xref: /linux/net/ipv4/fib_trie.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include "fib_lookup.h"
85 
86 #define MAX_STAT_DEPTH 32
87 
88 #define KEYLENGTH	(8*sizeof(t_key))
89 #define KEY_MAX		((t_key)~0)
90 
91 typedef unsigned int t_key;
92 
93 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
94 #define IS_TNODE(n)	((n)->bits)
95 #define IS_LEAF(n)	(!(n)->bits)
96 
97 struct key_vector {
98 	t_key key;
99 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
100 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
101 	unsigned char slen;
102 	union {
103 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
104 		struct hlist_head leaf;
105 		/* This array is valid if (pos | bits) > 0 (TNODE) */
106 		struct key_vector __rcu *tnode[0];
107 	};
108 };
109 
110 struct tnode {
111 	struct rcu_head rcu;
112 	t_key empty_children;		/* KEYLENGTH bits needed */
113 	t_key full_children;		/* KEYLENGTH bits needed */
114 	struct key_vector __rcu *parent;
115 	struct key_vector kv[1];
116 #define tn_bits kv[0].bits
117 };
118 
119 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
120 #define LEAF_SIZE	TNODE_SIZE(1)
121 
122 #ifdef CONFIG_IP_FIB_TRIE_STATS
123 struct trie_use_stats {
124 	unsigned int gets;
125 	unsigned int backtrack;
126 	unsigned int semantic_match_passed;
127 	unsigned int semantic_match_miss;
128 	unsigned int null_node_hit;
129 	unsigned int resize_node_skipped;
130 };
131 #endif
132 
133 struct trie_stat {
134 	unsigned int totdepth;
135 	unsigned int maxdepth;
136 	unsigned int tnodes;
137 	unsigned int leaves;
138 	unsigned int nullpointers;
139 	unsigned int prefixes;
140 	unsigned int nodesizes[MAX_STAT_DEPTH];
141 };
142 
143 struct trie {
144 	struct key_vector kv[1];
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 	struct trie_use_stats __percpu *stats;
147 #endif
148 };
149 
150 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
151 static size_t tnode_free_size;
152 
153 /*
154  * synchronize_rcu after call_rcu for that many pages; it should be especially
155  * useful before resizing the root node with PREEMPT_NONE configs; the value was
156  * obtained experimentally, aiming to avoid visible slowdown.
157  */
158 static const int sync_pages = 128;
159 
160 static struct kmem_cache *fn_alias_kmem __read_mostly;
161 static struct kmem_cache *trie_leaf_kmem __read_mostly;
162 
163 static inline struct tnode *tn_info(struct key_vector *kv)
164 {
165 	return container_of(kv, struct tnode, kv[0]);
166 }
167 
168 /* caller must hold RTNL */
169 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
170 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
171 
172 /* caller must hold RCU read lock or RTNL */
173 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
174 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
175 
176 /* wrapper for rcu_assign_pointer */
177 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
178 {
179 	if (n)
180 		rcu_assign_pointer(tn_info(n)->parent, tp);
181 }
182 
183 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
184 
185 /* This provides us with the number of children in this node, in the case of a
186  * leaf this will return 0 meaning none of the children are accessible.
187  */
188 static inline unsigned long child_length(const struct key_vector *tn)
189 {
190 	return (1ul << tn->bits) & ~(1ul);
191 }
192 
193 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
194 
195 static inline unsigned long get_index(t_key key, struct key_vector *kv)
196 {
197 	unsigned long index = key ^ kv->key;
198 
199 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
200 		return 0;
201 
202 	return index >> kv->pos;
203 }
204 
205 /* To understand this stuff, an understanding of keys and all their bits is
206  * necessary. Every node in the trie has a key associated with it, but not
207  * all of the bits in that key are significant.
208  *
209  * Consider a node 'n' and its parent 'tp'.
210  *
211  * If n is a leaf, every bit in its key is significant. Its presence is
212  * necessitated by path compression, since during a tree traversal (when
213  * searching for a leaf - unless we are doing an insertion) we will completely
214  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
215  * a potentially successful search, that we have indeed been walking the
216  * correct key path.
217  *
218  * Note that we can never "miss" the correct key in the tree if present by
219  * following the wrong path. Path compression ensures that segments of the key
220  * that are the same for all keys with a given prefix are skipped, but the
221  * skipped part *is* identical for each node in the subtrie below the skipped
222  * bit! trie_insert() in this implementation takes care of that.
223  *
224  * if n is an internal node - a 'tnode' here, the various parts of its key
225  * have many different meanings.
226  *
227  * Example:
228  * _________________________________________________________________
229  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
230  * -----------------------------------------------------------------
231  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
232  *
233  * _________________________________________________________________
234  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
235  * -----------------------------------------------------------------
236  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
237  *
238  * tp->pos = 22
239  * tp->bits = 3
240  * n->pos = 13
241  * n->bits = 4
242  *
243  * First, let's just ignore the bits that come before the parent tp, that is
244  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
245  * point we do not use them for anything.
246  *
247  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
248  * index into the parent's child array. That is, they will be used to find
249  * 'n' among tp's children.
250  *
251  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
252  * for the node n.
253  *
254  * All the bits we have seen so far are significant to the node n. The rest
255  * of the bits are really not needed or indeed known in n->key.
256  *
257  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
258  * n's child array, and will of course be different for each child.
259  *
260  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
261  * at this point.
262  */
263 
264 static const int halve_threshold = 25;
265 static const int inflate_threshold = 50;
266 static const int halve_threshold_root = 15;
267 static const int inflate_threshold_root = 30;
268 
269 static void __alias_free_mem(struct rcu_head *head)
270 {
271 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
272 	kmem_cache_free(fn_alias_kmem, fa);
273 }
274 
275 static inline void alias_free_mem_rcu(struct fib_alias *fa)
276 {
277 	call_rcu(&fa->rcu, __alias_free_mem);
278 }
279 
280 #define TNODE_KMALLOC_MAX \
281 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
282 #define TNODE_VMALLOC_MAX \
283 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
284 
285 static void __node_free_rcu(struct rcu_head *head)
286 {
287 	struct tnode *n = container_of(head, struct tnode, rcu);
288 
289 	if (!n->tn_bits)
290 		kmem_cache_free(trie_leaf_kmem, n);
291 	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
292 		kfree(n);
293 	else
294 		vfree(n);
295 }
296 
297 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298 
299 static struct tnode *tnode_alloc(int bits)
300 {
301 	size_t size;
302 
303 	/* verify bits is within bounds */
304 	if (bits > TNODE_VMALLOC_MAX)
305 		return NULL;
306 
307 	/* determine size and verify it is non-zero and didn't overflow */
308 	size = TNODE_SIZE(1ul << bits);
309 
310 	if (size <= PAGE_SIZE)
311 		return kzalloc(size, GFP_KERNEL);
312 	else
313 		return vzalloc(size);
314 }
315 
316 static inline void empty_child_inc(struct key_vector *n)
317 {
318 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
319 }
320 
321 static inline void empty_child_dec(struct key_vector *n)
322 {
323 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
324 }
325 
326 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
327 {
328 	struct key_vector *l;
329 	struct tnode *kv;
330 
331 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
332 	if (!kv)
333 		return NULL;
334 
335 	/* initialize key vector */
336 	l = kv->kv;
337 	l->key = key;
338 	l->pos = 0;
339 	l->bits = 0;
340 	l->slen = fa->fa_slen;
341 
342 	/* link leaf to fib alias */
343 	INIT_HLIST_HEAD(&l->leaf);
344 	hlist_add_head(&fa->fa_list, &l->leaf);
345 
346 	return l;
347 }
348 
349 static struct key_vector *tnode_new(t_key key, int pos, int bits)
350 {
351 	unsigned int shift = pos + bits;
352 	struct key_vector *tn;
353 	struct tnode *tnode;
354 
355 	/* verify bits and pos their msb bits clear and values are valid */
356 	BUG_ON(!bits || (shift > KEYLENGTH));
357 
358 	tnode = tnode_alloc(bits);
359 	if (!tnode)
360 		return NULL;
361 
362 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
363 		 sizeof(struct key_vector *) << bits);
364 
365 	if (bits == KEYLENGTH)
366 		tnode->full_children = 1;
367 	else
368 		tnode->empty_children = 1ul << bits;
369 
370 	tn = tnode->kv;
371 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
372 	tn->pos = pos;
373 	tn->bits = bits;
374 	tn->slen = pos;
375 
376 	return tn;
377 }
378 
379 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
380  * and no bits are skipped. See discussion in dyntree paper p. 6
381  */
382 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
383 {
384 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
385 }
386 
387 /* Add a child at position i overwriting the old value.
388  * Update the value of full_children and empty_children.
389  */
390 static void put_child(struct key_vector *tn, unsigned long i,
391 		      struct key_vector *n)
392 {
393 	struct key_vector *chi = get_child(tn, i);
394 	int isfull, wasfull;
395 
396 	BUG_ON(i >= child_length(tn));
397 
398 	/* update emptyChildren, overflow into fullChildren */
399 	if (!n && chi)
400 		empty_child_inc(tn);
401 	if (n && !chi)
402 		empty_child_dec(tn);
403 
404 	/* update fullChildren */
405 	wasfull = tnode_full(tn, chi);
406 	isfull = tnode_full(tn, n);
407 
408 	if (wasfull && !isfull)
409 		tn_info(tn)->full_children--;
410 	else if (!wasfull && isfull)
411 		tn_info(tn)->full_children++;
412 
413 	if (n && (tn->slen < n->slen))
414 		tn->slen = n->slen;
415 
416 	rcu_assign_pointer(tn->tnode[i], n);
417 }
418 
419 static void update_children(struct key_vector *tn)
420 {
421 	unsigned long i;
422 
423 	/* update all of the child parent pointers */
424 	for (i = child_length(tn); i;) {
425 		struct key_vector *inode = get_child(tn, --i);
426 
427 		if (!inode)
428 			continue;
429 
430 		/* Either update the children of a tnode that
431 		 * already belongs to us or update the child
432 		 * to point to ourselves.
433 		 */
434 		if (node_parent(inode) == tn)
435 			update_children(inode);
436 		else
437 			node_set_parent(inode, tn);
438 	}
439 }
440 
441 static inline void put_child_root(struct key_vector *tp, t_key key,
442 				  struct key_vector *n)
443 {
444 	if (IS_TRIE(tp))
445 		rcu_assign_pointer(tp->tnode[0], n);
446 	else
447 		put_child(tp, get_index(key, tp), n);
448 }
449 
450 static inline void tnode_free_init(struct key_vector *tn)
451 {
452 	tn_info(tn)->rcu.next = NULL;
453 }
454 
455 static inline void tnode_free_append(struct key_vector *tn,
456 				     struct key_vector *n)
457 {
458 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
459 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
460 }
461 
462 static void tnode_free(struct key_vector *tn)
463 {
464 	struct callback_head *head = &tn_info(tn)->rcu;
465 
466 	while (head) {
467 		head = head->next;
468 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
469 		node_free(tn);
470 
471 		tn = container_of(head, struct tnode, rcu)->kv;
472 	}
473 
474 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
475 		tnode_free_size = 0;
476 		synchronize_rcu();
477 	}
478 }
479 
480 static struct key_vector *replace(struct trie *t,
481 				  struct key_vector *oldtnode,
482 				  struct key_vector *tn)
483 {
484 	struct key_vector *tp = node_parent(oldtnode);
485 	unsigned long i;
486 
487 	/* setup the parent pointer out of and back into this node */
488 	NODE_INIT_PARENT(tn, tp);
489 	put_child_root(tp, tn->key, tn);
490 
491 	/* update all of the child parent pointers */
492 	update_children(tn);
493 
494 	/* all pointers should be clean so we are done */
495 	tnode_free(oldtnode);
496 
497 	/* resize children now that oldtnode is freed */
498 	for (i = child_length(tn); i;) {
499 		struct key_vector *inode = get_child(tn, --i);
500 
501 		/* resize child node */
502 		if (tnode_full(tn, inode))
503 			tn = resize(t, inode);
504 	}
505 
506 	return tp;
507 }
508 
509 static struct key_vector *inflate(struct trie *t,
510 				  struct key_vector *oldtnode)
511 {
512 	struct key_vector *tn;
513 	unsigned long i;
514 	t_key m;
515 
516 	pr_debug("In inflate\n");
517 
518 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
519 	if (!tn)
520 		goto notnode;
521 
522 	/* prepare oldtnode to be freed */
523 	tnode_free_init(oldtnode);
524 
525 	/* Assemble all of the pointers in our cluster, in this case that
526 	 * represents all of the pointers out of our allocated nodes that
527 	 * point to existing tnodes and the links between our allocated
528 	 * nodes.
529 	 */
530 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
531 		struct key_vector *inode = get_child(oldtnode, --i);
532 		struct key_vector *node0, *node1;
533 		unsigned long j, k;
534 
535 		/* An empty child */
536 		if (!inode)
537 			continue;
538 
539 		/* A leaf or an internal node with skipped bits */
540 		if (!tnode_full(oldtnode, inode)) {
541 			put_child(tn, get_index(inode->key, tn), inode);
542 			continue;
543 		}
544 
545 		/* drop the node in the old tnode free list */
546 		tnode_free_append(oldtnode, inode);
547 
548 		/* An internal node with two children */
549 		if (inode->bits == 1) {
550 			put_child(tn, 2 * i + 1, get_child(inode, 1));
551 			put_child(tn, 2 * i, get_child(inode, 0));
552 			continue;
553 		}
554 
555 		/* We will replace this node 'inode' with two new
556 		 * ones, 'node0' and 'node1', each with half of the
557 		 * original children. The two new nodes will have
558 		 * a position one bit further down the key and this
559 		 * means that the "significant" part of their keys
560 		 * (see the discussion near the top of this file)
561 		 * will differ by one bit, which will be "0" in
562 		 * node0's key and "1" in node1's key. Since we are
563 		 * moving the key position by one step, the bit that
564 		 * we are moving away from - the bit at position
565 		 * (tn->pos) - is the one that will differ between
566 		 * node0 and node1. So... we synthesize that bit in the
567 		 * two new keys.
568 		 */
569 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
570 		if (!node1)
571 			goto nomem;
572 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
573 
574 		tnode_free_append(tn, node1);
575 		if (!node0)
576 			goto nomem;
577 		tnode_free_append(tn, node0);
578 
579 		/* populate child pointers in new nodes */
580 		for (k = child_length(inode), j = k / 2; j;) {
581 			put_child(node1, --j, get_child(inode, --k));
582 			put_child(node0, j, get_child(inode, j));
583 			put_child(node1, --j, get_child(inode, --k));
584 			put_child(node0, j, get_child(inode, j));
585 		}
586 
587 		/* link new nodes to parent */
588 		NODE_INIT_PARENT(node1, tn);
589 		NODE_INIT_PARENT(node0, tn);
590 
591 		/* link parent to nodes */
592 		put_child(tn, 2 * i + 1, node1);
593 		put_child(tn, 2 * i, node0);
594 	}
595 
596 	/* setup the parent pointers into and out of this node */
597 	return replace(t, oldtnode, tn);
598 nomem:
599 	/* all pointers should be clean so we are done */
600 	tnode_free(tn);
601 notnode:
602 	return NULL;
603 }
604 
605 static struct key_vector *halve(struct trie *t,
606 				struct key_vector *oldtnode)
607 {
608 	struct key_vector *tn;
609 	unsigned long i;
610 
611 	pr_debug("In halve\n");
612 
613 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
614 	if (!tn)
615 		goto notnode;
616 
617 	/* prepare oldtnode to be freed */
618 	tnode_free_init(oldtnode);
619 
620 	/* Assemble all of the pointers in our cluster, in this case that
621 	 * represents all of the pointers out of our allocated nodes that
622 	 * point to existing tnodes and the links between our allocated
623 	 * nodes.
624 	 */
625 	for (i = child_length(oldtnode); i;) {
626 		struct key_vector *node1 = get_child(oldtnode, --i);
627 		struct key_vector *node0 = get_child(oldtnode, --i);
628 		struct key_vector *inode;
629 
630 		/* At least one of the children is empty */
631 		if (!node1 || !node0) {
632 			put_child(tn, i / 2, node1 ? : node0);
633 			continue;
634 		}
635 
636 		/* Two nonempty children */
637 		inode = tnode_new(node0->key, oldtnode->pos, 1);
638 		if (!inode)
639 			goto nomem;
640 		tnode_free_append(tn, inode);
641 
642 		/* initialize pointers out of node */
643 		put_child(inode, 1, node1);
644 		put_child(inode, 0, node0);
645 		NODE_INIT_PARENT(inode, tn);
646 
647 		/* link parent to node */
648 		put_child(tn, i / 2, inode);
649 	}
650 
651 	/* setup the parent pointers into and out of this node */
652 	return replace(t, oldtnode, tn);
653 nomem:
654 	/* all pointers should be clean so we are done */
655 	tnode_free(tn);
656 notnode:
657 	return NULL;
658 }
659 
660 static struct key_vector *collapse(struct trie *t,
661 				   struct key_vector *oldtnode)
662 {
663 	struct key_vector *n, *tp;
664 	unsigned long i;
665 
666 	/* scan the tnode looking for that one child that might still exist */
667 	for (n = NULL, i = child_length(oldtnode); !n && i;)
668 		n = get_child(oldtnode, --i);
669 
670 	/* compress one level */
671 	tp = node_parent(oldtnode);
672 	put_child_root(tp, oldtnode->key, n);
673 	node_set_parent(n, tp);
674 
675 	/* drop dead node */
676 	node_free(oldtnode);
677 
678 	return tp;
679 }
680 
681 static unsigned char update_suffix(struct key_vector *tn)
682 {
683 	unsigned char slen = tn->pos;
684 	unsigned long stride, i;
685 
686 	/* search though the list of children looking for nodes that might
687 	 * have a suffix greater than the one we currently have.  This is
688 	 * why we start with a stride of 2 since a stride of 1 would
689 	 * represent the nodes with suffix length equal to tn->pos
690 	 */
691 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
692 		struct key_vector *n = get_child(tn, i);
693 
694 		if (!n || (n->slen <= slen))
695 			continue;
696 
697 		/* update stride and slen based on new value */
698 		stride <<= (n->slen - slen);
699 		slen = n->slen;
700 		i &= ~(stride - 1);
701 
702 		/* if slen covers all but the last bit we can stop here
703 		 * there will be nothing longer than that since only node
704 		 * 0 and 1 << (bits - 1) could have that as their suffix
705 		 * length.
706 		 */
707 		if ((slen + 1) >= (tn->pos + tn->bits))
708 			break;
709 	}
710 
711 	tn->slen = slen;
712 
713 	return slen;
714 }
715 
716 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
717  * the Helsinki University of Technology and Matti Tikkanen of Nokia
718  * Telecommunications, page 6:
719  * "A node is doubled if the ratio of non-empty children to all
720  * children in the *doubled* node is at least 'high'."
721  *
722  * 'high' in this instance is the variable 'inflate_threshold'. It
723  * is expressed as a percentage, so we multiply it with
724  * child_length() and instead of multiplying by 2 (since the
725  * child array will be doubled by inflate()) and multiplying
726  * the left-hand side by 100 (to handle the percentage thing) we
727  * multiply the left-hand side by 50.
728  *
729  * The left-hand side may look a bit weird: child_length(tn)
730  * - tn->empty_children is of course the number of non-null children
731  * in the current node. tn->full_children is the number of "full"
732  * children, that is non-null tnodes with a skip value of 0.
733  * All of those will be doubled in the resulting inflated tnode, so
734  * we just count them one extra time here.
735  *
736  * A clearer way to write this would be:
737  *
738  * to_be_doubled = tn->full_children;
739  * not_to_be_doubled = child_length(tn) - tn->empty_children -
740  *     tn->full_children;
741  *
742  * new_child_length = child_length(tn) * 2;
743  *
744  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
745  *      new_child_length;
746  * if (new_fill_factor >= inflate_threshold)
747  *
748  * ...and so on, tho it would mess up the while () loop.
749  *
750  * anyway,
751  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
752  *      inflate_threshold
753  *
754  * avoid a division:
755  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
756  *      inflate_threshold * new_child_length
757  *
758  * expand not_to_be_doubled and to_be_doubled, and shorten:
759  * 100 * (child_length(tn) - tn->empty_children +
760  *    tn->full_children) >= inflate_threshold * new_child_length
761  *
762  * expand new_child_length:
763  * 100 * (child_length(tn) - tn->empty_children +
764  *    tn->full_children) >=
765  *      inflate_threshold * child_length(tn) * 2
766  *
767  * shorten again:
768  * 50 * (tn->full_children + child_length(tn) -
769  *    tn->empty_children) >= inflate_threshold *
770  *    child_length(tn)
771  *
772  */
773 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
774 {
775 	unsigned long used = child_length(tn);
776 	unsigned long threshold = used;
777 
778 	/* Keep root node larger */
779 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
780 	used -= tn_info(tn)->empty_children;
781 	used += tn_info(tn)->full_children;
782 
783 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
784 
785 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
786 }
787 
788 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
789 {
790 	unsigned long used = child_length(tn);
791 	unsigned long threshold = used;
792 
793 	/* Keep root node larger */
794 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
795 	used -= tn_info(tn)->empty_children;
796 
797 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
798 
799 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
800 }
801 
802 static inline bool should_collapse(struct key_vector *tn)
803 {
804 	unsigned long used = child_length(tn);
805 
806 	used -= tn_info(tn)->empty_children;
807 
808 	/* account for bits == KEYLENGTH case */
809 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
810 		used -= KEY_MAX;
811 
812 	/* One child or none, time to drop us from the trie */
813 	return used < 2;
814 }
815 
816 #define MAX_WORK 10
817 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
818 {
819 #ifdef CONFIG_IP_FIB_TRIE_STATS
820 	struct trie_use_stats __percpu *stats = t->stats;
821 #endif
822 	struct key_vector *tp = node_parent(tn);
823 	unsigned long cindex = get_index(tn->key, tp);
824 	int max_work = MAX_WORK;
825 
826 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
827 		 tn, inflate_threshold, halve_threshold);
828 
829 	/* track the tnode via the pointer from the parent instead of
830 	 * doing it ourselves.  This way we can let RCU fully do its
831 	 * thing without us interfering
832 	 */
833 	BUG_ON(tn != get_child(tp, cindex));
834 
835 	/* Double as long as the resulting node has a number of
836 	 * nonempty nodes that are above the threshold.
837 	 */
838 	while (should_inflate(tp, tn) && max_work) {
839 		tp = inflate(t, tn);
840 		if (!tp) {
841 #ifdef CONFIG_IP_FIB_TRIE_STATS
842 			this_cpu_inc(stats->resize_node_skipped);
843 #endif
844 			break;
845 		}
846 
847 		max_work--;
848 		tn = get_child(tp, cindex);
849 	}
850 
851 	/* update parent in case inflate failed */
852 	tp = node_parent(tn);
853 
854 	/* Return if at least one inflate is run */
855 	if (max_work != MAX_WORK)
856 		return tp;
857 
858 	/* Halve as long as the number of empty children in this
859 	 * node is above threshold.
860 	 */
861 	while (should_halve(tp, tn) && max_work) {
862 		tp = halve(t, tn);
863 		if (!tp) {
864 #ifdef CONFIG_IP_FIB_TRIE_STATS
865 			this_cpu_inc(stats->resize_node_skipped);
866 #endif
867 			break;
868 		}
869 
870 		max_work--;
871 		tn = get_child(tp, cindex);
872 	}
873 
874 	/* Only one child remains */
875 	if (should_collapse(tn))
876 		return collapse(t, tn);
877 
878 	/* update parent in case halve failed */
879 	tp = node_parent(tn);
880 
881 	/* Return if at least one deflate was run */
882 	if (max_work != MAX_WORK)
883 		return tp;
884 
885 	/* push the suffix length to the parent node */
886 	if (tn->slen > tn->pos) {
887 		unsigned char slen = update_suffix(tn);
888 
889 		if (slen > tp->slen)
890 			tp->slen = slen;
891 	}
892 
893 	return tp;
894 }
895 
896 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
897 {
898 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
899 		if (update_suffix(tp) > l->slen)
900 			break;
901 		tp = node_parent(tp);
902 	}
903 }
904 
905 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
906 {
907 	/* if this is a new leaf then tn will be NULL and we can sort
908 	 * out parent suffix lengths as a part of trie_rebalance
909 	 */
910 	while (tn->slen < l->slen) {
911 		tn->slen = l->slen;
912 		tn = node_parent(tn);
913 	}
914 }
915 
916 /* rcu_read_lock needs to be hold by caller from readside */
917 static struct key_vector *fib_find_node(struct trie *t,
918 					struct key_vector **tp, u32 key)
919 {
920 	struct key_vector *pn, *n = t->kv;
921 	unsigned long index = 0;
922 
923 	do {
924 		pn = n;
925 		n = get_child_rcu(n, index);
926 
927 		if (!n)
928 			break;
929 
930 		index = get_cindex(key, n);
931 
932 		/* This bit of code is a bit tricky but it combines multiple
933 		 * checks into a single check.  The prefix consists of the
934 		 * prefix plus zeros for the bits in the cindex. The index
935 		 * is the difference between the key and this value.  From
936 		 * this we can actually derive several pieces of data.
937 		 *   if (index >= (1ul << bits))
938 		 *     we have a mismatch in skip bits and failed
939 		 *   else
940 		 *     we know the value is cindex
941 		 *
942 		 * This check is safe even if bits == KEYLENGTH due to the
943 		 * fact that we can only allocate a node with 32 bits if a
944 		 * long is greater than 32 bits.
945 		 */
946 		if (index >= (1ul << n->bits)) {
947 			n = NULL;
948 			break;
949 		}
950 
951 		/* keep searching until we find a perfect match leaf or NULL */
952 	} while (IS_TNODE(n));
953 
954 	*tp = pn;
955 
956 	return n;
957 }
958 
959 /* Return the first fib alias matching TOS with
960  * priority less than or equal to PRIO.
961  */
962 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
963 					u8 tos, u32 prio, u32 tb_id)
964 {
965 	struct fib_alias *fa;
966 
967 	if (!fah)
968 		return NULL;
969 
970 	hlist_for_each_entry(fa, fah, fa_list) {
971 		if (fa->fa_slen < slen)
972 			continue;
973 		if (fa->fa_slen != slen)
974 			break;
975 		if (fa->tb_id > tb_id)
976 			continue;
977 		if (fa->tb_id != tb_id)
978 			break;
979 		if (fa->fa_tos > tos)
980 			continue;
981 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
982 			return fa;
983 	}
984 
985 	return NULL;
986 }
987 
988 static void trie_rebalance(struct trie *t, struct key_vector *tn)
989 {
990 	while (!IS_TRIE(tn))
991 		tn = resize(t, tn);
992 }
993 
994 static int fib_insert_node(struct trie *t, struct key_vector *tp,
995 			   struct fib_alias *new, t_key key)
996 {
997 	struct key_vector *n, *l;
998 
999 	l = leaf_new(key, new);
1000 	if (!l)
1001 		goto noleaf;
1002 
1003 	/* retrieve child from parent node */
1004 	n = get_child(tp, get_index(key, tp));
1005 
1006 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1007 	 *
1008 	 *  Add a new tnode here
1009 	 *  first tnode need some special handling
1010 	 *  leaves us in position for handling as case 3
1011 	 */
1012 	if (n) {
1013 		struct key_vector *tn;
1014 
1015 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1016 		if (!tn)
1017 			goto notnode;
1018 
1019 		/* initialize routes out of node */
1020 		NODE_INIT_PARENT(tn, tp);
1021 		put_child(tn, get_index(key, tn) ^ 1, n);
1022 
1023 		/* start adding routes into the node */
1024 		put_child_root(tp, key, tn);
1025 		node_set_parent(n, tn);
1026 
1027 		/* parent now has a NULL spot where the leaf can go */
1028 		tp = tn;
1029 	}
1030 
1031 	/* Case 3: n is NULL, and will just insert a new leaf */
1032 	NODE_INIT_PARENT(l, tp);
1033 	put_child_root(tp, key, l);
1034 	trie_rebalance(t, tp);
1035 
1036 	return 0;
1037 notnode:
1038 	node_free(l);
1039 noleaf:
1040 	return -ENOMEM;
1041 }
1042 
1043 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1044 			    struct key_vector *l, struct fib_alias *new,
1045 			    struct fib_alias *fa, t_key key)
1046 {
1047 	if (!l)
1048 		return fib_insert_node(t, tp, new, key);
1049 
1050 	if (fa) {
1051 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1052 	} else {
1053 		struct fib_alias *last;
1054 
1055 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1056 			if (new->fa_slen < last->fa_slen)
1057 				break;
1058 			if ((new->fa_slen == last->fa_slen) &&
1059 			    (new->tb_id > last->tb_id))
1060 				break;
1061 			fa = last;
1062 		}
1063 
1064 		if (fa)
1065 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1066 		else
1067 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1068 	}
1069 
1070 	/* if we added to the tail node then we need to update slen */
1071 	if (l->slen < new->fa_slen) {
1072 		l->slen = new->fa_slen;
1073 		leaf_push_suffix(tp, l);
1074 	}
1075 
1076 	return 0;
1077 }
1078 
1079 /* Caller must hold RTNL. */
1080 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1081 {
1082 	struct trie *t = (struct trie *)tb->tb_data;
1083 	struct fib_alias *fa, *new_fa;
1084 	struct key_vector *l, *tp;
1085 	unsigned int nlflags = 0;
1086 	struct fib_info *fi;
1087 	u8 plen = cfg->fc_dst_len;
1088 	u8 slen = KEYLENGTH - plen;
1089 	u8 tos = cfg->fc_tos;
1090 	u32 key;
1091 	int err;
1092 
1093 	if (plen > KEYLENGTH)
1094 		return -EINVAL;
1095 
1096 	key = ntohl(cfg->fc_dst);
1097 
1098 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1099 
1100 	if ((plen < KEYLENGTH) && (key << plen))
1101 		return -EINVAL;
1102 
1103 	fi = fib_create_info(cfg);
1104 	if (IS_ERR(fi)) {
1105 		err = PTR_ERR(fi);
1106 		goto err;
1107 	}
1108 
1109 	l = fib_find_node(t, &tp, key);
1110 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1111 				tb->tb_id) : NULL;
1112 
1113 	/* Now fa, if non-NULL, points to the first fib alias
1114 	 * with the same keys [prefix,tos,priority], if such key already
1115 	 * exists or to the node before which we will insert new one.
1116 	 *
1117 	 * If fa is NULL, we will need to allocate a new one and
1118 	 * insert to the tail of the section matching the suffix length
1119 	 * of the new alias.
1120 	 */
1121 
1122 	if (fa && fa->fa_tos == tos &&
1123 	    fa->fa_info->fib_priority == fi->fib_priority) {
1124 		struct fib_alias *fa_first, *fa_match;
1125 
1126 		err = -EEXIST;
1127 		if (cfg->fc_nlflags & NLM_F_EXCL)
1128 			goto out;
1129 
1130 		/* We have 2 goals:
1131 		 * 1. Find exact match for type, scope, fib_info to avoid
1132 		 * duplicate routes
1133 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1134 		 */
1135 		fa_match = NULL;
1136 		fa_first = fa;
1137 		hlist_for_each_entry_from(fa, fa_list) {
1138 			if ((fa->fa_slen != slen) ||
1139 			    (fa->tb_id != tb->tb_id) ||
1140 			    (fa->fa_tos != tos))
1141 				break;
1142 			if (fa->fa_info->fib_priority != fi->fib_priority)
1143 				break;
1144 			if (fa->fa_type == cfg->fc_type &&
1145 			    fa->fa_info == fi) {
1146 				fa_match = fa;
1147 				break;
1148 			}
1149 		}
1150 
1151 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1152 			struct fib_info *fi_drop;
1153 			u8 state;
1154 
1155 			fa = fa_first;
1156 			if (fa_match) {
1157 				if (fa == fa_match)
1158 					err = 0;
1159 				goto out;
1160 			}
1161 			err = -ENOBUFS;
1162 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1163 			if (!new_fa)
1164 				goto out;
1165 
1166 			fi_drop = fa->fa_info;
1167 			new_fa->fa_tos = fa->fa_tos;
1168 			new_fa->fa_info = fi;
1169 			new_fa->fa_type = cfg->fc_type;
1170 			state = fa->fa_state;
1171 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1172 			new_fa->fa_slen = fa->fa_slen;
1173 			new_fa->tb_id = tb->tb_id;
1174 			new_fa->fa_default = -1;
1175 
1176 			err = switchdev_fib_ipv4_add(key, plen, fi,
1177 						     new_fa->fa_tos,
1178 						     cfg->fc_type,
1179 						     cfg->fc_nlflags,
1180 						     tb->tb_id);
1181 			if (err) {
1182 				switchdev_fib_ipv4_abort(fi);
1183 				kmem_cache_free(fn_alias_kmem, new_fa);
1184 				goto out;
1185 			}
1186 
1187 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1188 
1189 			alias_free_mem_rcu(fa);
1190 
1191 			fib_release_info(fi_drop);
1192 			if (state & FA_S_ACCESSED)
1193 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1194 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1195 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1196 
1197 			goto succeeded;
1198 		}
1199 		/* Error if we find a perfect match which
1200 		 * uses the same scope, type, and nexthop
1201 		 * information.
1202 		 */
1203 		if (fa_match)
1204 			goto out;
1205 
1206 		if (cfg->fc_nlflags & NLM_F_APPEND)
1207 			nlflags = NLM_F_APPEND;
1208 		else
1209 			fa = fa_first;
1210 	}
1211 	err = -ENOENT;
1212 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1213 		goto out;
1214 
1215 	err = -ENOBUFS;
1216 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1217 	if (!new_fa)
1218 		goto out;
1219 
1220 	new_fa->fa_info = fi;
1221 	new_fa->fa_tos = tos;
1222 	new_fa->fa_type = cfg->fc_type;
1223 	new_fa->fa_state = 0;
1224 	new_fa->fa_slen = slen;
1225 	new_fa->tb_id = tb->tb_id;
1226 	new_fa->fa_default = -1;
1227 
1228 	/* (Optionally) offload fib entry to switch hardware. */
1229 	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1230 				     cfg->fc_nlflags, tb->tb_id);
1231 	if (err) {
1232 		switchdev_fib_ipv4_abort(fi);
1233 		goto out_free_new_fa;
1234 	}
1235 
1236 	/* Insert new entry to the list. */
1237 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1238 	if (err)
1239 		goto out_sw_fib_del;
1240 
1241 	if (!plen)
1242 		tb->tb_num_default++;
1243 
1244 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1245 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1246 		  &cfg->fc_nlinfo, nlflags);
1247 succeeded:
1248 	return 0;
1249 
1250 out_sw_fib_del:
1251 	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1252 out_free_new_fa:
1253 	kmem_cache_free(fn_alias_kmem, new_fa);
1254 out:
1255 	fib_release_info(fi);
1256 err:
1257 	return err;
1258 }
1259 
1260 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1261 {
1262 	t_key prefix = n->key;
1263 
1264 	return (key ^ prefix) & (prefix | -prefix);
1265 }
1266 
1267 /* should be called with rcu_read_lock */
1268 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1269 		     struct fib_result *res, int fib_flags)
1270 {
1271 	struct trie *t = (struct trie *) tb->tb_data;
1272 #ifdef CONFIG_IP_FIB_TRIE_STATS
1273 	struct trie_use_stats __percpu *stats = t->stats;
1274 #endif
1275 	const t_key key = ntohl(flp->daddr);
1276 	struct key_vector *n, *pn;
1277 	struct fib_alias *fa;
1278 	unsigned long index;
1279 	t_key cindex;
1280 
1281 	pn = t->kv;
1282 	cindex = 0;
1283 
1284 	n = get_child_rcu(pn, cindex);
1285 	if (!n)
1286 		return -EAGAIN;
1287 
1288 #ifdef CONFIG_IP_FIB_TRIE_STATS
1289 	this_cpu_inc(stats->gets);
1290 #endif
1291 
1292 	/* Step 1: Travel to the longest prefix match in the trie */
1293 	for (;;) {
1294 		index = get_cindex(key, n);
1295 
1296 		/* This bit of code is a bit tricky but it combines multiple
1297 		 * checks into a single check.  The prefix consists of the
1298 		 * prefix plus zeros for the "bits" in the prefix. The index
1299 		 * is the difference between the key and this value.  From
1300 		 * this we can actually derive several pieces of data.
1301 		 *   if (index >= (1ul << bits))
1302 		 *     we have a mismatch in skip bits and failed
1303 		 *   else
1304 		 *     we know the value is cindex
1305 		 *
1306 		 * This check is safe even if bits == KEYLENGTH due to the
1307 		 * fact that we can only allocate a node with 32 bits if a
1308 		 * long is greater than 32 bits.
1309 		 */
1310 		if (index >= (1ul << n->bits))
1311 			break;
1312 
1313 		/* we have found a leaf. Prefixes have already been compared */
1314 		if (IS_LEAF(n))
1315 			goto found;
1316 
1317 		/* only record pn and cindex if we are going to be chopping
1318 		 * bits later.  Otherwise we are just wasting cycles.
1319 		 */
1320 		if (n->slen > n->pos) {
1321 			pn = n;
1322 			cindex = index;
1323 		}
1324 
1325 		n = get_child_rcu(n, index);
1326 		if (unlikely(!n))
1327 			goto backtrace;
1328 	}
1329 
1330 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1331 	for (;;) {
1332 		/* record the pointer where our next node pointer is stored */
1333 		struct key_vector __rcu **cptr = n->tnode;
1334 
1335 		/* This test verifies that none of the bits that differ
1336 		 * between the key and the prefix exist in the region of
1337 		 * the lsb and higher in the prefix.
1338 		 */
1339 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1340 			goto backtrace;
1341 
1342 		/* exit out and process leaf */
1343 		if (unlikely(IS_LEAF(n)))
1344 			break;
1345 
1346 		/* Don't bother recording parent info.  Since we are in
1347 		 * prefix match mode we will have to come back to wherever
1348 		 * we started this traversal anyway
1349 		 */
1350 
1351 		while ((n = rcu_dereference(*cptr)) == NULL) {
1352 backtrace:
1353 #ifdef CONFIG_IP_FIB_TRIE_STATS
1354 			if (!n)
1355 				this_cpu_inc(stats->null_node_hit);
1356 #endif
1357 			/* If we are at cindex 0 there are no more bits for
1358 			 * us to strip at this level so we must ascend back
1359 			 * up one level to see if there are any more bits to
1360 			 * be stripped there.
1361 			 */
1362 			while (!cindex) {
1363 				t_key pkey = pn->key;
1364 
1365 				/* If we don't have a parent then there is
1366 				 * nothing for us to do as we do not have any
1367 				 * further nodes to parse.
1368 				 */
1369 				if (IS_TRIE(pn))
1370 					return -EAGAIN;
1371 #ifdef CONFIG_IP_FIB_TRIE_STATS
1372 				this_cpu_inc(stats->backtrack);
1373 #endif
1374 				/* Get Child's index */
1375 				pn = node_parent_rcu(pn);
1376 				cindex = get_index(pkey, pn);
1377 			}
1378 
1379 			/* strip the least significant bit from the cindex */
1380 			cindex &= cindex - 1;
1381 
1382 			/* grab pointer for next child node */
1383 			cptr = &pn->tnode[cindex];
1384 		}
1385 	}
1386 
1387 found:
1388 	/* this line carries forward the xor from earlier in the function */
1389 	index = key ^ n->key;
1390 
1391 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1392 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1393 		struct fib_info *fi = fa->fa_info;
1394 		int nhsel, err;
1395 
1396 		if ((index >= (1ul << fa->fa_slen)) &&
1397 		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1398 			continue;
1399 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1400 			continue;
1401 		if (fi->fib_dead)
1402 			continue;
1403 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1404 			continue;
1405 		fib_alias_accessed(fa);
1406 		err = fib_props[fa->fa_type].error;
1407 		if (unlikely(err < 0)) {
1408 #ifdef CONFIG_IP_FIB_TRIE_STATS
1409 			this_cpu_inc(stats->semantic_match_passed);
1410 #endif
1411 			return err;
1412 		}
1413 		if (fi->fib_flags & RTNH_F_DEAD)
1414 			continue;
1415 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1416 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1417 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1418 
1419 			if (nh->nh_flags & RTNH_F_DEAD)
1420 				continue;
1421 			if (in_dev &&
1422 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1423 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1424 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1425 				continue;
1426 			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1427 				continue;
1428 
1429 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1430 				atomic_inc(&fi->fib_clntref);
1431 
1432 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1433 			res->nh_sel = nhsel;
1434 			res->type = fa->fa_type;
1435 			res->scope = fi->fib_scope;
1436 			res->fi = fi;
1437 			res->table = tb;
1438 			res->fa_head = &n->leaf;
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 			this_cpu_inc(stats->semantic_match_passed);
1441 #endif
1442 			return err;
1443 		}
1444 	}
1445 #ifdef CONFIG_IP_FIB_TRIE_STATS
1446 	this_cpu_inc(stats->semantic_match_miss);
1447 #endif
1448 	goto backtrace;
1449 }
1450 EXPORT_SYMBOL_GPL(fib_table_lookup);
1451 
1452 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1453 			     struct key_vector *l, struct fib_alias *old)
1454 {
1455 	/* record the location of the previous list_info entry */
1456 	struct hlist_node **pprev = old->fa_list.pprev;
1457 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1458 
1459 	/* remove the fib_alias from the list */
1460 	hlist_del_rcu(&old->fa_list);
1461 
1462 	/* if we emptied the list this leaf will be freed and we can sort
1463 	 * out parent suffix lengths as a part of trie_rebalance
1464 	 */
1465 	if (hlist_empty(&l->leaf)) {
1466 		put_child_root(tp, l->key, NULL);
1467 		node_free(l);
1468 		trie_rebalance(t, tp);
1469 		return;
1470 	}
1471 
1472 	/* only access fa if it is pointing at the last valid hlist_node */
1473 	if (*pprev)
1474 		return;
1475 
1476 	/* update the trie with the latest suffix length */
1477 	l->slen = fa->fa_slen;
1478 	leaf_pull_suffix(tp, l);
1479 }
1480 
1481 /* Caller must hold RTNL. */
1482 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1483 {
1484 	struct trie *t = (struct trie *) tb->tb_data;
1485 	struct fib_alias *fa, *fa_to_delete;
1486 	struct key_vector *l, *tp;
1487 	u8 plen = cfg->fc_dst_len;
1488 	u8 slen = KEYLENGTH - plen;
1489 	u8 tos = cfg->fc_tos;
1490 	u32 key;
1491 
1492 	if (plen > KEYLENGTH)
1493 		return -EINVAL;
1494 
1495 	key = ntohl(cfg->fc_dst);
1496 
1497 	if ((plen < KEYLENGTH) && (key << plen))
1498 		return -EINVAL;
1499 
1500 	l = fib_find_node(t, &tp, key);
1501 	if (!l)
1502 		return -ESRCH;
1503 
1504 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1505 	if (!fa)
1506 		return -ESRCH;
1507 
1508 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1509 
1510 	fa_to_delete = NULL;
1511 	hlist_for_each_entry_from(fa, fa_list) {
1512 		struct fib_info *fi = fa->fa_info;
1513 
1514 		if ((fa->fa_slen != slen) ||
1515 		    (fa->tb_id != tb->tb_id) ||
1516 		    (fa->fa_tos != tos))
1517 			break;
1518 
1519 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1520 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1521 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1522 		    (!cfg->fc_prefsrc ||
1523 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1524 		    (!cfg->fc_protocol ||
1525 		     fi->fib_protocol == cfg->fc_protocol) &&
1526 		    fib_nh_match(cfg, fi) == 0) {
1527 			fa_to_delete = fa;
1528 			break;
1529 		}
1530 	}
1531 
1532 	if (!fa_to_delete)
1533 		return -ESRCH;
1534 
1535 	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1536 			       cfg->fc_type, tb->tb_id);
1537 
1538 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1539 		  &cfg->fc_nlinfo, 0);
1540 
1541 	if (!plen)
1542 		tb->tb_num_default--;
1543 
1544 	fib_remove_alias(t, tp, l, fa_to_delete);
1545 
1546 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1547 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1548 
1549 	fib_release_info(fa_to_delete->fa_info);
1550 	alias_free_mem_rcu(fa_to_delete);
1551 	return 0;
1552 }
1553 
1554 /* Scan for the next leaf starting at the provided key value */
1555 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1556 {
1557 	struct key_vector *pn, *n = *tn;
1558 	unsigned long cindex;
1559 
1560 	/* this loop is meant to try and find the key in the trie */
1561 	do {
1562 		/* record parent and next child index */
1563 		pn = n;
1564 		cindex = key ? get_index(key, pn) : 0;
1565 
1566 		if (cindex >> pn->bits)
1567 			break;
1568 
1569 		/* descend into the next child */
1570 		n = get_child_rcu(pn, cindex++);
1571 		if (!n)
1572 			break;
1573 
1574 		/* guarantee forward progress on the keys */
1575 		if (IS_LEAF(n) && (n->key >= key))
1576 			goto found;
1577 	} while (IS_TNODE(n));
1578 
1579 	/* this loop will search for the next leaf with a greater key */
1580 	while (!IS_TRIE(pn)) {
1581 		/* if we exhausted the parent node we will need to climb */
1582 		if (cindex >= (1ul << pn->bits)) {
1583 			t_key pkey = pn->key;
1584 
1585 			pn = node_parent_rcu(pn);
1586 			cindex = get_index(pkey, pn) + 1;
1587 			continue;
1588 		}
1589 
1590 		/* grab the next available node */
1591 		n = get_child_rcu(pn, cindex++);
1592 		if (!n)
1593 			continue;
1594 
1595 		/* no need to compare keys since we bumped the index */
1596 		if (IS_LEAF(n))
1597 			goto found;
1598 
1599 		/* Rescan start scanning in new node */
1600 		pn = n;
1601 		cindex = 0;
1602 	}
1603 
1604 	*tn = pn;
1605 	return NULL; /* Root of trie */
1606 found:
1607 	/* if we are at the limit for keys just return NULL for the tnode */
1608 	*tn = pn;
1609 	return n;
1610 }
1611 
1612 static void fib_trie_free(struct fib_table *tb)
1613 {
1614 	struct trie *t = (struct trie *)tb->tb_data;
1615 	struct key_vector *pn = t->kv;
1616 	unsigned long cindex = 1;
1617 	struct hlist_node *tmp;
1618 	struct fib_alias *fa;
1619 
1620 	/* walk trie in reverse order and free everything */
1621 	for (;;) {
1622 		struct key_vector *n;
1623 
1624 		if (!(cindex--)) {
1625 			t_key pkey = pn->key;
1626 
1627 			if (IS_TRIE(pn))
1628 				break;
1629 
1630 			n = pn;
1631 			pn = node_parent(pn);
1632 
1633 			/* drop emptied tnode */
1634 			put_child_root(pn, n->key, NULL);
1635 			node_free(n);
1636 
1637 			cindex = get_index(pkey, pn);
1638 
1639 			continue;
1640 		}
1641 
1642 		/* grab the next available node */
1643 		n = get_child(pn, cindex);
1644 		if (!n)
1645 			continue;
1646 
1647 		if (IS_TNODE(n)) {
1648 			/* record pn and cindex for leaf walking */
1649 			pn = n;
1650 			cindex = 1ul << n->bits;
1651 
1652 			continue;
1653 		}
1654 
1655 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1656 			hlist_del_rcu(&fa->fa_list);
1657 			alias_free_mem_rcu(fa);
1658 		}
1659 
1660 		put_child_root(pn, n->key, NULL);
1661 		node_free(n);
1662 	}
1663 
1664 #ifdef CONFIG_IP_FIB_TRIE_STATS
1665 	free_percpu(t->stats);
1666 #endif
1667 	kfree(tb);
1668 }
1669 
1670 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1671 {
1672 	struct trie *ot = (struct trie *)oldtb->tb_data;
1673 	struct key_vector *l, *tp = ot->kv;
1674 	struct fib_table *local_tb;
1675 	struct fib_alias *fa;
1676 	struct trie *lt;
1677 	t_key key = 0;
1678 
1679 	if (oldtb->tb_data == oldtb->__data)
1680 		return oldtb;
1681 
1682 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1683 	if (!local_tb)
1684 		return NULL;
1685 
1686 	lt = (struct trie *)local_tb->tb_data;
1687 
1688 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1689 		struct key_vector *local_l = NULL, *local_tp;
1690 
1691 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1692 			struct fib_alias *new_fa;
1693 
1694 			if (local_tb->tb_id != fa->tb_id)
1695 				continue;
1696 
1697 			/* clone fa for new local table */
1698 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1699 			if (!new_fa)
1700 				goto out;
1701 
1702 			memcpy(new_fa, fa, sizeof(*fa));
1703 
1704 			/* insert clone into table */
1705 			if (!local_l)
1706 				local_l = fib_find_node(lt, &local_tp, l->key);
1707 
1708 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1709 					     NULL, l->key))
1710 				goto out;
1711 		}
1712 
1713 		/* stop loop if key wrapped back to 0 */
1714 		key = l->key + 1;
1715 		if (key < l->key)
1716 			break;
1717 	}
1718 
1719 	return local_tb;
1720 out:
1721 	fib_trie_free(local_tb);
1722 
1723 	return NULL;
1724 }
1725 
1726 /* Caller must hold RTNL */
1727 void fib_table_flush_external(struct fib_table *tb)
1728 {
1729 	struct trie *t = (struct trie *)tb->tb_data;
1730 	struct key_vector *pn = t->kv;
1731 	unsigned long cindex = 1;
1732 	struct hlist_node *tmp;
1733 	struct fib_alias *fa;
1734 
1735 	/* walk trie in reverse order */
1736 	for (;;) {
1737 		unsigned char slen = 0;
1738 		struct key_vector *n;
1739 
1740 		if (!(cindex--)) {
1741 			t_key pkey = pn->key;
1742 
1743 			/* cannot resize the trie vector */
1744 			if (IS_TRIE(pn))
1745 				break;
1746 
1747 			/* resize completed node */
1748 			pn = resize(t, pn);
1749 			cindex = get_index(pkey, pn);
1750 
1751 			continue;
1752 		}
1753 
1754 		/* grab the next available node */
1755 		n = get_child(pn, cindex);
1756 		if (!n)
1757 			continue;
1758 
1759 		if (IS_TNODE(n)) {
1760 			/* record pn and cindex for leaf walking */
1761 			pn = n;
1762 			cindex = 1ul << n->bits;
1763 
1764 			continue;
1765 		}
1766 
1767 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1768 			struct fib_info *fi = fa->fa_info;
1769 
1770 			/* if alias was cloned to local then we just
1771 			 * need to remove the local copy from main
1772 			 */
1773 			if (tb->tb_id != fa->tb_id) {
1774 				hlist_del_rcu(&fa->fa_list);
1775 				alias_free_mem_rcu(fa);
1776 				continue;
1777 			}
1778 
1779 			/* record local slen */
1780 			slen = fa->fa_slen;
1781 
1782 			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1783 				continue;
1784 
1785 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1786 					       fi, fa->fa_tos, fa->fa_type,
1787 					       tb->tb_id);
1788 		}
1789 
1790 		/* update leaf slen */
1791 		n->slen = slen;
1792 
1793 		if (hlist_empty(&n->leaf)) {
1794 			put_child_root(pn, n->key, NULL);
1795 			node_free(n);
1796 		}
1797 	}
1798 }
1799 
1800 /* Caller must hold RTNL. */
1801 int fib_table_flush(struct fib_table *tb)
1802 {
1803 	struct trie *t = (struct trie *)tb->tb_data;
1804 	struct key_vector *pn = t->kv;
1805 	unsigned long cindex = 1;
1806 	struct hlist_node *tmp;
1807 	struct fib_alias *fa;
1808 	int found = 0;
1809 
1810 	/* walk trie in reverse order */
1811 	for (;;) {
1812 		unsigned char slen = 0;
1813 		struct key_vector *n;
1814 
1815 		if (!(cindex--)) {
1816 			t_key pkey = pn->key;
1817 
1818 			/* cannot resize the trie vector */
1819 			if (IS_TRIE(pn))
1820 				break;
1821 
1822 			/* resize completed node */
1823 			pn = resize(t, pn);
1824 			cindex = get_index(pkey, pn);
1825 
1826 			continue;
1827 		}
1828 
1829 		/* grab the next available node */
1830 		n = get_child(pn, cindex);
1831 		if (!n)
1832 			continue;
1833 
1834 		if (IS_TNODE(n)) {
1835 			/* record pn and cindex for leaf walking */
1836 			pn = n;
1837 			cindex = 1ul << n->bits;
1838 
1839 			continue;
1840 		}
1841 
1842 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1843 			struct fib_info *fi = fa->fa_info;
1844 
1845 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1846 				slen = fa->fa_slen;
1847 				continue;
1848 			}
1849 
1850 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1851 					       fi, fa->fa_tos, fa->fa_type,
1852 					       tb->tb_id);
1853 			hlist_del_rcu(&fa->fa_list);
1854 			fib_release_info(fa->fa_info);
1855 			alias_free_mem_rcu(fa);
1856 			found++;
1857 		}
1858 
1859 		/* update leaf slen */
1860 		n->slen = slen;
1861 
1862 		if (hlist_empty(&n->leaf)) {
1863 			put_child_root(pn, n->key, NULL);
1864 			node_free(n);
1865 		}
1866 	}
1867 
1868 	pr_debug("trie_flush found=%d\n", found);
1869 	return found;
1870 }
1871 
1872 static void __trie_free_rcu(struct rcu_head *head)
1873 {
1874 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1875 #ifdef CONFIG_IP_FIB_TRIE_STATS
1876 	struct trie *t = (struct trie *)tb->tb_data;
1877 
1878 	if (tb->tb_data == tb->__data)
1879 		free_percpu(t->stats);
1880 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1881 	kfree(tb);
1882 }
1883 
1884 void fib_free_table(struct fib_table *tb)
1885 {
1886 	call_rcu(&tb->rcu, __trie_free_rcu);
1887 }
1888 
1889 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1890 			     struct sk_buff *skb, struct netlink_callback *cb)
1891 {
1892 	__be32 xkey = htonl(l->key);
1893 	struct fib_alias *fa;
1894 	int i, s_i;
1895 
1896 	s_i = cb->args[4];
1897 	i = 0;
1898 
1899 	/* rcu_read_lock is hold by caller */
1900 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1901 		if (i < s_i) {
1902 			i++;
1903 			continue;
1904 		}
1905 
1906 		if (tb->tb_id != fa->tb_id) {
1907 			i++;
1908 			continue;
1909 		}
1910 
1911 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1912 				  cb->nlh->nlmsg_seq,
1913 				  RTM_NEWROUTE,
1914 				  tb->tb_id,
1915 				  fa->fa_type,
1916 				  xkey,
1917 				  KEYLENGTH - fa->fa_slen,
1918 				  fa->fa_tos,
1919 				  fa->fa_info, NLM_F_MULTI) < 0) {
1920 			cb->args[4] = i;
1921 			return -1;
1922 		}
1923 		i++;
1924 	}
1925 
1926 	cb->args[4] = i;
1927 	return skb->len;
1928 }
1929 
1930 /* rcu_read_lock needs to be hold by caller from readside */
1931 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1932 		   struct netlink_callback *cb)
1933 {
1934 	struct trie *t = (struct trie *)tb->tb_data;
1935 	struct key_vector *l, *tp = t->kv;
1936 	/* Dump starting at last key.
1937 	 * Note: 0.0.0.0/0 (ie default) is first key.
1938 	 */
1939 	int count = cb->args[2];
1940 	t_key key = cb->args[3];
1941 
1942 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1943 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1944 			cb->args[3] = key;
1945 			cb->args[2] = count;
1946 			return -1;
1947 		}
1948 
1949 		++count;
1950 		key = l->key + 1;
1951 
1952 		memset(&cb->args[4], 0,
1953 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1954 
1955 		/* stop loop if key wrapped back to 0 */
1956 		if (key < l->key)
1957 			break;
1958 	}
1959 
1960 	cb->args[3] = key;
1961 	cb->args[2] = count;
1962 
1963 	return skb->len;
1964 }
1965 
1966 void __init fib_trie_init(void)
1967 {
1968 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1969 					  sizeof(struct fib_alias),
1970 					  0, SLAB_PANIC, NULL);
1971 
1972 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1973 					   LEAF_SIZE,
1974 					   0, SLAB_PANIC, NULL);
1975 }
1976 
1977 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1978 {
1979 	struct fib_table *tb;
1980 	struct trie *t;
1981 	size_t sz = sizeof(*tb);
1982 
1983 	if (!alias)
1984 		sz += sizeof(struct trie);
1985 
1986 	tb = kzalloc(sz, GFP_KERNEL);
1987 	if (!tb)
1988 		return NULL;
1989 
1990 	tb->tb_id = id;
1991 	tb->tb_num_default = 0;
1992 	tb->tb_data = (alias ? alias->__data : tb->__data);
1993 
1994 	if (alias)
1995 		return tb;
1996 
1997 	t = (struct trie *) tb->tb_data;
1998 	t->kv[0].pos = KEYLENGTH;
1999 	t->kv[0].slen = KEYLENGTH;
2000 #ifdef CONFIG_IP_FIB_TRIE_STATS
2001 	t->stats = alloc_percpu(struct trie_use_stats);
2002 	if (!t->stats) {
2003 		kfree(tb);
2004 		tb = NULL;
2005 	}
2006 #endif
2007 
2008 	return tb;
2009 }
2010 
2011 #ifdef CONFIG_PROC_FS
2012 /* Depth first Trie walk iterator */
2013 struct fib_trie_iter {
2014 	struct seq_net_private p;
2015 	struct fib_table *tb;
2016 	struct key_vector *tnode;
2017 	unsigned int index;
2018 	unsigned int depth;
2019 };
2020 
2021 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2022 {
2023 	unsigned long cindex = iter->index;
2024 	struct key_vector *pn = iter->tnode;
2025 	t_key pkey;
2026 
2027 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2028 		 iter->tnode, iter->index, iter->depth);
2029 
2030 	while (!IS_TRIE(pn)) {
2031 		while (cindex < child_length(pn)) {
2032 			struct key_vector *n = get_child_rcu(pn, cindex++);
2033 
2034 			if (!n)
2035 				continue;
2036 
2037 			if (IS_LEAF(n)) {
2038 				iter->tnode = pn;
2039 				iter->index = cindex;
2040 			} else {
2041 				/* push down one level */
2042 				iter->tnode = n;
2043 				iter->index = 0;
2044 				++iter->depth;
2045 			}
2046 
2047 			return n;
2048 		}
2049 
2050 		/* Current node exhausted, pop back up */
2051 		pkey = pn->key;
2052 		pn = node_parent_rcu(pn);
2053 		cindex = get_index(pkey, pn) + 1;
2054 		--iter->depth;
2055 	}
2056 
2057 	/* record root node so further searches know we are done */
2058 	iter->tnode = pn;
2059 	iter->index = 0;
2060 
2061 	return NULL;
2062 }
2063 
2064 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2065 					     struct trie *t)
2066 {
2067 	struct key_vector *n, *pn;
2068 
2069 	if (!t)
2070 		return NULL;
2071 
2072 	pn = t->kv;
2073 	n = rcu_dereference(pn->tnode[0]);
2074 	if (!n)
2075 		return NULL;
2076 
2077 	if (IS_TNODE(n)) {
2078 		iter->tnode = n;
2079 		iter->index = 0;
2080 		iter->depth = 1;
2081 	} else {
2082 		iter->tnode = pn;
2083 		iter->index = 0;
2084 		iter->depth = 0;
2085 	}
2086 
2087 	return n;
2088 }
2089 
2090 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2091 {
2092 	struct key_vector *n;
2093 	struct fib_trie_iter iter;
2094 
2095 	memset(s, 0, sizeof(*s));
2096 
2097 	rcu_read_lock();
2098 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2099 		if (IS_LEAF(n)) {
2100 			struct fib_alias *fa;
2101 
2102 			s->leaves++;
2103 			s->totdepth += iter.depth;
2104 			if (iter.depth > s->maxdepth)
2105 				s->maxdepth = iter.depth;
2106 
2107 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2108 				++s->prefixes;
2109 		} else {
2110 			s->tnodes++;
2111 			if (n->bits < MAX_STAT_DEPTH)
2112 				s->nodesizes[n->bits]++;
2113 			s->nullpointers += tn_info(n)->empty_children;
2114 		}
2115 	}
2116 	rcu_read_unlock();
2117 }
2118 
2119 /*
2120  *	This outputs /proc/net/fib_triestats
2121  */
2122 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2123 {
2124 	unsigned int i, max, pointers, bytes, avdepth;
2125 
2126 	if (stat->leaves)
2127 		avdepth = stat->totdepth*100 / stat->leaves;
2128 	else
2129 		avdepth = 0;
2130 
2131 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2132 		   avdepth / 100, avdepth % 100);
2133 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2134 
2135 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2136 	bytes = LEAF_SIZE * stat->leaves;
2137 
2138 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2139 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2140 
2141 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2142 	bytes += TNODE_SIZE(0) * stat->tnodes;
2143 
2144 	max = MAX_STAT_DEPTH;
2145 	while (max > 0 && stat->nodesizes[max-1] == 0)
2146 		max--;
2147 
2148 	pointers = 0;
2149 	for (i = 1; i < max; i++)
2150 		if (stat->nodesizes[i] != 0) {
2151 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2152 			pointers += (1<<i) * stat->nodesizes[i];
2153 		}
2154 	seq_putc(seq, '\n');
2155 	seq_printf(seq, "\tPointers: %u\n", pointers);
2156 
2157 	bytes += sizeof(struct key_vector *) * pointers;
2158 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2160 }
2161 
2162 #ifdef CONFIG_IP_FIB_TRIE_STATS
2163 static void trie_show_usage(struct seq_file *seq,
2164 			    const struct trie_use_stats __percpu *stats)
2165 {
2166 	struct trie_use_stats s = { 0 };
2167 	int cpu;
2168 
2169 	/* loop through all of the CPUs and gather up the stats */
2170 	for_each_possible_cpu(cpu) {
2171 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2172 
2173 		s.gets += pcpu->gets;
2174 		s.backtrack += pcpu->backtrack;
2175 		s.semantic_match_passed += pcpu->semantic_match_passed;
2176 		s.semantic_match_miss += pcpu->semantic_match_miss;
2177 		s.null_node_hit += pcpu->null_node_hit;
2178 		s.resize_node_skipped += pcpu->resize_node_skipped;
2179 	}
2180 
2181 	seq_printf(seq, "\nCounters:\n---------\n");
2182 	seq_printf(seq, "gets = %u\n", s.gets);
2183 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2184 	seq_printf(seq, "semantic match passed = %u\n",
2185 		   s.semantic_match_passed);
2186 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2187 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2188 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2189 }
2190 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2191 
2192 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2193 {
2194 	if (tb->tb_id == RT_TABLE_LOCAL)
2195 		seq_puts(seq, "Local:\n");
2196 	else if (tb->tb_id == RT_TABLE_MAIN)
2197 		seq_puts(seq, "Main:\n");
2198 	else
2199 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2200 }
2201 
2202 
2203 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2204 {
2205 	struct net *net = (struct net *)seq->private;
2206 	unsigned int h;
2207 
2208 	seq_printf(seq,
2209 		   "Basic info: size of leaf:"
2210 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2211 		   LEAF_SIZE, TNODE_SIZE(0));
2212 
2213 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2214 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2215 		struct fib_table *tb;
2216 
2217 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2218 			struct trie *t = (struct trie *) tb->tb_data;
2219 			struct trie_stat stat;
2220 
2221 			if (!t)
2222 				continue;
2223 
2224 			fib_table_print(seq, tb);
2225 
2226 			trie_collect_stats(t, &stat);
2227 			trie_show_stats(seq, &stat);
2228 #ifdef CONFIG_IP_FIB_TRIE_STATS
2229 			trie_show_usage(seq, t->stats);
2230 #endif
2231 		}
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2238 {
2239 	return single_open_net(inode, file, fib_triestat_seq_show);
2240 }
2241 
2242 static const struct file_operations fib_triestat_fops = {
2243 	.owner	= THIS_MODULE,
2244 	.open	= fib_triestat_seq_open,
2245 	.read	= seq_read,
2246 	.llseek	= seq_lseek,
2247 	.release = single_release_net,
2248 };
2249 
2250 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2251 {
2252 	struct fib_trie_iter *iter = seq->private;
2253 	struct net *net = seq_file_net(seq);
2254 	loff_t idx = 0;
2255 	unsigned int h;
2256 
2257 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2258 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2259 		struct fib_table *tb;
2260 
2261 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2262 			struct key_vector *n;
2263 
2264 			for (n = fib_trie_get_first(iter,
2265 						    (struct trie *) tb->tb_data);
2266 			     n; n = fib_trie_get_next(iter))
2267 				if (pos == idx++) {
2268 					iter->tb = tb;
2269 					return n;
2270 				}
2271 		}
2272 	}
2273 
2274 	return NULL;
2275 }
2276 
2277 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2278 	__acquires(RCU)
2279 {
2280 	rcu_read_lock();
2281 	return fib_trie_get_idx(seq, *pos);
2282 }
2283 
2284 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2285 {
2286 	struct fib_trie_iter *iter = seq->private;
2287 	struct net *net = seq_file_net(seq);
2288 	struct fib_table *tb = iter->tb;
2289 	struct hlist_node *tb_node;
2290 	unsigned int h;
2291 	struct key_vector *n;
2292 
2293 	++*pos;
2294 	/* next node in same table */
2295 	n = fib_trie_get_next(iter);
2296 	if (n)
2297 		return n;
2298 
2299 	/* walk rest of this hash chain */
2300 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2301 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2302 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2303 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2304 		if (n)
2305 			goto found;
2306 	}
2307 
2308 	/* new hash chain */
2309 	while (++h < FIB_TABLE_HASHSZ) {
2310 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2311 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2312 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2313 			if (n)
2314 				goto found;
2315 		}
2316 	}
2317 	return NULL;
2318 
2319 found:
2320 	iter->tb = tb;
2321 	return n;
2322 }
2323 
2324 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2325 	__releases(RCU)
2326 {
2327 	rcu_read_unlock();
2328 }
2329 
2330 static void seq_indent(struct seq_file *seq, int n)
2331 {
2332 	while (n-- > 0)
2333 		seq_puts(seq, "   ");
2334 }
2335 
2336 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2337 {
2338 	switch (s) {
2339 	case RT_SCOPE_UNIVERSE: return "universe";
2340 	case RT_SCOPE_SITE:	return "site";
2341 	case RT_SCOPE_LINK:	return "link";
2342 	case RT_SCOPE_HOST:	return "host";
2343 	case RT_SCOPE_NOWHERE:	return "nowhere";
2344 	default:
2345 		snprintf(buf, len, "scope=%d", s);
2346 		return buf;
2347 	}
2348 }
2349 
2350 static const char *const rtn_type_names[__RTN_MAX] = {
2351 	[RTN_UNSPEC] = "UNSPEC",
2352 	[RTN_UNICAST] = "UNICAST",
2353 	[RTN_LOCAL] = "LOCAL",
2354 	[RTN_BROADCAST] = "BROADCAST",
2355 	[RTN_ANYCAST] = "ANYCAST",
2356 	[RTN_MULTICAST] = "MULTICAST",
2357 	[RTN_BLACKHOLE] = "BLACKHOLE",
2358 	[RTN_UNREACHABLE] = "UNREACHABLE",
2359 	[RTN_PROHIBIT] = "PROHIBIT",
2360 	[RTN_THROW] = "THROW",
2361 	[RTN_NAT] = "NAT",
2362 	[RTN_XRESOLVE] = "XRESOLVE",
2363 };
2364 
2365 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2366 {
2367 	if (t < __RTN_MAX && rtn_type_names[t])
2368 		return rtn_type_names[t];
2369 	snprintf(buf, len, "type %u", t);
2370 	return buf;
2371 }
2372 
2373 /* Pretty print the trie */
2374 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2375 {
2376 	const struct fib_trie_iter *iter = seq->private;
2377 	struct key_vector *n = v;
2378 
2379 	if (IS_TRIE(node_parent_rcu(n)))
2380 		fib_table_print(seq, iter->tb);
2381 
2382 	if (IS_TNODE(n)) {
2383 		__be32 prf = htonl(n->key);
2384 
2385 		seq_indent(seq, iter->depth-1);
2386 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2387 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2388 			   tn_info(n)->full_children,
2389 			   tn_info(n)->empty_children);
2390 	} else {
2391 		__be32 val = htonl(n->key);
2392 		struct fib_alias *fa;
2393 
2394 		seq_indent(seq, iter->depth);
2395 		seq_printf(seq, "  |-- %pI4\n", &val);
2396 
2397 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2398 			char buf1[32], buf2[32];
2399 
2400 			seq_indent(seq, iter->depth + 1);
2401 			seq_printf(seq, "  /%zu %s %s",
2402 				   KEYLENGTH - fa->fa_slen,
2403 				   rtn_scope(buf1, sizeof(buf1),
2404 					     fa->fa_info->fib_scope),
2405 				   rtn_type(buf2, sizeof(buf2),
2406 					    fa->fa_type));
2407 			if (fa->fa_tos)
2408 				seq_printf(seq, " tos=%d", fa->fa_tos);
2409 			seq_putc(seq, '\n');
2410 		}
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 static const struct seq_operations fib_trie_seq_ops = {
2417 	.start  = fib_trie_seq_start,
2418 	.next   = fib_trie_seq_next,
2419 	.stop   = fib_trie_seq_stop,
2420 	.show   = fib_trie_seq_show,
2421 };
2422 
2423 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2424 {
2425 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2426 			    sizeof(struct fib_trie_iter));
2427 }
2428 
2429 static const struct file_operations fib_trie_fops = {
2430 	.owner  = THIS_MODULE,
2431 	.open   = fib_trie_seq_open,
2432 	.read   = seq_read,
2433 	.llseek = seq_lseek,
2434 	.release = seq_release_net,
2435 };
2436 
2437 struct fib_route_iter {
2438 	struct seq_net_private p;
2439 	struct fib_table *main_tb;
2440 	struct key_vector *tnode;
2441 	loff_t	pos;
2442 	t_key	key;
2443 };
2444 
2445 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2446 					    loff_t pos)
2447 {
2448 	struct fib_table *tb = iter->main_tb;
2449 	struct key_vector *l, **tp = &iter->tnode;
2450 	struct trie *t;
2451 	t_key key;
2452 
2453 	/* use cache location of next-to-find key */
2454 	if (iter->pos > 0 && pos >= iter->pos) {
2455 		pos -= iter->pos;
2456 		key = iter->key;
2457 	} else {
2458 		t = (struct trie *)tb->tb_data;
2459 		iter->tnode = t->kv;
2460 		iter->pos = 0;
2461 		key = 0;
2462 	}
2463 
2464 	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2465 		key = l->key + 1;
2466 		iter->pos++;
2467 
2468 		if (--pos <= 0)
2469 			break;
2470 
2471 		l = NULL;
2472 
2473 		/* handle unlikely case of a key wrap */
2474 		if (!key)
2475 			break;
2476 	}
2477 
2478 	if (l)
2479 		iter->key = key;	/* remember it */
2480 	else
2481 		iter->pos = 0;		/* forget it */
2482 
2483 	return l;
2484 }
2485 
2486 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2487 	__acquires(RCU)
2488 {
2489 	struct fib_route_iter *iter = seq->private;
2490 	struct fib_table *tb;
2491 	struct trie *t;
2492 
2493 	rcu_read_lock();
2494 
2495 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2496 	if (!tb)
2497 		return NULL;
2498 
2499 	iter->main_tb = tb;
2500 
2501 	if (*pos != 0)
2502 		return fib_route_get_idx(iter, *pos);
2503 
2504 	t = (struct trie *)tb->tb_data;
2505 	iter->tnode = t->kv;
2506 	iter->pos = 0;
2507 	iter->key = 0;
2508 
2509 	return SEQ_START_TOKEN;
2510 }
2511 
2512 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2513 {
2514 	struct fib_route_iter *iter = seq->private;
2515 	struct key_vector *l = NULL;
2516 	t_key key = iter->key;
2517 
2518 	++*pos;
2519 
2520 	/* only allow key of 0 for start of sequence */
2521 	if ((v == SEQ_START_TOKEN) || key)
2522 		l = leaf_walk_rcu(&iter->tnode, key);
2523 
2524 	if (l) {
2525 		iter->key = l->key + 1;
2526 		iter->pos++;
2527 	} else {
2528 		iter->pos = 0;
2529 	}
2530 
2531 	return l;
2532 }
2533 
2534 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535 	__releases(RCU)
2536 {
2537 	rcu_read_unlock();
2538 }
2539 
2540 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2541 {
2542 	unsigned int flags = 0;
2543 
2544 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2545 		flags = RTF_REJECT;
2546 	if (fi && fi->fib_nh->nh_gw)
2547 		flags |= RTF_GATEWAY;
2548 	if (mask == htonl(0xFFFFFFFF))
2549 		flags |= RTF_HOST;
2550 	flags |= RTF_UP;
2551 	return flags;
2552 }
2553 
2554 /*
2555  *	This outputs /proc/net/route.
2556  *	The format of the file is not supposed to be changed
2557  *	and needs to be same as fib_hash output to avoid breaking
2558  *	legacy utilities
2559  */
2560 static int fib_route_seq_show(struct seq_file *seq, void *v)
2561 {
2562 	struct fib_route_iter *iter = seq->private;
2563 	struct fib_table *tb = iter->main_tb;
2564 	struct fib_alias *fa;
2565 	struct key_vector *l = v;
2566 	__be32 prefix;
2567 
2568 	if (v == SEQ_START_TOKEN) {
2569 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2570 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2571 			   "\tWindow\tIRTT");
2572 		return 0;
2573 	}
2574 
2575 	prefix = htonl(l->key);
2576 
2577 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2578 		const struct fib_info *fi = fa->fa_info;
2579 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2580 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2581 
2582 		if ((fa->fa_type == RTN_BROADCAST) ||
2583 		    (fa->fa_type == RTN_MULTICAST))
2584 			continue;
2585 
2586 		if (fa->tb_id != tb->tb_id)
2587 			continue;
2588 
2589 		seq_setwidth(seq, 127);
2590 
2591 		if (fi)
2592 			seq_printf(seq,
2593 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2594 				   "%d\t%08X\t%d\t%u\t%u",
2595 				   fi->fib_dev ? fi->fib_dev->name : "*",
2596 				   prefix,
2597 				   fi->fib_nh->nh_gw, flags, 0, 0,
2598 				   fi->fib_priority,
2599 				   mask,
2600 				   (fi->fib_advmss ?
2601 				    fi->fib_advmss + 40 : 0),
2602 				   fi->fib_window,
2603 				   fi->fib_rtt >> 3);
2604 		else
2605 			seq_printf(seq,
2606 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2607 				   "%d\t%08X\t%d\t%u\t%u",
2608 				   prefix, 0, flags, 0, 0, 0,
2609 				   mask, 0, 0, 0);
2610 
2611 		seq_pad(seq, '\n');
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 static const struct seq_operations fib_route_seq_ops = {
2618 	.start  = fib_route_seq_start,
2619 	.next   = fib_route_seq_next,
2620 	.stop   = fib_route_seq_stop,
2621 	.show   = fib_route_seq_show,
2622 };
2623 
2624 static int fib_route_seq_open(struct inode *inode, struct file *file)
2625 {
2626 	return seq_open_net(inode, file, &fib_route_seq_ops,
2627 			    sizeof(struct fib_route_iter));
2628 }
2629 
2630 static const struct file_operations fib_route_fops = {
2631 	.owner  = THIS_MODULE,
2632 	.open   = fib_route_seq_open,
2633 	.read   = seq_read,
2634 	.llseek = seq_lseek,
2635 	.release = seq_release_net,
2636 };
2637 
2638 int __net_init fib_proc_init(struct net *net)
2639 {
2640 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2641 		goto out1;
2642 
2643 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2644 			 &fib_triestat_fops))
2645 		goto out2;
2646 
2647 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2648 		goto out3;
2649 
2650 	return 0;
2651 
2652 out3:
2653 	remove_proc_entry("fib_triestat", net->proc_net);
2654 out2:
2655 	remove_proc_entry("fib_trie", net->proc_net);
2656 out1:
2657 	return -ENOMEM;
2658 }
2659 
2660 void __net_exit fib_proc_exit(struct net *net)
2661 {
2662 	remove_proc_entry("fib_trie", net->proc_net);
2663 	remove_proc_entry("fib_triestat", net->proc_net);
2664 	remove_proc_entry("route", net->proc_net);
2665 }
2666 
2667 #endif /* CONFIG_PROC_FS */
2668