1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/prefetch.h> 75 #include <linux/export.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include "fib_lookup.h" 84 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 89 typedef unsigned int t_key; 90 91 #define T_TNODE 0 92 #define T_LEAF 1 93 #define NODE_TYPE_MASK 0x1UL 94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 95 96 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 97 #define IS_LEAF(n) (n->parent & T_LEAF) 98 99 struct rt_trie_node { 100 unsigned long parent; 101 t_key key; 102 }; 103 104 struct leaf { 105 unsigned long parent; 106 t_key key; 107 struct hlist_head list; 108 struct rcu_head rcu; 109 }; 110 111 struct leaf_info { 112 struct hlist_node hlist; 113 int plen; 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ 115 struct list_head falh; 116 struct rcu_head rcu; 117 }; 118 119 struct tnode { 120 unsigned long parent; 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned int full_children; /* KEYLENGTH bits needed */ 125 unsigned int empty_children; /* KEYLENGTH bits needed */ 126 union { 127 struct rcu_head rcu; 128 struct work_struct work; 129 struct tnode *tnode_free; 130 }; 131 struct rt_trie_node __rcu *child[0]; 132 }; 133 134 #ifdef CONFIG_IP_FIB_TRIE_STATS 135 struct trie_use_stats { 136 unsigned int gets; 137 unsigned int backtrack; 138 unsigned int semantic_match_passed; 139 unsigned int semantic_match_miss; 140 unsigned int null_node_hit; 141 unsigned int resize_node_skipped; 142 }; 143 #endif 144 145 struct trie_stat { 146 unsigned int totdepth; 147 unsigned int maxdepth; 148 unsigned int tnodes; 149 unsigned int leaves; 150 unsigned int nullpointers; 151 unsigned int prefixes; 152 unsigned int nodesizes[MAX_STAT_DEPTH]; 153 }; 154 155 struct trie { 156 struct rt_trie_node __rcu *trie; 157 #ifdef CONFIG_IP_FIB_TRIE_STATS 158 struct trie_use_stats stats; 159 #endif 160 }; 161 162 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n); 163 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 164 int wasfull); 165 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 166 static struct tnode *inflate(struct trie *t, struct tnode *tn); 167 static struct tnode *halve(struct trie *t, struct tnode *tn); 168 /* tnodes to free after resize(); protected by RTNL */ 169 static struct tnode *tnode_free_head; 170 static size_t tnode_free_size; 171 172 /* 173 * synchronize_rcu after call_rcu for that many pages; it should be especially 174 * useful before resizing the root node with PREEMPT_NONE configs; the value was 175 * obtained experimentally, aiming to avoid visible slowdown. 176 */ 177 static const int sync_pages = 128; 178 179 static struct kmem_cache *fn_alias_kmem __read_mostly; 180 static struct kmem_cache *trie_leaf_kmem __read_mostly; 181 182 /* 183 * caller must hold RTNL 184 */ 185 static inline struct tnode *node_parent(const struct rt_trie_node *node) 186 { 187 unsigned long parent; 188 189 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 190 191 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 192 } 193 194 /* 195 * caller must hold RCU read lock or RTNL 196 */ 197 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 198 { 199 unsigned long parent; 200 201 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 202 lockdep_rtnl_is_held()); 203 204 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 205 } 206 207 /* Same as rcu_assign_pointer 208 * but that macro() assumes that value is a pointer. 209 */ 210 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 211 { 212 smp_wmb(); 213 node->parent = (unsigned long)ptr | NODE_TYPE(node); 214 } 215 216 /* 217 * caller must hold RTNL 218 */ 219 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 220 { 221 BUG_ON(i >= 1U << tn->bits); 222 223 return rtnl_dereference(tn->child[i]); 224 } 225 226 /* 227 * caller must hold RCU read lock or RTNL 228 */ 229 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 230 { 231 BUG_ON(i >= 1U << tn->bits); 232 233 return rcu_dereference_rtnl(tn->child[i]); 234 } 235 236 static inline int tnode_child_length(const struct tnode *tn) 237 { 238 return 1 << tn->bits; 239 } 240 241 static inline t_key mask_pfx(t_key k, unsigned int l) 242 { 243 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 244 } 245 246 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 247 { 248 if (offset < KEYLENGTH) 249 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 250 else 251 return 0; 252 } 253 254 static inline int tkey_equals(t_key a, t_key b) 255 { 256 return a == b; 257 } 258 259 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 260 { 261 if (bits == 0 || offset >= KEYLENGTH) 262 return 1; 263 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 264 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 265 } 266 267 static inline int tkey_mismatch(t_key a, int offset, t_key b) 268 { 269 t_key diff = a ^ b; 270 int i = offset; 271 272 if (!diff) 273 return 0; 274 while ((diff << i) >> (KEYLENGTH-1) == 0) 275 i++; 276 return i; 277 } 278 279 /* 280 To understand this stuff, an understanding of keys and all their bits is 281 necessary. Every node in the trie has a key associated with it, but not 282 all of the bits in that key are significant. 283 284 Consider a node 'n' and its parent 'tp'. 285 286 If n is a leaf, every bit in its key is significant. Its presence is 287 necessitated by path compression, since during a tree traversal (when 288 searching for a leaf - unless we are doing an insertion) we will completely 289 ignore all skipped bits we encounter. Thus we need to verify, at the end of 290 a potentially successful search, that we have indeed been walking the 291 correct key path. 292 293 Note that we can never "miss" the correct key in the tree if present by 294 following the wrong path. Path compression ensures that segments of the key 295 that are the same for all keys with a given prefix are skipped, but the 296 skipped part *is* identical for each node in the subtrie below the skipped 297 bit! trie_insert() in this implementation takes care of that - note the 298 call to tkey_sub_equals() in trie_insert(). 299 300 if n is an internal node - a 'tnode' here, the various parts of its key 301 have many different meanings. 302 303 Example: 304 _________________________________________________________________ 305 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 306 ----------------------------------------------------------------- 307 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 308 309 _________________________________________________________________ 310 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 311 ----------------------------------------------------------------- 312 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 313 314 tp->pos = 7 315 tp->bits = 3 316 n->pos = 15 317 n->bits = 4 318 319 First, let's just ignore the bits that come before the parent tp, that is 320 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 321 not use them for anything. 322 323 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 324 index into the parent's child array. That is, they will be used to find 325 'n' among tp's children. 326 327 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 328 for the node n. 329 330 All the bits we have seen so far are significant to the node n. The rest 331 of the bits are really not needed or indeed known in n->key. 332 333 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 334 n's child array, and will of course be different for each child. 335 336 337 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 338 at this point. 339 340 */ 341 342 static inline void check_tnode(const struct tnode *tn) 343 { 344 WARN_ON(tn && tn->pos+tn->bits > 32); 345 } 346 347 static const int halve_threshold = 25; 348 static const int inflate_threshold = 50; 349 static const int halve_threshold_root = 15; 350 static const int inflate_threshold_root = 30; 351 352 static void __alias_free_mem(struct rcu_head *head) 353 { 354 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 355 kmem_cache_free(fn_alias_kmem, fa); 356 } 357 358 static inline void alias_free_mem_rcu(struct fib_alias *fa) 359 { 360 call_rcu(&fa->rcu, __alias_free_mem); 361 } 362 363 static void __leaf_free_rcu(struct rcu_head *head) 364 { 365 struct leaf *l = container_of(head, struct leaf, rcu); 366 kmem_cache_free(trie_leaf_kmem, l); 367 } 368 369 static inline void free_leaf(struct leaf *l) 370 { 371 call_rcu_bh(&l->rcu, __leaf_free_rcu); 372 } 373 374 static inline void free_leaf_info(struct leaf_info *leaf) 375 { 376 kfree_rcu(leaf, rcu); 377 } 378 379 static struct tnode *tnode_alloc(size_t size) 380 { 381 if (size <= PAGE_SIZE) 382 return kzalloc(size, GFP_KERNEL); 383 else 384 return vzalloc(size); 385 } 386 387 static void __tnode_vfree(struct work_struct *arg) 388 { 389 struct tnode *tn = container_of(arg, struct tnode, work); 390 vfree(tn); 391 } 392 393 static void __tnode_free_rcu(struct rcu_head *head) 394 { 395 struct tnode *tn = container_of(head, struct tnode, rcu); 396 size_t size = sizeof(struct tnode) + 397 (sizeof(struct rt_trie_node *) << tn->bits); 398 399 if (size <= PAGE_SIZE) 400 kfree(tn); 401 else { 402 INIT_WORK(&tn->work, __tnode_vfree); 403 schedule_work(&tn->work); 404 } 405 } 406 407 static inline void tnode_free(struct tnode *tn) 408 { 409 if (IS_LEAF(tn)) 410 free_leaf((struct leaf *) tn); 411 else 412 call_rcu(&tn->rcu, __tnode_free_rcu); 413 } 414 415 static void tnode_free_safe(struct tnode *tn) 416 { 417 BUG_ON(IS_LEAF(tn)); 418 tn->tnode_free = tnode_free_head; 419 tnode_free_head = tn; 420 tnode_free_size += sizeof(struct tnode) + 421 (sizeof(struct rt_trie_node *) << tn->bits); 422 } 423 424 static void tnode_free_flush(void) 425 { 426 struct tnode *tn; 427 428 while ((tn = tnode_free_head)) { 429 tnode_free_head = tn->tnode_free; 430 tn->tnode_free = NULL; 431 tnode_free(tn); 432 } 433 434 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 435 tnode_free_size = 0; 436 synchronize_rcu(); 437 } 438 } 439 440 static struct leaf *leaf_new(void) 441 { 442 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 443 if (l) { 444 l->parent = T_LEAF; 445 INIT_HLIST_HEAD(&l->list); 446 } 447 return l; 448 } 449 450 static struct leaf_info *leaf_info_new(int plen) 451 { 452 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 453 if (li) { 454 li->plen = plen; 455 li->mask_plen = ntohl(inet_make_mask(plen)); 456 INIT_LIST_HEAD(&li->falh); 457 } 458 return li; 459 } 460 461 static struct tnode *tnode_new(t_key key, int pos, int bits) 462 { 463 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 464 struct tnode *tn = tnode_alloc(sz); 465 466 if (tn) { 467 tn->parent = T_TNODE; 468 tn->pos = pos; 469 tn->bits = bits; 470 tn->key = key; 471 tn->full_children = 0; 472 tn->empty_children = 1<<bits; 473 } 474 475 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 476 sizeof(struct rt_trie_node) << bits); 477 return tn; 478 } 479 480 /* 481 * Check whether a tnode 'n' is "full", i.e. it is an internal node 482 * and no bits are skipped. See discussion in dyntree paper p. 6 483 */ 484 485 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 486 { 487 if (n == NULL || IS_LEAF(n)) 488 return 0; 489 490 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 491 } 492 493 static inline void put_child(struct trie *t, struct tnode *tn, int i, 494 struct rt_trie_node *n) 495 { 496 tnode_put_child_reorg(tn, i, n, -1); 497 } 498 499 /* 500 * Add a child at position i overwriting the old value. 501 * Update the value of full_children and empty_children. 502 */ 503 504 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 505 int wasfull) 506 { 507 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 508 int isfull; 509 510 BUG_ON(i >= 1<<tn->bits); 511 512 /* update emptyChildren */ 513 if (n == NULL && chi != NULL) 514 tn->empty_children++; 515 else if (n != NULL && chi == NULL) 516 tn->empty_children--; 517 518 /* update fullChildren */ 519 if (wasfull == -1) 520 wasfull = tnode_full(tn, chi); 521 522 isfull = tnode_full(tn, n); 523 if (wasfull && !isfull) 524 tn->full_children--; 525 else if (!wasfull && isfull) 526 tn->full_children++; 527 528 if (n) 529 node_set_parent(n, tn); 530 531 rcu_assign_pointer(tn->child[i], n); 532 } 533 534 #define MAX_WORK 10 535 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 536 { 537 int i; 538 struct tnode *old_tn; 539 int inflate_threshold_use; 540 int halve_threshold_use; 541 int max_work; 542 543 if (!tn) 544 return NULL; 545 546 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 547 tn, inflate_threshold, halve_threshold); 548 549 /* No children */ 550 if (tn->empty_children == tnode_child_length(tn)) { 551 tnode_free_safe(tn); 552 return NULL; 553 } 554 /* One child */ 555 if (tn->empty_children == tnode_child_length(tn) - 1) 556 goto one_child; 557 /* 558 * Double as long as the resulting node has a number of 559 * nonempty nodes that are above the threshold. 560 */ 561 562 /* 563 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 564 * the Helsinki University of Technology and Matti Tikkanen of Nokia 565 * Telecommunications, page 6: 566 * "A node is doubled if the ratio of non-empty children to all 567 * children in the *doubled* node is at least 'high'." 568 * 569 * 'high' in this instance is the variable 'inflate_threshold'. It 570 * is expressed as a percentage, so we multiply it with 571 * tnode_child_length() and instead of multiplying by 2 (since the 572 * child array will be doubled by inflate()) and multiplying 573 * the left-hand side by 100 (to handle the percentage thing) we 574 * multiply the left-hand side by 50. 575 * 576 * The left-hand side may look a bit weird: tnode_child_length(tn) 577 * - tn->empty_children is of course the number of non-null children 578 * in the current node. tn->full_children is the number of "full" 579 * children, that is non-null tnodes with a skip value of 0. 580 * All of those will be doubled in the resulting inflated tnode, so 581 * we just count them one extra time here. 582 * 583 * A clearer way to write this would be: 584 * 585 * to_be_doubled = tn->full_children; 586 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 587 * tn->full_children; 588 * 589 * new_child_length = tnode_child_length(tn) * 2; 590 * 591 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 592 * new_child_length; 593 * if (new_fill_factor >= inflate_threshold) 594 * 595 * ...and so on, tho it would mess up the while () loop. 596 * 597 * anyway, 598 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 599 * inflate_threshold 600 * 601 * avoid a division: 602 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 603 * inflate_threshold * new_child_length 604 * 605 * expand not_to_be_doubled and to_be_doubled, and shorten: 606 * 100 * (tnode_child_length(tn) - tn->empty_children + 607 * tn->full_children) >= inflate_threshold * new_child_length 608 * 609 * expand new_child_length: 610 * 100 * (tnode_child_length(tn) - tn->empty_children + 611 * tn->full_children) >= 612 * inflate_threshold * tnode_child_length(tn) * 2 613 * 614 * shorten again: 615 * 50 * (tn->full_children + tnode_child_length(tn) - 616 * tn->empty_children) >= inflate_threshold * 617 * tnode_child_length(tn) 618 * 619 */ 620 621 check_tnode(tn); 622 623 /* Keep root node larger */ 624 625 if (!node_parent((struct rt_trie_node *)tn)) { 626 inflate_threshold_use = inflate_threshold_root; 627 halve_threshold_use = halve_threshold_root; 628 } else { 629 inflate_threshold_use = inflate_threshold; 630 halve_threshold_use = halve_threshold; 631 } 632 633 max_work = MAX_WORK; 634 while ((tn->full_children > 0 && max_work-- && 635 50 * (tn->full_children + tnode_child_length(tn) 636 - tn->empty_children) 637 >= inflate_threshold_use * tnode_child_length(tn))) { 638 639 old_tn = tn; 640 tn = inflate(t, tn); 641 642 if (IS_ERR(tn)) { 643 tn = old_tn; 644 #ifdef CONFIG_IP_FIB_TRIE_STATS 645 t->stats.resize_node_skipped++; 646 #endif 647 break; 648 } 649 } 650 651 check_tnode(tn); 652 653 /* Return if at least one inflate is run */ 654 if (max_work != MAX_WORK) 655 return (struct rt_trie_node *) tn; 656 657 /* 658 * Halve as long as the number of empty children in this 659 * node is above threshold. 660 */ 661 662 max_work = MAX_WORK; 663 while (tn->bits > 1 && max_work-- && 664 100 * (tnode_child_length(tn) - tn->empty_children) < 665 halve_threshold_use * tnode_child_length(tn)) { 666 667 old_tn = tn; 668 tn = halve(t, tn); 669 if (IS_ERR(tn)) { 670 tn = old_tn; 671 #ifdef CONFIG_IP_FIB_TRIE_STATS 672 t->stats.resize_node_skipped++; 673 #endif 674 break; 675 } 676 } 677 678 679 /* Only one child remains */ 680 if (tn->empty_children == tnode_child_length(tn) - 1) { 681 one_child: 682 for (i = 0; i < tnode_child_length(tn); i++) { 683 struct rt_trie_node *n; 684 685 n = rtnl_dereference(tn->child[i]); 686 if (!n) 687 continue; 688 689 /* compress one level */ 690 691 node_set_parent(n, NULL); 692 tnode_free_safe(tn); 693 return n; 694 } 695 } 696 return (struct rt_trie_node *) tn; 697 } 698 699 700 static void tnode_clean_free(struct tnode *tn) 701 { 702 int i; 703 struct tnode *tofree; 704 705 for (i = 0; i < tnode_child_length(tn); i++) { 706 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 707 if (tofree) 708 tnode_free(tofree); 709 } 710 tnode_free(tn); 711 } 712 713 static struct tnode *inflate(struct trie *t, struct tnode *tn) 714 { 715 struct tnode *oldtnode = tn; 716 int olen = tnode_child_length(tn); 717 int i; 718 719 pr_debug("In inflate\n"); 720 721 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 722 723 if (!tn) 724 return ERR_PTR(-ENOMEM); 725 726 /* 727 * Preallocate and store tnodes before the actual work so we 728 * don't get into an inconsistent state if memory allocation 729 * fails. In case of failure we return the oldnode and inflate 730 * of tnode is ignored. 731 */ 732 733 for (i = 0; i < olen; i++) { 734 struct tnode *inode; 735 736 inode = (struct tnode *) tnode_get_child(oldtnode, i); 737 if (inode && 738 IS_TNODE(inode) && 739 inode->pos == oldtnode->pos + oldtnode->bits && 740 inode->bits > 1) { 741 struct tnode *left, *right; 742 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 743 744 left = tnode_new(inode->key&(~m), inode->pos + 1, 745 inode->bits - 1); 746 if (!left) 747 goto nomem; 748 749 right = tnode_new(inode->key|m, inode->pos + 1, 750 inode->bits - 1); 751 752 if (!right) { 753 tnode_free(left); 754 goto nomem; 755 } 756 757 put_child(t, tn, 2*i, (struct rt_trie_node *) left); 758 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right); 759 } 760 } 761 762 for (i = 0; i < olen; i++) { 763 struct tnode *inode; 764 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 765 struct tnode *left, *right; 766 int size, j; 767 768 /* An empty child */ 769 if (node == NULL) 770 continue; 771 772 /* A leaf or an internal node with skipped bits */ 773 774 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 775 tn->pos + tn->bits - 1) { 776 if (tkey_extract_bits(node->key, 777 oldtnode->pos + oldtnode->bits, 778 1) == 0) 779 put_child(t, tn, 2*i, node); 780 else 781 put_child(t, tn, 2*i+1, node); 782 continue; 783 } 784 785 /* An internal node with two children */ 786 inode = (struct tnode *) node; 787 788 if (inode->bits == 1) { 789 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0])); 790 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1])); 791 792 tnode_free_safe(inode); 793 continue; 794 } 795 796 /* An internal node with more than two children */ 797 798 /* We will replace this node 'inode' with two new 799 * ones, 'left' and 'right', each with half of the 800 * original children. The two new nodes will have 801 * a position one bit further down the key and this 802 * means that the "significant" part of their keys 803 * (see the discussion near the top of this file) 804 * will differ by one bit, which will be "0" in 805 * left's key and "1" in right's key. Since we are 806 * moving the key position by one step, the bit that 807 * we are moving away from - the bit at position 808 * (inode->pos) - is the one that will differ between 809 * left and right. So... we synthesize that bit in the 810 * two new keys. 811 * The mask 'm' below will be a single "one" bit at 812 * the position (inode->pos) 813 */ 814 815 /* Use the old key, but set the new significant 816 * bit to zero. 817 */ 818 819 left = (struct tnode *) tnode_get_child(tn, 2*i); 820 put_child(t, tn, 2*i, NULL); 821 822 BUG_ON(!left); 823 824 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 825 put_child(t, tn, 2*i+1, NULL); 826 827 BUG_ON(!right); 828 829 size = tnode_child_length(left); 830 for (j = 0; j < size; j++) { 831 put_child(t, left, j, rtnl_dereference(inode->child[j])); 832 put_child(t, right, j, rtnl_dereference(inode->child[j + size])); 833 } 834 put_child(t, tn, 2*i, resize(t, left)); 835 put_child(t, tn, 2*i+1, resize(t, right)); 836 837 tnode_free_safe(inode); 838 } 839 tnode_free_safe(oldtnode); 840 return tn; 841 nomem: 842 tnode_clean_free(tn); 843 return ERR_PTR(-ENOMEM); 844 } 845 846 static struct tnode *halve(struct trie *t, struct tnode *tn) 847 { 848 struct tnode *oldtnode = tn; 849 struct rt_trie_node *left, *right; 850 int i; 851 int olen = tnode_child_length(tn); 852 853 pr_debug("In halve\n"); 854 855 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 856 857 if (!tn) 858 return ERR_PTR(-ENOMEM); 859 860 /* 861 * Preallocate and store tnodes before the actual work so we 862 * don't get into an inconsistent state if memory allocation 863 * fails. In case of failure we return the oldnode and halve 864 * of tnode is ignored. 865 */ 866 867 for (i = 0; i < olen; i += 2) { 868 left = tnode_get_child(oldtnode, i); 869 right = tnode_get_child(oldtnode, i+1); 870 871 /* Two nonempty children */ 872 if (left && right) { 873 struct tnode *newn; 874 875 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 876 877 if (!newn) 878 goto nomem; 879 880 put_child(t, tn, i/2, (struct rt_trie_node *)newn); 881 } 882 883 } 884 885 for (i = 0; i < olen; i += 2) { 886 struct tnode *newBinNode; 887 888 left = tnode_get_child(oldtnode, i); 889 right = tnode_get_child(oldtnode, i+1); 890 891 /* At least one of the children is empty */ 892 if (left == NULL) { 893 if (right == NULL) /* Both are empty */ 894 continue; 895 put_child(t, tn, i/2, right); 896 continue; 897 } 898 899 if (right == NULL) { 900 put_child(t, tn, i/2, left); 901 continue; 902 } 903 904 /* Two nonempty children */ 905 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 906 put_child(t, tn, i/2, NULL); 907 put_child(t, newBinNode, 0, left); 908 put_child(t, newBinNode, 1, right); 909 put_child(t, tn, i/2, resize(t, newBinNode)); 910 } 911 tnode_free_safe(oldtnode); 912 return tn; 913 nomem: 914 tnode_clean_free(tn); 915 return ERR_PTR(-ENOMEM); 916 } 917 918 /* readside must use rcu_read_lock currently dump routines 919 via get_fa_head and dump */ 920 921 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 922 { 923 struct hlist_head *head = &l->list; 924 struct hlist_node *node; 925 struct leaf_info *li; 926 927 hlist_for_each_entry_rcu(li, node, head, hlist) 928 if (li->plen == plen) 929 return li; 930 931 return NULL; 932 } 933 934 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 935 { 936 struct leaf_info *li = find_leaf_info(l, plen); 937 938 if (!li) 939 return NULL; 940 941 return &li->falh; 942 } 943 944 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 945 { 946 struct leaf_info *li = NULL, *last = NULL; 947 struct hlist_node *node; 948 949 if (hlist_empty(head)) { 950 hlist_add_head_rcu(&new->hlist, head); 951 } else { 952 hlist_for_each_entry(li, node, head, hlist) { 953 if (new->plen > li->plen) 954 break; 955 956 last = li; 957 } 958 if (last) 959 hlist_add_after_rcu(&last->hlist, &new->hlist); 960 else 961 hlist_add_before_rcu(&new->hlist, &li->hlist); 962 } 963 } 964 965 /* rcu_read_lock needs to be hold by caller from readside */ 966 967 static struct leaf * 968 fib_find_node(struct trie *t, u32 key) 969 { 970 int pos; 971 struct tnode *tn; 972 struct rt_trie_node *n; 973 974 pos = 0; 975 n = rcu_dereference_rtnl(t->trie); 976 977 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 978 tn = (struct tnode *) n; 979 980 check_tnode(tn); 981 982 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 983 pos = tn->pos + tn->bits; 984 n = tnode_get_child_rcu(tn, 985 tkey_extract_bits(key, 986 tn->pos, 987 tn->bits)); 988 } else 989 break; 990 } 991 /* Case we have found a leaf. Compare prefixes */ 992 993 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 994 return (struct leaf *)n; 995 996 return NULL; 997 } 998 999 static void trie_rebalance(struct trie *t, struct tnode *tn) 1000 { 1001 int wasfull; 1002 t_key cindex, key; 1003 struct tnode *tp; 1004 1005 key = tn->key; 1006 1007 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 1008 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1009 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 1010 tn = (struct tnode *)resize(t, tn); 1011 1012 tnode_put_child_reorg(tp, cindex, 1013 (struct rt_trie_node *)tn, wasfull); 1014 1015 tp = node_parent((struct rt_trie_node *) tn); 1016 if (!tp) 1017 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1018 1019 tnode_free_flush(); 1020 if (!tp) 1021 break; 1022 tn = tp; 1023 } 1024 1025 /* Handle last (top) tnode */ 1026 if (IS_TNODE(tn)) 1027 tn = (struct tnode *)resize(t, tn); 1028 1029 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1030 tnode_free_flush(); 1031 } 1032 1033 /* only used from updater-side */ 1034 1035 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1036 { 1037 int pos, newpos; 1038 struct tnode *tp = NULL, *tn = NULL; 1039 struct rt_trie_node *n; 1040 struct leaf *l; 1041 int missbit; 1042 struct list_head *fa_head = NULL; 1043 struct leaf_info *li; 1044 t_key cindex; 1045 1046 pos = 0; 1047 n = rtnl_dereference(t->trie); 1048 1049 /* If we point to NULL, stop. Either the tree is empty and we should 1050 * just put a new leaf in if, or we have reached an empty child slot, 1051 * and we should just put our new leaf in that. 1052 * If we point to a T_TNODE, check if it matches our key. Note that 1053 * a T_TNODE might be skipping any number of bits - its 'pos' need 1054 * not be the parent's 'pos'+'bits'! 1055 * 1056 * If it does match the current key, get pos/bits from it, extract 1057 * the index from our key, push the T_TNODE and walk the tree. 1058 * 1059 * If it doesn't, we have to replace it with a new T_TNODE. 1060 * 1061 * If we point to a T_LEAF, it might or might not have the same key 1062 * as we do. If it does, just change the value, update the T_LEAF's 1063 * value, and return it. 1064 * If it doesn't, we need to replace it with a T_TNODE. 1065 */ 1066 1067 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1068 tn = (struct tnode *) n; 1069 1070 check_tnode(tn); 1071 1072 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1073 tp = tn; 1074 pos = tn->pos + tn->bits; 1075 n = tnode_get_child(tn, 1076 tkey_extract_bits(key, 1077 tn->pos, 1078 tn->bits)); 1079 1080 BUG_ON(n && node_parent(n) != tn); 1081 } else 1082 break; 1083 } 1084 1085 /* 1086 * n ----> NULL, LEAF or TNODE 1087 * 1088 * tp is n's (parent) ----> NULL or TNODE 1089 */ 1090 1091 BUG_ON(tp && IS_LEAF(tp)); 1092 1093 /* Case 1: n is a leaf. Compare prefixes */ 1094 1095 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1096 l = (struct leaf *) n; 1097 li = leaf_info_new(plen); 1098 1099 if (!li) 1100 return NULL; 1101 1102 fa_head = &li->falh; 1103 insert_leaf_info(&l->list, li); 1104 goto done; 1105 } 1106 l = leaf_new(); 1107 1108 if (!l) 1109 return NULL; 1110 1111 l->key = key; 1112 li = leaf_info_new(plen); 1113 1114 if (!li) { 1115 free_leaf(l); 1116 return NULL; 1117 } 1118 1119 fa_head = &li->falh; 1120 insert_leaf_info(&l->list, li); 1121 1122 if (t->trie && n == NULL) { 1123 /* Case 2: n is NULL, and will just insert a new leaf */ 1124 1125 node_set_parent((struct rt_trie_node *)l, tp); 1126 1127 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1128 put_child(t, tp, cindex, (struct rt_trie_node *)l); 1129 } else { 1130 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1131 /* 1132 * Add a new tnode here 1133 * first tnode need some special handling 1134 */ 1135 1136 if (tp) 1137 pos = tp->pos+tp->bits; 1138 else 1139 pos = 0; 1140 1141 if (n) { 1142 newpos = tkey_mismatch(key, pos, n->key); 1143 tn = tnode_new(n->key, newpos, 1); 1144 } else { 1145 newpos = 0; 1146 tn = tnode_new(key, newpos, 1); /* First tnode */ 1147 } 1148 1149 if (!tn) { 1150 free_leaf_info(li); 1151 free_leaf(l); 1152 return NULL; 1153 } 1154 1155 node_set_parent((struct rt_trie_node *)tn, tp); 1156 1157 missbit = tkey_extract_bits(key, newpos, 1); 1158 put_child(t, tn, missbit, (struct rt_trie_node *)l); 1159 put_child(t, tn, 1-missbit, n); 1160 1161 if (tp) { 1162 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1163 put_child(t, tp, cindex, (struct rt_trie_node *)tn); 1164 } else { 1165 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1166 tp = tn; 1167 } 1168 } 1169 1170 if (tp && tp->pos + tp->bits > 32) 1171 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1172 tp, tp->pos, tp->bits, key, plen); 1173 1174 /* Rebalance the trie */ 1175 1176 trie_rebalance(t, tp); 1177 done: 1178 return fa_head; 1179 } 1180 1181 /* 1182 * Caller must hold RTNL. 1183 */ 1184 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1185 { 1186 struct trie *t = (struct trie *) tb->tb_data; 1187 struct fib_alias *fa, *new_fa; 1188 struct list_head *fa_head = NULL; 1189 struct fib_info *fi; 1190 int plen = cfg->fc_dst_len; 1191 u8 tos = cfg->fc_tos; 1192 u32 key, mask; 1193 int err; 1194 struct leaf *l; 1195 1196 if (plen > 32) 1197 return -EINVAL; 1198 1199 key = ntohl(cfg->fc_dst); 1200 1201 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1202 1203 mask = ntohl(inet_make_mask(plen)); 1204 1205 if (key & ~mask) 1206 return -EINVAL; 1207 1208 key = key & mask; 1209 1210 fi = fib_create_info(cfg); 1211 if (IS_ERR(fi)) { 1212 err = PTR_ERR(fi); 1213 goto err; 1214 } 1215 1216 l = fib_find_node(t, key); 1217 fa = NULL; 1218 1219 if (l) { 1220 fa_head = get_fa_head(l, plen); 1221 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1222 } 1223 1224 /* Now fa, if non-NULL, points to the first fib alias 1225 * with the same keys [prefix,tos,priority], if such key already 1226 * exists or to the node before which we will insert new one. 1227 * 1228 * If fa is NULL, we will need to allocate a new one and 1229 * insert to the head of f. 1230 * 1231 * If f is NULL, no fib node matched the destination key 1232 * and we need to allocate a new one of those as well. 1233 */ 1234 1235 if (fa && fa->fa_tos == tos && 1236 fa->fa_info->fib_priority == fi->fib_priority) { 1237 struct fib_alias *fa_first, *fa_match; 1238 1239 err = -EEXIST; 1240 if (cfg->fc_nlflags & NLM_F_EXCL) 1241 goto out; 1242 1243 /* We have 2 goals: 1244 * 1. Find exact match for type, scope, fib_info to avoid 1245 * duplicate routes 1246 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1247 */ 1248 fa_match = NULL; 1249 fa_first = fa; 1250 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1251 list_for_each_entry_continue(fa, fa_head, fa_list) { 1252 if (fa->fa_tos != tos) 1253 break; 1254 if (fa->fa_info->fib_priority != fi->fib_priority) 1255 break; 1256 if (fa->fa_type == cfg->fc_type && 1257 fa->fa_info == fi) { 1258 fa_match = fa; 1259 break; 1260 } 1261 } 1262 1263 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1264 struct fib_info *fi_drop; 1265 u8 state; 1266 1267 fa = fa_first; 1268 if (fa_match) { 1269 if (fa == fa_match) 1270 err = 0; 1271 goto out; 1272 } 1273 err = -ENOBUFS; 1274 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1275 if (new_fa == NULL) 1276 goto out; 1277 1278 fi_drop = fa->fa_info; 1279 new_fa->fa_tos = fa->fa_tos; 1280 new_fa->fa_info = fi; 1281 new_fa->fa_type = cfg->fc_type; 1282 state = fa->fa_state; 1283 new_fa->fa_state = state & ~FA_S_ACCESSED; 1284 1285 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1286 alias_free_mem_rcu(fa); 1287 1288 fib_release_info(fi_drop); 1289 if (state & FA_S_ACCESSED) 1290 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1291 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1292 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1293 1294 goto succeeded; 1295 } 1296 /* Error if we find a perfect match which 1297 * uses the same scope, type, and nexthop 1298 * information. 1299 */ 1300 if (fa_match) 1301 goto out; 1302 1303 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1304 fa = fa_first; 1305 } 1306 err = -ENOENT; 1307 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1308 goto out; 1309 1310 err = -ENOBUFS; 1311 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1312 if (new_fa == NULL) 1313 goto out; 1314 1315 new_fa->fa_info = fi; 1316 new_fa->fa_tos = tos; 1317 new_fa->fa_type = cfg->fc_type; 1318 new_fa->fa_state = 0; 1319 /* 1320 * Insert new entry to the list. 1321 */ 1322 1323 if (!fa_head) { 1324 fa_head = fib_insert_node(t, key, plen); 1325 if (unlikely(!fa_head)) { 1326 err = -ENOMEM; 1327 goto out_free_new_fa; 1328 } 1329 } 1330 1331 if (!plen) 1332 tb->tb_num_default++; 1333 1334 list_add_tail_rcu(&new_fa->fa_list, 1335 (fa ? &fa->fa_list : fa_head)); 1336 1337 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1338 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1339 &cfg->fc_nlinfo, 0); 1340 succeeded: 1341 return 0; 1342 1343 out_free_new_fa: 1344 kmem_cache_free(fn_alias_kmem, new_fa); 1345 out: 1346 fib_release_info(fi); 1347 err: 1348 return err; 1349 } 1350 1351 /* should be called with rcu_read_lock */ 1352 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1353 t_key key, const struct flowi4 *flp, 1354 struct fib_result *res, int fib_flags) 1355 { 1356 struct leaf_info *li; 1357 struct hlist_head *hhead = &l->list; 1358 struct hlist_node *node; 1359 1360 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1361 struct fib_alias *fa; 1362 1363 if (l->key != (key & li->mask_plen)) 1364 continue; 1365 1366 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1367 struct fib_info *fi = fa->fa_info; 1368 int nhsel, err; 1369 1370 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1371 continue; 1372 if (fi->fib_dead) 1373 continue; 1374 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1375 continue; 1376 fib_alias_accessed(fa); 1377 err = fib_props[fa->fa_type].error; 1378 if (err) { 1379 #ifdef CONFIG_IP_FIB_TRIE_STATS 1380 t->stats.semantic_match_passed++; 1381 #endif 1382 return err; 1383 } 1384 if (fi->fib_flags & RTNH_F_DEAD) 1385 continue; 1386 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1387 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1388 1389 if (nh->nh_flags & RTNH_F_DEAD) 1390 continue; 1391 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1392 continue; 1393 1394 #ifdef CONFIG_IP_FIB_TRIE_STATS 1395 t->stats.semantic_match_passed++; 1396 #endif 1397 res->prefixlen = li->plen; 1398 res->nh_sel = nhsel; 1399 res->type = fa->fa_type; 1400 res->scope = fa->fa_info->fib_scope; 1401 res->fi = fi; 1402 res->table = tb; 1403 res->fa_head = &li->falh; 1404 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1405 atomic_inc(&fi->fib_clntref); 1406 return 0; 1407 } 1408 } 1409 1410 #ifdef CONFIG_IP_FIB_TRIE_STATS 1411 t->stats.semantic_match_miss++; 1412 #endif 1413 } 1414 1415 return 1; 1416 } 1417 1418 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1419 struct fib_result *res, int fib_flags) 1420 { 1421 struct trie *t = (struct trie *) tb->tb_data; 1422 int ret; 1423 struct rt_trie_node *n; 1424 struct tnode *pn; 1425 unsigned int pos, bits; 1426 t_key key = ntohl(flp->daddr); 1427 unsigned int chopped_off; 1428 t_key cindex = 0; 1429 unsigned int current_prefix_length = KEYLENGTH; 1430 struct tnode *cn; 1431 t_key pref_mismatch; 1432 1433 rcu_read_lock(); 1434 1435 n = rcu_dereference(t->trie); 1436 if (!n) 1437 goto failed; 1438 1439 #ifdef CONFIG_IP_FIB_TRIE_STATS 1440 t->stats.gets++; 1441 #endif 1442 1443 /* Just a leaf? */ 1444 if (IS_LEAF(n)) { 1445 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1446 goto found; 1447 } 1448 1449 pn = (struct tnode *) n; 1450 chopped_off = 0; 1451 1452 while (pn) { 1453 pos = pn->pos; 1454 bits = pn->bits; 1455 1456 if (!chopped_off) 1457 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1458 pos, bits); 1459 1460 n = tnode_get_child_rcu(pn, cindex); 1461 1462 if (n == NULL) { 1463 #ifdef CONFIG_IP_FIB_TRIE_STATS 1464 t->stats.null_node_hit++; 1465 #endif 1466 goto backtrace; 1467 } 1468 1469 if (IS_LEAF(n)) { 1470 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1471 if (ret > 0) 1472 goto backtrace; 1473 goto found; 1474 } 1475 1476 cn = (struct tnode *)n; 1477 1478 /* 1479 * It's a tnode, and we can do some extra checks here if we 1480 * like, to avoid descending into a dead-end branch. 1481 * This tnode is in the parent's child array at index 1482 * key[p_pos..p_pos+p_bits] but potentially with some bits 1483 * chopped off, so in reality the index may be just a 1484 * subprefix, padded with zero at the end. 1485 * We can also take a look at any skipped bits in this 1486 * tnode - everything up to p_pos is supposed to be ok, 1487 * and the non-chopped bits of the index (se previous 1488 * paragraph) are also guaranteed ok, but the rest is 1489 * considered unknown. 1490 * 1491 * The skipped bits are key[pos+bits..cn->pos]. 1492 */ 1493 1494 /* If current_prefix_length < pos+bits, we are already doing 1495 * actual prefix matching, which means everything from 1496 * pos+(bits-chopped_off) onward must be zero along some 1497 * branch of this subtree - otherwise there is *no* valid 1498 * prefix present. Here we can only check the skipped 1499 * bits. Remember, since we have already indexed into the 1500 * parent's child array, we know that the bits we chopped of 1501 * *are* zero. 1502 */ 1503 1504 /* NOTA BENE: Checking only skipped bits 1505 for the new node here */ 1506 1507 if (current_prefix_length < pos+bits) { 1508 if (tkey_extract_bits(cn->key, current_prefix_length, 1509 cn->pos - current_prefix_length) 1510 || !(cn->child[0])) 1511 goto backtrace; 1512 } 1513 1514 /* 1515 * If chopped_off=0, the index is fully validated and we 1516 * only need to look at the skipped bits for this, the new, 1517 * tnode. What we actually want to do is to find out if 1518 * these skipped bits match our key perfectly, or if we will 1519 * have to count on finding a matching prefix further down, 1520 * because if we do, we would like to have some way of 1521 * verifying the existence of such a prefix at this point. 1522 */ 1523 1524 /* The only thing we can do at this point is to verify that 1525 * any such matching prefix can indeed be a prefix to our 1526 * key, and if the bits in the node we are inspecting that 1527 * do not match our key are not ZERO, this cannot be true. 1528 * Thus, find out where there is a mismatch (before cn->pos) 1529 * and verify that all the mismatching bits are zero in the 1530 * new tnode's key. 1531 */ 1532 1533 /* 1534 * Note: We aren't very concerned about the piece of 1535 * the key that precede pn->pos+pn->bits, since these 1536 * have already been checked. The bits after cn->pos 1537 * aren't checked since these are by definition 1538 * "unknown" at this point. Thus, what we want to see 1539 * is if we are about to enter the "prefix matching" 1540 * state, and in that case verify that the skipped 1541 * bits that will prevail throughout this subtree are 1542 * zero, as they have to be if we are to find a 1543 * matching prefix. 1544 */ 1545 1546 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1547 1548 /* 1549 * In short: If skipped bits in this node do not match 1550 * the search key, enter the "prefix matching" 1551 * state.directly. 1552 */ 1553 if (pref_mismatch) { 1554 int mp = KEYLENGTH - fls(pref_mismatch); 1555 1556 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1557 goto backtrace; 1558 1559 if (current_prefix_length >= cn->pos) 1560 current_prefix_length = mp; 1561 } 1562 1563 pn = (struct tnode *)n; /* Descend */ 1564 chopped_off = 0; 1565 continue; 1566 1567 backtrace: 1568 chopped_off++; 1569 1570 /* As zero don't change the child key (cindex) */ 1571 while ((chopped_off <= pn->bits) 1572 && !(cindex & (1<<(chopped_off-1)))) 1573 chopped_off++; 1574 1575 /* Decrease current_... with bits chopped off */ 1576 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1577 current_prefix_length = pn->pos + pn->bits 1578 - chopped_off; 1579 1580 /* 1581 * Either we do the actual chop off according or if we have 1582 * chopped off all bits in this tnode walk up to our parent. 1583 */ 1584 1585 if (chopped_off <= pn->bits) { 1586 cindex &= ~(1 << (chopped_off-1)); 1587 } else { 1588 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1589 if (!parent) 1590 goto failed; 1591 1592 /* Get Child's index */ 1593 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1594 pn = parent; 1595 chopped_off = 0; 1596 1597 #ifdef CONFIG_IP_FIB_TRIE_STATS 1598 t->stats.backtrack++; 1599 #endif 1600 goto backtrace; 1601 } 1602 } 1603 failed: 1604 ret = 1; 1605 found: 1606 rcu_read_unlock(); 1607 return ret; 1608 } 1609 EXPORT_SYMBOL_GPL(fib_table_lookup); 1610 1611 /* 1612 * Remove the leaf and return parent. 1613 */ 1614 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1615 { 1616 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1617 1618 pr_debug("entering trie_leaf_remove(%p)\n", l); 1619 1620 if (tp) { 1621 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1622 put_child(t, tp, cindex, NULL); 1623 trie_rebalance(t, tp); 1624 } else 1625 RCU_INIT_POINTER(t->trie, NULL); 1626 1627 free_leaf(l); 1628 } 1629 1630 /* 1631 * Caller must hold RTNL. 1632 */ 1633 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1634 { 1635 struct trie *t = (struct trie *) tb->tb_data; 1636 u32 key, mask; 1637 int plen = cfg->fc_dst_len; 1638 u8 tos = cfg->fc_tos; 1639 struct fib_alias *fa, *fa_to_delete; 1640 struct list_head *fa_head; 1641 struct leaf *l; 1642 struct leaf_info *li; 1643 1644 if (plen > 32) 1645 return -EINVAL; 1646 1647 key = ntohl(cfg->fc_dst); 1648 mask = ntohl(inet_make_mask(plen)); 1649 1650 if (key & ~mask) 1651 return -EINVAL; 1652 1653 key = key & mask; 1654 l = fib_find_node(t, key); 1655 1656 if (!l) 1657 return -ESRCH; 1658 1659 fa_head = get_fa_head(l, plen); 1660 fa = fib_find_alias(fa_head, tos, 0); 1661 1662 if (!fa) 1663 return -ESRCH; 1664 1665 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1666 1667 fa_to_delete = NULL; 1668 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1669 list_for_each_entry_continue(fa, fa_head, fa_list) { 1670 struct fib_info *fi = fa->fa_info; 1671 1672 if (fa->fa_tos != tos) 1673 break; 1674 1675 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1676 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1677 fa->fa_info->fib_scope == cfg->fc_scope) && 1678 (!cfg->fc_prefsrc || 1679 fi->fib_prefsrc == cfg->fc_prefsrc) && 1680 (!cfg->fc_protocol || 1681 fi->fib_protocol == cfg->fc_protocol) && 1682 fib_nh_match(cfg, fi) == 0) { 1683 fa_to_delete = fa; 1684 break; 1685 } 1686 } 1687 1688 if (!fa_to_delete) 1689 return -ESRCH; 1690 1691 fa = fa_to_delete; 1692 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1693 &cfg->fc_nlinfo, 0); 1694 1695 l = fib_find_node(t, key); 1696 li = find_leaf_info(l, plen); 1697 1698 list_del_rcu(&fa->fa_list); 1699 1700 if (!plen) 1701 tb->tb_num_default--; 1702 1703 if (list_empty(fa_head)) { 1704 hlist_del_rcu(&li->hlist); 1705 free_leaf_info(li); 1706 } 1707 1708 if (hlist_empty(&l->list)) 1709 trie_leaf_remove(t, l); 1710 1711 if (fa->fa_state & FA_S_ACCESSED) 1712 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1713 1714 fib_release_info(fa->fa_info); 1715 alias_free_mem_rcu(fa); 1716 return 0; 1717 } 1718 1719 static int trie_flush_list(struct list_head *head) 1720 { 1721 struct fib_alias *fa, *fa_node; 1722 int found = 0; 1723 1724 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1725 struct fib_info *fi = fa->fa_info; 1726 1727 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1728 list_del_rcu(&fa->fa_list); 1729 fib_release_info(fa->fa_info); 1730 alias_free_mem_rcu(fa); 1731 found++; 1732 } 1733 } 1734 return found; 1735 } 1736 1737 static int trie_flush_leaf(struct leaf *l) 1738 { 1739 int found = 0; 1740 struct hlist_head *lih = &l->list; 1741 struct hlist_node *node, *tmp; 1742 struct leaf_info *li = NULL; 1743 1744 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1745 found += trie_flush_list(&li->falh); 1746 1747 if (list_empty(&li->falh)) { 1748 hlist_del_rcu(&li->hlist); 1749 free_leaf_info(li); 1750 } 1751 } 1752 return found; 1753 } 1754 1755 /* 1756 * Scan for the next right leaf starting at node p->child[idx] 1757 * Since we have back pointer, no recursion necessary. 1758 */ 1759 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1760 { 1761 do { 1762 t_key idx; 1763 1764 if (c) 1765 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1766 else 1767 idx = 0; 1768 1769 while (idx < 1u << p->bits) { 1770 c = tnode_get_child_rcu(p, idx++); 1771 if (!c) 1772 continue; 1773 1774 if (IS_LEAF(c)) { 1775 prefetch(rcu_dereference_rtnl(p->child[idx])); 1776 return (struct leaf *) c; 1777 } 1778 1779 /* Rescan start scanning in new node */ 1780 p = (struct tnode *) c; 1781 idx = 0; 1782 } 1783 1784 /* Node empty, walk back up to parent */ 1785 c = (struct rt_trie_node *) p; 1786 } while ((p = node_parent_rcu(c)) != NULL); 1787 1788 return NULL; /* Root of trie */ 1789 } 1790 1791 static struct leaf *trie_firstleaf(struct trie *t) 1792 { 1793 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1794 1795 if (!n) 1796 return NULL; 1797 1798 if (IS_LEAF(n)) /* trie is just a leaf */ 1799 return (struct leaf *) n; 1800 1801 return leaf_walk_rcu(n, NULL); 1802 } 1803 1804 static struct leaf *trie_nextleaf(struct leaf *l) 1805 { 1806 struct rt_trie_node *c = (struct rt_trie_node *) l; 1807 struct tnode *p = node_parent_rcu(c); 1808 1809 if (!p) 1810 return NULL; /* trie with just one leaf */ 1811 1812 return leaf_walk_rcu(p, c); 1813 } 1814 1815 static struct leaf *trie_leafindex(struct trie *t, int index) 1816 { 1817 struct leaf *l = trie_firstleaf(t); 1818 1819 while (l && index-- > 0) 1820 l = trie_nextleaf(l); 1821 1822 return l; 1823 } 1824 1825 1826 /* 1827 * Caller must hold RTNL. 1828 */ 1829 int fib_table_flush(struct fib_table *tb) 1830 { 1831 struct trie *t = (struct trie *) tb->tb_data; 1832 struct leaf *l, *ll = NULL; 1833 int found = 0; 1834 1835 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1836 found += trie_flush_leaf(l); 1837 1838 if (ll && hlist_empty(&ll->list)) 1839 trie_leaf_remove(t, ll); 1840 ll = l; 1841 } 1842 1843 if (ll && hlist_empty(&ll->list)) 1844 trie_leaf_remove(t, ll); 1845 1846 pr_debug("trie_flush found=%d\n", found); 1847 return found; 1848 } 1849 1850 void fib_free_table(struct fib_table *tb) 1851 { 1852 kfree(tb); 1853 } 1854 1855 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1856 struct fib_table *tb, 1857 struct sk_buff *skb, struct netlink_callback *cb) 1858 { 1859 int i, s_i; 1860 struct fib_alias *fa; 1861 __be32 xkey = htonl(key); 1862 1863 s_i = cb->args[5]; 1864 i = 0; 1865 1866 /* rcu_read_lock is hold by caller */ 1867 1868 list_for_each_entry_rcu(fa, fah, fa_list) { 1869 if (i < s_i) { 1870 i++; 1871 continue; 1872 } 1873 1874 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1875 cb->nlh->nlmsg_seq, 1876 RTM_NEWROUTE, 1877 tb->tb_id, 1878 fa->fa_type, 1879 xkey, 1880 plen, 1881 fa->fa_tos, 1882 fa->fa_info, NLM_F_MULTI) < 0) { 1883 cb->args[5] = i; 1884 return -1; 1885 } 1886 i++; 1887 } 1888 cb->args[5] = i; 1889 return skb->len; 1890 } 1891 1892 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1893 struct sk_buff *skb, struct netlink_callback *cb) 1894 { 1895 struct leaf_info *li; 1896 struct hlist_node *node; 1897 int i, s_i; 1898 1899 s_i = cb->args[4]; 1900 i = 0; 1901 1902 /* rcu_read_lock is hold by caller */ 1903 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1904 if (i < s_i) { 1905 i++; 1906 continue; 1907 } 1908 1909 if (i > s_i) 1910 cb->args[5] = 0; 1911 1912 if (list_empty(&li->falh)) 1913 continue; 1914 1915 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1916 cb->args[4] = i; 1917 return -1; 1918 } 1919 i++; 1920 } 1921 1922 cb->args[4] = i; 1923 return skb->len; 1924 } 1925 1926 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1927 struct netlink_callback *cb) 1928 { 1929 struct leaf *l; 1930 struct trie *t = (struct trie *) tb->tb_data; 1931 t_key key = cb->args[2]; 1932 int count = cb->args[3]; 1933 1934 rcu_read_lock(); 1935 /* Dump starting at last key. 1936 * Note: 0.0.0.0/0 (ie default) is first key. 1937 */ 1938 if (count == 0) 1939 l = trie_firstleaf(t); 1940 else { 1941 /* Normally, continue from last key, but if that is missing 1942 * fallback to using slow rescan 1943 */ 1944 l = fib_find_node(t, key); 1945 if (!l) 1946 l = trie_leafindex(t, count); 1947 } 1948 1949 while (l) { 1950 cb->args[2] = l->key; 1951 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1952 cb->args[3] = count; 1953 rcu_read_unlock(); 1954 return -1; 1955 } 1956 1957 ++count; 1958 l = trie_nextleaf(l); 1959 memset(&cb->args[4], 0, 1960 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1961 } 1962 cb->args[3] = count; 1963 rcu_read_unlock(); 1964 1965 return skb->len; 1966 } 1967 1968 void __init fib_trie_init(void) 1969 { 1970 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1971 sizeof(struct fib_alias), 1972 0, SLAB_PANIC, NULL); 1973 1974 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1975 max(sizeof(struct leaf), 1976 sizeof(struct leaf_info)), 1977 0, SLAB_PANIC, NULL); 1978 } 1979 1980 1981 struct fib_table *fib_trie_table(u32 id) 1982 { 1983 struct fib_table *tb; 1984 struct trie *t; 1985 1986 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1987 GFP_KERNEL); 1988 if (tb == NULL) 1989 return NULL; 1990 1991 tb->tb_id = id; 1992 tb->tb_default = -1; 1993 tb->tb_num_default = 0; 1994 1995 t = (struct trie *) tb->tb_data; 1996 memset(t, 0, sizeof(*t)); 1997 1998 return tb; 1999 } 2000 2001 #ifdef CONFIG_PROC_FS 2002 /* Depth first Trie walk iterator */ 2003 struct fib_trie_iter { 2004 struct seq_net_private p; 2005 struct fib_table *tb; 2006 struct tnode *tnode; 2007 unsigned int index; 2008 unsigned int depth; 2009 }; 2010 2011 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2012 { 2013 struct tnode *tn = iter->tnode; 2014 unsigned int cindex = iter->index; 2015 struct tnode *p; 2016 2017 /* A single entry routing table */ 2018 if (!tn) 2019 return NULL; 2020 2021 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2022 iter->tnode, iter->index, iter->depth); 2023 rescan: 2024 while (cindex < (1<<tn->bits)) { 2025 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2026 2027 if (n) { 2028 if (IS_LEAF(n)) { 2029 iter->tnode = tn; 2030 iter->index = cindex + 1; 2031 } else { 2032 /* push down one level */ 2033 iter->tnode = (struct tnode *) n; 2034 iter->index = 0; 2035 ++iter->depth; 2036 } 2037 return n; 2038 } 2039 2040 ++cindex; 2041 } 2042 2043 /* Current node exhausted, pop back up */ 2044 p = node_parent_rcu((struct rt_trie_node *)tn); 2045 if (p) { 2046 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2047 tn = p; 2048 --iter->depth; 2049 goto rescan; 2050 } 2051 2052 /* got root? */ 2053 return NULL; 2054 } 2055 2056 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2057 struct trie *t) 2058 { 2059 struct rt_trie_node *n; 2060 2061 if (!t) 2062 return NULL; 2063 2064 n = rcu_dereference(t->trie); 2065 if (!n) 2066 return NULL; 2067 2068 if (IS_TNODE(n)) { 2069 iter->tnode = (struct tnode *) n; 2070 iter->index = 0; 2071 iter->depth = 1; 2072 } else { 2073 iter->tnode = NULL; 2074 iter->index = 0; 2075 iter->depth = 0; 2076 } 2077 2078 return n; 2079 } 2080 2081 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2082 { 2083 struct rt_trie_node *n; 2084 struct fib_trie_iter iter; 2085 2086 memset(s, 0, sizeof(*s)); 2087 2088 rcu_read_lock(); 2089 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2090 if (IS_LEAF(n)) { 2091 struct leaf *l = (struct leaf *)n; 2092 struct leaf_info *li; 2093 struct hlist_node *tmp; 2094 2095 s->leaves++; 2096 s->totdepth += iter.depth; 2097 if (iter.depth > s->maxdepth) 2098 s->maxdepth = iter.depth; 2099 2100 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2101 ++s->prefixes; 2102 } else { 2103 const struct tnode *tn = (const struct tnode *) n; 2104 int i; 2105 2106 s->tnodes++; 2107 if (tn->bits < MAX_STAT_DEPTH) 2108 s->nodesizes[tn->bits]++; 2109 2110 for (i = 0; i < (1<<tn->bits); i++) 2111 if (!tn->child[i]) 2112 s->nullpointers++; 2113 } 2114 } 2115 rcu_read_unlock(); 2116 } 2117 2118 /* 2119 * This outputs /proc/net/fib_triestats 2120 */ 2121 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2122 { 2123 unsigned int i, max, pointers, bytes, avdepth; 2124 2125 if (stat->leaves) 2126 avdepth = stat->totdepth*100 / stat->leaves; 2127 else 2128 avdepth = 0; 2129 2130 seq_printf(seq, "\tAver depth: %u.%02d\n", 2131 avdepth / 100, avdepth % 100); 2132 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2133 2134 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2135 bytes = sizeof(struct leaf) * stat->leaves; 2136 2137 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2138 bytes += sizeof(struct leaf_info) * stat->prefixes; 2139 2140 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2141 bytes += sizeof(struct tnode) * stat->tnodes; 2142 2143 max = MAX_STAT_DEPTH; 2144 while (max > 0 && stat->nodesizes[max-1] == 0) 2145 max--; 2146 2147 pointers = 0; 2148 for (i = 1; i <= max; i++) 2149 if (stat->nodesizes[i] != 0) { 2150 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2151 pointers += (1<<i) * stat->nodesizes[i]; 2152 } 2153 seq_putc(seq, '\n'); 2154 seq_printf(seq, "\tPointers: %u\n", pointers); 2155 2156 bytes += sizeof(struct rt_trie_node *) * pointers; 2157 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2158 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2159 } 2160 2161 #ifdef CONFIG_IP_FIB_TRIE_STATS 2162 static void trie_show_usage(struct seq_file *seq, 2163 const struct trie_use_stats *stats) 2164 { 2165 seq_printf(seq, "\nCounters:\n---------\n"); 2166 seq_printf(seq, "gets = %u\n", stats->gets); 2167 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2168 seq_printf(seq, "semantic match passed = %u\n", 2169 stats->semantic_match_passed); 2170 seq_printf(seq, "semantic match miss = %u\n", 2171 stats->semantic_match_miss); 2172 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2173 seq_printf(seq, "skipped node resize = %u\n\n", 2174 stats->resize_node_skipped); 2175 } 2176 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2177 2178 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2179 { 2180 if (tb->tb_id == RT_TABLE_LOCAL) 2181 seq_puts(seq, "Local:\n"); 2182 else if (tb->tb_id == RT_TABLE_MAIN) 2183 seq_puts(seq, "Main:\n"); 2184 else 2185 seq_printf(seq, "Id %d:\n", tb->tb_id); 2186 } 2187 2188 2189 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2190 { 2191 struct net *net = (struct net *)seq->private; 2192 unsigned int h; 2193 2194 seq_printf(seq, 2195 "Basic info: size of leaf:" 2196 " %Zd bytes, size of tnode: %Zd bytes.\n", 2197 sizeof(struct leaf), sizeof(struct tnode)); 2198 2199 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2200 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2201 struct hlist_node *node; 2202 struct fib_table *tb; 2203 2204 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2205 struct trie *t = (struct trie *) tb->tb_data; 2206 struct trie_stat stat; 2207 2208 if (!t) 2209 continue; 2210 2211 fib_table_print(seq, tb); 2212 2213 trie_collect_stats(t, &stat); 2214 trie_show_stats(seq, &stat); 2215 #ifdef CONFIG_IP_FIB_TRIE_STATS 2216 trie_show_usage(seq, &t->stats); 2217 #endif 2218 } 2219 } 2220 2221 return 0; 2222 } 2223 2224 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2225 { 2226 return single_open_net(inode, file, fib_triestat_seq_show); 2227 } 2228 2229 static const struct file_operations fib_triestat_fops = { 2230 .owner = THIS_MODULE, 2231 .open = fib_triestat_seq_open, 2232 .read = seq_read, 2233 .llseek = seq_lseek, 2234 .release = single_release_net, 2235 }; 2236 2237 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2238 { 2239 struct fib_trie_iter *iter = seq->private; 2240 struct net *net = seq_file_net(seq); 2241 loff_t idx = 0; 2242 unsigned int h; 2243 2244 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2245 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2246 struct hlist_node *node; 2247 struct fib_table *tb; 2248 2249 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2250 struct rt_trie_node *n; 2251 2252 for (n = fib_trie_get_first(iter, 2253 (struct trie *) tb->tb_data); 2254 n; n = fib_trie_get_next(iter)) 2255 if (pos == idx++) { 2256 iter->tb = tb; 2257 return n; 2258 } 2259 } 2260 } 2261 2262 return NULL; 2263 } 2264 2265 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2266 __acquires(RCU) 2267 { 2268 rcu_read_lock(); 2269 return fib_trie_get_idx(seq, *pos); 2270 } 2271 2272 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2273 { 2274 struct fib_trie_iter *iter = seq->private; 2275 struct net *net = seq_file_net(seq); 2276 struct fib_table *tb = iter->tb; 2277 struct hlist_node *tb_node; 2278 unsigned int h; 2279 struct rt_trie_node *n; 2280 2281 ++*pos; 2282 /* next node in same table */ 2283 n = fib_trie_get_next(iter); 2284 if (n) 2285 return n; 2286 2287 /* walk rest of this hash chain */ 2288 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2289 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2290 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2291 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2292 if (n) 2293 goto found; 2294 } 2295 2296 /* new hash chain */ 2297 while (++h < FIB_TABLE_HASHSZ) { 2298 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2299 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2300 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2301 if (n) 2302 goto found; 2303 } 2304 } 2305 return NULL; 2306 2307 found: 2308 iter->tb = tb; 2309 return n; 2310 } 2311 2312 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2313 __releases(RCU) 2314 { 2315 rcu_read_unlock(); 2316 } 2317 2318 static void seq_indent(struct seq_file *seq, int n) 2319 { 2320 while (n-- > 0) 2321 seq_puts(seq, " "); 2322 } 2323 2324 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2325 { 2326 switch (s) { 2327 case RT_SCOPE_UNIVERSE: return "universe"; 2328 case RT_SCOPE_SITE: return "site"; 2329 case RT_SCOPE_LINK: return "link"; 2330 case RT_SCOPE_HOST: return "host"; 2331 case RT_SCOPE_NOWHERE: return "nowhere"; 2332 default: 2333 snprintf(buf, len, "scope=%d", s); 2334 return buf; 2335 } 2336 } 2337 2338 static const char *const rtn_type_names[__RTN_MAX] = { 2339 [RTN_UNSPEC] = "UNSPEC", 2340 [RTN_UNICAST] = "UNICAST", 2341 [RTN_LOCAL] = "LOCAL", 2342 [RTN_BROADCAST] = "BROADCAST", 2343 [RTN_ANYCAST] = "ANYCAST", 2344 [RTN_MULTICAST] = "MULTICAST", 2345 [RTN_BLACKHOLE] = "BLACKHOLE", 2346 [RTN_UNREACHABLE] = "UNREACHABLE", 2347 [RTN_PROHIBIT] = "PROHIBIT", 2348 [RTN_THROW] = "THROW", 2349 [RTN_NAT] = "NAT", 2350 [RTN_XRESOLVE] = "XRESOLVE", 2351 }; 2352 2353 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2354 { 2355 if (t < __RTN_MAX && rtn_type_names[t]) 2356 return rtn_type_names[t]; 2357 snprintf(buf, len, "type %u", t); 2358 return buf; 2359 } 2360 2361 /* Pretty print the trie */ 2362 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2363 { 2364 const struct fib_trie_iter *iter = seq->private; 2365 struct rt_trie_node *n = v; 2366 2367 if (!node_parent_rcu(n)) 2368 fib_table_print(seq, iter->tb); 2369 2370 if (IS_TNODE(n)) { 2371 struct tnode *tn = (struct tnode *) n; 2372 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2373 2374 seq_indent(seq, iter->depth-1); 2375 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2376 &prf, tn->pos, tn->bits, tn->full_children, 2377 tn->empty_children); 2378 2379 } else { 2380 struct leaf *l = (struct leaf *) n; 2381 struct leaf_info *li; 2382 struct hlist_node *node; 2383 __be32 val = htonl(l->key); 2384 2385 seq_indent(seq, iter->depth); 2386 seq_printf(seq, " |-- %pI4\n", &val); 2387 2388 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2389 struct fib_alias *fa; 2390 2391 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2392 char buf1[32], buf2[32]; 2393 2394 seq_indent(seq, iter->depth+1); 2395 seq_printf(seq, " /%d %s %s", li->plen, 2396 rtn_scope(buf1, sizeof(buf1), 2397 fa->fa_info->fib_scope), 2398 rtn_type(buf2, sizeof(buf2), 2399 fa->fa_type)); 2400 if (fa->fa_tos) 2401 seq_printf(seq, " tos=%d", fa->fa_tos); 2402 seq_putc(seq, '\n'); 2403 } 2404 } 2405 } 2406 2407 return 0; 2408 } 2409 2410 static const struct seq_operations fib_trie_seq_ops = { 2411 .start = fib_trie_seq_start, 2412 .next = fib_trie_seq_next, 2413 .stop = fib_trie_seq_stop, 2414 .show = fib_trie_seq_show, 2415 }; 2416 2417 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2418 { 2419 return seq_open_net(inode, file, &fib_trie_seq_ops, 2420 sizeof(struct fib_trie_iter)); 2421 } 2422 2423 static const struct file_operations fib_trie_fops = { 2424 .owner = THIS_MODULE, 2425 .open = fib_trie_seq_open, 2426 .read = seq_read, 2427 .llseek = seq_lseek, 2428 .release = seq_release_net, 2429 }; 2430 2431 struct fib_route_iter { 2432 struct seq_net_private p; 2433 struct trie *main_trie; 2434 loff_t pos; 2435 t_key key; 2436 }; 2437 2438 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2439 { 2440 struct leaf *l = NULL; 2441 struct trie *t = iter->main_trie; 2442 2443 /* use cache location of last found key */ 2444 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2445 pos -= iter->pos; 2446 else { 2447 iter->pos = 0; 2448 l = trie_firstleaf(t); 2449 } 2450 2451 while (l && pos-- > 0) { 2452 iter->pos++; 2453 l = trie_nextleaf(l); 2454 } 2455 2456 if (l) 2457 iter->key = pos; /* remember it */ 2458 else 2459 iter->pos = 0; /* forget it */ 2460 2461 return l; 2462 } 2463 2464 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2465 __acquires(RCU) 2466 { 2467 struct fib_route_iter *iter = seq->private; 2468 struct fib_table *tb; 2469 2470 rcu_read_lock(); 2471 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2472 if (!tb) 2473 return NULL; 2474 2475 iter->main_trie = (struct trie *) tb->tb_data; 2476 if (*pos == 0) 2477 return SEQ_START_TOKEN; 2478 else 2479 return fib_route_get_idx(iter, *pos - 1); 2480 } 2481 2482 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2483 { 2484 struct fib_route_iter *iter = seq->private; 2485 struct leaf *l = v; 2486 2487 ++*pos; 2488 if (v == SEQ_START_TOKEN) { 2489 iter->pos = 0; 2490 l = trie_firstleaf(iter->main_trie); 2491 } else { 2492 iter->pos++; 2493 l = trie_nextleaf(l); 2494 } 2495 2496 if (l) 2497 iter->key = l->key; 2498 else 2499 iter->pos = 0; 2500 return l; 2501 } 2502 2503 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2504 __releases(RCU) 2505 { 2506 rcu_read_unlock(); 2507 } 2508 2509 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2510 { 2511 unsigned int flags = 0; 2512 2513 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2514 flags = RTF_REJECT; 2515 if (fi && fi->fib_nh->nh_gw) 2516 flags |= RTF_GATEWAY; 2517 if (mask == htonl(0xFFFFFFFF)) 2518 flags |= RTF_HOST; 2519 flags |= RTF_UP; 2520 return flags; 2521 } 2522 2523 /* 2524 * This outputs /proc/net/route. 2525 * The format of the file is not supposed to be changed 2526 * and needs to be same as fib_hash output to avoid breaking 2527 * legacy utilities 2528 */ 2529 static int fib_route_seq_show(struct seq_file *seq, void *v) 2530 { 2531 struct leaf *l = v; 2532 struct leaf_info *li; 2533 struct hlist_node *node; 2534 2535 if (v == SEQ_START_TOKEN) { 2536 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2537 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2538 "\tWindow\tIRTT"); 2539 return 0; 2540 } 2541 2542 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2543 struct fib_alias *fa; 2544 __be32 mask, prefix; 2545 2546 mask = inet_make_mask(li->plen); 2547 prefix = htonl(l->key); 2548 2549 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2550 const struct fib_info *fi = fa->fa_info; 2551 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2552 int len; 2553 2554 if (fa->fa_type == RTN_BROADCAST 2555 || fa->fa_type == RTN_MULTICAST) 2556 continue; 2557 2558 if (fi) 2559 seq_printf(seq, 2560 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2561 "%d\t%08X\t%d\t%u\t%u%n", 2562 fi->fib_dev ? fi->fib_dev->name : "*", 2563 prefix, 2564 fi->fib_nh->nh_gw, flags, 0, 0, 2565 fi->fib_priority, 2566 mask, 2567 (fi->fib_advmss ? 2568 fi->fib_advmss + 40 : 0), 2569 fi->fib_window, 2570 fi->fib_rtt >> 3, &len); 2571 else 2572 seq_printf(seq, 2573 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2574 "%d\t%08X\t%d\t%u\t%u%n", 2575 prefix, 0, flags, 0, 0, 0, 2576 mask, 0, 0, 0, &len); 2577 2578 seq_printf(seq, "%*s\n", 127 - len, ""); 2579 } 2580 } 2581 2582 return 0; 2583 } 2584 2585 static const struct seq_operations fib_route_seq_ops = { 2586 .start = fib_route_seq_start, 2587 .next = fib_route_seq_next, 2588 .stop = fib_route_seq_stop, 2589 .show = fib_route_seq_show, 2590 }; 2591 2592 static int fib_route_seq_open(struct inode *inode, struct file *file) 2593 { 2594 return seq_open_net(inode, file, &fib_route_seq_ops, 2595 sizeof(struct fib_route_iter)); 2596 } 2597 2598 static const struct file_operations fib_route_fops = { 2599 .owner = THIS_MODULE, 2600 .open = fib_route_seq_open, 2601 .read = seq_read, 2602 .llseek = seq_lseek, 2603 .release = seq_release_net, 2604 }; 2605 2606 int __net_init fib_proc_init(struct net *net) 2607 { 2608 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2609 goto out1; 2610 2611 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2612 &fib_triestat_fops)) 2613 goto out2; 2614 2615 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2616 goto out3; 2617 2618 return 0; 2619 2620 out3: 2621 proc_net_remove(net, "fib_triestat"); 2622 out2: 2623 proc_net_remove(net, "fib_trie"); 2624 out1: 2625 return -ENOMEM; 2626 } 2627 2628 void __net_exit fib_proc_exit(struct net *net) 2629 { 2630 proc_net_remove(net, "fib_trie"); 2631 proc_net_remove(net, "fib_triestat"); 2632 proc_net_remove(net, "route"); 2633 } 2634 2635 #endif /* CONFIG_PROC_FS */ 2636