xref: /linux/net/ipv4/fib_trie.c (revision d96fc832bcb6269d96e33d506f33033d7ed08598)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <linux/cache.h>
54 #include <linux/uaccess.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <linux/export.h>
76 #include <linux/vmalloc.h>
77 #include <linux/notifier.h>
78 #include <net/net_namespace.h>
79 #include <net/ip.h>
80 #include <net/protocol.h>
81 #include <net/route.h>
82 #include <net/tcp.h>
83 #include <net/sock.h>
84 #include <net/ip_fib.h>
85 #include <net/fib_notifier.h>
86 #include <trace/events/fib.h>
87 #include "fib_lookup.h"
88 
89 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
90 				   enum fib_event_type event_type, u32 dst,
91 				   int dst_len, struct fib_alias *fa)
92 {
93 	struct fib_entry_notifier_info info = {
94 		.dst = dst,
95 		.dst_len = dst_len,
96 		.fi = fa->fa_info,
97 		.tos = fa->fa_tos,
98 		.type = fa->fa_type,
99 		.tb_id = fa->tb_id,
100 	};
101 	return call_fib4_notifier(nb, net, event_type, &info.info);
102 }
103 
104 static int call_fib_entry_notifiers(struct net *net,
105 				    enum fib_event_type event_type, u32 dst,
106 				    int dst_len, struct fib_alias *fa,
107 				    struct netlink_ext_ack *extack)
108 {
109 	struct fib_entry_notifier_info info = {
110 		.info.extack = extack,
111 		.dst = dst,
112 		.dst_len = dst_len,
113 		.fi = fa->fa_info,
114 		.tos = fa->fa_tos,
115 		.type = fa->fa_type,
116 		.tb_id = fa->tb_id,
117 	};
118 	return call_fib4_notifiers(net, event_type, &info.info);
119 }
120 
121 #define MAX_STAT_DEPTH 32
122 
123 #define KEYLENGTH	(8*sizeof(t_key))
124 #define KEY_MAX		((t_key)~0)
125 
126 typedef unsigned int t_key;
127 
128 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
129 #define IS_TNODE(n)	((n)->bits)
130 #define IS_LEAF(n)	(!(n)->bits)
131 
132 struct key_vector {
133 	t_key key;
134 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
135 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
136 	unsigned char slen;
137 	union {
138 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
139 		struct hlist_head leaf;
140 		/* This array is valid if (pos | bits) > 0 (TNODE) */
141 		struct key_vector __rcu *tnode[0];
142 	};
143 };
144 
145 struct tnode {
146 	struct rcu_head rcu;
147 	t_key empty_children;		/* KEYLENGTH bits needed */
148 	t_key full_children;		/* KEYLENGTH bits needed */
149 	struct key_vector __rcu *parent;
150 	struct key_vector kv[1];
151 #define tn_bits kv[0].bits
152 };
153 
154 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
155 #define LEAF_SIZE	TNODE_SIZE(1)
156 
157 #ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats {
159 	unsigned int gets;
160 	unsigned int backtrack;
161 	unsigned int semantic_match_passed;
162 	unsigned int semantic_match_miss;
163 	unsigned int null_node_hit;
164 	unsigned int resize_node_skipped;
165 };
166 #endif
167 
168 struct trie_stat {
169 	unsigned int totdepth;
170 	unsigned int maxdepth;
171 	unsigned int tnodes;
172 	unsigned int leaves;
173 	unsigned int nullpointers;
174 	unsigned int prefixes;
175 	unsigned int nodesizes[MAX_STAT_DEPTH];
176 };
177 
178 struct trie {
179 	struct key_vector kv[1];
180 #ifdef CONFIG_IP_FIB_TRIE_STATS
181 	struct trie_use_stats __percpu *stats;
182 #endif
183 };
184 
185 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
186 static size_t tnode_free_size;
187 
188 /*
189  * synchronize_rcu after call_rcu for that many pages; it should be especially
190  * useful before resizing the root node with PREEMPT_NONE configs; the value was
191  * obtained experimentally, aiming to avoid visible slowdown.
192  */
193 static const int sync_pages = 128;
194 
195 static struct kmem_cache *fn_alias_kmem __ro_after_init;
196 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
197 
198 static inline struct tnode *tn_info(struct key_vector *kv)
199 {
200 	return container_of(kv, struct tnode, kv[0]);
201 }
202 
203 /* caller must hold RTNL */
204 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
205 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
206 
207 /* caller must hold RCU read lock or RTNL */
208 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
209 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
210 
211 /* wrapper for rcu_assign_pointer */
212 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
213 {
214 	if (n)
215 		rcu_assign_pointer(tn_info(n)->parent, tp);
216 }
217 
218 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
219 
220 /* This provides us with the number of children in this node, in the case of a
221  * leaf this will return 0 meaning none of the children are accessible.
222  */
223 static inline unsigned long child_length(const struct key_vector *tn)
224 {
225 	return (1ul << tn->bits) & ~(1ul);
226 }
227 
228 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
229 
230 static inline unsigned long get_index(t_key key, struct key_vector *kv)
231 {
232 	unsigned long index = key ^ kv->key;
233 
234 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
235 		return 0;
236 
237 	return index >> kv->pos;
238 }
239 
240 /* To understand this stuff, an understanding of keys and all their bits is
241  * necessary. Every node in the trie has a key associated with it, but not
242  * all of the bits in that key are significant.
243  *
244  * Consider a node 'n' and its parent 'tp'.
245  *
246  * If n is a leaf, every bit in its key is significant. Its presence is
247  * necessitated by path compression, since during a tree traversal (when
248  * searching for a leaf - unless we are doing an insertion) we will completely
249  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
250  * a potentially successful search, that we have indeed been walking the
251  * correct key path.
252  *
253  * Note that we can never "miss" the correct key in the tree if present by
254  * following the wrong path. Path compression ensures that segments of the key
255  * that are the same for all keys with a given prefix are skipped, but the
256  * skipped part *is* identical for each node in the subtrie below the skipped
257  * bit! trie_insert() in this implementation takes care of that.
258  *
259  * if n is an internal node - a 'tnode' here, the various parts of its key
260  * have many different meanings.
261  *
262  * Example:
263  * _________________________________________________________________
264  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
265  * -----------------------------------------------------------------
266  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
267  *
268  * _________________________________________________________________
269  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
270  * -----------------------------------------------------------------
271  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
272  *
273  * tp->pos = 22
274  * tp->bits = 3
275  * n->pos = 13
276  * n->bits = 4
277  *
278  * First, let's just ignore the bits that come before the parent tp, that is
279  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
280  * point we do not use them for anything.
281  *
282  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
283  * index into the parent's child array. That is, they will be used to find
284  * 'n' among tp's children.
285  *
286  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
287  * for the node n.
288  *
289  * All the bits we have seen so far are significant to the node n. The rest
290  * of the bits are really not needed or indeed known in n->key.
291  *
292  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
293  * n's child array, and will of course be different for each child.
294  *
295  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
296  * at this point.
297  */
298 
299 static const int halve_threshold = 25;
300 static const int inflate_threshold = 50;
301 static const int halve_threshold_root = 15;
302 static const int inflate_threshold_root = 30;
303 
304 static void __alias_free_mem(struct rcu_head *head)
305 {
306 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
307 	kmem_cache_free(fn_alias_kmem, fa);
308 }
309 
310 static inline void alias_free_mem_rcu(struct fib_alias *fa)
311 {
312 	call_rcu(&fa->rcu, __alias_free_mem);
313 }
314 
315 #define TNODE_KMALLOC_MAX \
316 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
317 #define TNODE_VMALLOC_MAX \
318 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
319 
320 static void __node_free_rcu(struct rcu_head *head)
321 {
322 	struct tnode *n = container_of(head, struct tnode, rcu);
323 
324 	if (!n->tn_bits)
325 		kmem_cache_free(trie_leaf_kmem, n);
326 	else
327 		kvfree(n);
328 }
329 
330 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
331 
332 static struct tnode *tnode_alloc(int bits)
333 {
334 	size_t size;
335 
336 	/* verify bits is within bounds */
337 	if (bits > TNODE_VMALLOC_MAX)
338 		return NULL;
339 
340 	/* determine size and verify it is non-zero and didn't overflow */
341 	size = TNODE_SIZE(1ul << bits);
342 
343 	if (size <= PAGE_SIZE)
344 		return kzalloc(size, GFP_KERNEL);
345 	else
346 		return vzalloc(size);
347 }
348 
349 static inline void empty_child_inc(struct key_vector *n)
350 {
351 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
352 }
353 
354 static inline void empty_child_dec(struct key_vector *n)
355 {
356 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
357 }
358 
359 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
360 {
361 	struct key_vector *l;
362 	struct tnode *kv;
363 
364 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
365 	if (!kv)
366 		return NULL;
367 
368 	/* initialize key vector */
369 	l = kv->kv;
370 	l->key = key;
371 	l->pos = 0;
372 	l->bits = 0;
373 	l->slen = fa->fa_slen;
374 
375 	/* link leaf to fib alias */
376 	INIT_HLIST_HEAD(&l->leaf);
377 	hlist_add_head(&fa->fa_list, &l->leaf);
378 
379 	return l;
380 }
381 
382 static struct key_vector *tnode_new(t_key key, int pos, int bits)
383 {
384 	unsigned int shift = pos + bits;
385 	struct key_vector *tn;
386 	struct tnode *tnode;
387 
388 	/* verify bits and pos their msb bits clear and values are valid */
389 	BUG_ON(!bits || (shift > KEYLENGTH));
390 
391 	tnode = tnode_alloc(bits);
392 	if (!tnode)
393 		return NULL;
394 
395 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
396 		 sizeof(struct key_vector *) << bits);
397 
398 	if (bits == KEYLENGTH)
399 		tnode->full_children = 1;
400 	else
401 		tnode->empty_children = 1ul << bits;
402 
403 	tn = tnode->kv;
404 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
405 	tn->pos = pos;
406 	tn->bits = bits;
407 	tn->slen = pos;
408 
409 	return tn;
410 }
411 
412 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
413  * and no bits are skipped. See discussion in dyntree paper p. 6
414  */
415 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
416 {
417 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
418 }
419 
420 /* Add a child at position i overwriting the old value.
421  * Update the value of full_children and empty_children.
422  */
423 static void put_child(struct key_vector *tn, unsigned long i,
424 		      struct key_vector *n)
425 {
426 	struct key_vector *chi = get_child(tn, i);
427 	int isfull, wasfull;
428 
429 	BUG_ON(i >= child_length(tn));
430 
431 	/* update emptyChildren, overflow into fullChildren */
432 	if (!n && chi)
433 		empty_child_inc(tn);
434 	if (n && !chi)
435 		empty_child_dec(tn);
436 
437 	/* update fullChildren */
438 	wasfull = tnode_full(tn, chi);
439 	isfull = tnode_full(tn, n);
440 
441 	if (wasfull && !isfull)
442 		tn_info(tn)->full_children--;
443 	else if (!wasfull && isfull)
444 		tn_info(tn)->full_children++;
445 
446 	if (n && (tn->slen < n->slen))
447 		tn->slen = n->slen;
448 
449 	rcu_assign_pointer(tn->tnode[i], n);
450 }
451 
452 static void update_children(struct key_vector *tn)
453 {
454 	unsigned long i;
455 
456 	/* update all of the child parent pointers */
457 	for (i = child_length(tn); i;) {
458 		struct key_vector *inode = get_child(tn, --i);
459 
460 		if (!inode)
461 			continue;
462 
463 		/* Either update the children of a tnode that
464 		 * already belongs to us or update the child
465 		 * to point to ourselves.
466 		 */
467 		if (node_parent(inode) == tn)
468 			update_children(inode);
469 		else
470 			node_set_parent(inode, tn);
471 	}
472 }
473 
474 static inline void put_child_root(struct key_vector *tp, t_key key,
475 				  struct key_vector *n)
476 {
477 	if (IS_TRIE(tp))
478 		rcu_assign_pointer(tp->tnode[0], n);
479 	else
480 		put_child(tp, get_index(key, tp), n);
481 }
482 
483 static inline void tnode_free_init(struct key_vector *tn)
484 {
485 	tn_info(tn)->rcu.next = NULL;
486 }
487 
488 static inline void tnode_free_append(struct key_vector *tn,
489 				     struct key_vector *n)
490 {
491 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
492 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
493 }
494 
495 static void tnode_free(struct key_vector *tn)
496 {
497 	struct callback_head *head = &tn_info(tn)->rcu;
498 
499 	while (head) {
500 		head = head->next;
501 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
502 		node_free(tn);
503 
504 		tn = container_of(head, struct tnode, rcu)->kv;
505 	}
506 
507 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
508 		tnode_free_size = 0;
509 		synchronize_rcu();
510 	}
511 }
512 
513 static struct key_vector *replace(struct trie *t,
514 				  struct key_vector *oldtnode,
515 				  struct key_vector *tn)
516 {
517 	struct key_vector *tp = node_parent(oldtnode);
518 	unsigned long i;
519 
520 	/* setup the parent pointer out of and back into this node */
521 	NODE_INIT_PARENT(tn, tp);
522 	put_child_root(tp, tn->key, tn);
523 
524 	/* update all of the child parent pointers */
525 	update_children(tn);
526 
527 	/* all pointers should be clean so we are done */
528 	tnode_free(oldtnode);
529 
530 	/* resize children now that oldtnode is freed */
531 	for (i = child_length(tn); i;) {
532 		struct key_vector *inode = get_child(tn, --i);
533 
534 		/* resize child node */
535 		if (tnode_full(tn, inode))
536 			tn = resize(t, inode);
537 	}
538 
539 	return tp;
540 }
541 
542 static struct key_vector *inflate(struct trie *t,
543 				  struct key_vector *oldtnode)
544 {
545 	struct key_vector *tn;
546 	unsigned long i;
547 	t_key m;
548 
549 	pr_debug("In inflate\n");
550 
551 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
552 	if (!tn)
553 		goto notnode;
554 
555 	/* prepare oldtnode to be freed */
556 	tnode_free_init(oldtnode);
557 
558 	/* Assemble all of the pointers in our cluster, in this case that
559 	 * represents all of the pointers out of our allocated nodes that
560 	 * point to existing tnodes and the links between our allocated
561 	 * nodes.
562 	 */
563 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
564 		struct key_vector *inode = get_child(oldtnode, --i);
565 		struct key_vector *node0, *node1;
566 		unsigned long j, k;
567 
568 		/* An empty child */
569 		if (!inode)
570 			continue;
571 
572 		/* A leaf or an internal node with skipped bits */
573 		if (!tnode_full(oldtnode, inode)) {
574 			put_child(tn, get_index(inode->key, tn), inode);
575 			continue;
576 		}
577 
578 		/* drop the node in the old tnode free list */
579 		tnode_free_append(oldtnode, inode);
580 
581 		/* An internal node with two children */
582 		if (inode->bits == 1) {
583 			put_child(tn, 2 * i + 1, get_child(inode, 1));
584 			put_child(tn, 2 * i, get_child(inode, 0));
585 			continue;
586 		}
587 
588 		/* We will replace this node 'inode' with two new
589 		 * ones, 'node0' and 'node1', each with half of the
590 		 * original children. The two new nodes will have
591 		 * a position one bit further down the key and this
592 		 * means that the "significant" part of their keys
593 		 * (see the discussion near the top of this file)
594 		 * will differ by one bit, which will be "0" in
595 		 * node0's key and "1" in node1's key. Since we are
596 		 * moving the key position by one step, the bit that
597 		 * we are moving away from - the bit at position
598 		 * (tn->pos) - is the one that will differ between
599 		 * node0 and node1. So... we synthesize that bit in the
600 		 * two new keys.
601 		 */
602 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
603 		if (!node1)
604 			goto nomem;
605 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
606 
607 		tnode_free_append(tn, node1);
608 		if (!node0)
609 			goto nomem;
610 		tnode_free_append(tn, node0);
611 
612 		/* populate child pointers in new nodes */
613 		for (k = child_length(inode), j = k / 2; j;) {
614 			put_child(node1, --j, get_child(inode, --k));
615 			put_child(node0, j, get_child(inode, j));
616 			put_child(node1, --j, get_child(inode, --k));
617 			put_child(node0, j, get_child(inode, j));
618 		}
619 
620 		/* link new nodes to parent */
621 		NODE_INIT_PARENT(node1, tn);
622 		NODE_INIT_PARENT(node0, tn);
623 
624 		/* link parent to nodes */
625 		put_child(tn, 2 * i + 1, node1);
626 		put_child(tn, 2 * i, node0);
627 	}
628 
629 	/* setup the parent pointers into and out of this node */
630 	return replace(t, oldtnode, tn);
631 nomem:
632 	/* all pointers should be clean so we are done */
633 	tnode_free(tn);
634 notnode:
635 	return NULL;
636 }
637 
638 static struct key_vector *halve(struct trie *t,
639 				struct key_vector *oldtnode)
640 {
641 	struct key_vector *tn;
642 	unsigned long i;
643 
644 	pr_debug("In halve\n");
645 
646 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
647 	if (!tn)
648 		goto notnode;
649 
650 	/* prepare oldtnode to be freed */
651 	tnode_free_init(oldtnode);
652 
653 	/* Assemble all of the pointers in our cluster, in this case that
654 	 * represents all of the pointers out of our allocated nodes that
655 	 * point to existing tnodes and the links between our allocated
656 	 * nodes.
657 	 */
658 	for (i = child_length(oldtnode); i;) {
659 		struct key_vector *node1 = get_child(oldtnode, --i);
660 		struct key_vector *node0 = get_child(oldtnode, --i);
661 		struct key_vector *inode;
662 
663 		/* At least one of the children is empty */
664 		if (!node1 || !node0) {
665 			put_child(tn, i / 2, node1 ? : node0);
666 			continue;
667 		}
668 
669 		/* Two nonempty children */
670 		inode = tnode_new(node0->key, oldtnode->pos, 1);
671 		if (!inode)
672 			goto nomem;
673 		tnode_free_append(tn, inode);
674 
675 		/* initialize pointers out of node */
676 		put_child(inode, 1, node1);
677 		put_child(inode, 0, node0);
678 		NODE_INIT_PARENT(inode, tn);
679 
680 		/* link parent to node */
681 		put_child(tn, i / 2, inode);
682 	}
683 
684 	/* setup the parent pointers into and out of this node */
685 	return replace(t, oldtnode, tn);
686 nomem:
687 	/* all pointers should be clean so we are done */
688 	tnode_free(tn);
689 notnode:
690 	return NULL;
691 }
692 
693 static struct key_vector *collapse(struct trie *t,
694 				   struct key_vector *oldtnode)
695 {
696 	struct key_vector *n, *tp;
697 	unsigned long i;
698 
699 	/* scan the tnode looking for that one child that might still exist */
700 	for (n = NULL, i = child_length(oldtnode); !n && i;)
701 		n = get_child(oldtnode, --i);
702 
703 	/* compress one level */
704 	tp = node_parent(oldtnode);
705 	put_child_root(tp, oldtnode->key, n);
706 	node_set_parent(n, tp);
707 
708 	/* drop dead node */
709 	node_free(oldtnode);
710 
711 	return tp;
712 }
713 
714 static unsigned char update_suffix(struct key_vector *tn)
715 {
716 	unsigned char slen = tn->pos;
717 	unsigned long stride, i;
718 	unsigned char slen_max;
719 
720 	/* only vector 0 can have a suffix length greater than or equal to
721 	 * tn->pos + tn->bits, the second highest node will have a suffix
722 	 * length at most of tn->pos + tn->bits - 1
723 	 */
724 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
725 
726 	/* search though the list of children looking for nodes that might
727 	 * have a suffix greater than the one we currently have.  This is
728 	 * why we start with a stride of 2 since a stride of 1 would
729 	 * represent the nodes with suffix length equal to tn->pos
730 	 */
731 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
732 		struct key_vector *n = get_child(tn, i);
733 
734 		if (!n || (n->slen <= slen))
735 			continue;
736 
737 		/* update stride and slen based on new value */
738 		stride <<= (n->slen - slen);
739 		slen = n->slen;
740 		i &= ~(stride - 1);
741 
742 		/* stop searching if we have hit the maximum possible value */
743 		if (slen >= slen_max)
744 			break;
745 	}
746 
747 	tn->slen = slen;
748 
749 	return slen;
750 }
751 
752 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
753  * the Helsinki University of Technology and Matti Tikkanen of Nokia
754  * Telecommunications, page 6:
755  * "A node is doubled if the ratio of non-empty children to all
756  * children in the *doubled* node is at least 'high'."
757  *
758  * 'high' in this instance is the variable 'inflate_threshold'. It
759  * is expressed as a percentage, so we multiply it with
760  * child_length() and instead of multiplying by 2 (since the
761  * child array will be doubled by inflate()) and multiplying
762  * the left-hand side by 100 (to handle the percentage thing) we
763  * multiply the left-hand side by 50.
764  *
765  * The left-hand side may look a bit weird: child_length(tn)
766  * - tn->empty_children is of course the number of non-null children
767  * in the current node. tn->full_children is the number of "full"
768  * children, that is non-null tnodes with a skip value of 0.
769  * All of those will be doubled in the resulting inflated tnode, so
770  * we just count them one extra time here.
771  *
772  * A clearer way to write this would be:
773  *
774  * to_be_doubled = tn->full_children;
775  * not_to_be_doubled = child_length(tn) - tn->empty_children -
776  *     tn->full_children;
777  *
778  * new_child_length = child_length(tn) * 2;
779  *
780  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
781  *      new_child_length;
782  * if (new_fill_factor >= inflate_threshold)
783  *
784  * ...and so on, tho it would mess up the while () loop.
785  *
786  * anyway,
787  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
788  *      inflate_threshold
789  *
790  * avoid a division:
791  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
792  *      inflate_threshold * new_child_length
793  *
794  * expand not_to_be_doubled and to_be_doubled, and shorten:
795  * 100 * (child_length(tn) - tn->empty_children +
796  *    tn->full_children) >= inflate_threshold * new_child_length
797  *
798  * expand new_child_length:
799  * 100 * (child_length(tn) - tn->empty_children +
800  *    tn->full_children) >=
801  *      inflate_threshold * child_length(tn) * 2
802  *
803  * shorten again:
804  * 50 * (tn->full_children + child_length(tn) -
805  *    tn->empty_children) >= inflate_threshold *
806  *    child_length(tn)
807  *
808  */
809 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
810 {
811 	unsigned long used = child_length(tn);
812 	unsigned long threshold = used;
813 
814 	/* Keep root node larger */
815 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
816 	used -= tn_info(tn)->empty_children;
817 	used += tn_info(tn)->full_children;
818 
819 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
820 
821 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
822 }
823 
824 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
825 {
826 	unsigned long used = child_length(tn);
827 	unsigned long threshold = used;
828 
829 	/* Keep root node larger */
830 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
831 	used -= tn_info(tn)->empty_children;
832 
833 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
834 
835 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
836 }
837 
838 static inline bool should_collapse(struct key_vector *tn)
839 {
840 	unsigned long used = child_length(tn);
841 
842 	used -= tn_info(tn)->empty_children;
843 
844 	/* account for bits == KEYLENGTH case */
845 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
846 		used -= KEY_MAX;
847 
848 	/* One child or none, time to drop us from the trie */
849 	return used < 2;
850 }
851 
852 #define MAX_WORK 10
853 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
854 {
855 #ifdef CONFIG_IP_FIB_TRIE_STATS
856 	struct trie_use_stats __percpu *stats = t->stats;
857 #endif
858 	struct key_vector *tp = node_parent(tn);
859 	unsigned long cindex = get_index(tn->key, tp);
860 	int max_work = MAX_WORK;
861 
862 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
863 		 tn, inflate_threshold, halve_threshold);
864 
865 	/* track the tnode via the pointer from the parent instead of
866 	 * doing it ourselves.  This way we can let RCU fully do its
867 	 * thing without us interfering
868 	 */
869 	BUG_ON(tn != get_child(tp, cindex));
870 
871 	/* Double as long as the resulting node has a number of
872 	 * nonempty nodes that are above the threshold.
873 	 */
874 	while (should_inflate(tp, tn) && max_work) {
875 		tp = inflate(t, tn);
876 		if (!tp) {
877 #ifdef CONFIG_IP_FIB_TRIE_STATS
878 			this_cpu_inc(stats->resize_node_skipped);
879 #endif
880 			break;
881 		}
882 
883 		max_work--;
884 		tn = get_child(tp, cindex);
885 	}
886 
887 	/* update parent in case inflate failed */
888 	tp = node_parent(tn);
889 
890 	/* Return if at least one inflate is run */
891 	if (max_work != MAX_WORK)
892 		return tp;
893 
894 	/* Halve as long as the number of empty children in this
895 	 * node is above threshold.
896 	 */
897 	while (should_halve(tp, tn) && max_work) {
898 		tp = halve(t, tn);
899 		if (!tp) {
900 #ifdef CONFIG_IP_FIB_TRIE_STATS
901 			this_cpu_inc(stats->resize_node_skipped);
902 #endif
903 			break;
904 		}
905 
906 		max_work--;
907 		tn = get_child(tp, cindex);
908 	}
909 
910 	/* Only one child remains */
911 	if (should_collapse(tn))
912 		return collapse(t, tn);
913 
914 	/* update parent in case halve failed */
915 	return node_parent(tn);
916 }
917 
918 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
919 {
920 	unsigned char node_slen = tn->slen;
921 
922 	while ((node_slen > tn->pos) && (node_slen > slen)) {
923 		slen = update_suffix(tn);
924 		if (node_slen == slen)
925 			break;
926 
927 		tn = node_parent(tn);
928 		node_slen = tn->slen;
929 	}
930 }
931 
932 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
933 {
934 	while (tn->slen < slen) {
935 		tn->slen = slen;
936 		tn = node_parent(tn);
937 	}
938 }
939 
940 /* rcu_read_lock needs to be hold by caller from readside */
941 static struct key_vector *fib_find_node(struct trie *t,
942 					struct key_vector **tp, u32 key)
943 {
944 	struct key_vector *pn, *n = t->kv;
945 	unsigned long index = 0;
946 
947 	do {
948 		pn = n;
949 		n = get_child_rcu(n, index);
950 
951 		if (!n)
952 			break;
953 
954 		index = get_cindex(key, n);
955 
956 		/* This bit of code is a bit tricky but it combines multiple
957 		 * checks into a single check.  The prefix consists of the
958 		 * prefix plus zeros for the bits in the cindex. The index
959 		 * is the difference between the key and this value.  From
960 		 * this we can actually derive several pieces of data.
961 		 *   if (index >= (1ul << bits))
962 		 *     we have a mismatch in skip bits and failed
963 		 *   else
964 		 *     we know the value is cindex
965 		 *
966 		 * This check is safe even if bits == KEYLENGTH due to the
967 		 * fact that we can only allocate a node with 32 bits if a
968 		 * long is greater than 32 bits.
969 		 */
970 		if (index >= (1ul << n->bits)) {
971 			n = NULL;
972 			break;
973 		}
974 
975 		/* keep searching until we find a perfect match leaf or NULL */
976 	} while (IS_TNODE(n));
977 
978 	*tp = pn;
979 
980 	return n;
981 }
982 
983 /* Return the first fib alias matching TOS with
984  * priority less than or equal to PRIO.
985  */
986 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
987 					u8 tos, u32 prio, u32 tb_id)
988 {
989 	struct fib_alias *fa;
990 
991 	if (!fah)
992 		return NULL;
993 
994 	hlist_for_each_entry(fa, fah, fa_list) {
995 		if (fa->fa_slen < slen)
996 			continue;
997 		if (fa->fa_slen != slen)
998 			break;
999 		if (fa->tb_id > tb_id)
1000 			continue;
1001 		if (fa->tb_id != tb_id)
1002 			break;
1003 		if (fa->fa_tos > tos)
1004 			continue;
1005 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1006 			return fa;
1007 	}
1008 
1009 	return NULL;
1010 }
1011 
1012 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1013 {
1014 	while (!IS_TRIE(tn))
1015 		tn = resize(t, tn);
1016 }
1017 
1018 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1019 			   struct fib_alias *new, t_key key)
1020 {
1021 	struct key_vector *n, *l;
1022 
1023 	l = leaf_new(key, new);
1024 	if (!l)
1025 		goto noleaf;
1026 
1027 	/* retrieve child from parent node */
1028 	n = get_child(tp, get_index(key, tp));
1029 
1030 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1031 	 *
1032 	 *  Add a new tnode here
1033 	 *  first tnode need some special handling
1034 	 *  leaves us in position for handling as case 3
1035 	 */
1036 	if (n) {
1037 		struct key_vector *tn;
1038 
1039 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1040 		if (!tn)
1041 			goto notnode;
1042 
1043 		/* initialize routes out of node */
1044 		NODE_INIT_PARENT(tn, tp);
1045 		put_child(tn, get_index(key, tn) ^ 1, n);
1046 
1047 		/* start adding routes into the node */
1048 		put_child_root(tp, key, tn);
1049 		node_set_parent(n, tn);
1050 
1051 		/* parent now has a NULL spot where the leaf can go */
1052 		tp = tn;
1053 	}
1054 
1055 	/* Case 3: n is NULL, and will just insert a new leaf */
1056 	node_push_suffix(tp, new->fa_slen);
1057 	NODE_INIT_PARENT(l, tp);
1058 	put_child_root(tp, key, l);
1059 	trie_rebalance(t, tp);
1060 
1061 	return 0;
1062 notnode:
1063 	node_free(l);
1064 noleaf:
1065 	return -ENOMEM;
1066 }
1067 
1068 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1069 			    struct key_vector *l, struct fib_alias *new,
1070 			    struct fib_alias *fa, t_key key)
1071 {
1072 	if (!l)
1073 		return fib_insert_node(t, tp, new, key);
1074 
1075 	if (fa) {
1076 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1077 	} else {
1078 		struct fib_alias *last;
1079 
1080 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1081 			if (new->fa_slen < last->fa_slen)
1082 				break;
1083 			if ((new->fa_slen == last->fa_slen) &&
1084 			    (new->tb_id > last->tb_id))
1085 				break;
1086 			fa = last;
1087 		}
1088 
1089 		if (fa)
1090 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1091 		else
1092 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1093 	}
1094 
1095 	/* if we added to the tail node then we need to update slen */
1096 	if (l->slen < new->fa_slen) {
1097 		l->slen = new->fa_slen;
1098 		node_push_suffix(tp, new->fa_slen);
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1105 {
1106 	if (plen > KEYLENGTH) {
1107 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1108 		return false;
1109 	}
1110 
1111 	if ((plen < KEYLENGTH) && (key << plen)) {
1112 		NL_SET_ERR_MSG(extack,
1113 			       "Invalid prefix for given prefix length");
1114 		return false;
1115 	}
1116 
1117 	return true;
1118 }
1119 
1120 /* Caller must hold RTNL. */
1121 int fib_table_insert(struct net *net, struct fib_table *tb,
1122 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1123 {
1124 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1125 	struct trie *t = (struct trie *)tb->tb_data;
1126 	struct fib_alias *fa, *new_fa;
1127 	struct key_vector *l, *tp;
1128 	u16 nlflags = NLM_F_EXCL;
1129 	struct fib_info *fi;
1130 	u8 plen = cfg->fc_dst_len;
1131 	u8 slen = KEYLENGTH - plen;
1132 	u8 tos = cfg->fc_tos;
1133 	u32 key;
1134 	int err;
1135 
1136 	key = ntohl(cfg->fc_dst);
1137 
1138 	if (!fib_valid_key_len(key, plen, extack))
1139 		return -EINVAL;
1140 
1141 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1142 
1143 	fi = fib_create_info(cfg, extack);
1144 	if (IS_ERR(fi)) {
1145 		err = PTR_ERR(fi);
1146 		goto err;
1147 	}
1148 
1149 	l = fib_find_node(t, &tp, key);
1150 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1151 				tb->tb_id) : NULL;
1152 
1153 	/* Now fa, if non-NULL, points to the first fib alias
1154 	 * with the same keys [prefix,tos,priority], if such key already
1155 	 * exists or to the node before which we will insert new one.
1156 	 *
1157 	 * If fa is NULL, we will need to allocate a new one and
1158 	 * insert to the tail of the section matching the suffix length
1159 	 * of the new alias.
1160 	 */
1161 
1162 	if (fa && fa->fa_tos == tos &&
1163 	    fa->fa_info->fib_priority == fi->fib_priority) {
1164 		struct fib_alias *fa_first, *fa_match;
1165 
1166 		err = -EEXIST;
1167 		if (cfg->fc_nlflags & NLM_F_EXCL)
1168 			goto out;
1169 
1170 		nlflags &= ~NLM_F_EXCL;
1171 
1172 		/* We have 2 goals:
1173 		 * 1. Find exact match for type, scope, fib_info to avoid
1174 		 * duplicate routes
1175 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1176 		 */
1177 		fa_match = NULL;
1178 		fa_first = fa;
1179 		hlist_for_each_entry_from(fa, fa_list) {
1180 			if ((fa->fa_slen != slen) ||
1181 			    (fa->tb_id != tb->tb_id) ||
1182 			    (fa->fa_tos != tos))
1183 				break;
1184 			if (fa->fa_info->fib_priority != fi->fib_priority)
1185 				break;
1186 			if (fa->fa_type == cfg->fc_type &&
1187 			    fa->fa_info == fi) {
1188 				fa_match = fa;
1189 				break;
1190 			}
1191 		}
1192 
1193 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1194 			struct fib_info *fi_drop;
1195 			u8 state;
1196 
1197 			nlflags |= NLM_F_REPLACE;
1198 			fa = fa_first;
1199 			if (fa_match) {
1200 				if (fa == fa_match)
1201 					err = 0;
1202 				goto out;
1203 			}
1204 			err = -ENOBUFS;
1205 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1206 			if (!new_fa)
1207 				goto out;
1208 
1209 			fi_drop = fa->fa_info;
1210 			new_fa->fa_tos = fa->fa_tos;
1211 			new_fa->fa_info = fi;
1212 			new_fa->fa_type = cfg->fc_type;
1213 			state = fa->fa_state;
1214 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1215 			new_fa->fa_slen = fa->fa_slen;
1216 			new_fa->tb_id = tb->tb_id;
1217 			new_fa->fa_default = -1;
1218 
1219 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1220 						 key, plen, new_fa, extack);
1221 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1222 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1223 
1224 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1225 
1226 			alias_free_mem_rcu(fa);
1227 
1228 			fib_release_info(fi_drop);
1229 			if (state & FA_S_ACCESSED)
1230 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1231 
1232 			goto succeeded;
1233 		}
1234 		/* Error if we find a perfect match which
1235 		 * uses the same scope, type, and nexthop
1236 		 * information.
1237 		 */
1238 		if (fa_match)
1239 			goto out;
1240 
1241 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1242 			event = FIB_EVENT_ENTRY_APPEND;
1243 			nlflags |= NLM_F_APPEND;
1244 		} else {
1245 			fa = fa_first;
1246 		}
1247 	}
1248 	err = -ENOENT;
1249 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1250 		goto out;
1251 
1252 	nlflags |= NLM_F_CREATE;
1253 	err = -ENOBUFS;
1254 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1255 	if (!new_fa)
1256 		goto out;
1257 
1258 	new_fa->fa_info = fi;
1259 	new_fa->fa_tos = tos;
1260 	new_fa->fa_type = cfg->fc_type;
1261 	new_fa->fa_state = 0;
1262 	new_fa->fa_slen = slen;
1263 	new_fa->tb_id = tb->tb_id;
1264 	new_fa->fa_default = -1;
1265 
1266 	/* Insert new entry to the list. */
1267 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1268 	if (err)
1269 		goto out_free_new_fa;
1270 
1271 	if (!plen)
1272 		tb->tb_num_default++;
1273 
1274 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1275 	call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1276 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1277 		  &cfg->fc_nlinfo, nlflags);
1278 succeeded:
1279 	return 0;
1280 
1281 out_free_new_fa:
1282 	kmem_cache_free(fn_alias_kmem, new_fa);
1283 out:
1284 	fib_release_info(fi);
1285 err:
1286 	return err;
1287 }
1288 
1289 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1290 {
1291 	t_key prefix = n->key;
1292 
1293 	return (key ^ prefix) & (prefix | -prefix);
1294 }
1295 
1296 /* should be called with rcu_read_lock */
1297 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1298 		     struct fib_result *res, int fib_flags)
1299 {
1300 	struct trie *t = (struct trie *) tb->tb_data;
1301 #ifdef CONFIG_IP_FIB_TRIE_STATS
1302 	struct trie_use_stats __percpu *stats = t->stats;
1303 #endif
1304 	const t_key key = ntohl(flp->daddr);
1305 	struct key_vector *n, *pn;
1306 	struct fib_alias *fa;
1307 	unsigned long index;
1308 	t_key cindex;
1309 
1310 	trace_fib_table_lookup(tb->tb_id, flp);
1311 
1312 	pn = t->kv;
1313 	cindex = 0;
1314 
1315 	n = get_child_rcu(pn, cindex);
1316 	if (!n)
1317 		return -EAGAIN;
1318 
1319 #ifdef CONFIG_IP_FIB_TRIE_STATS
1320 	this_cpu_inc(stats->gets);
1321 #endif
1322 
1323 	/* Step 1: Travel to the longest prefix match in the trie */
1324 	for (;;) {
1325 		index = get_cindex(key, n);
1326 
1327 		/* This bit of code is a bit tricky but it combines multiple
1328 		 * checks into a single check.  The prefix consists of the
1329 		 * prefix plus zeros for the "bits" in the prefix. The index
1330 		 * is the difference between the key and this value.  From
1331 		 * this we can actually derive several pieces of data.
1332 		 *   if (index >= (1ul << bits))
1333 		 *     we have a mismatch in skip bits and failed
1334 		 *   else
1335 		 *     we know the value is cindex
1336 		 *
1337 		 * This check is safe even if bits == KEYLENGTH due to the
1338 		 * fact that we can only allocate a node with 32 bits if a
1339 		 * long is greater than 32 bits.
1340 		 */
1341 		if (index >= (1ul << n->bits))
1342 			break;
1343 
1344 		/* we have found a leaf. Prefixes have already been compared */
1345 		if (IS_LEAF(n))
1346 			goto found;
1347 
1348 		/* only record pn and cindex if we are going to be chopping
1349 		 * bits later.  Otherwise we are just wasting cycles.
1350 		 */
1351 		if (n->slen > n->pos) {
1352 			pn = n;
1353 			cindex = index;
1354 		}
1355 
1356 		n = get_child_rcu(n, index);
1357 		if (unlikely(!n))
1358 			goto backtrace;
1359 	}
1360 
1361 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1362 	for (;;) {
1363 		/* record the pointer where our next node pointer is stored */
1364 		struct key_vector __rcu **cptr = n->tnode;
1365 
1366 		/* This test verifies that none of the bits that differ
1367 		 * between the key and the prefix exist in the region of
1368 		 * the lsb and higher in the prefix.
1369 		 */
1370 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1371 			goto backtrace;
1372 
1373 		/* exit out and process leaf */
1374 		if (unlikely(IS_LEAF(n)))
1375 			break;
1376 
1377 		/* Don't bother recording parent info.  Since we are in
1378 		 * prefix match mode we will have to come back to wherever
1379 		 * we started this traversal anyway
1380 		 */
1381 
1382 		while ((n = rcu_dereference(*cptr)) == NULL) {
1383 backtrace:
1384 #ifdef CONFIG_IP_FIB_TRIE_STATS
1385 			if (!n)
1386 				this_cpu_inc(stats->null_node_hit);
1387 #endif
1388 			/* If we are at cindex 0 there are no more bits for
1389 			 * us to strip at this level so we must ascend back
1390 			 * up one level to see if there are any more bits to
1391 			 * be stripped there.
1392 			 */
1393 			while (!cindex) {
1394 				t_key pkey = pn->key;
1395 
1396 				/* If we don't have a parent then there is
1397 				 * nothing for us to do as we do not have any
1398 				 * further nodes to parse.
1399 				 */
1400 				if (IS_TRIE(pn))
1401 					return -EAGAIN;
1402 #ifdef CONFIG_IP_FIB_TRIE_STATS
1403 				this_cpu_inc(stats->backtrack);
1404 #endif
1405 				/* Get Child's index */
1406 				pn = node_parent_rcu(pn);
1407 				cindex = get_index(pkey, pn);
1408 			}
1409 
1410 			/* strip the least significant bit from the cindex */
1411 			cindex &= cindex - 1;
1412 
1413 			/* grab pointer for next child node */
1414 			cptr = &pn->tnode[cindex];
1415 		}
1416 	}
1417 
1418 found:
1419 	/* this line carries forward the xor from earlier in the function */
1420 	index = key ^ n->key;
1421 
1422 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1423 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1424 		struct fib_info *fi = fa->fa_info;
1425 		int nhsel, err;
1426 
1427 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1428 			if (index >= (1ul << fa->fa_slen))
1429 				continue;
1430 		}
1431 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1432 			continue;
1433 		if (fi->fib_dead)
1434 			continue;
1435 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1436 			continue;
1437 		fib_alias_accessed(fa);
1438 		err = fib_props[fa->fa_type].error;
1439 		if (unlikely(err < 0)) {
1440 #ifdef CONFIG_IP_FIB_TRIE_STATS
1441 			this_cpu_inc(stats->semantic_match_passed);
1442 #endif
1443 			return err;
1444 		}
1445 		if (fi->fib_flags & RTNH_F_DEAD)
1446 			continue;
1447 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1448 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1449 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1450 
1451 			if (nh->nh_flags & RTNH_F_DEAD)
1452 				continue;
1453 			if (in_dev &&
1454 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1455 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1456 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1457 				continue;
1458 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1459 				if (flp->flowi4_oif &&
1460 				    flp->flowi4_oif != nh->nh_oif)
1461 					continue;
1462 			}
1463 
1464 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1465 				refcount_inc(&fi->fib_clntref);
1466 
1467 			res->prefix = htonl(n->key);
1468 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1469 			res->nh_sel = nhsel;
1470 			res->type = fa->fa_type;
1471 			res->scope = fi->fib_scope;
1472 			res->fi = fi;
1473 			res->table = tb;
1474 			res->fa_head = &n->leaf;
1475 #ifdef CONFIG_IP_FIB_TRIE_STATS
1476 			this_cpu_inc(stats->semantic_match_passed);
1477 #endif
1478 			trace_fib_table_lookup_nh(nh);
1479 
1480 			return err;
1481 		}
1482 	}
1483 #ifdef CONFIG_IP_FIB_TRIE_STATS
1484 	this_cpu_inc(stats->semantic_match_miss);
1485 #endif
1486 	goto backtrace;
1487 }
1488 EXPORT_SYMBOL_GPL(fib_table_lookup);
1489 
1490 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1491 			     struct key_vector *l, struct fib_alias *old)
1492 {
1493 	/* record the location of the previous list_info entry */
1494 	struct hlist_node **pprev = old->fa_list.pprev;
1495 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1496 
1497 	/* remove the fib_alias from the list */
1498 	hlist_del_rcu(&old->fa_list);
1499 
1500 	/* if we emptied the list this leaf will be freed and we can sort
1501 	 * out parent suffix lengths as a part of trie_rebalance
1502 	 */
1503 	if (hlist_empty(&l->leaf)) {
1504 		if (tp->slen == l->slen)
1505 			node_pull_suffix(tp, tp->pos);
1506 		put_child_root(tp, l->key, NULL);
1507 		node_free(l);
1508 		trie_rebalance(t, tp);
1509 		return;
1510 	}
1511 
1512 	/* only access fa if it is pointing at the last valid hlist_node */
1513 	if (*pprev)
1514 		return;
1515 
1516 	/* update the trie with the latest suffix length */
1517 	l->slen = fa->fa_slen;
1518 	node_pull_suffix(tp, fa->fa_slen);
1519 }
1520 
1521 /* Caller must hold RTNL. */
1522 int fib_table_delete(struct net *net, struct fib_table *tb,
1523 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1524 {
1525 	struct trie *t = (struct trie *) tb->tb_data;
1526 	struct fib_alias *fa, *fa_to_delete;
1527 	struct key_vector *l, *tp;
1528 	u8 plen = cfg->fc_dst_len;
1529 	u8 slen = KEYLENGTH - plen;
1530 	u8 tos = cfg->fc_tos;
1531 	u32 key;
1532 
1533 	key = ntohl(cfg->fc_dst);
1534 
1535 	if (!fib_valid_key_len(key, plen, extack))
1536 		return -EINVAL;
1537 
1538 	l = fib_find_node(t, &tp, key);
1539 	if (!l)
1540 		return -ESRCH;
1541 
1542 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1543 	if (!fa)
1544 		return -ESRCH;
1545 
1546 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1547 
1548 	fa_to_delete = NULL;
1549 	hlist_for_each_entry_from(fa, fa_list) {
1550 		struct fib_info *fi = fa->fa_info;
1551 
1552 		if ((fa->fa_slen != slen) ||
1553 		    (fa->tb_id != tb->tb_id) ||
1554 		    (fa->fa_tos != tos))
1555 			break;
1556 
1557 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1558 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1559 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1560 		    (!cfg->fc_prefsrc ||
1561 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1562 		    (!cfg->fc_protocol ||
1563 		     fi->fib_protocol == cfg->fc_protocol) &&
1564 		    fib_nh_match(cfg, fi, extack) == 0 &&
1565 		    fib_metrics_match(cfg, fi)) {
1566 			fa_to_delete = fa;
1567 			break;
1568 		}
1569 	}
1570 
1571 	if (!fa_to_delete)
1572 		return -ESRCH;
1573 
1574 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1575 				 fa_to_delete, extack);
1576 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1577 		  &cfg->fc_nlinfo, 0);
1578 
1579 	if (!plen)
1580 		tb->tb_num_default--;
1581 
1582 	fib_remove_alias(t, tp, l, fa_to_delete);
1583 
1584 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1585 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1586 
1587 	fib_release_info(fa_to_delete->fa_info);
1588 	alias_free_mem_rcu(fa_to_delete);
1589 	return 0;
1590 }
1591 
1592 /* Scan for the next leaf starting at the provided key value */
1593 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1594 {
1595 	struct key_vector *pn, *n = *tn;
1596 	unsigned long cindex;
1597 
1598 	/* this loop is meant to try and find the key in the trie */
1599 	do {
1600 		/* record parent and next child index */
1601 		pn = n;
1602 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1603 
1604 		if (cindex >> pn->bits)
1605 			break;
1606 
1607 		/* descend into the next child */
1608 		n = get_child_rcu(pn, cindex++);
1609 		if (!n)
1610 			break;
1611 
1612 		/* guarantee forward progress on the keys */
1613 		if (IS_LEAF(n) && (n->key >= key))
1614 			goto found;
1615 	} while (IS_TNODE(n));
1616 
1617 	/* this loop will search for the next leaf with a greater key */
1618 	while (!IS_TRIE(pn)) {
1619 		/* if we exhausted the parent node we will need to climb */
1620 		if (cindex >= (1ul << pn->bits)) {
1621 			t_key pkey = pn->key;
1622 
1623 			pn = node_parent_rcu(pn);
1624 			cindex = get_index(pkey, pn) + 1;
1625 			continue;
1626 		}
1627 
1628 		/* grab the next available node */
1629 		n = get_child_rcu(pn, cindex++);
1630 		if (!n)
1631 			continue;
1632 
1633 		/* no need to compare keys since we bumped the index */
1634 		if (IS_LEAF(n))
1635 			goto found;
1636 
1637 		/* Rescan start scanning in new node */
1638 		pn = n;
1639 		cindex = 0;
1640 	}
1641 
1642 	*tn = pn;
1643 	return NULL; /* Root of trie */
1644 found:
1645 	/* if we are at the limit for keys just return NULL for the tnode */
1646 	*tn = pn;
1647 	return n;
1648 }
1649 
1650 static void fib_trie_free(struct fib_table *tb)
1651 {
1652 	struct trie *t = (struct trie *)tb->tb_data;
1653 	struct key_vector *pn = t->kv;
1654 	unsigned long cindex = 1;
1655 	struct hlist_node *tmp;
1656 	struct fib_alias *fa;
1657 
1658 	/* walk trie in reverse order and free everything */
1659 	for (;;) {
1660 		struct key_vector *n;
1661 
1662 		if (!(cindex--)) {
1663 			t_key pkey = pn->key;
1664 
1665 			if (IS_TRIE(pn))
1666 				break;
1667 
1668 			n = pn;
1669 			pn = node_parent(pn);
1670 
1671 			/* drop emptied tnode */
1672 			put_child_root(pn, n->key, NULL);
1673 			node_free(n);
1674 
1675 			cindex = get_index(pkey, pn);
1676 
1677 			continue;
1678 		}
1679 
1680 		/* grab the next available node */
1681 		n = get_child(pn, cindex);
1682 		if (!n)
1683 			continue;
1684 
1685 		if (IS_TNODE(n)) {
1686 			/* record pn and cindex for leaf walking */
1687 			pn = n;
1688 			cindex = 1ul << n->bits;
1689 
1690 			continue;
1691 		}
1692 
1693 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1694 			hlist_del_rcu(&fa->fa_list);
1695 			alias_free_mem_rcu(fa);
1696 		}
1697 
1698 		put_child_root(pn, n->key, NULL);
1699 		node_free(n);
1700 	}
1701 
1702 #ifdef CONFIG_IP_FIB_TRIE_STATS
1703 	free_percpu(t->stats);
1704 #endif
1705 	kfree(tb);
1706 }
1707 
1708 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1709 {
1710 	struct trie *ot = (struct trie *)oldtb->tb_data;
1711 	struct key_vector *l, *tp = ot->kv;
1712 	struct fib_table *local_tb;
1713 	struct fib_alias *fa;
1714 	struct trie *lt;
1715 	t_key key = 0;
1716 
1717 	if (oldtb->tb_data == oldtb->__data)
1718 		return oldtb;
1719 
1720 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1721 	if (!local_tb)
1722 		return NULL;
1723 
1724 	lt = (struct trie *)local_tb->tb_data;
1725 
1726 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1727 		struct key_vector *local_l = NULL, *local_tp;
1728 
1729 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1730 			struct fib_alias *new_fa;
1731 
1732 			if (local_tb->tb_id != fa->tb_id)
1733 				continue;
1734 
1735 			/* clone fa for new local table */
1736 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1737 			if (!new_fa)
1738 				goto out;
1739 
1740 			memcpy(new_fa, fa, sizeof(*fa));
1741 
1742 			/* insert clone into table */
1743 			if (!local_l)
1744 				local_l = fib_find_node(lt, &local_tp, l->key);
1745 
1746 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1747 					     NULL, l->key)) {
1748 				kmem_cache_free(fn_alias_kmem, new_fa);
1749 				goto out;
1750 			}
1751 		}
1752 
1753 		/* stop loop if key wrapped back to 0 */
1754 		key = l->key + 1;
1755 		if (key < l->key)
1756 			break;
1757 	}
1758 
1759 	return local_tb;
1760 out:
1761 	fib_trie_free(local_tb);
1762 
1763 	return NULL;
1764 }
1765 
1766 /* Caller must hold RTNL */
1767 void fib_table_flush_external(struct fib_table *tb)
1768 {
1769 	struct trie *t = (struct trie *)tb->tb_data;
1770 	struct key_vector *pn = t->kv;
1771 	unsigned long cindex = 1;
1772 	struct hlist_node *tmp;
1773 	struct fib_alias *fa;
1774 
1775 	/* walk trie in reverse order */
1776 	for (;;) {
1777 		unsigned char slen = 0;
1778 		struct key_vector *n;
1779 
1780 		if (!(cindex--)) {
1781 			t_key pkey = pn->key;
1782 
1783 			/* cannot resize the trie vector */
1784 			if (IS_TRIE(pn))
1785 				break;
1786 
1787 			/* update the suffix to address pulled leaves */
1788 			if (pn->slen > pn->pos)
1789 				update_suffix(pn);
1790 
1791 			/* resize completed node */
1792 			pn = resize(t, pn);
1793 			cindex = get_index(pkey, pn);
1794 
1795 			continue;
1796 		}
1797 
1798 		/* grab the next available node */
1799 		n = get_child(pn, cindex);
1800 		if (!n)
1801 			continue;
1802 
1803 		if (IS_TNODE(n)) {
1804 			/* record pn and cindex for leaf walking */
1805 			pn = n;
1806 			cindex = 1ul << n->bits;
1807 
1808 			continue;
1809 		}
1810 
1811 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1812 			/* if alias was cloned to local then we just
1813 			 * need to remove the local copy from main
1814 			 */
1815 			if (tb->tb_id != fa->tb_id) {
1816 				hlist_del_rcu(&fa->fa_list);
1817 				alias_free_mem_rcu(fa);
1818 				continue;
1819 			}
1820 
1821 			/* record local slen */
1822 			slen = fa->fa_slen;
1823 		}
1824 
1825 		/* update leaf slen */
1826 		n->slen = slen;
1827 
1828 		if (hlist_empty(&n->leaf)) {
1829 			put_child_root(pn, n->key, NULL);
1830 			node_free(n);
1831 		}
1832 	}
1833 }
1834 
1835 /* Caller must hold RTNL. */
1836 int fib_table_flush(struct net *net, struct fib_table *tb)
1837 {
1838 	struct trie *t = (struct trie *)tb->tb_data;
1839 	struct key_vector *pn = t->kv;
1840 	unsigned long cindex = 1;
1841 	struct hlist_node *tmp;
1842 	struct fib_alias *fa;
1843 	int found = 0;
1844 
1845 	/* walk trie in reverse order */
1846 	for (;;) {
1847 		unsigned char slen = 0;
1848 		struct key_vector *n;
1849 
1850 		if (!(cindex--)) {
1851 			t_key pkey = pn->key;
1852 
1853 			/* cannot resize the trie vector */
1854 			if (IS_TRIE(pn))
1855 				break;
1856 
1857 			/* update the suffix to address pulled leaves */
1858 			if (pn->slen > pn->pos)
1859 				update_suffix(pn);
1860 
1861 			/* resize completed node */
1862 			pn = resize(t, pn);
1863 			cindex = get_index(pkey, pn);
1864 
1865 			continue;
1866 		}
1867 
1868 		/* grab the next available node */
1869 		n = get_child(pn, cindex);
1870 		if (!n)
1871 			continue;
1872 
1873 		if (IS_TNODE(n)) {
1874 			/* record pn and cindex for leaf walking */
1875 			pn = n;
1876 			cindex = 1ul << n->bits;
1877 
1878 			continue;
1879 		}
1880 
1881 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1882 			struct fib_info *fi = fa->fa_info;
1883 
1884 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1885 			    tb->tb_id != fa->tb_id) {
1886 				slen = fa->fa_slen;
1887 				continue;
1888 			}
1889 
1890 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1891 						 n->key,
1892 						 KEYLENGTH - fa->fa_slen, fa,
1893 						 NULL);
1894 			hlist_del_rcu(&fa->fa_list);
1895 			fib_release_info(fa->fa_info);
1896 			alias_free_mem_rcu(fa);
1897 			found++;
1898 		}
1899 
1900 		/* update leaf slen */
1901 		n->slen = slen;
1902 
1903 		if (hlist_empty(&n->leaf)) {
1904 			put_child_root(pn, n->key, NULL);
1905 			node_free(n);
1906 		}
1907 	}
1908 
1909 	pr_debug("trie_flush found=%d\n", found);
1910 	return found;
1911 }
1912 
1913 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1914 			    struct fib_table *tb, struct notifier_block *nb)
1915 {
1916 	struct fib_alias *fa;
1917 
1918 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1919 		struct fib_info *fi = fa->fa_info;
1920 
1921 		if (!fi)
1922 			continue;
1923 
1924 		/* local and main table can share the same trie,
1925 		 * so don't notify twice for the same entry.
1926 		 */
1927 		if (tb->tb_id != fa->tb_id)
1928 			continue;
1929 
1930 		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1931 					KEYLENGTH - fa->fa_slen, fa);
1932 	}
1933 }
1934 
1935 static void fib_table_notify(struct net *net, struct fib_table *tb,
1936 			     struct notifier_block *nb)
1937 {
1938 	struct trie *t = (struct trie *)tb->tb_data;
1939 	struct key_vector *l, *tp = t->kv;
1940 	t_key key = 0;
1941 
1942 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1943 		fib_leaf_notify(net, l, tb, nb);
1944 
1945 		key = l->key + 1;
1946 		/* stop in case of wrap around */
1947 		if (key < l->key)
1948 			break;
1949 	}
1950 }
1951 
1952 void fib_notify(struct net *net, struct notifier_block *nb)
1953 {
1954 	unsigned int h;
1955 
1956 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1957 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1958 		struct fib_table *tb;
1959 
1960 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1961 			fib_table_notify(net, tb, nb);
1962 	}
1963 }
1964 
1965 static void __trie_free_rcu(struct rcu_head *head)
1966 {
1967 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1968 #ifdef CONFIG_IP_FIB_TRIE_STATS
1969 	struct trie *t = (struct trie *)tb->tb_data;
1970 
1971 	if (tb->tb_data == tb->__data)
1972 		free_percpu(t->stats);
1973 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1974 	kfree(tb);
1975 }
1976 
1977 void fib_free_table(struct fib_table *tb)
1978 {
1979 	call_rcu(&tb->rcu, __trie_free_rcu);
1980 }
1981 
1982 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1983 			     struct sk_buff *skb, struct netlink_callback *cb)
1984 {
1985 	__be32 xkey = htonl(l->key);
1986 	struct fib_alias *fa;
1987 	int i, s_i;
1988 
1989 	s_i = cb->args[4];
1990 	i = 0;
1991 
1992 	/* rcu_read_lock is hold by caller */
1993 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1994 		int err;
1995 
1996 		if (i < s_i) {
1997 			i++;
1998 			continue;
1999 		}
2000 
2001 		if (tb->tb_id != fa->tb_id) {
2002 			i++;
2003 			continue;
2004 		}
2005 
2006 		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2007 				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2008 				    tb->tb_id, fa->fa_type,
2009 				    xkey, KEYLENGTH - fa->fa_slen,
2010 				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2011 		if (err < 0) {
2012 			cb->args[4] = i;
2013 			return err;
2014 		}
2015 		i++;
2016 	}
2017 
2018 	cb->args[4] = i;
2019 	return skb->len;
2020 }
2021 
2022 /* rcu_read_lock needs to be hold by caller from readside */
2023 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2024 		   struct netlink_callback *cb)
2025 {
2026 	struct trie *t = (struct trie *)tb->tb_data;
2027 	struct key_vector *l, *tp = t->kv;
2028 	/* Dump starting at last key.
2029 	 * Note: 0.0.0.0/0 (ie default) is first key.
2030 	 */
2031 	int count = cb->args[2];
2032 	t_key key = cb->args[3];
2033 
2034 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2035 		int err;
2036 
2037 		err = fn_trie_dump_leaf(l, tb, skb, cb);
2038 		if (err < 0) {
2039 			cb->args[3] = key;
2040 			cb->args[2] = count;
2041 			return err;
2042 		}
2043 
2044 		++count;
2045 		key = l->key + 1;
2046 
2047 		memset(&cb->args[4], 0,
2048 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2049 
2050 		/* stop loop if key wrapped back to 0 */
2051 		if (key < l->key)
2052 			break;
2053 	}
2054 
2055 	cb->args[3] = key;
2056 	cb->args[2] = count;
2057 
2058 	return skb->len;
2059 }
2060 
2061 void __init fib_trie_init(void)
2062 {
2063 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2064 					  sizeof(struct fib_alias),
2065 					  0, SLAB_PANIC, NULL);
2066 
2067 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2068 					   LEAF_SIZE,
2069 					   0, SLAB_PANIC, NULL);
2070 }
2071 
2072 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2073 {
2074 	struct fib_table *tb;
2075 	struct trie *t;
2076 	size_t sz = sizeof(*tb);
2077 
2078 	if (!alias)
2079 		sz += sizeof(struct trie);
2080 
2081 	tb = kzalloc(sz, GFP_KERNEL);
2082 	if (!tb)
2083 		return NULL;
2084 
2085 	tb->tb_id = id;
2086 	tb->tb_num_default = 0;
2087 	tb->tb_data = (alias ? alias->__data : tb->__data);
2088 
2089 	if (alias)
2090 		return tb;
2091 
2092 	t = (struct trie *) tb->tb_data;
2093 	t->kv[0].pos = KEYLENGTH;
2094 	t->kv[0].slen = KEYLENGTH;
2095 #ifdef CONFIG_IP_FIB_TRIE_STATS
2096 	t->stats = alloc_percpu(struct trie_use_stats);
2097 	if (!t->stats) {
2098 		kfree(tb);
2099 		tb = NULL;
2100 	}
2101 #endif
2102 
2103 	return tb;
2104 }
2105 
2106 #ifdef CONFIG_PROC_FS
2107 /* Depth first Trie walk iterator */
2108 struct fib_trie_iter {
2109 	struct seq_net_private p;
2110 	struct fib_table *tb;
2111 	struct key_vector *tnode;
2112 	unsigned int index;
2113 	unsigned int depth;
2114 };
2115 
2116 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2117 {
2118 	unsigned long cindex = iter->index;
2119 	struct key_vector *pn = iter->tnode;
2120 	t_key pkey;
2121 
2122 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2123 		 iter->tnode, iter->index, iter->depth);
2124 
2125 	while (!IS_TRIE(pn)) {
2126 		while (cindex < child_length(pn)) {
2127 			struct key_vector *n = get_child_rcu(pn, cindex++);
2128 
2129 			if (!n)
2130 				continue;
2131 
2132 			if (IS_LEAF(n)) {
2133 				iter->tnode = pn;
2134 				iter->index = cindex;
2135 			} else {
2136 				/* push down one level */
2137 				iter->tnode = n;
2138 				iter->index = 0;
2139 				++iter->depth;
2140 			}
2141 
2142 			return n;
2143 		}
2144 
2145 		/* Current node exhausted, pop back up */
2146 		pkey = pn->key;
2147 		pn = node_parent_rcu(pn);
2148 		cindex = get_index(pkey, pn) + 1;
2149 		--iter->depth;
2150 	}
2151 
2152 	/* record root node so further searches know we are done */
2153 	iter->tnode = pn;
2154 	iter->index = 0;
2155 
2156 	return NULL;
2157 }
2158 
2159 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2160 					     struct trie *t)
2161 {
2162 	struct key_vector *n, *pn;
2163 
2164 	if (!t)
2165 		return NULL;
2166 
2167 	pn = t->kv;
2168 	n = rcu_dereference(pn->tnode[0]);
2169 	if (!n)
2170 		return NULL;
2171 
2172 	if (IS_TNODE(n)) {
2173 		iter->tnode = n;
2174 		iter->index = 0;
2175 		iter->depth = 1;
2176 	} else {
2177 		iter->tnode = pn;
2178 		iter->index = 0;
2179 		iter->depth = 0;
2180 	}
2181 
2182 	return n;
2183 }
2184 
2185 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2186 {
2187 	struct key_vector *n;
2188 	struct fib_trie_iter iter;
2189 
2190 	memset(s, 0, sizeof(*s));
2191 
2192 	rcu_read_lock();
2193 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2194 		if (IS_LEAF(n)) {
2195 			struct fib_alias *fa;
2196 
2197 			s->leaves++;
2198 			s->totdepth += iter.depth;
2199 			if (iter.depth > s->maxdepth)
2200 				s->maxdepth = iter.depth;
2201 
2202 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2203 				++s->prefixes;
2204 		} else {
2205 			s->tnodes++;
2206 			if (n->bits < MAX_STAT_DEPTH)
2207 				s->nodesizes[n->bits]++;
2208 			s->nullpointers += tn_info(n)->empty_children;
2209 		}
2210 	}
2211 	rcu_read_unlock();
2212 }
2213 
2214 /*
2215  *	This outputs /proc/net/fib_triestats
2216  */
2217 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2218 {
2219 	unsigned int i, max, pointers, bytes, avdepth;
2220 
2221 	if (stat->leaves)
2222 		avdepth = stat->totdepth*100 / stat->leaves;
2223 	else
2224 		avdepth = 0;
2225 
2226 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2227 		   avdepth / 100, avdepth % 100);
2228 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2229 
2230 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2231 	bytes = LEAF_SIZE * stat->leaves;
2232 
2233 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2234 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2235 
2236 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2237 	bytes += TNODE_SIZE(0) * stat->tnodes;
2238 
2239 	max = MAX_STAT_DEPTH;
2240 	while (max > 0 && stat->nodesizes[max-1] == 0)
2241 		max--;
2242 
2243 	pointers = 0;
2244 	for (i = 1; i < max; i++)
2245 		if (stat->nodesizes[i] != 0) {
2246 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2247 			pointers += (1<<i) * stat->nodesizes[i];
2248 		}
2249 	seq_putc(seq, '\n');
2250 	seq_printf(seq, "\tPointers: %u\n", pointers);
2251 
2252 	bytes += sizeof(struct key_vector *) * pointers;
2253 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2254 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2255 }
2256 
2257 #ifdef CONFIG_IP_FIB_TRIE_STATS
2258 static void trie_show_usage(struct seq_file *seq,
2259 			    const struct trie_use_stats __percpu *stats)
2260 {
2261 	struct trie_use_stats s = { 0 };
2262 	int cpu;
2263 
2264 	/* loop through all of the CPUs and gather up the stats */
2265 	for_each_possible_cpu(cpu) {
2266 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2267 
2268 		s.gets += pcpu->gets;
2269 		s.backtrack += pcpu->backtrack;
2270 		s.semantic_match_passed += pcpu->semantic_match_passed;
2271 		s.semantic_match_miss += pcpu->semantic_match_miss;
2272 		s.null_node_hit += pcpu->null_node_hit;
2273 		s.resize_node_skipped += pcpu->resize_node_skipped;
2274 	}
2275 
2276 	seq_printf(seq, "\nCounters:\n---------\n");
2277 	seq_printf(seq, "gets = %u\n", s.gets);
2278 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2279 	seq_printf(seq, "semantic match passed = %u\n",
2280 		   s.semantic_match_passed);
2281 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2282 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2283 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2284 }
2285 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2286 
2287 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2288 {
2289 	if (tb->tb_id == RT_TABLE_LOCAL)
2290 		seq_puts(seq, "Local:\n");
2291 	else if (tb->tb_id == RT_TABLE_MAIN)
2292 		seq_puts(seq, "Main:\n");
2293 	else
2294 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2295 }
2296 
2297 
2298 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2299 {
2300 	struct net *net = (struct net *)seq->private;
2301 	unsigned int h;
2302 
2303 	seq_printf(seq,
2304 		   "Basic info: size of leaf:"
2305 		   " %zd bytes, size of tnode: %zd bytes.\n",
2306 		   LEAF_SIZE, TNODE_SIZE(0));
2307 
2308 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2309 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2310 		struct fib_table *tb;
2311 
2312 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2313 			struct trie *t = (struct trie *) tb->tb_data;
2314 			struct trie_stat stat;
2315 
2316 			if (!t)
2317 				continue;
2318 
2319 			fib_table_print(seq, tb);
2320 
2321 			trie_collect_stats(t, &stat);
2322 			trie_show_stats(seq, &stat);
2323 #ifdef CONFIG_IP_FIB_TRIE_STATS
2324 			trie_show_usage(seq, t->stats);
2325 #endif
2326 		}
2327 	}
2328 
2329 	return 0;
2330 }
2331 
2332 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2333 {
2334 	return single_open_net(inode, file, fib_triestat_seq_show);
2335 }
2336 
2337 static const struct file_operations fib_triestat_fops = {
2338 	.open	= fib_triestat_seq_open,
2339 	.read	= seq_read,
2340 	.llseek	= seq_lseek,
2341 	.release = single_release_net,
2342 };
2343 
2344 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2345 {
2346 	struct fib_trie_iter *iter = seq->private;
2347 	struct net *net = seq_file_net(seq);
2348 	loff_t idx = 0;
2349 	unsigned int h;
2350 
2351 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2352 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2353 		struct fib_table *tb;
2354 
2355 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2356 			struct key_vector *n;
2357 
2358 			for (n = fib_trie_get_first(iter,
2359 						    (struct trie *) tb->tb_data);
2360 			     n; n = fib_trie_get_next(iter))
2361 				if (pos == idx++) {
2362 					iter->tb = tb;
2363 					return n;
2364 				}
2365 		}
2366 	}
2367 
2368 	return NULL;
2369 }
2370 
2371 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2372 	__acquires(RCU)
2373 {
2374 	rcu_read_lock();
2375 	return fib_trie_get_idx(seq, *pos);
2376 }
2377 
2378 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2379 {
2380 	struct fib_trie_iter *iter = seq->private;
2381 	struct net *net = seq_file_net(seq);
2382 	struct fib_table *tb = iter->tb;
2383 	struct hlist_node *tb_node;
2384 	unsigned int h;
2385 	struct key_vector *n;
2386 
2387 	++*pos;
2388 	/* next node in same table */
2389 	n = fib_trie_get_next(iter);
2390 	if (n)
2391 		return n;
2392 
2393 	/* walk rest of this hash chain */
2394 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2395 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2396 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2397 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2398 		if (n)
2399 			goto found;
2400 	}
2401 
2402 	/* new hash chain */
2403 	while (++h < FIB_TABLE_HASHSZ) {
2404 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2405 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2406 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2407 			if (n)
2408 				goto found;
2409 		}
2410 	}
2411 	return NULL;
2412 
2413 found:
2414 	iter->tb = tb;
2415 	return n;
2416 }
2417 
2418 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2419 	__releases(RCU)
2420 {
2421 	rcu_read_unlock();
2422 }
2423 
2424 static void seq_indent(struct seq_file *seq, int n)
2425 {
2426 	while (n-- > 0)
2427 		seq_puts(seq, "   ");
2428 }
2429 
2430 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2431 {
2432 	switch (s) {
2433 	case RT_SCOPE_UNIVERSE: return "universe";
2434 	case RT_SCOPE_SITE:	return "site";
2435 	case RT_SCOPE_LINK:	return "link";
2436 	case RT_SCOPE_HOST:	return "host";
2437 	case RT_SCOPE_NOWHERE:	return "nowhere";
2438 	default:
2439 		snprintf(buf, len, "scope=%d", s);
2440 		return buf;
2441 	}
2442 }
2443 
2444 static const char *const rtn_type_names[__RTN_MAX] = {
2445 	[RTN_UNSPEC] = "UNSPEC",
2446 	[RTN_UNICAST] = "UNICAST",
2447 	[RTN_LOCAL] = "LOCAL",
2448 	[RTN_BROADCAST] = "BROADCAST",
2449 	[RTN_ANYCAST] = "ANYCAST",
2450 	[RTN_MULTICAST] = "MULTICAST",
2451 	[RTN_BLACKHOLE] = "BLACKHOLE",
2452 	[RTN_UNREACHABLE] = "UNREACHABLE",
2453 	[RTN_PROHIBIT] = "PROHIBIT",
2454 	[RTN_THROW] = "THROW",
2455 	[RTN_NAT] = "NAT",
2456 	[RTN_XRESOLVE] = "XRESOLVE",
2457 };
2458 
2459 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2460 {
2461 	if (t < __RTN_MAX && rtn_type_names[t])
2462 		return rtn_type_names[t];
2463 	snprintf(buf, len, "type %u", t);
2464 	return buf;
2465 }
2466 
2467 /* Pretty print the trie */
2468 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2469 {
2470 	const struct fib_trie_iter *iter = seq->private;
2471 	struct key_vector *n = v;
2472 
2473 	if (IS_TRIE(node_parent_rcu(n)))
2474 		fib_table_print(seq, iter->tb);
2475 
2476 	if (IS_TNODE(n)) {
2477 		__be32 prf = htonl(n->key);
2478 
2479 		seq_indent(seq, iter->depth-1);
2480 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2481 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2482 			   tn_info(n)->full_children,
2483 			   tn_info(n)->empty_children);
2484 	} else {
2485 		__be32 val = htonl(n->key);
2486 		struct fib_alias *fa;
2487 
2488 		seq_indent(seq, iter->depth);
2489 		seq_printf(seq, "  |-- %pI4\n", &val);
2490 
2491 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2492 			char buf1[32], buf2[32];
2493 
2494 			seq_indent(seq, iter->depth + 1);
2495 			seq_printf(seq, "  /%zu %s %s",
2496 				   KEYLENGTH - fa->fa_slen,
2497 				   rtn_scope(buf1, sizeof(buf1),
2498 					     fa->fa_info->fib_scope),
2499 				   rtn_type(buf2, sizeof(buf2),
2500 					    fa->fa_type));
2501 			if (fa->fa_tos)
2502 				seq_printf(seq, " tos=%d", fa->fa_tos);
2503 			seq_putc(seq, '\n');
2504 		}
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static const struct seq_operations fib_trie_seq_ops = {
2511 	.start  = fib_trie_seq_start,
2512 	.next   = fib_trie_seq_next,
2513 	.stop   = fib_trie_seq_stop,
2514 	.show   = fib_trie_seq_show,
2515 };
2516 
2517 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2518 {
2519 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2520 			    sizeof(struct fib_trie_iter));
2521 }
2522 
2523 static const struct file_operations fib_trie_fops = {
2524 	.open   = fib_trie_seq_open,
2525 	.read   = seq_read,
2526 	.llseek = seq_lseek,
2527 	.release = seq_release_net,
2528 };
2529 
2530 struct fib_route_iter {
2531 	struct seq_net_private p;
2532 	struct fib_table *main_tb;
2533 	struct key_vector *tnode;
2534 	loff_t	pos;
2535 	t_key	key;
2536 };
2537 
2538 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2539 					    loff_t pos)
2540 {
2541 	struct key_vector *l, **tp = &iter->tnode;
2542 	t_key key;
2543 
2544 	/* use cached location of previously found key */
2545 	if (iter->pos > 0 && pos >= iter->pos) {
2546 		key = iter->key;
2547 	} else {
2548 		iter->pos = 1;
2549 		key = 0;
2550 	}
2551 
2552 	pos -= iter->pos;
2553 
2554 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2555 		key = l->key + 1;
2556 		iter->pos++;
2557 		l = NULL;
2558 
2559 		/* handle unlikely case of a key wrap */
2560 		if (!key)
2561 			break;
2562 	}
2563 
2564 	if (l)
2565 		iter->key = l->key;	/* remember it */
2566 	else
2567 		iter->pos = 0;		/* forget it */
2568 
2569 	return l;
2570 }
2571 
2572 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2573 	__acquires(RCU)
2574 {
2575 	struct fib_route_iter *iter = seq->private;
2576 	struct fib_table *tb;
2577 	struct trie *t;
2578 
2579 	rcu_read_lock();
2580 
2581 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2582 	if (!tb)
2583 		return NULL;
2584 
2585 	iter->main_tb = tb;
2586 	t = (struct trie *)tb->tb_data;
2587 	iter->tnode = t->kv;
2588 
2589 	if (*pos != 0)
2590 		return fib_route_get_idx(iter, *pos);
2591 
2592 	iter->pos = 0;
2593 	iter->key = KEY_MAX;
2594 
2595 	return SEQ_START_TOKEN;
2596 }
2597 
2598 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2599 {
2600 	struct fib_route_iter *iter = seq->private;
2601 	struct key_vector *l = NULL;
2602 	t_key key = iter->key + 1;
2603 
2604 	++*pos;
2605 
2606 	/* only allow key of 0 for start of sequence */
2607 	if ((v == SEQ_START_TOKEN) || key)
2608 		l = leaf_walk_rcu(&iter->tnode, key);
2609 
2610 	if (l) {
2611 		iter->key = l->key;
2612 		iter->pos++;
2613 	} else {
2614 		iter->pos = 0;
2615 	}
2616 
2617 	return l;
2618 }
2619 
2620 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2621 	__releases(RCU)
2622 {
2623 	rcu_read_unlock();
2624 }
2625 
2626 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2627 {
2628 	unsigned int flags = 0;
2629 
2630 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2631 		flags = RTF_REJECT;
2632 	if (fi && fi->fib_nh->nh_gw)
2633 		flags |= RTF_GATEWAY;
2634 	if (mask == htonl(0xFFFFFFFF))
2635 		flags |= RTF_HOST;
2636 	flags |= RTF_UP;
2637 	return flags;
2638 }
2639 
2640 /*
2641  *	This outputs /proc/net/route.
2642  *	The format of the file is not supposed to be changed
2643  *	and needs to be same as fib_hash output to avoid breaking
2644  *	legacy utilities
2645  */
2646 static int fib_route_seq_show(struct seq_file *seq, void *v)
2647 {
2648 	struct fib_route_iter *iter = seq->private;
2649 	struct fib_table *tb = iter->main_tb;
2650 	struct fib_alias *fa;
2651 	struct key_vector *l = v;
2652 	__be32 prefix;
2653 
2654 	if (v == SEQ_START_TOKEN) {
2655 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2656 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2657 			   "\tWindow\tIRTT");
2658 		return 0;
2659 	}
2660 
2661 	prefix = htonl(l->key);
2662 
2663 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2664 		const struct fib_info *fi = fa->fa_info;
2665 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2666 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2667 
2668 		if ((fa->fa_type == RTN_BROADCAST) ||
2669 		    (fa->fa_type == RTN_MULTICAST))
2670 			continue;
2671 
2672 		if (fa->tb_id != tb->tb_id)
2673 			continue;
2674 
2675 		seq_setwidth(seq, 127);
2676 
2677 		if (fi)
2678 			seq_printf(seq,
2679 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2680 				   "%d\t%08X\t%d\t%u\t%u",
2681 				   fi->fib_dev ? fi->fib_dev->name : "*",
2682 				   prefix,
2683 				   fi->fib_nh->nh_gw, flags, 0, 0,
2684 				   fi->fib_priority,
2685 				   mask,
2686 				   (fi->fib_advmss ?
2687 				    fi->fib_advmss + 40 : 0),
2688 				   fi->fib_window,
2689 				   fi->fib_rtt >> 3);
2690 		else
2691 			seq_printf(seq,
2692 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2693 				   "%d\t%08X\t%d\t%u\t%u",
2694 				   prefix, 0, flags, 0, 0, 0,
2695 				   mask, 0, 0, 0);
2696 
2697 		seq_pad(seq, '\n');
2698 	}
2699 
2700 	return 0;
2701 }
2702 
2703 static const struct seq_operations fib_route_seq_ops = {
2704 	.start  = fib_route_seq_start,
2705 	.next   = fib_route_seq_next,
2706 	.stop   = fib_route_seq_stop,
2707 	.show   = fib_route_seq_show,
2708 };
2709 
2710 static int fib_route_seq_open(struct inode *inode, struct file *file)
2711 {
2712 	return seq_open_net(inode, file, &fib_route_seq_ops,
2713 			    sizeof(struct fib_route_iter));
2714 }
2715 
2716 static const struct file_operations fib_route_fops = {
2717 	.open   = fib_route_seq_open,
2718 	.read   = seq_read,
2719 	.llseek = seq_lseek,
2720 	.release = seq_release_net,
2721 };
2722 
2723 int __net_init fib_proc_init(struct net *net)
2724 {
2725 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2726 		goto out1;
2727 
2728 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2729 			 &fib_triestat_fops))
2730 		goto out2;
2731 
2732 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2733 		goto out3;
2734 
2735 	return 0;
2736 
2737 out3:
2738 	remove_proc_entry("fib_triestat", net->proc_net);
2739 out2:
2740 	remove_proc_entry("fib_trie", net->proc_net);
2741 out1:
2742 	return -ENOMEM;
2743 }
2744 
2745 void __net_exit fib_proc_exit(struct net *net)
2746 {
2747 	remove_proc_entry("fib_trie", net->proc_net);
2748 	remove_proc_entry("fib_triestat", net->proc_net);
2749 	remove_proc_entry("route", net->proc_net);
2750 }
2751 
2752 #endif /* CONFIG_PROC_FS */
2753