489 		/*
1490 		 * Note: We aren't very concerned about the piece of
1491 		 * the key that precede pn->pos+pn->bits, since these
1492 		 * have already been checked. The bits after cn->pos
1493 		 * aren't checked since these are by definition
1494 		 * "unknown" at this point. Thus, what we want to see
1495 		 * is if we are about to enter the "prefix matching"
1496 		 * state, and in that case verify that the skipped
1497 		 * bits that will prevail throughout this subtree are
1498 		 * zero, as they have to be if we are to find a
1499 		 * matching prefix.
1500 		 */
1501 
1502 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1503 
1504 		/*
1505 		 * In short: If skipped bits in this node do not match
1506 		 * the search key, enter the "prefix matching"
1507 		 * state.directly.
1508 		 */
1509 		if (pref_mismatch) {
1510 			int mp = KEYLENGTH - fls(pref_mismatch);
1511 
1512 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1513 				goto backtrace;
1514 
1515 			if (current_prefix_length >= cn->pos)
1516 				current_prefix_length = mp;
1517 		}
1518 
1519 		pn = (struct tnode *)n; /* Descend */
1520 		chopped_off = 0;
1521 		continue;
1522 
1523 backtrace:
1524 		chopped_off++;
1525 
1526 		/* As zero don't change the child key (cindex) */
1527 		while ((chopped_off <= pn->bits)
1528 		       && !(cindex & (1<<(chopped_off-1))))
1529 			chopped_off++;
1530 
1531 		/* Decrease current_... with bits chopped off */
1532 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1533 			current_prefix_length = pn->pos + pn->bits
1534 				- chopped_off;
1535 
1536 		/*
1537 		 * Either we do the actual chop off according or if we have
1538 		 * chopped off all bits in this tnode walk up to our parent.
1539 		 */
1540 
1541 		if (chopped_off <= pn->bits) {
1542 			cindex &= ~(1 << (chopped_off-1));
1543 		} else {
1544 			struct tnode *parent = node_parent_rcu((struct node *) pn);
1545 			if (!parent)
1546 				goto failed;
1547 
1548 			/* Get Child's index */
1549 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1550 			pn = parent;
1551 			chopped_off = 0;
1552 
1553 #ifdef CONFIG_IP_FIB_TRIE_STATS
1554 			t->stats.backtrack++;
1555 #endif
1556 			goto backtrace;
1557 		}
1558 	}
1559 failed:
1560 	ret = 1;
1561 found:
1562 	rcu_read_unlock();
1563 	return ret;
1564 }
1565 
1566 /*
1567  * Remove the leaf and return parent.
1568  */
1569 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1570 {
1571 	struct tnode *tp = node_parent((struct node *) l);
1572 
1573 	pr_debug("entering trie_leaf_remove(%p)\n", l);
1574 
1575 	if (tp) {
1576 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1577 		put_child(t, (struct tnode *)tp, cindex, NULL);
1578 		trie_rebalance(t, tp);
1579 	} else
1580 		rcu_assign_pointer(t->trie, NULL);
1581 
1582 	free_leaf(l);
1583 }
1584 
1585 /*
1586  * Caller must hold RTNL.
1587  */
1588 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1589 {
1590 	struct trie *t = (struct trie *) tb->tb_data;
1591 	u32 key, mask;
1592 	int plen = cfg->fc_dst_len;
1593 	u8 tos = cfg->fc_tos;
1594 	struct fib_alias *fa, *fa_to_delete;
1595 	struct list_head *fa_head;
1596 	struct leaf *l;
1597 	struct leaf_info *li;
1598 
1599 	if (plen > 32)
1600 		return -EINVAL;
1601 
1602 	key = ntohl(cfg->fc_dst);
1603 	mask = ntohl(inet_make_mask(plen));
1604 
1605 	if (key & ~mask)
1606 		return -EINVAL;
1607 
1608 	key = key & mask;
1609 	l = fib_find_node(t, key);
1610 
1611 	if (!l)
1612 		return -ESRCH;
1613 
1614 	fa_head = get_fa_head(l, plen);
1615 	fa = fib_find_alias(fa_head, tos, 0);
1616 
1617 	if (!fa)
1618 		return -ESRCH;
1619 
1620 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1621 
1622 	fa_to_delete = NULL;
1623 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1624 	list_for_each_entry_continue(fa, fa_head, fa_list) {
1625 		struct fib_info *fi = fa->fa_info;
1626 
1627 		if (fa->fa_tos != tos)
1628 			break;
1629 
1630 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1631 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1632 		     fa->fa_scope == cfg->fc_scope) &&
1633 		    (!cfg->fc_protocol ||
1634 		     fi->fib_protocol == cfg->fc_protocol) &&
1635 		    fib_nh_match(cfg, fi) == 0) {
1636 			fa_to_delete = fa;
1637 			break;
1638 		}
1639 	}
1640 
1641 	if (!fa_to_delete)
1642 		return -ESRCH;
1643 
1644 	fa = fa_to_delete;
1645 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1646 		  &cfg->fc_nlinfo, 0);
1647 
1648 	l = fib_find_node(t, key);
1649 	li = find_leaf_info(l, plen);
1650 
1651 	list_del_rcu(&fa->fa_list);
1652 
1653 	if (list_empty(fa_head)) {
1654 		hlist_del_rcu(&li->hlist);
1655 		free_leaf_info(li);
1656 	}
1657 
1658 	if (hlist_empty(&l->list))
1659 		trie_leaf_remove(t, l);
1660 
1661 	if (fa->fa_state & FA_S_ACCESSED)
1662 		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1663 
1664 	fib_release_info(fa->fa_info);
1665 	alias_free_mem_rcu(fa);
1666 	return 0;
1667 }
1668 
1669 static int trie_flush_list(struct list_head *head)
1670 {
1671 	struct fib_alias *fa, *fa_node;
1672 	int found = 0;
1673 
1674 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1675 		struct fib_info *fi = fa->fa_info;
1676 
1677 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1678 			list_del_rcu(&fa->fa_list);
1679 			fib_release_info(fa->fa_info);
1680 			alias_free_mem_rcu(fa);
1681 			found++;
1682 		}
1683 	}
1684 	return found;
1685 }
1686 
1687 static int trie_flush_leaf(struct leaf *l)
1688 {
1689 	int found = 0;
1690 	struct hlist_head *lih = &l->list;
1691 	struct hlist_node *node, *tmp;
1692 	struct leaf_info *li = NULL;
1693 
1694 	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1695 		found += trie_flush_list(&li->falh);
1696 
1697 		if (list_empty(&li->falh)) {
1698 			hlist_del_rcu(&li->hlist);
1699 			free_leaf_info(li);
1700 		}
1701 	}
1702 	return found;
1703 }
1704 
1705 /*
1706  * Scan for the next right leaf starting at node p->child[idx]
1707  * Since we have back pointer, no recursion necessary.
1708  */
1709 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1710 {
1711 	do {
1712 		t_key idx;
1713 
1714 		if (c)
1715 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1716 		else
1717 			idx = 0;
1718 
1719 		while (idx < 1u << p->bits) {
1720 			c = tnode_get_child_rcu(p, idx++);
1721 			if (!c)
1722 				continue;
1723 
1724 			if (IS_LEAF(c)) {
1725 				prefetch(p->child[idx]);
1726 				return (struct leaf *) c;
1727 			}
1728 
1729 			/* Rescan start scanning in new node */
1730 			p = (struct tnode *) c;
1731 			idx = 0;
1732 		}
1733 
1734 		/* Node empty, walk back up to parent */
1735 		c = (struct node *) p;
1736 	} while ((p = node_parent_rcu(c)) != NULL);
1737 
1738 	return NULL; /* Root of trie */
1739 }
1740 
1741 static struct leaf *trie_firstleaf(struct trie *t)
1742 {
1743 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1744 
1745 	if (!n)
1746 		return NULL;
1747 
1748 	if (IS_LEAF(n))          /* trie is just a leaf */
1749 		return (struct leaf *) n;
1750 
1751 	return leaf_walk_rcu(n, NULL);
1752 }
1753 
1754 static struct leaf *trie_nextleaf(struct leaf *l)
1755 {
1756 	struct node *c = (struct node *) l;
1757 	struct tnode *p = node_parent_rcu(c);
1758 
1759 	if (!p)
1760 		return NULL;	/* trie with just one leaf */
1761 
1762 	return leaf_walk_rcu(p, c);
1763 }
1764 
1765 static struct leaf *trie_leafindex(struct trie *t, int index)
1766 {
1767 	struct leaf *l = trie_firstleaf(t);
1768 
1769 	while (l && index-- > 0)
1770 		l = trie_nextleaf(l);
1771 
1772 	return l;
1773 }
1774 
1775 
1776 /*
1777  * Caller must hold RTNL.
1778  */
1779 int fib_table_flush(struct fib_table *tb)
1780 {
1781 	struct trie *t = (struct trie *) tb->tb_data;
1782 	struct leaf *l, *ll = NULL;
1783 	int found = 0;
1784 
1785 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1786 		found += trie_flush_leaf(l);
1787 
1788 		if (ll && hlist_empty(&ll->list))
1789 			trie_leaf_remove(t, ll);
1790 		ll = l;
1791 	}
1792 
1793 	if (ll && hlist_empty(&ll->list))
1794 		trie_leaf_remove(t, ll);
1795 
1796 	pr_debug("trie_flush found=%d\n", found);
1797 	return found;
1798 }
1799 
1800 void fib_free_table(struct fib_table *tb)
1801 {
1802 	kfree(tb);
1803 }
1804 
1805 void fib_table_select_default(struct fib_table *tb,
1806 			      const struct flowi *flp,
1807 			      struct fib_result *res)
1808 {
1809 	struct trie *t = (struct trie *) tb->tb_data;
1810 	int order, last_idx;
1811 	struct fib_info *fi = NULL;
1812 	struct fib_info *last_resort;
1813 	struct fib_alias *fa = NULL;
1814 	struct list_head *fa_head;
1815 	struct leaf *l;
1816 
1817 	last_idx = -1;
1818 	last_resort = NULL;
1819 	order = -1;
1820 
1821 	rcu_read_lock();
1822 
1823 	l = fib_find_node(t, 0);
1824 	if (!l)
1825 		goto out;
1826 
1827 	fa_head = get_fa_head(l, 0);
1828 	if (!fa_head)
1829 		goto out;
1830 
1831 	if (list_empty(fa_head))
1832 		goto out;
1833 
1834 	list_for_each_entry_rcu(fa, fa_head, fa_list) {
1835 		struct fib_info *next_fi = fa->fa_info;
1836 
1837 		if (fa->fa_scope != res->scope ||
1838 		    fa->fa_type != RTN_UNICAST)
1839 			continue;
1840 
1841 		if (next_fi->fib_priority > res->fi->fib_priority)
1842 			break;
1843 		if (!next_fi->fib_nh[0].nh_gw ||
1844 		    next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1845 			continue;
1846 
1847 		fib_alias_accessed(fa);
1848 
1849 		if (fi == NULL) {
1850 			if (next_fi != res->fi)
1851 				break;
1852 		} else if (!fib_detect_death(fi, order, &last_resort,
1853 					     &last_idx, tb->tb_default)) {
1854 			fib_result_assign(res, fi);
1855 			tb->tb_default = order;
1856 			goto out;
1857 		}
1858 		fi = next_fi;
1859 		order++;
1860 	}
1861 	if (order <= 0 || fi == NULL) {
1862 		tb->tb_default = -1;
1863 		goto out;
1864 	}
1865 
1866 	if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1867 				tb->tb_default)) {
1868 		fib_result_assign(res, fi);
1869 		tb->tb_default = order;
1870 		goto out;
1871 	}
1872 	if (last_idx >= 0)
1873 		fib_result_assign(res, last_resort);
1874 	tb->tb_default = last_idx;
1875 out:
1876 	rcu_read_unlock();
1877 }
1878 
1879 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1880 			   struct fib_table *tb,
1881 			   struct sk_buff *skb, struct netlink_callback *cb)
1882 {
1883 	int i, s_i;
1884 	struct fib_alias *fa;
1885 	__be32 xkey = htonl(key);
1886 
1887 	s_i = cb->args[5];
1888 	i = 0;
1889 
1890 	/* rcu_read_lock is hold by caller */
1891 
1892 	list_for_each_entry_rcu(fa, fah, fa_list) {
1893 		if (i < s_i) {
1894 			i++;
1895 			continue;
1896 		}
1897 
1898 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1899 				  cb->nlh->nlmsg_seq,
1900 				  RTM_NEWROUTE,
1901 				  tb->tb_id,
1902 				  fa->fa_type,
1903 				  fa->fa_scope,
1904 				  xkey,
1905 				  plen,
1906 				  fa->fa_tos,
1907 				  fa->fa_info, NLM_F_MULTI) < 0) {
1908 			cb->args[5] = i;
1909 			return -1;
1910 		}
1911 		i++;
1912 	}
1913 	cb->args[5] = i;
1914 	return skb->len;
1915 }
1916 
1917 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1918 			struct sk_buff *skb, struct netlink_callback *cb)
1919 {
1920 	struct leaf_info *li;
1921 	struct hlist_node *node;
1922 	int i, s_i;
1923 
1924 	s_i = cb->args[4];
1925 	i = 0;
1926 
1927 	/* rcu_read_lock is hold by caller */
1928 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1929 		if (i < s_i) {
1930 			i++;
1931 			continue;
1932 		}
1933 
1934 		if (i > s_i)
1935 			cb->args[5] = 0;
1936 
1937 		if (list_empty(&li->falh))
1938 			continue;
1939 
1940 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1941 			cb->args[4] = i;
1942 			return -1;
1943 		}
1944 		i++;
1945 	}
1946 
1947 	cb->args[4] = i;
1948 	return skb->len;
1949 }
1950 
1951 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1952 		   struct netlink_callback *cb)
1953 {
1954 	struct leaf *l;
1955 	struct trie *t = (struct trie *) tb->tb_data;
1956 	t_key key = cb->args[2];
1957 	int count = cb->args[3];
1958 
1959 	rcu_read_lock();
1960 	/* Dump starting at last key.
1961 	 * Note: 0.0.0.0/0 (ie default) is first key.
1962 	 */
1963 	if (count == 0)
1964 		l = trie_firstleaf(t);
1965 	else {
1966 		/* Normally, continue from last key, but if that is missing
1967 		 * fallback to using slow rescan
1968 		 */
1969 		l = fib_find_node(t, key);
1970 		if (!l)
1971 			l = trie_leafindex(t, count);
1972 	}
1973 
1974 	while (l) {
1975 		cb->args[2] = l->key;
1976 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1977 			cb->args[3] = count;
1978 			rcu_read_unlock();
1979 			return -1;
1980 		}
1981 
1982 		++count;
1983 		l = trie_nextleaf(l);
1984 		memset(&cb->args[4], 0,
1985 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1986 	}
1987 	cb->args[3] = count;
1988 	rcu_read_unlock();
1989 
1990 	return skb->len;
1991 }
1992 
1993 void __init fib_hash_init(void)
1994 {
1995 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1996 					  sizeof(struct fib_alias),
1997 					  0, SLAB_PANIC, NULL);
1998 
1999 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2000 					   max(sizeof(struct leaf),
2001 					       sizeof(struct leaf_info)),
2002 					   0, SLAB_PANIC, NULL);
2003 }
2004 
2005 
2006 /* Fix more generic FIB names for init later */
2007 struct fib_table *fib_hash_table(u32 id)
2008 {
2009 	struct fib_table *tb;
2010 	struct trie *t;
2011 
2012 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2013 		     GFP_KERNEL);
2014 	if (tb == NULL)
2015 		return NULL;
2016 
2017 	tb->tb_id = id;
2018 	tb->tb_default = -1;
2019 
2020 	t = (struct trie *) tb->tb_data;
2021 	memset(t, 0, sizeof(*t));
2022 
2023 	if (id == RT_TABLE_LOCAL)
2024 		pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2025 
2026 	return tb;
2027 }
2028 
2029 #ifdef CONFIG_PROC_FS
2030 /* Depth first Trie walk iterator */
2031 struct fib_trie_iter {
2032 	struct seq_net_private p;
2033 	struct fib_table *tb;
2034 	struct tnode *tnode;
2035 	unsigned int index;
2036 	unsigned int depth;
2037 };
2038 
2039 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2040 {
2041 	struct tnode *tn = iter->tnode;
2042 	unsigned int cindex = iter->index;
2043 	struct tnode *p;
2044 
2045 	/* A single entry routing table */
2046 	if (!tn)
2047 		return NULL;
2048 
2049 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2050 		 iter->tnode, iter->index, iter->depth);
2051 rescan:
2052 	while (cindex < (1<<tn->bits)) {
2053 		struct node *n = tnode_get_child_rcu(tn, cindex);
2054 
2055 		if (n) {
2056 			if (IS_LEAF(n)) {
2057 				iter->tnode = tn;
2058 				iter->index = cindex + 1;
2059 			} else {
2060 				/* push down one level */
2061 				iter->tnode = (struct tnode *) n;
2062 				iter->index = 0;
2063 				++iter->depth;
2064 			}
2065 			return n;
2066 		}
2067 
2068 		++cindex;
2069 	}
2070 
2071 	/* Current node exhausted, pop back up */
2072 	p = node_parent_rcu((struct node *)tn);
2073 	if (p) {
2074 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2075 		tn = p;
2076 		--iter->depth;
2077 		goto rescan;
2078 	}
2079 
2080 	/* got root? */
2081 	return NULL;
2082 }
2083 
2084 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2085 				       struct trie *t)
2086 {
2087 	struct node *n;
2088 
2089 	if (!t)
2090 		return NULL;
2091 
2092 	n = rcu_dereference(t->trie);
2093 	if (!n)
2094 		return NULL;
2095 
2096 	if (IS_TNODE(n)) {
2097 		iter->tnode = (struct tnode *) n;
2098 		iter->index = 0;
2099 		iter->depth = 1;
2100 	} else {
2101 		iter->tnode = NULL;
2102 		iter->index = 0;
2103 		iter->depth = 0;
2104 	}
2105 
2106 	return n;
2107 }
2108 
2109 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2110 {
2111 	struct node *n;
2112 	struct fib_trie_iter iter;
2113 
2114 	memset(s, 0, sizeof(*s));
2115 
2116 	rcu_read_lock();
2117 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2118 		if (IS_LEAF(n)) {
2119 			struct leaf *l = (struct leaf *)n;
2120 			struct leaf_info *li;
2121 			struct hlist_node *tmp;
2122 
2123 			s->leaves++;
2124 			s->totdepth += iter.depth;
2125 			if (iter.depth > s->maxdepth)
2126 				s->maxdepth = iter.depth;
2127 
2128 			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2129 				++s->prefixes;
2130 		} else {
2131 			const struct tnode *tn = (const struct tnode *) n;
2132 			int i;
2133 
2134 			s->tnodes++;
2135 			if (tn->bits < MAX_STAT_DEPTH)
2136 				s->nodesizes[tn->bits]++;
2137 
2138 			for (i = 0; i < (1<<tn->bits); i++)
2139 				if (!tn->child[i])
2140 					s->nullpointers++;
2141 		}
2142 	}
2143 	rcu_read_unlock();
2144 }
2145 
2146 /*
2147  *	This outputs /proc/net/fib_triestats
2148  */
2149 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2150 {
2151 	unsigned int i, max, pointers, bytes, avdepth;
2152 
2153 	if (stat->leaves)
2154 		avdepth = stat->totdepth*100 / stat->leaves;
2155 	else
2156 		avdepth = 0;
2157 
2158 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2159 		   avdepth / 100, avdepth % 100);
2160 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2161 
2162 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2163 	bytes = sizeof(struct leaf) * stat->leaves;
2164 
2165 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2166 	bytes += sizeof(struct leaf_info) * stat->prefixes;
2167 
2168 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2169 	bytes += sizeof(struct tnode) * stat->tnodes;
2170 
2171 	max = MAX_STAT_DEPTH;
2172 	while (max > 0 && stat->nodesizes[max-1] == 0)
2173 		max--;
2174 
2175 	pointers = 0;
2176 	for (i = 1; i <= max; i++)
2177 		if (stat->nodesizes[i] != 0) {
2178 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2179 			pointers += (1<<i) * stat->nodesizes[i];
2180 		}
2181 	seq_putc(seq, '\n');
2182 	seq_printf(seq, "\tPointers: %u\n", pointers);
2183 
2184 	bytes += sizeof(struct node *) * pointers;
2185 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2186 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2187 }
2188 
2189 #ifdef CONFIG_IP_FIB_TRIE_STATS
2190 static void trie_show_usage(struct seq_file *seq,
2191 			    const struct trie_use_stats *stats)
2192 {
2193 	seq_printf(seq, "\nCounters:\n---------\n");
2194 	seq_printf(seq, "gets = %u\n", stats->gets);
2195 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2196 	seq_printf(seq, "semantic match passed = %u\n",
2197 		   stats->semantic_match_passed);
2198 	seq_printf(seq, "semantic match miss = %u\n",
2199 		   stats->semantic_match_miss);
2200 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2201 	seq_printf(seq, "skipped node resize = %u\n\n",
2202 		   stats->resize_node_skipped);
2203 }
2204 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2205 
2206 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2207 {
2208 	if (tb->tb_id == RT_TABLE_LOCAL)
2209 		seq_puts(seq, "Local:\n");
2210 	else if (tb->tb_id == RT_TABLE_MAIN)
2211 		seq_puts(seq, "Main:\n");
2212 	else
2213 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2214 }
2215 
2216 
2217 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2218 {
2219 	struct net *net = (struct net *)seq->private;
2220 	unsigned int h;
2221 
2222 	seq_printf(seq,
2223 		   "Basic info: size of leaf:"
2224 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2225 		   sizeof(struct leaf), sizeof(struct tnode));
2226 
2227 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2228 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2229 		struct hlist_node *node;
2230 		struct fib_table *tb;
2231 
2232 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2233 			struct trie *t = (struct trie *) tb->tb_data;
2234 			struct trie_stat stat;
2235 
2236 			if (!t)
2237 				continue;
2238 
2239 			fib_table_print(seq, tb);
2240 
2241 			trie_collect_stats(t, &stat);
2242 			trie_show_stats(seq, &stat);
2243 #ifdef CONFIG_IP_FIB_TRIE_STATS
2244 			trie_show_usage(seq, &t->stats);
2245 #endif
2246 		}
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2253 {
2254 	return single_open_net(inode, file, fib_triestat_seq_show);
2255 }
2256 
2257 static const struct file_operations fib_triestat_fops = {
2258 	.owner	= THIS_MODULE,
2259 	.open	= fib_triestat_seq_open,
2260 	.read	= seq_read,
2261 	.llseek	= seq_lseek,
2262 	.release = single_release_net,
2263 };
2264 
2265 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2266 {
2267 	struct fib_trie_iter *iter = seq->private;
2268 	struct net *net = seq_file_net(seq);
2269 	loff_t idx = 0;
2270 	unsigned int h;
2271 
2272 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2273 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2274 		struct hlist_node *node;
2275 		struct fib_table *tb;
2276 
2277 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2278 			struct node *n;
2279 
2280 			for (n = fib_trie_get_first(iter,
2281 						    (struct trie *) tb->tb_data);
2282 			     n; n = fib_trie_get_next(iter))
2283 				if (pos == idx++) {
2284 					iter->tb = tb;
2285 					return n;
2286 				}
2287 		}
2288 	}
2289 
2290 	return NULL;
2291 }
2292 
2293 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2294 	__acquires(RCU)
2295 {
2296 	rcu_read_lock();
2297 	return fib_trie_get_idx(seq, *pos);
2298 }
2299 
2300 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2301 {
2302 	struct fib_trie_iter *iter = seq->private;
2303 	struct net *net = seq_file_net(seq);
2304 	struct fib_table *tb = iter->tb;
2305 	struct hlist_node *tb_node;
2306 	unsigned int h;
2307 	struct node *n;
2308 
2309 	++*pos;
2310 	/* next node in same table */
2311 	n = fib_trie_get_next(iter);
2312 	if (n)
2313 		return n;
2314 
2315 	/* walk rest of this hash chain */
2316 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2317 	while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2318 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2319 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2320 		if (n)
2321 			goto found;
2322 	}
2323 
2324 	/* new hash chain */
2325 	while (++h < FIB_TABLE_HASHSZ) {
2326 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2327 		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2328 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2329 			if (n)
2330 				goto found;
2331 		}
2332 	}
2333 	return NULL;
2334 
2335 found:
2336 	iter->tb = tb;
2337 	return n;
2338 }
2339 
2340 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2341 	__releases(RCU)
2342 {
2343 	rcu_read_unlock();
2344 }
2345 
2346 static void seq_indent(struct seq_file *seq, int n)
2347 {
2348 	while (n-- > 0)
2349 		seq_puts(seq, "   ");
2350 }
2351 
2352 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2353 {
2354 	switch (s) {
2355 	case RT_SCOPE_UNIVERSE: return "universe";
2356 	case RT_SCOPE_SITE:	return "site";
2357 	case RT_SCOPE_LINK:	return "link";
2358 	case RT_SCOPE_HOST:	return "host";
2359 	case RT_SCOPE_NOWHERE:	return "nowhere";
2360 	default:
2361 		snprintf(buf, len, "scope=%d", s);
2362 		return buf;
2363 	}
2364 }
2365 
2366 static const char *const rtn_type_names[__RTN_MAX] = {
2367 	[RTN_UNSPEC] = "UNSPEC",
2368 	[RTN_UNICAST] = "UNICAST",
2369 	[RTN_LOCAL] = "LOCAL",
2370 	[RTN_BROADCAST] = "BROADCAST",
2371 	[RTN_ANYCAST] = "ANYCAST",
2372 	[RTN_MULTICAST] = "MULTICAST",
2373 	[RTN_BLACKHOLE] = "BLACKHOLE",
2374 	[RTN_UNREACHABLE] = "UNREACHABLE",
2375 	[RTN_PROHIBIT] = "PROHIBIT",
2376 	[RTN_THROW] = "THROW",
2377 	[RTN_NAT] = "NAT",
2378 	[RTN_XRESOLVE] = "XRESOLVE",
2379 };
2380 
2381 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2382 {
2383 	if (t < __RTN_MAX && rtn_type_names[t])
2384 		return rtn_type_names[t];
2385 	snprintf(buf, len, "type %u", t);
2386 	return buf;
2387 }
2388 
2389 /* Pretty print the trie */
2390 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2391 {
2392 	const struct fib_trie_iter *iter = seq->private;
2393 	struct node *n = v;
2394 
2395 	if (!node_parent_rcu(n))
2396 		fib_table_print(seq, iter->tb);
2397 
2398 	if (IS_TNODE(n)) {
2399 		struct tnode *tn = (struct tnode *) n;
2400 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2401 
2402 		seq_indent(seq, iter->depth-1);
2403 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2404 			   &prf, tn->pos, tn->bits, tn->full_children,
2405 			   tn->empty_children);
2406 
2407 	} else {
2408 		struct leaf *l = (struct leaf *) n;
2409 		struct leaf_info *li;
2410 		struct hlist_node *node;
2411 		__be32 val = htonl(l->key);
2412 
2413 		seq_indent(seq, iter->depth);
2414 		seq_printf(seq, "  |-- %pI4\n", &val);
2415 
2416 		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2417 			struct fib_alias *fa;
2418 
2419 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2420 				char buf1[32], buf2[32];
2421 
2422 				seq_indent(seq, iter->depth+1);
2423 				seq_printf(seq, "  /%d %s %s", li->plen,
2424 					   rtn_scope(buf1, sizeof(buf1),
2425 						     fa->fa_scope),
2426 					   rtn_type(buf2, sizeof(buf2),
2427 						    fa->fa_type));
2428 				if (fa->fa_tos)
2429 					seq_printf(seq, " tos=%d", fa->fa_tos);
2430 				seq_putc(seq, '\n');
2431 			}
2432 		}
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 static const struct seq_operations fib_trie_seq_ops = {
2439 	.start  = fib_trie_seq_start,
2440 	.next   = fib_trie_seq_next,
2441 	.stop   = fib_trie_seq_stop,
2442 	.show   = fib_trie_seq_show,
2443 };
2444 
2445 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2446 {
2447 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2448 			    sizeof(struct fib_trie_iter));
2449 }
2450 
2451 static const struct file_operations fib_trie_fops = {
2452 	.owner  = THIS_MODULE,
2453 	.open   = fib_trie_seq_open,
2454 	.read   = seq_read,
2455 	.llseek = seq_lseek,
2456 	.release = seq_release_net,
2457 };
2458 
2459 struct fib_route_iter {
2460 	struct seq_net_private p;
2461 	struct trie *main_trie;
2462 	loff_t	pos;
2463 	t_key	key;
2464 };
2465 
2466 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2467 {
2468 	struct leaf *l = NULL;
2469 	struct trie *t = iter->main_trie;
2470 
2471 	/* use cache location of last found key */
2472 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2473 		pos -= iter->pos;
2474 	else {
2475 		iter->pos = 0;
2476 		l = trie_firstleaf(t);
2477 	}
2478 
2479 	while (l && pos-- > 0) {
2480 		iter->pos++;
2481 		l = trie_nextleaf(l);
2482 	}
2483 
2484 	if (l)
2485 		iter->key = pos;	/* remember it */
2486 	else
2487 		iter->pos = 0;		/* forget it */
2488 
2489 	return l;
2490 }
2491 
2492 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2493 	__acquires(RCU)
2494 {
2495 	struct fib_route_iter *iter = seq->private;
2496 	struct fib_table *tb;
2497 
2498 	rcu_read_lock();
2499 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2500 	if (!tb)
2501 		return NULL;
2502 
2503 	iter->main_trie = (struct trie *) tb->tb_data;
2504 	if (*pos == 0)
2505 		return SEQ_START_TOKEN;
2506 	else
2507 		return fib_route_get_idx(iter, *pos - 1);
2508 }
2509 
2510 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2511 {
2512 	struct fib_route_iter *iter = seq->private;
2513 	struct leaf *l = v;
2514 
2515 	++*pos;
2516 	if (v == SEQ_START_TOKEN) {
2517 		iter->pos = 0;
2518 		l = trie_firstleaf(iter->main_trie);
2519 	} else {
2520 		iter->pos++;
2521 		l = trie_nextleaf(l);
2522 	}
2523 
2524 	if (l)
2525 		iter->key = l->key;
2526 	else
2527 		iter->pos = 0;
2528 	return l;
2529 }
2530 
2531 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2532 	__releases(RCU)
2533 {
2534 	rcu_read_unlock();
2535 }
2536 
2537 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2538 {
2539 	unsigned int flags = 0;
2540 
2541 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2542 		flags = RTF_REJECT;
2543 	if (fi && fi->fib_nh->nh_gw)
2544 		flags |= RTF_GATEWAY;
2545 	if (mask == htonl(0xFFFFFFFF))
2546 		flags |= RTF_HOST;
2547 	flags |= RTF_UP;
2548 	return flags;
2549 }
2550 
2551 /*
2552  *	This outputs /proc/net/route.
2553  *	The format of the file is not supposed to be changed
2554  *	and needs to be same as fib_hash output to avoid breaking
2555  *	legacy utilities
2556  */
2557 static int fib_route_seq_show(struct seq_file *seq, void *v)
2558 {
2559 	struct leaf *l = v;
2560 	struct leaf_info *li;
2561 	struct hlist_node *node;
2562 
2563 	if (v == SEQ_START_TOKEN) {
2564 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2565 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2566 			   "\tWindow\tIRTT");
2567 		return 0;
2568 	}
2569 
2570 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2571 		struct fib_alias *fa;
2572 		__be32 mask, prefix;
2573 
2574 		mask = inet_make_mask(li->plen);
2575 		prefix = htonl(l->key);
2576 
2577 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2578 			const struct fib_info *fi = fa->fa_info;
2579 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2580 			int len;
2581 
2582 			if (fa->fa_type == RTN_BROADCAST
2583 			    || fa->fa_type == RTN_MULTICAST)
2584 				continue;
2585 
2586 			if (fi)
2587 				seq_printf(seq,
2588 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2589 					 "%d\t%08X\t%d\t%u\t%u%n",
2590 					 fi->fib_dev ? fi->fib_dev->name : "*",
2591 					 prefix,
2592 					 fi->fib_nh->nh_gw, flags, 0, 0,
2593 					 fi->fib_priority,
2594 					 mask,
2595 					 (fi->fib_advmss ?
2596 					  fi->fib_advmss + 40 : 0),
2597 					 fi->fib_window,
2598 					 fi->fib_rtt >> 3, &len);
2599 			else
2600 				seq_printf(seq,
2601 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2602 					 "%d\t%08X\t%d\t%u\t%u%n",
2603 					 prefix, 0, flags, 0, 0, 0,
2604 					 mask, 0, 0, 0, &len);
2605 
2606 			seq_printf(seq, "%*s\n", 127 - len, "");
2607 		}
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 static const struct seq_operations fib_route_seq_ops = {
2614 	.start  = fib_route_seq_start,
2615 	.next   = fib_route_seq_next,
2616 	.stop   = fib_route_seq_stop,
2617 	.show   = fib_route_seq_show,
2618 };
2619 
2620 static int fib_route_seq_open(struct inode *inode, struct file *file)
2621 {
2622 	return seq_open_net(inode, file, &fib_route_seq_ops,
2623 			    sizeof(struct fib_route_iter));
2624 }
2625 
2626 static const struct file_operations fib_route_fops = {
2627 	.owner  = THIS_MODULE,
2628 	.open   = fib_route_seq_open,
2629 	.read   = seq_read,
2630 	.llseek = seq_lseek,
2631 	.release = seq_release_net,
2632 };
2633 
2634 int __net_init fib_proc_init(struct net *net)
2635 {
2636 	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2637 		goto out1;
2638 
2639 	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2640 				  &fib_triestat_fops))
2641 		goto out2;
2642 
2643 	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2644 		goto out3;
2645 
2646 	return 0;
2647 
2648 out3:
2649 	proc_net_remove(net, "fib_triestat");
2650 out2:
2651 	proc_net_remove(net, "fib_trie");
2652 out1:
2653 	return -ENOMEM;
2654 }
2655 
2656 void __net_exit fib_proc_exit(struct net *net)
2657 {
2658 	proc_net_remove(net, "fib_trie");
2659 	proc_net_remove(net, "fib_triestat");
2660 	proc_net_remove(net, "route");
2661 }
2662 
2663 #endif /* CONFIG_PROC_FS */
2664