xref: /linux/net/ipv4/fib_trie.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/prefetch.h>
75 #include <linux/export.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84 
85 #define MAX_STAT_DEPTH 32
86 
87 #define KEYLENGTH (8*sizeof(t_key))
88 
89 typedef unsigned int t_key;
90 
91 #define T_TNODE 0
92 #define T_LEAF  1
93 #define NODE_TYPE_MASK	0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98 
99 struct rt_trie_node {
100 	unsigned long parent;
101 	t_key key;
102 };
103 
104 struct leaf {
105 	unsigned long parent;
106 	t_key key;
107 	struct hlist_head list;
108 	struct rcu_head rcu;
109 };
110 
111 struct leaf_info {
112 	struct hlist_node hlist;
113 	int plen;
114 	u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
115 	struct list_head falh;
116 	struct rcu_head rcu;
117 };
118 
119 struct tnode {
120 	unsigned long parent;
121 	t_key key;
122 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
124 	unsigned int full_children;	/* KEYLENGTH bits needed */
125 	unsigned int empty_children;	/* KEYLENGTH bits needed */
126 	union {
127 		struct rcu_head rcu;
128 		struct work_struct work;
129 		struct tnode *tnode_free;
130 	};
131 	struct rt_trie_node __rcu *child[0];
132 };
133 
134 #ifdef CONFIG_IP_FIB_TRIE_STATS
135 struct trie_use_stats {
136 	unsigned int gets;
137 	unsigned int backtrack;
138 	unsigned int semantic_match_passed;
139 	unsigned int semantic_match_miss;
140 	unsigned int null_node_hit;
141 	unsigned int resize_node_skipped;
142 };
143 #endif
144 
145 struct trie_stat {
146 	unsigned int totdepth;
147 	unsigned int maxdepth;
148 	unsigned int tnodes;
149 	unsigned int leaves;
150 	unsigned int nullpointers;
151 	unsigned int prefixes;
152 	unsigned int nodesizes[MAX_STAT_DEPTH];
153 };
154 
155 struct trie {
156 	struct rt_trie_node __rcu *trie;
157 #ifdef CONFIG_IP_FIB_TRIE_STATS
158 	struct trie_use_stats stats;
159 #endif
160 };
161 
162 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
163 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
164 				  int wasfull);
165 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
166 static struct tnode *inflate(struct trie *t, struct tnode *tn);
167 static struct tnode *halve(struct trie *t, struct tnode *tn);
168 /* tnodes to free after resize(); protected by RTNL */
169 static struct tnode *tnode_free_head;
170 static size_t tnode_free_size;
171 
172 /*
173  * synchronize_rcu after call_rcu for that many pages; it should be especially
174  * useful before resizing the root node with PREEMPT_NONE configs; the value was
175  * obtained experimentally, aiming to avoid visible slowdown.
176  */
177 static const int sync_pages = 128;
178 
179 static struct kmem_cache *fn_alias_kmem __read_mostly;
180 static struct kmem_cache *trie_leaf_kmem __read_mostly;
181 
182 /*
183  * caller must hold RTNL
184  */
185 static inline struct tnode *node_parent(const struct rt_trie_node *node)
186 {
187 	unsigned long parent;
188 
189 	parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
190 
191 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
192 }
193 
194 /*
195  * caller must hold RCU read lock or RTNL
196  */
197 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
198 {
199 	unsigned long parent;
200 
201 	parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
202 							   lockdep_rtnl_is_held());
203 
204 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
205 }
206 
207 /* Same as rcu_assign_pointer
208  * but that macro() assumes that value is a pointer.
209  */
210 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
211 {
212 	smp_wmb();
213 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
214 }
215 
216 /*
217  * caller must hold RTNL
218  */
219 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
220 {
221 	BUG_ON(i >= 1U << tn->bits);
222 
223 	return rtnl_dereference(tn->child[i]);
224 }
225 
226 /*
227  * caller must hold RCU read lock or RTNL
228  */
229 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
230 {
231 	BUG_ON(i >= 1U << tn->bits);
232 
233 	return rcu_dereference_rtnl(tn->child[i]);
234 }
235 
236 static inline int tnode_child_length(const struct tnode *tn)
237 {
238 	return 1 << tn->bits;
239 }
240 
241 static inline t_key mask_pfx(t_key k, unsigned int l)
242 {
243 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
244 }
245 
246 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
247 {
248 	if (offset < KEYLENGTH)
249 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
250 	else
251 		return 0;
252 }
253 
254 static inline int tkey_equals(t_key a, t_key b)
255 {
256 	return a == b;
257 }
258 
259 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
260 {
261 	if (bits == 0 || offset >= KEYLENGTH)
262 		return 1;
263 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
264 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
265 }
266 
267 static inline int tkey_mismatch(t_key a, int offset, t_key b)
268 {
269 	t_key diff = a ^ b;
270 	int i = offset;
271 
272 	if (!diff)
273 		return 0;
274 	while ((diff << i) >> (KEYLENGTH-1) == 0)
275 		i++;
276 	return i;
277 }
278 
279 /*
280   To understand this stuff, an understanding of keys and all their bits is
281   necessary. Every node in the trie has a key associated with it, but not
282   all of the bits in that key are significant.
283 
284   Consider a node 'n' and its parent 'tp'.
285 
286   If n is a leaf, every bit in its key is significant. Its presence is
287   necessitated by path compression, since during a tree traversal (when
288   searching for a leaf - unless we are doing an insertion) we will completely
289   ignore all skipped bits we encounter. Thus we need to verify, at the end of
290   a potentially successful search, that we have indeed been walking the
291   correct key path.
292 
293   Note that we can never "miss" the correct key in the tree if present by
294   following the wrong path. Path compression ensures that segments of the key
295   that are the same for all keys with a given prefix are skipped, but the
296   skipped part *is* identical for each node in the subtrie below the skipped
297   bit! trie_insert() in this implementation takes care of that - note the
298   call to tkey_sub_equals() in trie_insert().
299 
300   if n is an internal node - a 'tnode' here, the various parts of its key
301   have many different meanings.
302 
303   Example:
304   _________________________________________________________________
305   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
306   -----------------------------------------------------------------
307     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
308 
309   _________________________________________________________________
310   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
311   -----------------------------------------------------------------
312    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
313 
314   tp->pos = 7
315   tp->bits = 3
316   n->pos = 15
317   n->bits = 4
318 
319   First, let's just ignore the bits that come before the parent tp, that is
320   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
321   not use them for anything.
322 
323   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
324   index into the parent's child array. That is, they will be used to find
325   'n' among tp's children.
326 
327   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
328   for the node n.
329 
330   All the bits we have seen so far are significant to the node n. The rest
331   of the bits are really not needed or indeed known in n->key.
332 
333   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
334   n's child array, and will of course be different for each child.
335 
336 
337   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
338   at this point.
339 
340 */
341 
342 static inline void check_tnode(const struct tnode *tn)
343 {
344 	WARN_ON(tn && tn->pos+tn->bits > 32);
345 }
346 
347 static const int halve_threshold = 25;
348 static const int inflate_threshold = 50;
349 static const int halve_threshold_root = 15;
350 static const int inflate_threshold_root = 30;
351 
352 static void __alias_free_mem(struct rcu_head *head)
353 {
354 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
355 	kmem_cache_free(fn_alias_kmem, fa);
356 }
357 
358 static inline void alias_free_mem_rcu(struct fib_alias *fa)
359 {
360 	call_rcu(&fa->rcu, __alias_free_mem);
361 }
362 
363 static void __leaf_free_rcu(struct rcu_head *head)
364 {
365 	struct leaf *l = container_of(head, struct leaf, rcu);
366 	kmem_cache_free(trie_leaf_kmem, l);
367 }
368 
369 static inline void free_leaf(struct leaf *l)
370 {
371 	call_rcu_bh(&l->rcu, __leaf_free_rcu);
372 }
373 
374 static inline void free_leaf_info(struct leaf_info *leaf)
375 {
376 	kfree_rcu(leaf, rcu);
377 }
378 
379 static struct tnode *tnode_alloc(size_t size)
380 {
381 	if (size <= PAGE_SIZE)
382 		return kzalloc(size, GFP_KERNEL);
383 	else
384 		return vzalloc(size);
385 }
386 
387 static void __tnode_vfree(struct work_struct *arg)
388 {
389 	struct tnode *tn = container_of(arg, struct tnode, work);
390 	vfree(tn);
391 }
392 
393 static void __tnode_free_rcu(struct rcu_head *head)
394 {
395 	struct tnode *tn = container_of(head, struct tnode, rcu);
396 	size_t size = sizeof(struct tnode) +
397 		      (sizeof(struct rt_trie_node *) << tn->bits);
398 
399 	if (size <= PAGE_SIZE)
400 		kfree(tn);
401 	else {
402 		INIT_WORK(&tn->work, __tnode_vfree);
403 		schedule_work(&tn->work);
404 	}
405 }
406 
407 static inline void tnode_free(struct tnode *tn)
408 {
409 	if (IS_LEAF(tn))
410 		free_leaf((struct leaf *) tn);
411 	else
412 		call_rcu(&tn->rcu, __tnode_free_rcu);
413 }
414 
415 static void tnode_free_safe(struct tnode *tn)
416 {
417 	BUG_ON(IS_LEAF(tn));
418 	tn->tnode_free = tnode_free_head;
419 	tnode_free_head = tn;
420 	tnode_free_size += sizeof(struct tnode) +
421 			   (sizeof(struct rt_trie_node *) << tn->bits);
422 }
423 
424 static void tnode_free_flush(void)
425 {
426 	struct tnode *tn;
427 
428 	while ((tn = tnode_free_head)) {
429 		tnode_free_head = tn->tnode_free;
430 		tn->tnode_free = NULL;
431 		tnode_free(tn);
432 	}
433 
434 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
435 		tnode_free_size = 0;
436 		synchronize_rcu();
437 	}
438 }
439 
440 static struct leaf *leaf_new(void)
441 {
442 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
443 	if (l) {
444 		l->parent = T_LEAF;
445 		INIT_HLIST_HEAD(&l->list);
446 	}
447 	return l;
448 }
449 
450 static struct leaf_info *leaf_info_new(int plen)
451 {
452 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
453 	if (li) {
454 		li->plen = plen;
455 		li->mask_plen = ntohl(inet_make_mask(plen));
456 		INIT_LIST_HEAD(&li->falh);
457 	}
458 	return li;
459 }
460 
461 static struct tnode *tnode_new(t_key key, int pos, int bits)
462 {
463 	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
464 	struct tnode *tn = tnode_alloc(sz);
465 
466 	if (tn) {
467 		tn->parent = T_TNODE;
468 		tn->pos = pos;
469 		tn->bits = bits;
470 		tn->key = key;
471 		tn->full_children = 0;
472 		tn->empty_children = 1<<bits;
473 	}
474 
475 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
476 		 sizeof(struct rt_trie_node) << bits);
477 	return tn;
478 }
479 
480 /*
481  * Check whether a tnode 'n' is "full", i.e. it is an internal node
482  * and no bits are skipped. See discussion in dyntree paper p. 6
483  */
484 
485 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
486 {
487 	if (n == NULL || IS_LEAF(n))
488 		return 0;
489 
490 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
491 }
492 
493 static inline void put_child(struct trie *t, struct tnode *tn, int i,
494 			     struct rt_trie_node *n)
495 {
496 	tnode_put_child_reorg(tn, i, n, -1);
497 }
498 
499  /*
500   * Add a child at position i overwriting the old value.
501   * Update the value of full_children and empty_children.
502   */
503 
504 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
505 				  int wasfull)
506 {
507 	struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
508 	int isfull;
509 
510 	BUG_ON(i >= 1<<tn->bits);
511 
512 	/* update emptyChildren */
513 	if (n == NULL && chi != NULL)
514 		tn->empty_children++;
515 	else if (n != NULL && chi == NULL)
516 		tn->empty_children--;
517 
518 	/* update fullChildren */
519 	if (wasfull == -1)
520 		wasfull = tnode_full(tn, chi);
521 
522 	isfull = tnode_full(tn, n);
523 	if (wasfull && !isfull)
524 		tn->full_children--;
525 	else if (!wasfull && isfull)
526 		tn->full_children++;
527 
528 	if (n)
529 		node_set_parent(n, tn);
530 
531 	rcu_assign_pointer(tn->child[i], n);
532 }
533 
534 #define MAX_WORK 10
535 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
536 {
537 	int i;
538 	struct tnode *old_tn;
539 	int inflate_threshold_use;
540 	int halve_threshold_use;
541 	int max_work;
542 
543 	if (!tn)
544 		return NULL;
545 
546 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
547 		 tn, inflate_threshold, halve_threshold);
548 
549 	/* No children */
550 	if (tn->empty_children == tnode_child_length(tn)) {
551 		tnode_free_safe(tn);
552 		return NULL;
553 	}
554 	/* One child */
555 	if (tn->empty_children == tnode_child_length(tn) - 1)
556 		goto one_child;
557 	/*
558 	 * Double as long as the resulting node has a number of
559 	 * nonempty nodes that are above the threshold.
560 	 */
561 
562 	/*
563 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
564 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
565 	 * Telecommunications, page 6:
566 	 * "A node is doubled if the ratio of non-empty children to all
567 	 * children in the *doubled* node is at least 'high'."
568 	 *
569 	 * 'high' in this instance is the variable 'inflate_threshold'. It
570 	 * is expressed as a percentage, so we multiply it with
571 	 * tnode_child_length() and instead of multiplying by 2 (since the
572 	 * child array will be doubled by inflate()) and multiplying
573 	 * the left-hand side by 100 (to handle the percentage thing) we
574 	 * multiply the left-hand side by 50.
575 	 *
576 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
577 	 * - tn->empty_children is of course the number of non-null children
578 	 * in the current node. tn->full_children is the number of "full"
579 	 * children, that is non-null tnodes with a skip value of 0.
580 	 * All of those will be doubled in the resulting inflated tnode, so
581 	 * we just count them one extra time here.
582 	 *
583 	 * A clearer way to write this would be:
584 	 *
585 	 * to_be_doubled = tn->full_children;
586 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
587 	 *     tn->full_children;
588 	 *
589 	 * new_child_length = tnode_child_length(tn) * 2;
590 	 *
591 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
592 	 *      new_child_length;
593 	 * if (new_fill_factor >= inflate_threshold)
594 	 *
595 	 * ...and so on, tho it would mess up the while () loop.
596 	 *
597 	 * anyway,
598 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
599 	 *      inflate_threshold
600 	 *
601 	 * avoid a division:
602 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
603 	 *      inflate_threshold * new_child_length
604 	 *
605 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
606 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
607 	 *    tn->full_children) >= inflate_threshold * new_child_length
608 	 *
609 	 * expand new_child_length:
610 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
611 	 *    tn->full_children) >=
612 	 *      inflate_threshold * tnode_child_length(tn) * 2
613 	 *
614 	 * shorten again:
615 	 * 50 * (tn->full_children + tnode_child_length(tn) -
616 	 *    tn->empty_children) >= inflate_threshold *
617 	 *    tnode_child_length(tn)
618 	 *
619 	 */
620 
621 	check_tnode(tn);
622 
623 	/* Keep root node larger  */
624 
625 	if (!node_parent((struct rt_trie_node *)tn)) {
626 		inflate_threshold_use = inflate_threshold_root;
627 		halve_threshold_use = halve_threshold_root;
628 	} else {
629 		inflate_threshold_use = inflate_threshold;
630 		halve_threshold_use = halve_threshold;
631 	}
632 
633 	max_work = MAX_WORK;
634 	while ((tn->full_children > 0 &&  max_work-- &&
635 		50 * (tn->full_children + tnode_child_length(tn)
636 		      - tn->empty_children)
637 		>= inflate_threshold_use * tnode_child_length(tn))) {
638 
639 		old_tn = tn;
640 		tn = inflate(t, tn);
641 
642 		if (IS_ERR(tn)) {
643 			tn = old_tn;
644 #ifdef CONFIG_IP_FIB_TRIE_STATS
645 			t->stats.resize_node_skipped++;
646 #endif
647 			break;
648 		}
649 	}
650 
651 	check_tnode(tn);
652 
653 	/* Return if at least one inflate is run */
654 	if (max_work != MAX_WORK)
655 		return (struct rt_trie_node *) tn;
656 
657 	/*
658 	 * Halve as long as the number of empty children in this
659 	 * node is above threshold.
660 	 */
661 
662 	max_work = MAX_WORK;
663 	while (tn->bits > 1 &&  max_work-- &&
664 	       100 * (tnode_child_length(tn) - tn->empty_children) <
665 	       halve_threshold_use * tnode_child_length(tn)) {
666 
667 		old_tn = tn;
668 		tn = halve(t, tn);
669 		if (IS_ERR(tn)) {
670 			tn = old_tn;
671 #ifdef CONFIG_IP_FIB_TRIE_STATS
672 			t->stats.resize_node_skipped++;
673 #endif
674 			break;
675 		}
676 	}
677 
678 
679 	/* Only one child remains */
680 	if (tn->empty_children == tnode_child_length(tn) - 1) {
681 one_child:
682 		for (i = 0; i < tnode_child_length(tn); i++) {
683 			struct rt_trie_node *n;
684 
685 			n = rtnl_dereference(tn->child[i]);
686 			if (!n)
687 				continue;
688 
689 			/* compress one level */
690 
691 			node_set_parent(n, NULL);
692 			tnode_free_safe(tn);
693 			return n;
694 		}
695 	}
696 	return (struct rt_trie_node *) tn;
697 }
698 
699 
700 static void tnode_clean_free(struct tnode *tn)
701 {
702 	int i;
703 	struct tnode *tofree;
704 
705 	for (i = 0; i < tnode_child_length(tn); i++) {
706 		tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
707 		if (tofree)
708 			tnode_free(tofree);
709 	}
710 	tnode_free(tn);
711 }
712 
713 static struct tnode *inflate(struct trie *t, struct tnode *tn)
714 {
715 	struct tnode *oldtnode = tn;
716 	int olen = tnode_child_length(tn);
717 	int i;
718 
719 	pr_debug("In inflate\n");
720 
721 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
722 
723 	if (!tn)
724 		return ERR_PTR(-ENOMEM);
725 
726 	/*
727 	 * Preallocate and store tnodes before the actual work so we
728 	 * don't get into an inconsistent state if memory allocation
729 	 * fails. In case of failure we return the oldnode and  inflate
730 	 * of tnode is ignored.
731 	 */
732 
733 	for (i = 0; i < olen; i++) {
734 		struct tnode *inode;
735 
736 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
737 		if (inode &&
738 		    IS_TNODE(inode) &&
739 		    inode->pos == oldtnode->pos + oldtnode->bits &&
740 		    inode->bits > 1) {
741 			struct tnode *left, *right;
742 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
743 
744 			left = tnode_new(inode->key&(~m), inode->pos + 1,
745 					 inode->bits - 1);
746 			if (!left)
747 				goto nomem;
748 
749 			right = tnode_new(inode->key|m, inode->pos + 1,
750 					  inode->bits - 1);
751 
752 			if (!right) {
753 				tnode_free(left);
754 				goto nomem;
755 			}
756 
757 			put_child(t, tn, 2*i, (struct rt_trie_node *) left);
758 			put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
759 		}
760 	}
761 
762 	for (i = 0; i < olen; i++) {
763 		struct tnode *inode;
764 		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
765 		struct tnode *left, *right;
766 		int size, j;
767 
768 		/* An empty child */
769 		if (node == NULL)
770 			continue;
771 
772 		/* A leaf or an internal node with skipped bits */
773 
774 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
775 		   tn->pos + tn->bits - 1) {
776 			if (tkey_extract_bits(node->key,
777 					      oldtnode->pos + oldtnode->bits,
778 					      1) == 0)
779 				put_child(t, tn, 2*i, node);
780 			else
781 				put_child(t, tn, 2*i+1, node);
782 			continue;
783 		}
784 
785 		/* An internal node with two children */
786 		inode = (struct tnode *) node;
787 
788 		if (inode->bits == 1) {
789 			put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
790 			put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
791 
792 			tnode_free_safe(inode);
793 			continue;
794 		}
795 
796 		/* An internal node with more than two children */
797 
798 		/* We will replace this node 'inode' with two new
799 		 * ones, 'left' and 'right', each with half of the
800 		 * original children. The two new nodes will have
801 		 * a position one bit further down the key and this
802 		 * means that the "significant" part of their keys
803 		 * (see the discussion near the top of this file)
804 		 * will differ by one bit, which will be "0" in
805 		 * left's key and "1" in right's key. Since we are
806 		 * moving the key position by one step, the bit that
807 		 * we are moving away from - the bit at position
808 		 * (inode->pos) - is the one that will differ between
809 		 * left and right. So... we synthesize that bit in the
810 		 * two  new keys.
811 		 * The mask 'm' below will be a single "one" bit at
812 		 * the position (inode->pos)
813 		 */
814 
815 		/* Use the old key, but set the new significant
816 		 *   bit to zero.
817 		 */
818 
819 		left = (struct tnode *) tnode_get_child(tn, 2*i);
820 		put_child(t, tn, 2*i, NULL);
821 
822 		BUG_ON(!left);
823 
824 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
825 		put_child(t, tn, 2*i+1, NULL);
826 
827 		BUG_ON(!right);
828 
829 		size = tnode_child_length(left);
830 		for (j = 0; j < size; j++) {
831 			put_child(t, left, j, rtnl_dereference(inode->child[j]));
832 			put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
833 		}
834 		put_child(t, tn, 2*i, resize(t, left));
835 		put_child(t, tn, 2*i+1, resize(t, right));
836 
837 		tnode_free_safe(inode);
838 	}
839 	tnode_free_safe(oldtnode);
840 	return tn;
841 nomem:
842 	tnode_clean_free(tn);
843 	return ERR_PTR(-ENOMEM);
844 }
845 
846 static struct tnode *halve(struct trie *t, struct tnode *tn)
847 {
848 	struct tnode *oldtnode = tn;
849 	struct rt_trie_node *left, *right;
850 	int i;
851 	int olen = tnode_child_length(tn);
852 
853 	pr_debug("In halve\n");
854 
855 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
856 
857 	if (!tn)
858 		return ERR_PTR(-ENOMEM);
859 
860 	/*
861 	 * Preallocate and store tnodes before the actual work so we
862 	 * don't get into an inconsistent state if memory allocation
863 	 * fails. In case of failure we return the oldnode and halve
864 	 * of tnode is ignored.
865 	 */
866 
867 	for (i = 0; i < olen; i += 2) {
868 		left = tnode_get_child(oldtnode, i);
869 		right = tnode_get_child(oldtnode, i+1);
870 
871 		/* Two nonempty children */
872 		if (left && right) {
873 			struct tnode *newn;
874 
875 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
876 
877 			if (!newn)
878 				goto nomem;
879 
880 			put_child(t, tn, i/2, (struct rt_trie_node *)newn);
881 		}
882 
883 	}
884 
885 	for (i = 0; i < olen; i += 2) {
886 		struct tnode *newBinNode;
887 
888 		left = tnode_get_child(oldtnode, i);
889 		right = tnode_get_child(oldtnode, i+1);
890 
891 		/* At least one of the children is empty */
892 		if (left == NULL) {
893 			if (right == NULL)    /* Both are empty */
894 				continue;
895 			put_child(t, tn, i/2, right);
896 			continue;
897 		}
898 
899 		if (right == NULL) {
900 			put_child(t, tn, i/2, left);
901 			continue;
902 		}
903 
904 		/* Two nonempty children */
905 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
906 		put_child(t, tn, i/2, NULL);
907 		put_child(t, newBinNode, 0, left);
908 		put_child(t, newBinNode, 1, right);
909 		put_child(t, tn, i/2, resize(t, newBinNode));
910 	}
911 	tnode_free_safe(oldtnode);
912 	return tn;
913 nomem:
914 	tnode_clean_free(tn);
915 	return ERR_PTR(-ENOMEM);
916 }
917 
918 /* readside must use rcu_read_lock currently dump routines
919  via get_fa_head and dump */
920 
921 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
922 {
923 	struct hlist_head *head = &l->list;
924 	struct hlist_node *node;
925 	struct leaf_info *li;
926 
927 	hlist_for_each_entry_rcu(li, node, head, hlist)
928 		if (li->plen == plen)
929 			return li;
930 
931 	return NULL;
932 }
933 
934 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
935 {
936 	struct leaf_info *li = find_leaf_info(l, plen);
937 
938 	if (!li)
939 		return NULL;
940 
941 	return &li->falh;
942 }
943 
944 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
945 {
946 	struct leaf_info *li = NULL, *last = NULL;
947 	struct hlist_node *node;
948 
949 	if (hlist_empty(head)) {
950 		hlist_add_head_rcu(&new->hlist, head);
951 	} else {
952 		hlist_for_each_entry(li, node, head, hlist) {
953 			if (new->plen > li->plen)
954 				break;
955 
956 			last = li;
957 		}
958 		if (last)
959 			hlist_add_after_rcu(&last->hlist, &new->hlist);
960 		else
961 			hlist_add_before_rcu(&new->hlist, &li->hlist);
962 	}
963 }
964 
965 /* rcu_read_lock needs to be hold by caller from readside */
966 
967 static struct leaf *
968 fib_find_node(struct trie *t, u32 key)
969 {
970 	int pos;
971 	struct tnode *tn;
972 	struct rt_trie_node *n;
973 
974 	pos = 0;
975 	n = rcu_dereference_rtnl(t->trie);
976 
977 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
978 		tn = (struct tnode *) n;
979 
980 		check_tnode(tn);
981 
982 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
983 			pos = tn->pos + tn->bits;
984 			n = tnode_get_child_rcu(tn,
985 						tkey_extract_bits(key,
986 								  tn->pos,
987 								  tn->bits));
988 		} else
989 			break;
990 	}
991 	/* Case we have found a leaf. Compare prefixes */
992 
993 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
994 		return (struct leaf *)n;
995 
996 	return NULL;
997 }
998 
999 static void trie_rebalance(struct trie *t, struct tnode *tn)
1000 {
1001 	int wasfull;
1002 	t_key cindex, key;
1003 	struct tnode *tp;
1004 
1005 	key = tn->key;
1006 
1007 	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1008 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1009 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1010 		tn = (struct tnode *)resize(t, tn);
1011 
1012 		tnode_put_child_reorg(tp, cindex,
1013 				      (struct rt_trie_node *)tn, wasfull);
1014 
1015 		tp = node_parent((struct rt_trie_node *) tn);
1016 		if (!tp)
1017 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1018 
1019 		tnode_free_flush();
1020 		if (!tp)
1021 			break;
1022 		tn = tp;
1023 	}
1024 
1025 	/* Handle last (top) tnode */
1026 	if (IS_TNODE(tn))
1027 		tn = (struct tnode *)resize(t, tn);
1028 
1029 	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1030 	tnode_free_flush();
1031 }
1032 
1033 /* only used from updater-side */
1034 
1035 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1036 {
1037 	int pos, newpos;
1038 	struct tnode *tp = NULL, *tn = NULL;
1039 	struct rt_trie_node *n;
1040 	struct leaf *l;
1041 	int missbit;
1042 	struct list_head *fa_head = NULL;
1043 	struct leaf_info *li;
1044 	t_key cindex;
1045 
1046 	pos = 0;
1047 	n = rtnl_dereference(t->trie);
1048 
1049 	/* If we point to NULL, stop. Either the tree is empty and we should
1050 	 * just put a new leaf in if, or we have reached an empty child slot,
1051 	 * and we should just put our new leaf in that.
1052 	 * If we point to a T_TNODE, check if it matches our key. Note that
1053 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1054 	 * not be the parent's 'pos'+'bits'!
1055 	 *
1056 	 * If it does match the current key, get pos/bits from it, extract
1057 	 * the index from our key, push the T_TNODE and walk the tree.
1058 	 *
1059 	 * If it doesn't, we have to replace it with a new T_TNODE.
1060 	 *
1061 	 * If we point to a T_LEAF, it might or might not have the same key
1062 	 * as we do. If it does, just change the value, update the T_LEAF's
1063 	 * value, and return it.
1064 	 * If it doesn't, we need to replace it with a T_TNODE.
1065 	 */
1066 
1067 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1068 		tn = (struct tnode *) n;
1069 
1070 		check_tnode(tn);
1071 
1072 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1073 			tp = tn;
1074 			pos = tn->pos + tn->bits;
1075 			n = tnode_get_child(tn,
1076 					    tkey_extract_bits(key,
1077 							      tn->pos,
1078 							      tn->bits));
1079 
1080 			BUG_ON(n && node_parent(n) != tn);
1081 		} else
1082 			break;
1083 	}
1084 
1085 	/*
1086 	 * n  ----> NULL, LEAF or TNODE
1087 	 *
1088 	 * tp is n's (parent) ----> NULL or TNODE
1089 	 */
1090 
1091 	BUG_ON(tp && IS_LEAF(tp));
1092 
1093 	/* Case 1: n is a leaf. Compare prefixes */
1094 
1095 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1096 		l = (struct leaf *) n;
1097 		li = leaf_info_new(plen);
1098 
1099 		if (!li)
1100 			return NULL;
1101 
1102 		fa_head = &li->falh;
1103 		insert_leaf_info(&l->list, li);
1104 		goto done;
1105 	}
1106 	l = leaf_new();
1107 
1108 	if (!l)
1109 		return NULL;
1110 
1111 	l->key = key;
1112 	li = leaf_info_new(plen);
1113 
1114 	if (!li) {
1115 		free_leaf(l);
1116 		return NULL;
1117 	}
1118 
1119 	fa_head = &li->falh;
1120 	insert_leaf_info(&l->list, li);
1121 
1122 	if (t->trie && n == NULL) {
1123 		/* Case 2: n is NULL, and will just insert a new leaf */
1124 
1125 		node_set_parent((struct rt_trie_node *)l, tp);
1126 
1127 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1128 		put_child(t, tp, cindex, (struct rt_trie_node *)l);
1129 	} else {
1130 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1131 		/*
1132 		 *  Add a new tnode here
1133 		 *  first tnode need some special handling
1134 		 */
1135 
1136 		if (tp)
1137 			pos = tp->pos+tp->bits;
1138 		else
1139 			pos = 0;
1140 
1141 		if (n) {
1142 			newpos = tkey_mismatch(key, pos, n->key);
1143 			tn = tnode_new(n->key, newpos, 1);
1144 		} else {
1145 			newpos = 0;
1146 			tn = tnode_new(key, newpos, 1); /* First tnode */
1147 		}
1148 
1149 		if (!tn) {
1150 			free_leaf_info(li);
1151 			free_leaf(l);
1152 			return NULL;
1153 		}
1154 
1155 		node_set_parent((struct rt_trie_node *)tn, tp);
1156 
1157 		missbit = tkey_extract_bits(key, newpos, 1);
1158 		put_child(t, tn, missbit, (struct rt_trie_node *)l);
1159 		put_child(t, tn, 1-missbit, n);
1160 
1161 		if (tp) {
1162 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1163 			put_child(t, tp, cindex, (struct rt_trie_node *)tn);
1164 		} else {
1165 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1166 			tp = tn;
1167 		}
1168 	}
1169 
1170 	if (tp && tp->pos + tp->bits > 32)
1171 		pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1172 			tp, tp->pos, tp->bits, key, plen);
1173 
1174 	/* Rebalance the trie */
1175 
1176 	trie_rebalance(t, tp);
1177 done:
1178 	return fa_head;
1179 }
1180 
1181 /*
1182  * Caller must hold RTNL.
1183  */
1184 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1185 {
1186 	struct trie *t = (struct trie *) tb->tb_data;
1187 	struct fib_alias *fa, *new_fa;
1188 	struct list_head *fa_head = NULL;
1189 	struct fib_info *fi;
1190 	int plen = cfg->fc_dst_len;
1191 	u8 tos = cfg->fc_tos;
1192 	u32 key, mask;
1193 	int err;
1194 	struct leaf *l;
1195 
1196 	if (plen > 32)
1197 		return -EINVAL;
1198 
1199 	key = ntohl(cfg->fc_dst);
1200 
1201 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1202 
1203 	mask = ntohl(inet_make_mask(plen));
1204 
1205 	if (key & ~mask)
1206 		return -EINVAL;
1207 
1208 	key = key & mask;
1209 
1210 	fi = fib_create_info(cfg);
1211 	if (IS_ERR(fi)) {
1212 		err = PTR_ERR(fi);
1213 		goto err;
1214 	}
1215 
1216 	l = fib_find_node(t, key);
1217 	fa = NULL;
1218 
1219 	if (l) {
1220 		fa_head = get_fa_head(l, plen);
1221 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1222 	}
1223 
1224 	/* Now fa, if non-NULL, points to the first fib alias
1225 	 * with the same keys [prefix,tos,priority], if such key already
1226 	 * exists or to the node before which we will insert new one.
1227 	 *
1228 	 * If fa is NULL, we will need to allocate a new one and
1229 	 * insert to the head of f.
1230 	 *
1231 	 * If f is NULL, no fib node matched the destination key
1232 	 * and we need to allocate a new one of those as well.
1233 	 */
1234 
1235 	if (fa && fa->fa_tos == tos &&
1236 	    fa->fa_info->fib_priority == fi->fib_priority) {
1237 		struct fib_alias *fa_first, *fa_match;
1238 
1239 		err = -EEXIST;
1240 		if (cfg->fc_nlflags & NLM_F_EXCL)
1241 			goto out;
1242 
1243 		/* We have 2 goals:
1244 		 * 1. Find exact match for type, scope, fib_info to avoid
1245 		 * duplicate routes
1246 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1247 		 */
1248 		fa_match = NULL;
1249 		fa_first = fa;
1250 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1251 		list_for_each_entry_continue(fa, fa_head, fa_list) {
1252 			if (fa->fa_tos != tos)
1253 				break;
1254 			if (fa->fa_info->fib_priority != fi->fib_priority)
1255 				break;
1256 			if (fa->fa_type == cfg->fc_type &&
1257 			    fa->fa_info == fi) {
1258 				fa_match = fa;
1259 				break;
1260 			}
1261 		}
1262 
1263 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1264 			struct fib_info *fi_drop;
1265 			u8 state;
1266 
1267 			fa = fa_first;
1268 			if (fa_match) {
1269 				if (fa == fa_match)
1270 					err = 0;
1271 				goto out;
1272 			}
1273 			err = -ENOBUFS;
1274 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1275 			if (new_fa == NULL)
1276 				goto out;
1277 
1278 			fi_drop = fa->fa_info;
1279 			new_fa->fa_tos = fa->fa_tos;
1280 			new_fa->fa_info = fi;
1281 			new_fa->fa_type = cfg->fc_type;
1282 			state = fa->fa_state;
1283 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1284 
1285 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1286 			alias_free_mem_rcu(fa);
1287 
1288 			fib_release_info(fi_drop);
1289 			if (state & FA_S_ACCESSED)
1290 				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1291 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1292 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1293 
1294 			goto succeeded;
1295 		}
1296 		/* Error if we find a perfect match which
1297 		 * uses the same scope, type, and nexthop
1298 		 * information.
1299 		 */
1300 		if (fa_match)
1301 			goto out;
1302 
1303 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1304 			fa = fa_first;
1305 	}
1306 	err = -ENOENT;
1307 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1308 		goto out;
1309 
1310 	err = -ENOBUFS;
1311 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1312 	if (new_fa == NULL)
1313 		goto out;
1314 
1315 	new_fa->fa_info = fi;
1316 	new_fa->fa_tos = tos;
1317 	new_fa->fa_type = cfg->fc_type;
1318 	new_fa->fa_state = 0;
1319 	/*
1320 	 * Insert new entry to the list.
1321 	 */
1322 
1323 	if (!fa_head) {
1324 		fa_head = fib_insert_node(t, key, plen);
1325 		if (unlikely(!fa_head)) {
1326 			err = -ENOMEM;
1327 			goto out_free_new_fa;
1328 		}
1329 	}
1330 
1331 	if (!plen)
1332 		tb->tb_num_default++;
1333 
1334 	list_add_tail_rcu(&new_fa->fa_list,
1335 			  (fa ? &fa->fa_list : fa_head));
1336 
1337 	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1338 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1339 		  &cfg->fc_nlinfo, 0);
1340 succeeded:
1341 	return 0;
1342 
1343 out_free_new_fa:
1344 	kmem_cache_free(fn_alias_kmem, new_fa);
1345 out:
1346 	fib_release_info(fi);
1347 err:
1348 	return err;
1349 }
1350 
1351 /* should be called with rcu_read_lock */
1352 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1353 		      t_key key,  const struct flowi4 *flp,
1354 		      struct fib_result *res, int fib_flags)
1355 {
1356 	struct leaf_info *li;
1357 	struct hlist_head *hhead = &l->list;
1358 	struct hlist_node *node;
1359 
1360 	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1361 		struct fib_alias *fa;
1362 
1363 		if (l->key != (key & li->mask_plen))
1364 			continue;
1365 
1366 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1367 			struct fib_info *fi = fa->fa_info;
1368 			int nhsel, err;
1369 
1370 			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1371 				continue;
1372 			if (fi->fib_dead)
1373 				continue;
1374 			if (fa->fa_info->fib_scope < flp->flowi4_scope)
1375 				continue;
1376 			fib_alias_accessed(fa);
1377 			err = fib_props[fa->fa_type].error;
1378 			if (err) {
1379 #ifdef CONFIG_IP_FIB_TRIE_STATS
1380 				t->stats.semantic_match_passed++;
1381 #endif
1382 				return err;
1383 			}
1384 			if (fi->fib_flags & RTNH_F_DEAD)
1385 				continue;
1386 			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387 				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388 
1389 				if (nh->nh_flags & RTNH_F_DEAD)
1390 					continue;
1391 				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1392 					continue;
1393 
1394 #ifdef CONFIG_IP_FIB_TRIE_STATS
1395 				t->stats.semantic_match_passed++;
1396 #endif
1397 				res->prefixlen = li->plen;
1398 				res->nh_sel = nhsel;
1399 				res->type = fa->fa_type;
1400 				res->scope = fa->fa_info->fib_scope;
1401 				res->fi = fi;
1402 				res->table = tb;
1403 				res->fa_head = &li->falh;
1404 				if (!(fib_flags & FIB_LOOKUP_NOREF))
1405 					atomic_inc(&fi->fib_clntref);
1406 				return 0;
1407 			}
1408 		}
1409 
1410 #ifdef CONFIG_IP_FIB_TRIE_STATS
1411 		t->stats.semantic_match_miss++;
1412 #endif
1413 	}
1414 
1415 	return 1;
1416 }
1417 
1418 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1419 		     struct fib_result *res, int fib_flags)
1420 {
1421 	struct trie *t = (struct trie *) tb->tb_data;
1422 	int ret;
1423 	struct rt_trie_node *n;
1424 	struct tnode *pn;
1425 	unsigned int pos, bits;
1426 	t_key key = ntohl(flp->daddr);
1427 	unsigned int chopped_off;
1428 	t_key cindex = 0;
1429 	unsigned int current_prefix_length = KEYLENGTH;
1430 	struct tnode *cn;
1431 	t_key pref_mismatch;
1432 
1433 	rcu_read_lock();
1434 
1435 	n = rcu_dereference(t->trie);
1436 	if (!n)
1437 		goto failed;
1438 
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 	t->stats.gets++;
1441 #endif
1442 
1443 	/* Just a leaf? */
1444 	if (IS_LEAF(n)) {
1445 		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1446 		goto found;
1447 	}
1448 
1449 	pn = (struct tnode *) n;
1450 	chopped_off = 0;
1451 
1452 	while (pn) {
1453 		pos = pn->pos;
1454 		bits = pn->bits;
1455 
1456 		if (!chopped_off)
1457 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458 						   pos, bits);
1459 
1460 		n = tnode_get_child_rcu(pn, cindex);
1461 
1462 		if (n == NULL) {
1463 #ifdef CONFIG_IP_FIB_TRIE_STATS
1464 			t->stats.null_node_hit++;
1465 #endif
1466 			goto backtrace;
1467 		}
1468 
1469 		if (IS_LEAF(n)) {
1470 			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1471 			if (ret > 0)
1472 				goto backtrace;
1473 			goto found;
1474 		}
1475 
1476 		cn = (struct tnode *)n;
1477 
1478 		/*
1479 		 * It's a tnode, and we can do some extra checks here if we
1480 		 * like, to avoid descending into a dead-end branch.
1481 		 * This tnode is in the parent's child array at index
1482 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1483 		 * chopped off, so in reality the index may be just a
1484 		 * subprefix, padded with zero at the end.
1485 		 * We can also take a look at any skipped bits in this
1486 		 * tnode - everything up to p_pos is supposed to be ok,
1487 		 * and the non-chopped bits of the index (se previous
1488 		 * paragraph) are also guaranteed ok, but the rest is
1489 		 * considered unknown.
1490 		 *
1491 		 * The skipped bits are key[pos+bits..cn->pos].
1492 		 */
1493 
1494 		/* If current_prefix_length < pos+bits, we are already doing
1495 		 * actual prefix  matching, which means everything from
1496 		 * pos+(bits-chopped_off) onward must be zero along some
1497 		 * branch of this subtree - otherwise there is *no* valid
1498 		 * prefix present. Here we can only check the skipped
1499 		 * bits. Remember, since we have already indexed into the
1500 		 * parent's child array, we know that the bits we chopped of
1501 		 * *are* zero.
1502 		 */
1503 
1504 		/* NOTA BENE: Checking only skipped bits
1505 		   for the new node here */
1506 
1507 		if (current_prefix_length < pos+bits) {
1508 			if (tkey_extract_bits(cn->key, current_prefix_length,
1509 						cn->pos - current_prefix_length)
1510 			    || !(cn->child[0]))
1511 				goto backtrace;
1512 		}
1513 
1514 		/*
1515 		 * If chopped_off=0, the index is fully validated and we
1516 		 * only need to look at the skipped bits for this, the new,
1517 		 * tnode. What we actually want to do is to find out if
1518 		 * these skipped bits match our key perfectly, or if we will
1519 		 * have to count on finding a matching prefix further down,
1520 		 * because if we do, we would like to have some way of
1521 		 * verifying the existence of such a prefix at this point.
1522 		 */
1523 
1524 		/* The only thing we can do at this point is to verify that
1525 		 * any such matching prefix can indeed be a prefix to our
1526 		 * key, and if the bits in the node we are inspecting that
1527 		 * do not match our key are not ZERO, this cannot be true.
1528 		 * Thus, find out where there is a mismatch (before cn->pos)
1529 		 * and verify that all the mismatching bits are zero in the
1530 		 * new tnode's key.
1531 		 */
1532 
1533 		/*
1534 		 * Note: We aren't very concerned about the piece of
1535 		 * the key that precede pn->pos+pn->bits, since these
1536 		 * have already been checked. The bits after cn->pos
1537 		 * aren't checked since these are by definition
1538 		 * "unknown" at this point. Thus, what we want to see
1539 		 * is if we are about to enter the "prefix matching"
1540 		 * state, and in that case verify that the skipped
1541 		 * bits that will prevail throughout this subtree are
1542 		 * zero, as they have to be if we are to find a
1543 		 * matching prefix.
1544 		 */
1545 
1546 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1547 
1548 		/*
1549 		 * In short: If skipped bits in this node do not match
1550 		 * the search key, enter the "prefix matching"
1551 		 * state.directly.
1552 		 */
1553 		if (pref_mismatch) {
1554 			int mp = KEYLENGTH - fls(pref_mismatch);
1555 
1556 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1557 				goto backtrace;
1558 
1559 			if (current_prefix_length >= cn->pos)
1560 				current_prefix_length = mp;
1561 		}
1562 
1563 		pn = (struct tnode *)n; /* Descend */
1564 		chopped_off = 0;
1565 		continue;
1566 
1567 backtrace:
1568 		chopped_off++;
1569 
1570 		/* As zero don't change the child key (cindex) */
1571 		while ((chopped_off <= pn->bits)
1572 		       && !(cindex & (1<<(chopped_off-1))))
1573 			chopped_off++;
1574 
1575 		/* Decrease current_... with bits chopped off */
1576 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1577 			current_prefix_length = pn->pos + pn->bits
1578 				- chopped_off;
1579 
1580 		/*
1581 		 * Either we do the actual chop off according or if we have
1582 		 * chopped off all bits in this tnode walk up to our parent.
1583 		 */
1584 
1585 		if (chopped_off <= pn->bits) {
1586 			cindex &= ~(1 << (chopped_off-1));
1587 		} else {
1588 			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1589 			if (!parent)
1590 				goto failed;
1591 
1592 			/* Get Child's index */
1593 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594 			pn = parent;
1595 			chopped_off = 0;
1596 
1597 #ifdef CONFIG_IP_FIB_TRIE_STATS
1598 			t->stats.backtrack++;
1599 #endif
1600 			goto backtrace;
1601 		}
1602 	}
1603 failed:
1604 	ret = 1;
1605 found:
1606 	rcu_read_unlock();
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(fib_table_lookup);
1610 
1611 /*
1612  * Remove the leaf and return parent.
1613  */
1614 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1615 {
1616 	struct tnode *tp = node_parent((struct rt_trie_node *) l);
1617 
1618 	pr_debug("entering trie_leaf_remove(%p)\n", l);
1619 
1620 	if (tp) {
1621 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1622 		put_child(t, tp, cindex, NULL);
1623 		trie_rebalance(t, tp);
1624 	} else
1625 		RCU_INIT_POINTER(t->trie, NULL);
1626 
1627 	free_leaf(l);
1628 }
1629 
1630 /*
1631  * Caller must hold RTNL.
1632  */
1633 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1634 {
1635 	struct trie *t = (struct trie *) tb->tb_data;
1636 	u32 key, mask;
1637 	int plen = cfg->fc_dst_len;
1638 	u8 tos = cfg->fc_tos;
1639 	struct fib_alias *fa, *fa_to_delete;
1640 	struct list_head *fa_head;
1641 	struct leaf *l;
1642 	struct leaf_info *li;
1643 
1644 	if (plen > 32)
1645 		return -EINVAL;
1646 
1647 	key = ntohl(cfg->fc_dst);
1648 	mask = ntohl(inet_make_mask(plen));
1649 
1650 	if (key & ~mask)
1651 		return -EINVAL;
1652 
1653 	key = key & mask;
1654 	l = fib_find_node(t, key);
1655 
1656 	if (!l)
1657 		return -ESRCH;
1658 
1659 	fa_head = get_fa_head(l, plen);
1660 	fa = fib_find_alias(fa_head, tos, 0);
1661 
1662 	if (!fa)
1663 		return -ESRCH;
1664 
1665 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1666 
1667 	fa_to_delete = NULL;
1668 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1669 	list_for_each_entry_continue(fa, fa_head, fa_list) {
1670 		struct fib_info *fi = fa->fa_info;
1671 
1672 		if (fa->fa_tos != tos)
1673 			break;
1674 
1675 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1676 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1677 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1678 		    (!cfg->fc_prefsrc ||
1679 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1680 		    (!cfg->fc_protocol ||
1681 		     fi->fib_protocol == cfg->fc_protocol) &&
1682 		    fib_nh_match(cfg, fi) == 0) {
1683 			fa_to_delete = fa;
1684 			break;
1685 		}
1686 	}
1687 
1688 	if (!fa_to_delete)
1689 		return -ESRCH;
1690 
1691 	fa = fa_to_delete;
1692 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1693 		  &cfg->fc_nlinfo, 0);
1694 
1695 	l = fib_find_node(t, key);
1696 	li = find_leaf_info(l, plen);
1697 
1698 	list_del_rcu(&fa->fa_list);
1699 
1700 	if (!plen)
1701 		tb->tb_num_default--;
1702 
1703 	if (list_empty(fa_head)) {
1704 		hlist_del_rcu(&li->hlist);
1705 		free_leaf_info(li);
1706 	}
1707 
1708 	if (hlist_empty(&l->list))
1709 		trie_leaf_remove(t, l);
1710 
1711 	if (fa->fa_state & FA_S_ACCESSED)
1712 		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1713 
1714 	fib_release_info(fa->fa_info);
1715 	alias_free_mem_rcu(fa);
1716 	return 0;
1717 }
1718 
1719 static int trie_flush_list(struct list_head *head)
1720 {
1721 	struct fib_alias *fa, *fa_node;
1722 	int found = 0;
1723 
1724 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1725 		struct fib_info *fi = fa->fa_info;
1726 
1727 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1728 			list_del_rcu(&fa->fa_list);
1729 			fib_release_info(fa->fa_info);
1730 			alias_free_mem_rcu(fa);
1731 			found++;
1732 		}
1733 	}
1734 	return found;
1735 }
1736 
1737 static int trie_flush_leaf(struct leaf *l)
1738 {
1739 	int found = 0;
1740 	struct hlist_head *lih = &l->list;
1741 	struct hlist_node *node, *tmp;
1742 	struct leaf_info *li = NULL;
1743 
1744 	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1745 		found += trie_flush_list(&li->falh);
1746 
1747 		if (list_empty(&li->falh)) {
1748 			hlist_del_rcu(&li->hlist);
1749 			free_leaf_info(li);
1750 		}
1751 	}
1752 	return found;
1753 }
1754 
1755 /*
1756  * Scan for the next right leaf starting at node p->child[idx]
1757  * Since we have back pointer, no recursion necessary.
1758  */
1759 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1760 {
1761 	do {
1762 		t_key idx;
1763 
1764 		if (c)
1765 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1766 		else
1767 			idx = 0;
1768 
1769 		while (idx < 1u << p->bits) {
1770 			c = tnode_get_child_rcu(p, idx++);
1771 			if (!c)
1772 				continue;
1773 
1774 			if (IS_LEAF(c)) {
1775 				prefetch(rcu_dereference_rtnl(p->child[idx]));
1776 				return (struct leaf *) c;
1777 			}
1778 
1779 			/* Rescan start scanning in new node */
1780 			p = (struct tnode *) c;
1781 			idx = 0;
1782 		}
1783 
1784 		/* Node empty, walk back up to parent */
1785 		c = (struct rt_trie_node *) p;
1786 	} while ((p = node_parent_rcu(c)) != NULL);
1787 
1788 	return NULL; /* Root of trie */
1789 }
1790 
1791 static struct leaf *trie_firstleaf(struct trie *t)
1792 {
1793 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1794 
1795 	if (!n)
1796 		return NULL;
1797 
1798 	if (IS_LEAF(n))          /* trie is just a leaf */
1799 		return (struct leaf *) n;
1800 
1801 	return leaf_walk_rcu(n, NULL);
1802 }
1803 
1804 static struct leaf *trie_nextleaf(struct leaf *l)
1805 {
1806 	struct rt_trie_node *c = (struct rt_trie_node *) l;
1807 	struct tnode *p = node_parent_rcu(c);
1808 
1809 	if (!p)
1810 		return NULL;	/* trie with just one leaf */
1811 
1812 	return leaf_walk_rcu(p, c);
1813 }
1814 
1815 static struct leaf *trie_leafindex(struct trie *t, int index)
1816 {
1817 	struct leaf *l = trie_firstleaf(t);
1818 
1819 	while (l && index-- > 0)
1820 		l = trie_nextleaf(l);
1821 
1822 	return l;
1823 }
1824 
1825 
1826 /*
1827  * Caller must hold RTNL.
1828  */
1829 int fib_table_flush(struct fib_table *tb)
1830 {
1831 	struct trie *t = (struct trie *) tb->tb_data;
1832 	struct leaf *l, *ll = NULL;
1833 	int found = 0;
1834 
1835 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1836 		found += trie_flush_leaf(l);
1837 
1838 		if (ll && hlist_empty(&ll->list))
1839 			trie_leaf_remove(t, ll);
1840 		ll = l;
1841 	}
1842 
1843 	if (ll && hlist_empty(&ll->list))
1844 		trie_leaf_remove(t, ll);
1845 
1846 	pr_debug("trie_flush found=%d\n", found);
1847 	return found;
1848 }
1849 
1850 void fib_free_table(struct fib_table *tb)
1851 {
1852 	kfree(tb);
1853 }
1854 
1855 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1856 			   struct fib_table *tb,
1857 			   struct sk_buff *skb, struct netlink_callback *cb)
1858 {
1859 	int i, s_i;
1860 	struct fib_alias *fa;
1861 	__be32 xkey = htonl(key);
1862 
1863 	s_i = cb->args[5];
1864 	i = 0;
1865 
1866 	/* rcu_read_lock is hold by caller */
1867 
1868 	list_for_each_entry_rcu(fa, fah, fa_list) {
1869 		if (i < s_i) {
1870 			i++;
1871 			continue;
1872 		}
1873 
1874 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1875 				  cb->nlh->nlmsg_seq,
1876 				  RTM_NEWROUTE,
1877 				  tb->tb_id,
1878 				  fa->fa_type,
1879 				  xkey,
1880 				  plen,
1881 				  fa->fa_tos,
1882 				  fa->fa_info, NLM_F_MULTI) < 0) {
1883 			cb->args[5] = i;
1884 			return -1;
1885 		}
1886 		i++;
1887 	}
1888 	cb->args[5] = i;
1889 	return skb->len;
1890 }
1891 
1892 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1893 			struct sk_buff *skb, struct netlink_callback *cb)
1894 {
1895 	struct leaf_info *li;
1896 	struct hlist_node *node;
1897 	int i, s_i;
1898 
1899 	s_i = cb->args[4];
1900 	i = 0;
1901 
1902 	/* rcu_read_lock is hold by caller */
1903 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1904 		if (i < s_i) {
1905 			i++;
1906 			continue;
1907 		}
1908 
1909 		if (i > s_i)
1910 			cb->args[5] = 0;
1911 
1912 		if (list_empty(&li->falh))
1913 			continue;
1914 
1915 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1916 			cb->args[4] = i;
1917 			return -1;
1918 		}
1919 		i++;
1920 	}
1921 
1922 	cb->args[4] = i;
1923 	return skb->len;
1924 }
1925 
1926 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1927 		   struct netlink_callback *cb)
1928 {
1929 	struct leaf *l;
1930 	struct trie *t = (struct trie *) tb->tb_data;
1931 	t_key key = cb->args[2];
1932 	int count = cb->args[3];
1933 
1934 	rcu_read_lock();
1935 	/* Dump starting at last key.
1936 	 * Note: 0.0.0.0/0 (ie default) is first key.
1937 	 */
1938 	if (count == 0)
1939 		l = trie_firstleaf(t);
1940 	else {
1941 		/* Normally, continue from last key, but if that is missing
1942 		 * fallback to using slow rescan
1943 		 */
1944 		l = fib_find_node(t, key);
1945 		if (!l)
1946 			l = trie_leafindex(t, count);
1947 	}
1948 
1949 	while (l) {
1950 		cb->args[2] = l->key;
1951 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1952 			cb->args[3] = count;
1953 			rcu_read_unlock();
1954 			return -1;
1955 		}
1956 
1957 		++count;
1958 		l = trie_nextleaf(l);
1959 		memset(&cb->args[4], 0,
1960 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1961 	}
1962 	cb->args[3] = count;
1963 	rcu_read_unlock();
1964 
1965 	return skb->len;
1966 }
1967 
1968 void __init fib_trie_init(void)
1969 {
1970 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1971 					  sizeof(struct fib_alias),
1972 					  0, SLAB_PANIC, NULL);
1973 
1974 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1975 					   max(sizeof(struct leaf),
1976 					       sizeof(struct leaf_info)),
1977 					   0, SLAB_PANIC, NULL);
1978 }
1979 
1980 
1981 struct fib_table *fib_trie_table(u32 id)
1982 {
1983 	struct fib_table *tb;
1984 	struct trie *t;
1985 
1986 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1987 		     GFP_KERNEL);
1988 	if (tb == NULL)
1989 		return NULL;
1990 
1991 	tb->tb_id = id;
1992 	tb->tb_default = -1;
1993 	tb->tb_num_default = 0;
1994 
1995 	t = (struct trie *) tb->tb_data;
1996 	memset(t, 0, sizeof(*t));
1997 
1998 	return tb;
1999 }
2000 
2001 #ifdef CONFIG_PROC_FS
2002 /* Depth first Trie walk iterator */
2003 struct fib_trie_iter {
2004 	struct seq_net_private p;
2005 	struct fib_table *tb;
2006 	struct tnode *tnode;
2007 	unsigned int index;
2008 	unsigned int depth;
2009 };
2010 
2011 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2012 {
2013 	struct tnode *tn = iter->tnode;
2014 	unsigned int cindex = iter->index;
2015 	struct tnode *p;
2016 
2017 	/* A single entry routing table */
2018 	if (!tn)
2019 		return NULL;
2020 
2021 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2022 		 iter->tnode, iter->index, iter->depth);
2023 rescan:
2024 	while (cindex < (1<<tn->bits)) {
2025 		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2026 
2027 		if (n) {
2028 			if (IS_LEAF(n)) {
2029 				iter->tnode = tn;
2030 				iter->index = cindex + 1;
2031 			} else {
2032 				/* push down one level */
2033 				iter->tnode = (struct tnode *) n;
2034 				iter->index = 0;
2035 				++iter->depth;
2036 			}
2037 			return n;
2038 		}
2039 
2040 		++cindex;
2041 	}
2042 
2043 	/* Current node exhausted, pop back up */
2044 	p = node_parent_rcu((struct rt_trie_node *)tn);
2045 	if (p) {
2046 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2047 		tn = p;
2048 		--iter->depth;
2049 		goto rescan;
2050 	}
2051 
2052 	/* got root? */
2053 	return NULL;
2054 }
2055 
2056 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2057 				       struct trie *t)
2058 {
2059 	struct rt_trie_node *n;
2060 
2061 	if (!t)
2062 		return NULL;
2063 
2064 	n = rcu_dereference(t->trie);
2065 	if (!n)
2066 		return NULL;
2067 
2068 	if (IS_TNODE(n)) {
2069 		iter->tnode = (struct tnode *) n;
2070 		iter->index = 0;
2071 		iter->depth = 1;
2072 	} else {
2073 		iter->tnode = NULL;
2074 		iter->index = 0;
2075 		iter->depth = 0;
2076 	}
2077 
2078 	return n;
2079 }
2080 
2081 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2082 {
2083 	struct rt_trie_node *n;
2084 	struct fib_trie_iter iter;
2085 
2086 	memset(s, 0, sizeof(*s));
2087 
2088 	rcu_read_lock();
2089 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2090 		if (IS_LEAF(n)) {
2091 			struct leaf *l = (struct leaf *)n;
2092 			struct leaf_info *li;
2093 			struct hlist_node *tmp;
2094 
2095 			s->leaves++;
2096 			s->totdepth += iter.depth;
2097 			if (iter.depth > s->maxdepth)
2098 				s->maxdepth = iter.depth;
2099 
2100 			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2101 				++s->prefixes;
2102 		} else {
2103 			const struct tnode *tn = (const struct tnode *) n;
2104 			int i;
2105 
2106 			s->tnodes++;
2107 			if (tn->bits < MAX_STAT_DEPTH)
2108 				s->nodesizes[tn->bits]++;
2109 
2110 			for (i = 0; i < (1<<tn->bits); i++)
2111 				if (!tn->child[i])
2112 					s->nullpointers++;
2113 		}
2114 	}
2115 	rcu_read_unlock();
2116 }
2117 
2118 /*
2119  *	This outputs /proc/net/fib_triestats
2120  */
2121 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2122 {
2123 	unsigned int i, max, pointers, bytes, avdepth;
2124 
2125 	if (stat->leaves)
2126 		avdepth = stat->totdepth*100 / stat->leaves;
2127 	else
2128 		avdepth = 0;
2129 
2130 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2131 		   avdepth / 100, avdepth % 100);
2132 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2133 
2134 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2135 	bytes = sizeof(struct leaf) * stat->leaves;
2136 
2137 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2138 	bytes += sizeof(struct leaf_info) * stat->prefixes;
2139 
2140 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2141 	bytes += sizeof(struct tnode) * stat->tnodes;
2142 
2143 	max = MAX_STAT_DEPTH;
2144 	while (max > 0 && stat->nodesizes[max-1] == 0)
2145 		max--;
2146 
2147 	pointers = 0;
2148 	for (i = 1; i <= max; i++)
2149 		if (stat->nodesizes[i] != 0) {
2150 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2151 			pointers += (1<<i) * stat->nodesizes[i];
2152 		}
2153 	seq_putc(seq, '\n');
2154 	seq_printf(seq, "\tPointers: %u\n", pointers);
2155 
2156 	bytes += sizeof(struct rt_trie_node *) * pointers;
2157 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2158 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2159 }
2160 
2161 #ifdef CONFIG_IP_FIB_TRIE_STATS
2162 static void trie_show_usage(struct seq_file *seq,
2163 			    const struct trie_use_stats *stats)
2164 {
2165 	seq_printf(seq, "\nCounters:\n---------\n");
2166 	seq_printf(seq, "gets = %u\n", stats->gets);
2167 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2168 	seq_printf(seq, "semantic match passed = %u\n",
2169 		   stats->semantic_match_passed);
2170 	seq_printf(seq, "semantic match miss = %u\n",
2171 		   stats->semantic_match_miss);
2172 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2173 	seq_printf(seq, "skipped node resize = %u\n\n",
2174 		   stats->resize_node_skipped);
2175 }
2176 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2177 
2178 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2179 {
2180 	if (tb->tb_id == RT_TABLE_LOCAL)
2181 		seq_puts(seq, "Local:\n");
2182 	else if (tb->tb_id == RT_TABLE_MAIN)
2183 		seq_puts(seq, "Main:\n");
2184 	else
2185 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2186 }
2187 
2188 
2189 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2190 {
2191 	struct net *net = (struct net *)seq->private;
2192 	unsigned int h;
2193 
2194 	seq_printf(seq,
2195 		   "Basic info: size of leaf:"
2196 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2197 		   sizeof(struct leaf), sizeof(struct tnode));
2198 
2199 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2200 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2201 		struct hlist_node *node;
2202 		struct fib_table *tb;
2203 
2204 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2205 			struct trie *t = (struct trie *) tb->tb_data;
2206 			struct trie_stat stat;
2207 
2208 			if (!t)
2209 				continue;
2210 
2211 			fib_table_print(seq, tb);
2212 
2213 			trie_collect_stats(t, &stat);
2214 			trie_show_stats(seq, &stat);
2215 #ifdef CONFIG_IP_FIB_TRIE_STATS
2216 			trie_show_usage(seq, &t->stats);
2217 #endif
2218 		}
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2225 {
2226 	return single_open_net(inode, file, fib_triestat_seq_show);
2227 }
2228 
2229 static const struct file_operations fib_triestat_fops = {
2230 	.owner	= THIS_MODULE,
2231 	.open	= fib_triestat_seq_open,
2232 	.read	= seq_read,
2233 	.llseek	= seq_lseek,
2234 	.release = single_release_net,
2235 };
2236 
2237 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2238 {
2239 	struct fib_trie_iter *iter = seq->private;
2240 	struct net *net = seq_file_net(seq);
2241 	loff_t idx = 0;
2242 	unsigned int h;
2243 
2244 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2245 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2246 		struct hlist_node *node;
2247 		struct fib_table *tb;
2248 
2249 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2250 			struct rt_trie_node *n;
2251 
2252 			for (n = fib_trie_get_first(iter,
2253 						    (struct trie *) tb->tb_data);
2254 			     n; n = fib_trie_get_next(iter))
2255 				if (pos == idx++) {
2256 					iter->tb = tb;
2257 					return n;
2258 				}
2259 		}
2260 	}
2261 
2262 	return NULL;
2263 }
2264 
2265 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2266 	__acquires(RCU)
2267 {
2268 	rcu_read_lock();
2269 	return fib_trie_get_idx(seq, *pos);
2270 }
2271 
2272 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273 {
2274 	struct fib_trie_iter *iter = seq->private;
2275 	struct net *net = seq_file_net(seq);
2276 	struct fib_table *tb = iter->tb;
2277 	struct hlist_node *tb_node;
2278 	unsigned int h;
2279 	struct rt_trie_node *n;
2280 
2281 	++*pos;
2282 	/* next node in same table */
2283 	n = fib_trie_get_next(iter);
2284 	if (n)
2285 		return n;
2286 
2287 	/* walk rest of this hash chain */
2288 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2289 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2290 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2291 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2292 		if (n)
2293 			goto found;
2294 	}
2295 
2296 	/* new hash chain */
2297 	while (++h < FIB_TABLE_HASHSZ) {
2298 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2299 		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2300 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2301 			if (n)
2302 				goto found;
2303 		}
2304 	}
2305 	return NULL;
2306 
2307 found:
2308 	iter->tb = tb;
2309 	return n;
2310 }
2311 
2312 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2313 	__releases(RCU)
2314 {
2315 	rcu_read_unlock();
2316 }
2317 
2318 static void seq_indent(struct seq_file *seq, int n)
2319 {
2320 	while (n-- > 0)
2321 		seq_puts(seq, "   ");
2322 }
2323 
2324 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2325 {
2326 	switch (s) {
2327 	case RT_SCOPE_UNIVERSE: return "universe";
2328 	case RT_SCOPE_SITE:	return "site";
2329 	case RT_SCOPE_LINK:	return "link";
2330 	case RT_SCOPE_HOST:	return "host";
2331 	case RT_SCOPE_NOWHERE:	return "nowhere";
2332 	default:
2333 		snprintf(buf, len, "scope=%d", s);
2334 		return buf;
2335 	}
2336 }
2337 
2338 static const char *const rtn_type_names[__RTN_MAX] = {
2339 	[RTN_UNSPEC] = "UNSPEC",
2340 	[RTN_UNICAST] = "UNICAST",
2341 	[RTN_LOCAL] = "LOCAL",
2342 	[RTN_BROADCAST] = "BROADCAST",
2343 	[RTN_ANYCAST] = "ANYCAST",
2344 	[RTN_MULTICAST] = "MULTICAST",
2345 	[RTN_BLACKHOLE] = "BLACKHOLE",
2346 	[RTN_UNREACHABLE] = "UNREACHABLE",
2347 	[RTN_PROHIBIT] = "PROHIBIT",
2348 	[RTN_THROW] = "THROW",
2349 	[RTN_NAT] = "NAT",
2350 	[RTN_XRESOLVE] = "XRESOLVE",
2351 };
2352 
2353 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2354 {
2355 	if (t < __RTN_MAX && rtn_type_names[t])
2356 		return rtn_type_names[t];
2357 	snprintf(buf, len, "type %u", t);
2358 	return buf;
2359 }
2360 
2361 /* Pretty print the trie */
2362 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2363 {
2364 	const struct fib_trie_iter *iter = seq->private;
2365 	struct rt_trie_node *n = v;
2366 
2367 	if (!node_parent_rcu(n))
2368 		fib_table_print(seq, iter->tb);
2369 
2370 	if (IS_TNODE(n)) {
2371 		struct tnode *tn = (struct tnode *) n;
2372 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2373 
2374 		seq_indent(seq, iter->depth-1);
2375 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2376 			   &prf, tn->pos, tn->bits, tn->full_children,
2377 			   tn->empty_children);
2378 
2379 	} else {
2380 		struct leaf *l = (struct leaf *) n;
2381 		struct leaf_info *li;
2382 		struct hlist_node *node;
2383 		__be32 val = htonl(l->key);
2384 
2385 		seq_indent(seq, iter->depth);
2386 		seq_printf(seq, "  |-- %pI4\n", &val);
2387 
2388 		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2389 			struct fib_alias *fa;
2390 
2391 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2392 				char buf1[32], buf2[32];
2393 
2394 				seq_indent(seq, iter->depth+1);
2395 				seq_printf(seq, "  /%d %s %s", li->plen,
2396 					   rtn_scope(buf1, sizeof(buf1),
2397 						     fa->fa_info->fib_scope),
2398 					   rtn_type(buf2, sizeof(buf2),
2399 						    fa->fa_type));
2400 				if (fa->fa_tos)
2401 					seq_printf(seq, " tos=%d", fa->fa_tos);
2402 				seq_putc(seq, '\n');
2403 			}
2404 		}
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 static const struct seq_operations fib_trie_seq_ops = {
2411 	.start  = fib_trie_seq_start,
2412 	.next   = fib_trie_seq_next,
2413 	.stop   = fib_trie_seq_stop,
2414 	.show   = fib_trie_seq_show,
2415 };
2416 
2417 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2418 {
2419 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2420 			    sizeof(struct fib_trie_iter));
2421 }
2422 
2423 static const struct file_operations fib_trie_fops = {
2424 	.owner  = THIS_MODULE,
2425 	.open   = fib_trie_seq_open,
2426 	.read   = seq_read,
2427 	.llseek = seq_lseek,
2428 	.release = seq_release_net,
2429 };
2430 
2431 struct fib_route_iter {
2432 	struct seq_net_private p;
2433 	struct trie *main_trie;
2434 	loff_t	pos;
2435 	t_key	key;
2436 };
2437 
2438 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2439 {
2440 	struct leaf *l = NULL;
2441 	struct trie *t = iter->main_trie;
2442 
2443 	/* use cache location of last found key */
2444 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2445 		pos -= iter->pos;
2446 	else {
2447 		iter->pos = 0;
2448 		l = trie_firstleaf(t);
2449 	}
2450 
2451 	while (l && pos-- > 0) {
2452 		iter->pos++;
2453 		l = trie_nextleaf(l);
2454 	}
2455 
2456 	if (l)
2457 		iter->key = pos;	/* remember it */
2458 	else
2459 		iter->pos = 0;		/* forget it */
2460 
2461 	return l;
2462 }
2463 
2464 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2465 	__acquires(RCU)
2466 {
2467 	struct fib_route_iter *iter = seq->private;
2468 	struct fib_table *tb;
2469 
2470 	rcu_read_lock();
2471 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2472 	if (!tb)
2473 		return NULL;
2474 
2475 	iter->main_trie = (struct trie *) tb->tb_data;
2476 	if (*pos == 0)
2477 		return SEQ_START_TOKEN;
2478 	else
2479 		return fib_route_get_idx(iter, *pos - 1);
2480 }
2481 
2482 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2483 {
2484 	struct fib_route_iter *iter = seq->private;
2485 	struct leaf *l = v;
2486 
2487 	++*pos;
2488 	if (v == SEQ_START_TOKEN) {
2489 		iter->pos = 0;
2490 		l = trie_firstleaf(iter->main_trie);
2491 	} else {
2492 		iter->pos++;
2493 		l = trie_nextleaf(l);
2494 	}
2495 
2496 	if (l)
2497 		iter->key = l->key;
2498 	else
2499 		iter->pos = 0;
2500 	return l;
2501 }
2502 
2503 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2504 	__releases(RCU)
2505 {
2506 	rcu_read_unlock();
2507 }
2508 
2509 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2510 {
2511 	unsigned int flags = 0;
2512 
2513 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2514 		flags = RTF_REJECT;
2515 	if (fi && fi->fib_nh->nh_gw)
2516 		flags |= RTF_GATEWAY;
2517 	if (mask == htonl(0xFFFFFFFF))
2518 		flags |= RTF_HOST;
2519 	flags |= RTF_UP;
2520 	return flags;
2521 }
2522 
2523 /*
2524  *	This outputs /proc/net/route.
2525  *	The format of the file is not supposed to be changed
2526  *	and needs to be same as fib_hash output to avoid breaking
2527  *	legacy utilities
2528  */
2529 static int fib_route_seq_show(struct seq_file *seq, void *v)
2530 {
2531 	struct leaf *l = v;
2532 	struct leaf_info *li;
2533 	struct hlist_node *node;
2534 
2535 	if (v == SEQ_START_TOKEN) {
2536 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2537 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2538 			   "\tWindow\tIRTT");
2539 		return 0;
2540 	}
2541 
2542 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2543 		struct fib_alias *fa;
2544 		__be32 mask, prefix;
2545 
2546 		mask = inet_make_mask(li->plen);
2547 		prefix = htonl(l->key);
2548 
2549 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2550 			const struct fib_info *fi = fa->fa_info;
2551 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2552 			int len;
2553 
2554 			if (fa->fa_type == RTN_BROADCAST
2555 			    || fa->fa_type == RTN_MULTICAST)
2556 				continue;
2557 
2558 			if (fi)
2559 				seq_printf(seq,
2560 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2561 					 "%d\t%08X\t%d\t%u\t%u%n",
2562 					 fi->fib_dev ? fi->fib_dev->name : "*",
2563 					 prefix,
2564 					 fi->fib_nh->nh_gw, flags, 0, 0,
2565 					 fi->fib_priority,
2566 					 mask,
2567 					 (fi->fib_advmss ?
2568 					  fi->fib_advmss + 40 : 0),
2569 					 fi->fib_window,
2570 					 fi->fib_rtt >> 3, &len);
2571 			else
2572 				seq_printf(seq,
2573 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2574 					 "%d\t%08X\t%d\t%u\t%u%n",
2575 					 prefix, 0, flags, 0, 0, 0,
2576 					 mask, 0, 0, 0, &len);
2577 
2578 			seq_printf(seq, "%*s\n", 127 - len, "");
2579 		}
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 static const struct seq_operations fib_route_seq_ops = {
2586 	.start  = fib_route_seq_start,
2587 	.next   = fib_route_seq_next,
2588 	.stop   = fib_route_seq_stop,
2589 	.show   = fib_route_seq_show,
2590 };
2591 
2592 static int fib_route_seq_open(struct inode *inode, struct file *file)
2593 {
2594 	return seq_open_net(inode, file, &fib_route_seq_ops,
2595 			    sizeof(struct fib_route_iter));
2596 }
2597 
2598 static const struct file_operations fib_route_fops = {
2599 	.owner  = THIS_MODULE,
2600 	.open   = fib_route_seq_open,
2601 	.read   = seq_read,
2602 	.llseek = seq_lseek,
2603 	.release = seq_release_net,
2604 };
2605 
2606 int __net_init fib_proc_init(struct net *net)
2607 {
2608 	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2609 		goto out1;
2610 
2611 	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2612 				  &fib_triestat_fops))
2613 		goto out2;
2614 
2615 	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2616 		goto out3;
2617 
2618 	return 0;
2619 
2620 out3:
2621 	proc_net_remove(net, "fib_triestat");
2622 out2:
2623 	proc_net_remove(net, "fib_trie");
2624 out1:
2625 	return -ENOMEM;
2626 }
2627 
2628 void __net_exit fib_proc_exit(struct net *net)
2629 {
2630 	proc_net_remove(net, "fib_trie");
2631 	proc_net_remove(net, "fib_triestat");
2632 	proc_net_remove(net, "route");
2633 }
2634 
2635 #endif /* CONFIG_PROC_FS */
2636