1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally descibed in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $ 26 * 27 * 28 * Code from fib_hash has been reused which includes the following header: 29 * 30 * 31 * INET An implementation of the TCP/IP protocol suite for the LINUX 32 * operating system. INET is implemented using the BSD Socket 33 * interface as the means of communication with the user level. 34 * 35 * IPv4 FIB: lookup engine and maintenance routines. 36 * 37 * 38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 39 * 40 * This program is free software; you can redistribute it and/or 41 * modify it under the terms of the GNU General Public License 42 * as published by the Free Software Foundation; either version 43 * 2 of the License, or (at your option) any later version. 44 * 45 * Substantial contributions to this work comes from: 46 * 47 * David S. Miller, <davem@davemloft.net> 48 * Stephen Hemminger <shemminger@osdl.org> 49 * Paul E. McKenney <paulmck@us.ibm.com> 50 * Patrick McHardy <kaber@trash.net> 51 */ 52 53 #define VERSION "0.407" 54 55 #include <asm/uaccess.h> 56 #include <asm/system.h> 57 #include <asm/bitops.h> 58 #include <linux/types.h> 59 #include <linux/kernel.h> 60 #include <linux/mm.h> 61 #include <linux/string.h> 62 #include <linux/socket.h> 63 #include <linux/sockios.h> 64 #include <linux/errno.h> 65 #include <linux/in.h> 66 #include <linux/inet.h> 67 #include <linux/inetdevice.h> 68 #include <linux/netdevice.h> 69 #include <linux/if_arp.h> 70 #include <linux/proc_fs.h> 71 #include <linux/rcupdate.h> 72 #include <linux/skbuff.h> 73 #include <linux/netlink.h> 74 #include <linux/init.h> 75 #include <linux/list.h> 76 #include <net/ip.h> 77 #include <net/protocol.h> 78 #include <net/route.h> 79 #include <net/tcp.h> 80 #include <net/sock.h> 81 #include <net/ip_fib.h> 82 #include "fib_lookup.h" 83 84 #undef CONFIG_IP_FIB_TRIE_STATS 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l)) 89 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset)) 90 91 typedef unsigned int t_key; 92 93 #define T_TNODE 0 94 #define T_LEAF 1 95 #define NODE_TYPE_MASK 0x1UL 96 #define NODE_PARENT(node) \ 97 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK))) 98 99 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 100 101 #define NODE_SET_PARENT(node, ptr) \ 102 rcu_assign_pointer((node)->parent, \ 103 ((unsigned long)(ptr)) | NODE_TYPE(node)) 104 105 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 106 #define IS_LEAF(n) (n->parent & T_LEAF) 107 108 struct node { 109 t_key key; 110 unsigned long parent; 111 }; 112 113 struct leaf { 114 t_key key; 115 unsigned long parent; 116 struct hlist_head list; 117 struct rcu_head rcu; 118 }; 119 120 struct leaf_info { 121 struct hlist_node hlist; 122 struct rcu_head rcu; 123 int plen; 124 struct list_head falh; 125 }; 126 127 struct tnode { 128 t_key key; 129 unsigned long parent; 130 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */ 131 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */ 132 unsigned short full_children; /* KEYLENGTH bits needed */ 133 unsigned short empty_children; /* KEYLENGTH bits needed */ 134 struct rcu_head rcu; 135 struct node *child[0]; 136 }; 137 138 #ifdef CONFIG_IP_FIB_TRIE_STATS 139 struct trie_use_stats { 140 unsigned int gets; 141 unsigned int backtrack; 142 unsigned int semantic_match_passed; 143 unsigned int semantic_match_miss; 144 unsigned int null_node_hit; 145 unsigned int resize_node_skipped; 146 }; 147 #endif 148 149 struct trie_stat { 150 unsigned int totdepth; 151 unsigned int maxdepth; 152 unsigned int tnodes; 153 unsigned int leaves; 154 unsigned int nullpointers; 155 unsigned int nodesizes[MAX_STAT_DEPTH]; 156 }; 157 158 struct trie { 159 struct node *trie; 160 #ifdef CONFIG_IP_FIB_TRIE_STATS 161 struct trie_use_stats stats; 162 #endif 163 int size; 164 unsigned int revision; 165 }; 166 167 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); 168 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); 169 static struct node *resize(struct trie *t, struct tnode *tn); 170 static struct tnode *inflate(struct trie *t, struct tnode *tn); 171 static struct tnode *halve(struct trie *t, struct tnode *tn); 172 static void tnode_free(struct tnode *tn); 173 174 static struct kmem_cache *fn_alias_kmem __read_mostly; 175 static struct trie *trie_local = NULL, *trie_main = NULL; 176 177 178 /* rcu_read_lock needs to be hold by caller from readside */ 179 180 static inline struct node *tnode_get_child(struct tnode *tn, int i) 181 { 182 BUG_ON(i >= 1 << tn->bits); 183 184 return rcu_dereference(tn->child[i]); 185 } 186 187 static inline int tnode_child_length(const struct tnode *tn) 188 { 189 return 1 << tn->bits; 190 } 191 192 static inline t_key tkey_extract_bits(t_key a, int offset, int bits) 193 { 194 if (offset < KEYLENGTH) 195 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 196 else 197 return 0; 198 } 199 200 static inline int tkey_equals(t_key a, t_key b) 201 { 202 return a == b; 203 } 204 205 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 206 { 207 if (bits == 0 || offset >= KEYLENGTH) 208 return 1; 209 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 210 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 211 } 212 213 static inline int tkey_mismatch(t_key a, int offset, t_key b) 214 { 215 t_key diff = a ^ b; 216 int i = offset; 217 218 if (!diff) 219 return 0; 220 while ((diff << i) >> (KEYLENGTH-1) == 0) 221 i++; 222 return i; 223 } 224 225 /* 226 To understand this stuff, an understanding of keys and all their bits is 227 necessary. Every node in the trie has a key associated with it, but not 228 all of the bits in that key are significant. 229 230 Consider a node 'n' and its parent 'tp'. 231 232 If n is a leaf, every bit in its key is significant. Its presence is 233 necessitated by path compression, since during a tree traversal (when 234 searching for a leaf - unless we are doing an insertion) we will completely 235 ignore all skipped bits we encounter. Thus we need to verify, at the end of 236 a potentially successful search, that we have indeed been walking the 237 correct key path. 238 239 Note that we can never "miss" the correct key in the tree if present by 240 following the wrong path. Path compression ensures that segments of the key 241 that are the same for all keys with a given prefix are skipped, but the 242 skipped part *is* identical for each node in the subtrie below the skipped 243 bit! trie_insert() in this implementation takes care of that - note the 244 call to tkey_sub_equals() in trie_insert(). 245 246 if n is an internal node - a 'tnode' here, the various parts of its key 247 have many different meanings. 248 249 Example: 250 _________________________________________________________________ 251 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 252 ----------------------------------------------------------------- 253 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 254 255 _________________________________________________________________ 256 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 257 ----------------------------------------------------------------- 258 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 259 260 tp->pos = 7 261 tp->bits = 3 262 n->pos = 15 263 n->bits = 4 264 265 First, let's just ignore the bits that come before the parent tp, that is 266 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 267 not use them for anything. 268 269 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 270 index into the parent's child array. That is, they will be used to find 271 'n' among tp's children. 272 273 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 274 for the node n. 275 276 All the bits we have seen so far are significant to the node n. The rest 277 of the bits are really not needed or indeed known in n->key. 278 279 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 280 n's child array, and will of course be different for each child. 281 282 283 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 284 at this point. 285 286 */ 287 288 static inline void check_tnode(const struct tnode *tn) 289 { 290 WARN_ON(tn && tn->pos+tn->bits > 32); 291 } 292 293 static int halve_threshold = 25; 294 static int inflate_threshold = 50; 295 static int halve_threshold_root = 15; 296 static int inflate_threshold_root = 25; 297 298 299 static void __alias_free_mem(struct rcu_head *head) 300 { 301 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 302 kmem_cache_free(fn_alias_kmem, fa); 303 } 304 305 static inline void alias_free_mem_rcu(struct fib_alias *fa) 306 { 307 call_rcu(&fa->rcu, __alias_free_mem); 308 } 309 310 static void __leaf_free_rcu(struct rcu_head *head) 311 { 312 kfree(container_of(head, struct leaf, rcu)); 313 } 314 315 static void __leaf_info_free_rcu(struct rcu_head *head) 316 { 317 kfree(container_of(head, struct leaf_info, rcu)); 318 } 319 320 static inline void free_leaf_info(struct leaf_info *leaf) 321 { 322 call_rcu(&leaf->rcu, __leaf_info_free_rcu); 323 } 324 325 static struct tnode *tnode_alloc(unsigned int size) 326 { 327 struct page *pages; 328 329 if (size <= PAGE_SIZE) 330 return kcalloc(size, 1, GFP_KERNEL); 331 332 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size)); 333 if (!pages) 334 return NULL; 335 336 return page_address(pages); 337 } 338 339 static void __tnode_free_rcu(struct rcu_head *head) 340 { 341 struct tnode *tn = container_of(head, struct tnode, rcu); 342 unsigned int size = sizeof(struct tnode) + 343 (1 << tn->bits) * sizeof(struct node *); 344 345 if (size <= PAGE_SIZE) 346 kfree(tn); 347 else 348 free_pages((unsigned long)tn, get_order(size)); 349 } 350 351 static inline void tnode_free(struct tnode *tn) 352 { 353 if(IS_LEAF(tn)) { 354 struct leaf *l = (struct leaf *) tn; 355 call_rcu_bh(&l->rcu, __leaf_free_rcu); 356 } 357 else 358 call_rcu(&tn->rcu, __tnode_free_rcu); 359 } 360 361 static struct leaf *leaf_new(void) 362 { 363 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL); 364 if (l) { 365 l->parent = T_LEAF; 366 INIT_HLIST_HEAD(&l->list); 367 } 368 return l; 369 } 370 371 static struct leaf_info *leaf_info_new(int plen) 372 { 373 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 374 if (li) { 375 li->plen = plen; 376 INIT_LIST_HEAD(&li->falh); 377 } 378 return li; 379 } 380 381 static struct tnode* tnode_new(t_key key, int pos, int bits) 382 { 383 int nchildren = 1<<bits; 384 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); 385 struct tnode *tn = tnode_alloc(sz); 386 387 if (tn) { 388 memset(tn, 0, sz); 389 tn->parent = T_TNODE; 390 tn->pos = pos; 391 tn->bits = bits; 392 tn->key = key; 393 tn->full_children = 0; 394 tn->empty_children = 1<<bits; 395 } 396 397 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode), 398 (unsigned int) (sizeof(struct node) * 1<<bits)); 399 return tn; 400 } 401 402 /* 403 * Check whether a tnode 'n' is "full", i.e. it is an internal node 404 * and no bits are skipped. See discussion in dyntree paper p. 6 405 */ 406 407 static inline int tnode_full(const struct tnode *tn, const struct node *n) 408 { 409 if (n == NULL || IS_LEAF(n)) 410 return 0; 411 412 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 413 } 414 415 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n) 416 { 417 tnode_put_child_reorg(tn, i, n, -1); 418 } 419 420 /* 421 * Add a child at position i overwriting the old value. 422 * Update the value of full_children and empty_children. 423 */ 424 425 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) 426 { 427 struct node *chi = tn->child[i]; 428 int isfull; 429 430 BUG_ON(i >= 1<<tn->bits); 431 432 433 /* update emptyChildren */ 434 if (n == NULL && chi != NULL) 435 tn->empty_children++; 436 else if (n != NULL && chi == NULL) 437 tn->empty_children--; 438 439 /* update fullChildren */ 440 if (wasfull == -1) 441 wasfull = tnode_full(tn, chi); 442 443 isfull = tnode_full(tn, n); 444 if (wasfull && !isfull) 445 tn->full_children--; 446 else if (!wasfull && isfull) 447 tn->full_children++; 448 449 if (n) 450 NODE_SET_PARENT(n, tn); 451 452 rcu_assign_pointer(tn->child[i], n); 453 } 454 455 static struct node *resize(struct trie *t, struct tnode *tn) 456 { 457 int i; 458 int err = 0; 459 struct tnode *old_tn; 460 int inflate_threshold_use; 461 int halve_threshold_use; 462 463 if (!tn) 464 return NULL; 465 466 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 467 tn, inflate_threshold, halve_threshold); 468 469 /* No children */ 470 if (tn->empty_children == tnode_child_length(tn)) { 471 tnode_free(tn); 472 return NULL; 473 } 474 /* One child */ 475 if (tn->empty_children == tnode_child_length(tn) - 1) 476 for (i = 0; i < tnode_child_length(tn); i++) { 477 struct node *n; 478 479 n = tn->child[i]; 480 if (!n) 481 continue; 482 483 /* compress one level */ 484 NODE_SET_PARENT(n, NULL); 485 tnode_free(tn); 486 return n; 487 } 488 /* 489 * Double as long as the resulting node has a number of 490 * nonempty nodes that are above the threshold. 491 */ 492 493 /* 494 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 495 * the Helsinki University of Technology and Matti Tikkanen of Nokia 496 * Telecommunications, page 6: 497 * "A node is doubled if the ratio of non-empty children to all 498 * children in the *doubled* node is at least 'high'." 499 * 500 * 'high' in this instance is the variable 'inflate_threshold'. It 501 * is expressed as a percentage, so we multiply it with 502 * tnode_child_length() and instead of multiplying by 2 (since the 503 * child array will be doubled by inflate()) and multiplying 504 * the left-hand side by 100 (to handle the percentage thing) we 505 * multiply the left-hand side by 50. 506 * 507 * The left-hand side may look a bit weird: tnode_child_length(tn) 508 * - tn->empty_children is of course the number of non-null children 509 * in the current node. tn->full_children is the number of "full" 510 * children, that is non-null tnodes with a skip value of 0. 511 * All of those will be doubled in the resulting inflated tnode, so 512 * we just count them one extra time here. 513 * 514 * A clearer way to write this would be: 515 * 516 * to_be_doubled = tn->full_children; 517 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 518 * tn->full_children; 519 * 520 * new_child_length = tnode_child_length(tn) * 2; 521 * 522 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 523 * new_child_length; 524 * if (new_fill_factor >= inflate_threshold) 525 * 526 * ...and so on, tho it would mess up the while () loop. 527 * 528 * anyway, 529 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 530 * inflate_threshold 531 * 532 * avoid a division: 533 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 534 * inflate_threshold * new_child_length 535 * 536 * expand not_to_be_doubled and to_be_doubled, and shorten: 537 * 100 * (tnode_child_length(tn) - tn->empty_children + 538 * tn->full_children) >= inflate_threshold * new_child_length 539 * 540 * expand new_child_length: 541 * 100 * (tnode_child_length(tn) - tn->empty_children + 542 * tn->full_children) >= 543 * inflate_threshold * tnode_child_length(tn) * 2 544 * 545 * shorten again: 546 * 50 * (tn->full_children + tnode_child_length(tn) - 547 * tn->empty_children) >= inflate_threshold * 548 * tnode_child_length(tn) 549 * 550 */ 551 552 check_tnode(tn); 553 554 /* Keep root node larger */ 555 556 if(!tn->parent) 557 inflate_threshold_use = inflate_threshold_root; 558 else 559 inflate_threshold_use = inflate_threshold; 560 561 err = 0; 562 while ((tn->full_children > 0 && 563 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= 564 inflate_threshold_use * tnode_child_length(tn))) { 565 566 old_tn = tn; 567 tn = inflate(t, tn); 568 if (IS_ERR(tn)) { 569 tn = old_tn; 570 #ifdef CONFIG_IP_FIB_TRIE_STATS 571 t->stats.resize_node_skipped++; 572 #endif 573 break; 574 } 575 } 576 577 check_tnode(tn); 578 579 /* 580 * Halve as long as the number of empty children in this 581 * node is above threshold. 582 */ 583 584 585 /* Keep root node larger */ 586 587 if(!tn->parent) 588 halve_threshold_use = halve_threshold_root; 589 else 590 halve_threshold_use = halve_threshold; 591 592 err = 0; 593 while (tn->bits > 1 && 594 100 * (tnode_child_length(tn) - tn->empty_children) < 595 halve_threshold_use * tnode_child_length(tn)) { 596 597 old_tn = tn; 598 tn = halve(t, tn); 599 if (IS_ERR(tn)) { 600 tn = old_tn; 601 #ifdef CONFIG_IP_FIB_TRIE_STATS 602 t->stats.resize_node_skipped++; 603 #endif 604 break; 605 } 606 } 607 608 609 /* Only one child remains */ 610 if (tn->empty_children == tnode_child_length(tn) - 1) 611 for (i = 0; i < tnode_child_length(tn); i++) { 612 struct node *n; 613 614 n = tn->child[i]; 615 if (!n) 616 continue; 617 618 /* compress one level */ 619 620 NODE_SET_PARENT(n, NULL); 621 tnode_free(tn); 622 return n; 623 } 624 625 return (struct node *) tn; 626 } 627 628 static struct tnode *inflate(struct trie *t, struct tnode *tn) 629 { 630 struct tnode *inode; 631 struct tnode *oldtnode = tn; 632 int olen = tnode_child_length(tn); 633 int i; 634 635 pr_debug("In inflate\n"); 636 637 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 638 639 if (!tn) 640 return ERR_PTR(-ENOMEM); 641 642 /* 643 * Preallocate and store tnodes before the actual work so we 644 * don't get into an inconsistent state if memory allocation 645 * fails. In case of failure we return the oldnode and inflate 646 * of tnode is ignored. 647 */ 648 649 for (i = 0; i < olen; i++) { 650 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i); 651 652 if (inode && 653 IS_TNODE(inode) && 654 inode->pos == oldtnode->pos + oldtnode->bits && 655 inode->bits > 1) { 656 struct tnode *left, *right; 657 t_key m = TKEY_GET_MASK(inode->pos, 1); 658 659 left = tnode_new(inode->key&(~m), inode->pos + 1, 660 inode->bits - 1); 661 if (!left) 662 goto nomem; 663 664 right = tnode_new(inode->key|m, inode->pos + 1, 665 inode->bits - 1); 666 667 if (!right) { 668 tnode_free(left); 669 goto nomem; 670 } 671 672 put_child(t, tn, 2*i, (struct node *) left); 673 put_child(t, tn, 2*i+1, (struct node *) right); 674 } 675 } 676 677 for (i = 0; i < olen; i++) { 678 struct node *node = tnode_get_child(oldtnode, i); 679 struct tnode *left, *right; 680 int size, j; 681 682 /* An empty child */ 683 if (node == NULL) 684 continue; 685 686 /* A leaf or an internal node with skipped bits */ 687 688 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 689 tn->pos + tn->bits - 1) { 690 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits, 691 1) == 0) 692 put_child(t, tn, 2*i, node); 693 else 694 put_child(t, tn, 2*i+1, node); 695 continue; 696 } 697 698 /* An internal node with two children */ 699 inode = (struct tnode *) node; 700 701 if (inode->bits == 1) { 702 put_child(t, tn, 2*i, inode->child[0]); 703 put_child(t, tn, 2*i+1, inode->child[1]); 704 705 tnode_free(inode); 706 continue; 707 } 708 709 /* An internal node with more than two children */ 710 711 /* We will replace this node 'inode' with two new 712 * ones, 'left' and 'right', each with half of the 713 * original children. The two new nodes will have 714 * a position one bit further down the key and this 715 * means that the "significant" part of their keys 716 * (see the discussion near the top of this file) 717 * will differ by one bit, which will be "0" in 718 * left's key and "1" in right's key. Since we are 719 * moving the key position by one step, the bit that 720 * we are moving away from - the bit at position 721 * (inode->pos) - is the one that will differ between 722 * left and right. So... we synthesize that bit in the 723 * two new keys. 724 * The mask 'm' below will be a single "one" bit at 725 * the position (inode->pos) 726 */ 727 728 /* Use the old key, but set the new significant 729 * bit to zero. 730 */ 731 732 left = (struct tnode *) tnode_get_child(tn, 2*i); 733 put_child(t, tn, 2*i, NULL); 734 735 BUG_ON(!left); 736 737 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 738 put_child(t, tn, 2*i+1, NULL); 739 740 BUG_ON(!right); 741 742 size = tnode_child_length(left); 743 for (j = 0; j < size; j++) { 744 put_child(t, left, j, inode->child[j]); 745 put_child(t, right, j, inode->child[j + size]); 746 } 747 put_child(t, tn, 2*i, resize(t, left)); 748 put_child(t, tn, 2*i+1, resize(t, right)); 749 750 tnode_free(inode); 751 } 752 tnode_free(oldtnode); 753 return tn; 754 nomem: 755 { 756 int size = tnode_child_length(tn); 757 int j; 758 759 for (j = 0; j < size; j++) 760 if (tn->child[j]) 761 tnode_free((struct tnode *)tn->child[j]); 762 763 tnode_free(tn); 764 765 return ERR_PTR(-ENOMEM); 766 } 767 } 768 769 static struct tnode *halve(struct trie *t, struct tnode *tn) 770 { 771 struct tnode *oldtnode = tn; 772 struct node *left, *right; 773 int i; 774 int olen = tnode_child_length(tn); 775 776 pr_debug("In halve\n"); 777 778 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 779 780 if (!tn) 781 return ERR_PTR(-ENOMEM); 782 783 /* 784 * Preallocate and store tnodes before the actual work so we 785 * don't get into an inconsistent state if memory allocation 786 * fails. In case of failure we return the oldnode and halve 787 * of tnode is ignored. 788 */ 789 790 for (i = 0; i < olen; i += 2) { 791 left = tnode_get_child(oldtnode, i); 792 right = tnode_get_child(oldtnode, i+1); 793 794 /* Two nonempty children */ 795 if (left && right) { 796 struct tnode *newn; 797 798 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 799 800 if (!newn) 801 goto nomem; 802 803 put_child(t, tn, i/2, (struct node *)newn); 804 } 805 806 } 807 808 for (i = 0; i < olen; i += 2) { 809 struct tnode *newBinNode; 810 811 left = tnode_get_child(oldtnode, i); 812 right = tnode_get_child(oldtnode, i+1); 813 814 /* At least one of the children is empty */ 815 if (left == NULL) { 816 if (right == NULL) /* Both are empty */ 817 continue; 818 put_child(t, tn, i/2, right); 819 continue; 820 } 821 822 if (right == NULL) { 823 put_child(t, tn, i/2, left); 824 continue; 825 } 826 827 /* Two nonempty children */ 828 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 829 put_child(t, tn, i/2, NULL); 830 put_child(t, newBinNode, 0, left); 831 put_child(t, newBinNode, 1, right); 832 put_child(t, tn, i/2, resize(t, newBinNode)); 833 } 834 tnode_free(oldtnode); 835 return tn; 836 nomem: 837 { 838 int size = tnode_child_length(tn); 839 int j; 840 841 for (j = 0; j < size; j++) 842 if (tn->child[j]) 843 tnode_free((struct tnode *)tn->child[j]); 844 845 tnode_free(tn); 846 847 return ERR_PTR(-ENOMEM); 848 } 849 } 850 851 static void trie_init(struct trie *t) 852 { 853 if (!t) 854 return; 855 856 t->size = 0; 857 rcu_assign_pointer(t->trie, NULL); 858 t->revision = 0; 859 #ifdef CONFIG_IP_FIB_TRIE_STATS 860 memset(&t->stats, 0, sizeof(struct trie_use_stats)); 861 #endif 862 } 863 864 /* readside must use rcu_read_lock currently dump routines 865 via get_fa_head and dump */ 866 867 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 868 { 869 struct hlist_head *head = &l->list; 870 struct hlist_node *node; 871 struct leaf_info *li; 872 873 hlist_for_each_entry_rcu(li, node, head, hlist) 874 if (li->plen == plen) 875 return li; 876 877 return NULL; 878 } 879 880 static inline struct list_head * get_fa_head(struct leaf *l, int plen) 881 { 882 struct leaf_info *li = find_leaf_info(l, plen); 883 884 if (!li) 885 return NULL; 886 887 return &li->falh; 888 } 889 890 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 891 { 892 struct leaf_info *li = NULL, *last = NULL; 893 struct hlist_node *node; 894 895 if (hlist_empty(head)) { 896 hlist_add_head_rcu(&new->hlist, head); 897 } else { 898 hlist_for_each_entry(li, node, head, hlist) { 899 if (new->plen > li->plen) 900 break; 901 902 last = li; 903 } 904 if (last) 905 hlist_add_after_rcu(&last->hlist, &new->hlist); 906 else 907 hlist_add_before_rcu(&new->hlist, &li->hlist); 908 } 909 } 910 911 /* rcu_read_lock needs to be hold by caller from readside */ 912 913 static struct leaf * 914 fib_find_node(struct trie *t, u32 key) 915 { 916 int pos; 917 struct tnode *tn; 918 struct node *n; 919 920 pos = 0; 921 n = rcu_dereference(t->trie); 922 923 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 924 tn = (struct tnode *) n; 925 926 check_tnode(tn); 927 928 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 929 pos = tn->pos + tn->bits; 930 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); 931 } else 932 break; 933 } 934 /* Case we have found a leaf. Compare prefixes */ 935 936 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 937 return (struct leaf *)n; 938 939 return NULL; 940 } 941 942 static struct node *trie_rebalance(struct trie *t, struct tnode *tn) 943 { 944 int wasfull; 945 t_key cindex, key; 946 struct tnode *tp = NULL; 947 948 key = tn->key; 949 950 while (tn != NULL && NODE_PARENT(tn) != NULL) { 951 952 tp = NODE_PARENT(tn); 953 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 954 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 955 tn = (struct tnode *) resize (t, (struct tnode *)tn); 956 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull); 957 958 if (!NODE_PARENT(tn)) 959 break; 960 961 tn = NODE_PARENT(tn); 962 } 963 /* Handle last (top) tnode */ 964 if (IS_TNODE(tn)) 965 tn = (struct tnode*) resize(t, (struct tnode *)tn); 966 967 return (struct node*) tn; 968 } 969 970 /* only used from updater-side */ 971 972 static struct list_head * 973 fib_insert_node(struct trie *t, int *err, u32 key, int plen) 974 { 975 int pos, newpos; 976 struct tnode *tp = NULL, *tn = NULL; 977 struct node *n; 978 struct leaf *l; 979 int missbit; 980 struct list_head *fa_head = NULL; 981 struct leaf_info *li; 982 t_key cindex; 983 984 pos = 0; 985 n = t->trie; 986 987 /* If we point to NULL, stop. Either the tree is empty and we should 988 * just put a new leaf in if, or we have reached an empty child slot, 989 * and we should just put our new leaf in that. 990 * If we point to a T_TNODE, check if it matches our key. Note that 991 * a T_TNODE might be skipping any number of bits - its 'pos' need 992 * not be the parent's 'pos'+'bits'! 993 * 994 * If it does match the current key, get pos/bits from it, extract 995 * the index from our key, push the T_TNODE and walk the tree. 996 * 997 * If it doesn't, we have to replace it with a new T_TNODE. 998 * 999 * If we point to a T_LEAF, it might or might not have the same key 1000 * as we do. If it does, just change the value, update the T_LEAF's 1001 * value, and return it. 1002 * If it doesn't, we need to replace it with a T_TNODE. 1003 */ 1004 1005 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1006 tn = (struct tnode *) n; 1007 1008 check_tnode(tn); 1009 1010 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1011 tp = tn; 1012 pos = tn->pos + tn->bits; 1013 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); 1014 1015 BUG_ON(n && NODE_PARENT(n) != tn); 1016 } else 1017 break; 1018 } 1019 1020 /* 1021 * n ----> NULL, LEAF or TNODE 1022 * 1023 * tp is n's (parent) ----> NULL or TNODE 1024 */ 1025 1026 BUG_ON(tp && IS_LEAF(tp)); 1027 1028 /* Case 1: n is a leaf. Compare prefixes */ 1029 1030 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1031 struct leaf *l = (struct leaf *) n; 1032 1033 li = leaf_info_new(plen); 1034 1035 if (!li) { 1036 *err = -ENOMEM; 1037 goto err; 1038 } 1039 1040 fa_head = &li->falh; 1041 insert_leaf_info(&l->list, li); 1042 goto done; 1043 } 1044 t->size++; 1045 l = leaf_new(); 1046 1047 if (!l) { 1048 *err = -ENOMEM; 1049 goto err; 1050 } 1051 1052 l->key = key; 1053 li = leaf_info_new(plen); 1054 1055 if (!li) { 1056 tnode_free((struct tnode *) l); 1057 *err = -ENOMEM; 1058 goto err; 1059 } 1060 1061 fa_head = &li->falh; 1062 insert_leaf_info(&l->list, li); 1063 1064 if (t->trie && n == NULL) { 1065 /* Case 2: n is NULL, and will just insert a new leaf */ 1066 1067 NODE_SET_PARENT(l, tp); 1068 1069 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1070 put_child(t, (struct tnode *)tp, cindex, (struct node *)l); 1071 } else { 1072 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1073 /* 1074 * Add a new tnode here 1075 * first tnode need some special handling 1076 */ 1077 1078 if (tp) 1079 pos = tp->pos+tp->bits; 1080 else 1081 pos = 0; 1082 1083 if (n) { 1084 newpos = tkey_mismatch(key, pos, n->key); 1085 tn = tnode_new(n->key, newpos, 1); 1086 } else { 1087 newpos = 0; 1088 tn = tnode_new(key, newpos, 1); /* First tnode */ 1089 } 1090 1091 if (!tn) { 1092 free_leaf_info(li); 1093 tnode_free((struct tnode *) l); 1094 *err = -ENOMEM; 1095 goto err; 1096 } 1097 1098 NODE_SET_PARENT(tn, tp); 1099 1100 missbit = tkey_extract_bits(key, newpos, 1); 1101 put_child(t, tn, missbit, (struct node *)l); 1102 put_child(t, tn, 1-missbit, n); 1103 1104 if (tp) { 1105 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1106 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn); 1107 } else { 1108 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */ 1109 tp = tn; 1110 } 1111 } 1112 1113 if (tp && tp->pos + tp->bits > 32) 1114 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1115 tp, tp->pos, tp->bits, key, plen); 1116 1117 /* Rebalance the trie */ 1118 1119 rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); 1120 done: 1121 t->revision++; 1122 err: 1123 return fa_head; 1124 } 1125 1126 /* 1127 * Caller must hold RTNL. 1128 */ 1129 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg) 1130 { 1131 struct trie *t = (struct trie *) tb->tb_data; 1132 struct fib_alias *fa, *new_fa; 1133 struct list_head *fa_head = NULL; 1134 struct fib_info *fi; 1135 int plen = cfg->fc_dst_len; 1136 u8 tos = cfg->fc_tos; 1137 u32 key, mask; 1138 int err; 1139 struct leaf *l; 1140 1141 if (plen > 32) 1142 return -EINVAL; 1143 1144 key = ntohl(cfg->fc_dst); 1145 1146 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1147 1148 mask = ntohl(inet_make_mask(plen)); 1149 1150 if (key & ~mask) 1151 return -EINVAL; 1152 1153 key = key & mask; 1154 1155 fi = fib_create_info(cfg); 1156 if (IS_ERR(fi)) { 1157 err = PTR_ERR(fi); 1158 goto err; 1159 } 1160 1161 l = fib_find_node(t, key); 1162 fa = NULL; 1163 1164 if (l) { 1165 fa_head = get_fa_head(l, plen); 1166 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1167 } 1168 1169 /* Now fa, if non-NULL, points to the first fib alias 1170 * with the same keys [prefix,tos,priority], if such key already 1171 * exists or to the node before which we will insert new one. 1172 * 1173 * If fa is NULL, we will need to allocate a new one and 1174 * insert to the head of f. 1175 * 1176 * If f is NULL, no fib node matched the destination key 1177 * and we need to allocate a new one of those as well. 1178 */ 1179 1180 if (fa && fa->fa_info->fib_priority == fi->fib_priority) { 1181 struct fib_alias *fa_orig; 1182 1183 err = -EEXIST; 1184 if (cfg->fc_nlflags & NLM_F_EXCL) 1185 goto out; 1186 1187 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1188 struct fib_info *fi_drop; 1189 u8 state; 1190 1191 err = -ENOBUFS; 1192 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1193 if (new_fa == NULL) 1194 goto out; 1195 1196 fi_drop = fa->fa_info; 1197 new_fa->fa_tos = fa->fa_tos; 1198 new_fa->fa_info = fi; 1199 new_fa->fa_type = cfg->fc_type; 1200 new_fa->fa_scope = cfg->fc_scope; 1201 state = fa->fa_state; 1202 new_fa->fa_state &= ~FA_S_ACCESSED; 1203 1204 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1205 alias_free_mem_rcu(fa); 1206 1207 fib_release_info(fi_drop); 1208 if (state & FA_S_ACCESSED) 1209 rt_cache_flush(-1); 1210 1211 goto succeeded; 1212 } 1213 /* Error if we find a perfect match which 1214 * uses the same scope, type, and nexthop 1215 * information. 1216 */ 1217 fa_orig = fa; 1218 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) { 1219 if (fa->fa_tos != tos) 1220 break; 1221 if (fa->fa_info->fib_priority != fi->fib_priority) 1222 break; 1223 if (fa->fa_type == cfg->fc_type && 1224 fa->fa_scope == cfg->fc_scope && 1225 fa->fa_info == fi) { 1226 goto out; 1227 } 1228 } 1229 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1230 fa = fa_orig; 1231 } 1232 err = -ENOENT; 1233 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1234 goto out; 1235 1236 err = -ENOBUFS; 1237 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1238 if (new_fa == NULL) 1239 goto out; 1240 1241 new_fa->fa_info = fi; 1242 new_fa->fa_tos = tos; 1243 new_fa->fa_type = cfg->fc_type; 1244 new_fa->fa_scope = cfg->fc_scope; 1245 new_fa->fa_state = 0; 1246 /* 1247 * Insert new entry to the list. 1248 */ 1249 1250 if (!fa_head) { 1251 err = 0; 1252 fa_head = fib_insert_node(t, &err, key, plen); 1253 if (err) 1254 goto out_free_new_fa; 1255 } 1256 1257 list_add_tail_rcu(&new_fa->fa_list, 1258 (fa ? &fa->fa_list : fa_head)); 1259 1260 rt_cache_flush(-1); 1261 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1262 &cfg->fc_nlinfo); 1263 succeeded: 1264 return 0; 1265 1266 out_free_new_fa: 1267 kmem_cache_free(fn_alias_kmem, new_fa); 1268 out: 1269 fib_release_info(fi); 1270 err: 1271 return err; 1272 } 1273 1274 1275 /* should be called with rcu_read_lock */ 1276 static inline int check_leaf(struct trie *t, struct leaf *l, 1277 t_key key, int *plen, const struct flowi *flp, 1278 struct fib_result *res) 1279 { 1280 int err, i; 1281 __be32 mask; 1282 struct leaf_info *li; 1283 struct hlist_head *hhead = &l->list; 1284 struct hlist_node *node; 1285 1286 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1287 i = li->plen; 1288 mask = inet_make_mask(i); 1289 if (l->key != (key & ntohl(mask))) 1290 continue; 1291 1292 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) { 1293 *plen = i; 1294 #ifdef CONFIG_IP_FIB_TRIE_STATS 1295 t->stats.semantic_match_passed++; 1296 #endif 1297 return err; 1298 } 1299 #ifdef CONFIG_IP_FIB_TRIE_STATS 1300 t->stats.semantic_match_miss++; 1301 #endif 1302 } 1303 return 1; 1304 } 1305 1306 static int 1307 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) 1308 { 1309 struct trie *t = (struct trie *) tb->tb_data; 1310 int plen, ret = 0; 1311 struct node *n; 1312 struct tnode *pn; 1313 int pos, bits; 1314 t_key key = ntohl(flp->fl4_dst); 1315 int chopped_off; 1316 t_key cindex = 0; 1317 int current_prefix_length = KEYLENGTH; 1318 struct tnode *cn; 1319 t_key node_prefix, key_prefix, pref_mismatch; 1320 int mp; 1321 1322 rcu_read_lock(); 1323 1324 n = rcu_dereference(t->trie); 1325 if (!n) 1326 goto failed; 1327 1328 #ifdef CONFIG_IP_FIB_TRIE_STATS 1329 t->stats.gets++; 1330 #endif 1331 1332 /* Just a leaf? */ 1333 if (IS_LEAF(n)) { 1334 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0) 1335 goto found; 1336 goto failed; 1337 } 1338 pn = (struct tnode *) n; 1339 chopped_off = 0; 1340 1341 while (pn) { 1342 pos = pn->pos; 1343 bits = pn->bits; 1344 1345 if (!chopped_off) 1346 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits); 1347 1348 n = tnode_get_child(pn, cindex); 1349 1350 if (n == NULL) { 1351 #ifdef CONFIG_IP_FIB_TRIE_STATS 1352 t->stats.null_node_hit++; 1353 #endif 1354 goto backtrace; 1355 } 1356 1357 if (IS_LEAF(n)) { 1358 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0) 1359 goto found; 1360 else 1361 goto backtrace; 1362 } 1363 1364 #define HL_OPTIMIZE 1365 #ifdef HL_OPTIMIZE 1366 cn = (struct tnode *)n; 1367 1368 /* 1369 * It's a tnode, and we can do some extra checks here if we 1370 * like, to avoid descending into a dead-end branch. 1371 * This tnode is in the parent's child array at index 1372 * key[p_pos..p_pos+p_bits] but potentially with some bits 1373 * chopped off, so in reality the index may be just a 1374 * subprefix, padded with zero at the end. 1375 * We can also take a look at any skipped bits in this 1376 * tnode - everything up to p_pos is supposed to be ok, 1377 * and the non-chopped bits of the index (se previous 1378 * paragraph) are also guaranteed ok, but the rest is 1379 * considered unknown. 1380 * 1381 * The skipped bits are key[pos+bits..cn->pos]. 1382 */ 1383 1384 /* If current_prefix_length < pos+bits, we are already doing 1385 * actual prefix matching, which means everything from 1386 * pos+(bits-chopped_off) onward must be zero along some 1387 * branch of this subtree - otherwise there is *no* valid 1388 * prefix present. Here we can only check the skipped 1389 * bits. Remember, since we have already indexed into the 1390 * parent's child array, we know that the bits we chopped of 1391 * *are* zero. 1392 */ 1393 1394 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */ 1395 1396 if (current_prefix_length < pos+bits) { 1397 if (tkey_extract_bits(cn->key, current_prefix_length, 1398 cn->pos - current_prefix_length) != 0 || 1399 !(cn->child[0])) 1400 goto backtrace; 1401 } 1402 1403 /* 1404 * If chopped_off=0, the index is fully validated and we 1405 * only need to look at the skipped bits for this, the new, 1406 * tnode. What we actually want to do is to find out if 1407 * these skipped bits match our key perfectly, or if we will 1408 * have to count on finding a matching prefix further down, 1409 * because if we do, we would like to have some way of 1410 * verifying the existence of such a prefix at this point. 1411 */ 1412 1413 /* The only thing we can do at this point is to verify that 1414 * any such matching prefix can indeed be a prefix to our 1415 * key, and if the bits in the node we are inspecting that 1416 * do not match our key are not ZERO, this cannot be true. 1417 * Thus, find out where there is a mismatch (before cn->pos) 1418 * and verify that all the mismatching bits are zero in the 1419 * new tnode's key. 1420 */ 1421 1422 /* Note: We aren't very concerned about the piece of the key 1423 * that precede pn->pos+pn->bits, since these have already been 1424 * checked. The bits after cn->pos aren't checked since these are 1425 * by definition "unknown" at this point. Thus, what we want to 1426 * see is if we are about to enter the "prefix matching" state, 1427 * and in that case verify that the skipped bits that will prevail 1428 * throughout this subtree are zero, as they have to be if we are 1429 * to find a matching prefix. 1430 */ 1431 1432 node_prefix = MASK_PFX(cn->key, cn->pos); 1433 key_prefix = MASK_PFX(key, cn->pos); 1434 pref_mismatch = key_prefix^node_prefix; 1435 mp = 0; 1436 1437 /* In short: If skipped bits in this node do not match the search 1438 * key, enter the "prefix matching" state.directly. 1439 */ 1440 if (pref_mismatch) { 1441 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { 1442 mp++; 1443 pref_mismatch = pref_mismatch <<1; 1444 } 1445 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); 1446 1447 if (key_prefix != 0) 1448 goto backtrace; 1449 1450 if (current_prefix_length >= cn->pos) 1451 current_prefix_length = mp; 1452 } 1453 #endif 1454 pn = (struct tnode *)n; /* Descend */ 1455 chopped_off = 0; 1456 continue; 1457 1458 backtrace: 1459 chopped_off++; 1460 1461 /* As zero don't change the child key (cindex) */ 1462 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) 1463 chopped_off++; 1464 1465 /* Decrease current_... with bits chopped off */ 1466 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1467 current_prefix_length = pn->pos + pn->bits - chopped_off; 1468 1469 /* 1470 * Either we do the actual chop off according or if we have 1471 * chopped off all bits in this tnode walk up to our parent. 1472 */ 1473 1474 if (chopped_off <= pn->bits) { 1475 cindex &= ~(1 << (chopped_off-1)); 1476 } else { 1477 if (NODE_PARENT(pn) == NULL) 1478 goto failed; 1479 1480 /* Get Child's index */ 1481 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits); 1482 pn = NODE_PARENT(pn); 1483 chopped_off = 0; 1484 1485 #ifdef CONFIG_IP_FIB_TRIE_STATS 1486 t->stats.backtrack++; 1487 #endif 1488 goto backtrace; 1489 } 1490 } 1491 failed: 1492 ret = 1; 1493 found: 1494 rcu_read_unlock(); 1495 return ret; 1496 } 1497 1498 /* only called from updater side */ 1499 static int trie_leaf_remove(struct trie *t, t_key key) 1500 { 1501 t_key cindex; 1502 struct tnode *tp = NULL; 1503 struct node *n = t->trie; 1504 struct leaf *l; 1505 1506 pr_debug("entering trie_leaf_remove(%p)\n", n); 1507 1508 /* Note that in the case skipped bits, those bits are *not* checked! 1509 * When we finish this, we will have NULL or a T_LEAF, and the 1510 * T_LEAF may or may not match our key. 1511 */ 1512 1513 while (n != NULL && IS_TNODE(n)) { 1514 struct tnode *tn = (struct tnode *) n; 1515 check_tnode(tn); 1516 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits)); 1517 1518 BUG_ON(n && NODE_PARENT(n) != tn); 1519 } 1520 l = (struct leaf *) n; 1521 1522 if (!n || !tkey_equals(l->key, key)) 1523 return 0; 1524 1525 /* 1526 * Key found. 1527 * Remove the leaf and rebalance the tree 1528 */ 1529 1530 t->revision++; 1531 t->size--; 1532 1533 tp = NODE_PARENT(n); 1534 tnode_free((struct tnode *) n); 1535 1536 if (tp) { 1537 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1538 put_child(t, (struct tnode *)tp, cindex, NULL); 1539 rcu_assign_pointer(t->trie, trie_rebalance(t, tp)); 1540 } else 1541 rcu_assign_pointer(t->trie, NULL); 1542 1543 return 1; 1544 } 1545 1546 /* 1547 * Caller must hold RTNL. 1548 */ 1549 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg) 1550 { 1551 struct trie *t = (struct trie *) tb->tb_data; 1552 u32 key, mask; 1553 int plen = cfg->fc_dst_len; 1554 u8 tos = cfg->fc_tos; 1555 struct fib_alias *fa, *fa_to_delete; 1556 struct list_head *fa_head; 1557 struct leaf *l; 1558 struct leaf_info *li; 1559 1560 if (plen > 32) 1561 return -EINVAL; 1562 1563 key = ntohl(cfg->fc_dst); 1564 mask = ntohl(inet_make_mask(plen)); 1565 1566 if (key & ~mask) 1567 return -EINVAL; 1568 1569 key = key & mask; 1570 l = fib_find_node(t, key); 1571 1572 if (!l) 1573 return -ESRCH; 1574 1575 fa_head = get_fa_head(l, plen); 1576 fa = fib_find_alias(fa_head, tos, 0); 1577 1578 if (!fa) 1579 return -ESRCH; 1580 1581 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1582 1583 fa_to_delete = NULL; 1584 fa_head = fa->fa_list.prev; 1585 1586 list_for_each_entry(fa, fa_head, fa_list) { 1587 struct fib_info *fi = fa->fa_info; 1588 1589 if (fa->fa_tos != tos) 1590 break; 1591 1592 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1593 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1594 fa->fa_scope == cfg->fc_scope) && 1595 (!cfg->fc_protocol || 1596 fi->fib_protocol == cfg->fc_protocol) && 1597 fib_nh_match(cfg, fi) == 0) { 1598 fa_to_delete = fa; 1599 break; 1600 } 1601 } 1602 1603 if (!fa_to_delete) 1604 return -ESRCH; 1605 1606 fa = fa_to_delete; 1607 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1608 &cfg->fc_nlinfo); 1609 1610 l = fib_find_node(t, key); 1611 li = find_leaf_info(l, plen); 1612 1613 list_del_rcu(&fa->fa_list); 1614 1615 if (list_empty(fa_head)) { 1616 hlist_del_rcu(&li->hlist); 1617 free_leaf_info(li); 1618 } 1619 1620 if (hlist_empty(&l->list)) 1621 trie_leaf_remove(t, key); 1622 1623 if (fa->fa_state & FA_S_ACCESSED) 1624 rt_cache_flush(-1); 1625 1626 fib_release_info(fa->fa_info); 1627 alias_free_mem_rcu(fa); 1628 return 0; 1629 } 1630 1631 static int trie_flush_list(struct trie *t, struct list_head *head) 1632 { 1633 struct fib_alias *fa, *fa_node; 1634 int found = 0; 1635 1636 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1637 struct fib_info *fi = fa->fa_info; 1638 1639 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1640 list_del_rcu(&fa->fa_list); 1641 fib_release_info(fa->fa_info); 1642 alias_free_mem_rcu(fa); 1643 found++; 1644 } 1645 } 1646 return found; 1647 } 1648 1649 static int trie_flush_leaf(struct trie *t, struct leaf *l) 1650 { 1651 int found = 0; 1652 struct hlist_head *lih = &l->list; 1653 struct hlist_node *node, *tmp; 1654 struct leaf_info *li = NULL; 1655 1656 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1657 found += trie_flush_list(t, &li->falh); 1658 1659 if (list_empty(&li->falh)) { 1660 hlist_del_rcu(&li->hlist); 1661 free_leaf_info(li); 1662 } 1663 } 1664 return found; 1665 } 1666 1667 /* rcu_read_lock needs to be hold by caller from readside */ 1668 1669 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf) 1670 { 1671 struct node *c = (struct node *) thisleaf; 1672 struct tnode *p; 1673 int idx; 1674 struct node *trie = rcu_dereference(t->trie); 1675 1676 if (c == NULL) { 1677 if (trie == NULL) 1678 return NULL; 1679 1680 if (IS_LEAF(trie)) /* trie w. just a leaf */ 1681 return (struct leaf *) trie; 1682 1683 p = (struct tnode*) trie; /* Start */ 1684 } else 1685 p = (struct tnode *) NODE_PARENT(c); 1686 1687 while (p) { 1688 int pos, last; 1689 1690 /* Find the next child of the parent */ 1691 if (c) 1692 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits); 1693 else 1694 pos = 0; 1695 1696 last = 1 << p->bits; 1697 for (idx = pos; idx < last ; idx++) { 1698 c = rcu_dereference(p->child[idx]); 1699 1700 if (!c) 1701 continue; 1702 1703 /* Decend if tnode */ 1704 while (IS_TNODE(c)) { 1705 p = (struct tnode *) c; 1706 idx = 0; 1707 1708 /* Rightmost non-NULL branch */ 1709 if (p && IS_TNODE(p)) 1710 while (!(c = rcu_dereference(p->child[idx])) 1711 && idx < (1<<p->bits)) idx++; 1712 1713 /* Done with this tnode? */ 1714 if (idx >= (1 << p->bits) || !c) 1715 goto up; 1716 } 1717 return (struct leaf *) c; 1718 } 1719 up: 1720 /* No more children go up one step */ 1721 c = (struct node *) p; 1722 p = (struct tnode *) NODE_PARENT(p); 1723 } 1724 return NULL; /* Ready. Root of trie */ 1725 } 1726 1727 /* 1728 * Caller must hold RTNL. 1729 */ 1730 static int fn_trie_flush(struct fib_table *tb) 1731 { 1732 struct trie *t = (struct trie *) tb->tb_data; 1733 struct leaf *ll = NULL, *l = NULL; 1734 int found = 0, h; 1735 1736 t->revision++; 1737 1738 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) { 1739 found += trie_flush_leaf(t, l); 1740 1741 if (ll && hlist_empty(&ll->list)) 1742 trie_leaf_remove(t, ll->key); 1743 ll = l; 1744 } 1745 1746 if (ll && hlist_empty(&ll->list)) 1747 trie_leaf_remove(t, ll->key); 1748 1749 pr_debug("trie_flush found=%d\n", found); 1750 return found; 1751 } 1752 1753 static int trie_last_dflt = -1; 1754 1755 static void 1756 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) 1757 { 1758 struct trie *t = (struct trie *) tb->tb_data; 1759 int order, last_idx; 1760 struct fib_info *fi = NULL; 1761 struct fib_info *last_resort; 1762 struct fib_alias *fa = NULL; 1763 struct list_head *fa_head; 1764 struct leaf *l; 1765 1766 last_idx = -1; 1767 last_resort = NULL; 1768 order = -1; 1769 1770 rcu_read_lock(); 1771 1772 l = fib_find_node(t, 0); 1773 if (!l) 1774 goto out; 1775 1776 fa_head = get_fa_head(l, 0); 1777 if (!fa_head) 1778 goto out; 1779 1780 if (list_empty(fa_head)) 1781 goto out; 1782 1783 list_for_each_entry_rcu(fa, fa_head, fa_list) { 1784 struct fib_info *next_fi = fa->fa_info; 1785 1786 if (fa->fa_scope != res->scope || 1787 fa->fa_type != RTN_UNICAST) 1788 continue; 1789 1790 if (next_fi->fib_priority > res->fi->fib_priority) 1791 break; 1792 if (!next_fi->fib_nh[0].nh_gw || 1793 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) 1794 continue; 1795 fa->fa_state |= FA_S_ACCESSED; 1796 1797 if (fi == NULL) { 1798 if (next_fi != res->fi) 1799 break; 1800 } else if (!fib_detect_death(fi, order, &last_resort, 1801 &last_idx, &trie_last_dflt)) { 1802 if (res->fi) 1803 fib_info_put(res->fi); 1804 res->fi = fi; 1805 atomic_inc(&fi->fib_clntref); 1806 trie_last_dflt = order; 1807 goto out; 1808 } 1809 fi = next_fi; 1810 order++; 1811 } 1812 if (order <= 0 || fi == NULL) { 1813 trie_last_dflt = -1; 1814 goto out; 1815 } 1816 1817 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) { 1818 if (res->fi) 1819 fib_info_put(res->fi); 1820 res->fi = fi; 1821 atomic_inc(&fi->fib_clntref); 1822 trie_last_dflt = order; 1823 goto out; 1824 } 1825 if (last_idx >= 0) { 1826 if (res->fi) 1827 fib_info_put(res->fi); 1828 res->fi = last_resort; 1829 if (last_resort) 1830 atomic_inc(&last_resort->fib_clntref); 1831 } 1832 trie_last_dflt = last_idx; 1833 out:; 1834 rcu_read_unlock(); 1835 } 1836 1837 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, 1838 struct sk_buff *skb, struct netlink_callback *cb) 1839 { 1840 int i, s_i; 1841 struct fib_alias *fa; 1842 1843 __be32 xkey = htonl(key); 1844 1845 s_i = cb->args[4]; 1846 i = 0; 1847 1848 /* rcu_read_lock is hold by caller */ 1849 1850 list_for_each_entry_rcu(fa, fah, fa_list) { 1851 if (i < s_i) { 1852 i++; 1853 continue; 1854 } 1855 BUG_ON(!fa->fa_info); 1856 1857 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1858 cb->nlh->nlmsg_seq, 1859 RTM_NEWROUTE, 1860 tb->tb_id, 1861 fa->fa_type, 1862 fa->fa_scope, 1863 xkey, 1864 plen, 1865 fa->fa_tos, 1866 fa->fa_info, 0) < 0) { 1867 cb->args[4] = i; 1868 return -1; 1869 } 1870 i++; 1871 } 1872 cb->args[4] = i; 1873 return skb->len; 1874 } 1875 1876 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb, 1877 struct netlink_callback *cb) 1878 { 1879 int h, s_h; 1880 struct list_head *fa_head; 1881 struct leaf *l = NULL; 1882 1883 s_h = cb->args[3]; 1884 1885 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) { 1886 if (h < s_h) 1887 continue; 1888 if (h > s_h) 1889 memset(&cb->args[4], 0, 1890 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1891 1892 fa_head = get_fa_head(l, plen); 1893 1894 if (!fa_head) 1895 continue; 1896 1897 if (list_empty(fa_head)) 1898 continue; 1899 1900 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) { 1901 cb->args[3] = h; 1902 return -1; 1903 } 1904 } 1905 cb->args[3] = h; 1906 return skb->len; 1907 } 1908 1909 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) 1910 { 1911 int m, s_m; 1912 struct trie *t = (struct trie *) tb->tb_data; 1913 1914 s_m = cb->args[2]; 1915 1916 rcu_read_lock(); 1917 for (m = 0; m <= 32; m++) { 1918 if (m < s_m) 1919 continue; 1920 if (m > s_m) 1921 memset(&cb->args[3], 0, 1922 sizeof(cb->args) - 3*sizeof(cb->args[0])); 1923 1924 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) { 1925 cb->args[2] = m; 1926 goto out; 1927 } 1928 } 1929 rcu_read_unlock(); 1930 cb->args[2] = m; 1931 return skb->len; 1932 out: 1933 rcu_read_unlock(); 1934 return -1; 1935 } 1936 1937 /* Fix more generic FIB names for init later */ 1938 1939 #ifdef CONFIG_IP_MULTIPLE_TABLES 1940 struct fib_table * fib_hash_init(u32 id) 1941 #else 1942 struct fib_table * __init fib_hash_init(u32 id) 1943 #endif 1944 { 1945 struct fib_table *tb; 1946 struct trie *t; 1947 1948 if (fn_alias_kmem == NULL) 1949 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1950 sizeof(struct fib_alias), 1951 0, SLAB_HWCACHE_ALIGN, 1952 NULL, NULL); 1953 1954 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1955 GFP_KERNEL); 1956 if (tb == NULL) 1957 return NULL; 1958 1959 tb->tb_id = id; 1960 tb->tb_lookup = fn_trie_lookup; 1961 tb->tb_insert = fn_trie_insert; 1962 tb->tb_delete = fn_trie_delete; 1963 tb->tb_flush = fn_trie_flush; 1964 tb->tb_select_default = fn_trie_select_default; 1965 tb->tb_dump = fn_trie_dump; 1966 memset(tb->tb_data, 0, sizeof(struct trie)); 1967 1968 t = (struct trie *) tb->tb_data; 1969 1970 trie_init(t); 1971 1972 if (id == RT_TABLE_LOCAL) 1973 trie_local = t; 1974 else if (id == RT_TABLE_MAIN) 1975 trie_main = t; 1976 1977 if (id == RT_TABLE_LOCAL) 1978 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION); 1979 1980 return tb; 1981 } 1982 1983 #ifdef CONFIG_PROC_FS 1984 /* Depth first Trie walk iterator */ 1985 struct fib_trie_iter { 1986 struct tnode *tnode; 1987 struct trie *trie; 1988 unsigned index; 1989 unsigned depth; 1990 }; 1991 1992 static struct node *fib_trie_get_next(struct fib_trie_iter *iter) 1993 { 1994 struct tnode *tn = iter->tnode; 1995 unsigned cindex = iter->index; 1996 struct tnode *p; 1997 1998 /* A single entry routing table */ 1999 if (!tn) 2000 return NULL; 2001 2002 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2003 iter->tnode, iter->index, iter->depth); 2004 rescan: 2005 while (cindex < (1<<tn->bits)) { 2006 struct node *n = tnode_get_child(tn, cindex); 2007 2008 if (n) { 2009 if (IS_LEAF(n)) { 2010 iter->tnode = tn; 2011 iter->index = cindex + 1; 2012 } else { 2013 /* push down one level */ 2014 iter->tnode = (struct tnode *) n; 2015 iter->index = 0; 2016 ++iter->depth; 2017 } 2018 return n; 2019 } 2020 2021 ++cindex; 2022 } 2023 2024 /* Current node exhausted, pop back up */ 2025 p = NODE_PARENT(tn); 2026 if (p) { 2027 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2028 tn = p; 2029 --iter->depth; 2030 goto rescan; 2031 } 2032 2033 /* got root? */ 2034 return NULL; 2035 } 2036 2037 static struct node *fib_trie_get_first(struct fib_trie_iter *iter, 2038 struct trie *t) 2039 { 2040 struct node *n ; 2041 2042 if(!t) 2043 return NULL; 2044 2045 n = rcu_dereference(t->trie); 2046 2047 if(!iter) 2048 return NULL; 2049 2050 if (n) { 2051 if (IS_TNODE(n)) { 2052 iter->tnode = (struct tnode *) n; 2053 iter->trie = t; 2054 iter->index = 0; 2055 iter->depth = 1; 2056 } else { 2057 iter->tnode = NULL; 2058 iter->trie = t; 2059 iter->index = 0; 2060 iter->depth = 0; 2061 } 2062 return n; 2063 } 2064 return NULL; 2065 } 2066 2067 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2068 { 2069 struct node *n; 2070 struct fib_trie_iter iter; 2071 2072 memset(s, 0, sizeof(*s)); 2073 2074 rcu_read_lock(); 2075 for (n = fib_trie_get_first(&iter, t); n; 2076 n = fib_trie_get_next(&iter)) { 2077 if (IS_LEAF(n)) { 2078 s->leaves++; 2079 s->totdepth += iter.depth; 2080 if (iter.depth > s->maxdepth) 2081 s->maxdepth = iter.depth; 2082 } else { 2083 const struct tnode *tn = (const struct tnode *) n; 2084 int i; 2085 2086 s->tnodes++; 2087 if(tn->bits < MAX_STAT_DEPTH) 2088 s->nodesizes[tn->bits]++; 2089 2090 for (i = 0; i < (1<<tn->bits); i++) 2091 if (!tn->child[i]) 2092 s->nullpointers++; 2093 } 2094 } 2095 rcu_read_unlock(); 2096 } 2097 2098 /* 2099 * This outputs /proc/net/fib_triestats 2100 */ 2101 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2102 { 2103 unsigned i, max, pointers, bytes, avdepth; 2104 2105 if (stat->leaves) 2106 avdepth = stat->totdepth*100 / stat->leaves; 2107 else 2108 avdepth = 0; 2109 2110 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 ); 2111 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2112 2113 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2114 2115 bytes = sizeof(struct leaf) * stat->leaves; 2116 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes); 2117 bytes += sizeof(struct tnode) * stat->tnodes; 2118 2119 max = MAX_STAT_DEPTH; 2120 while (max > 0 && stat->nodesizes[max-1] == 0) 2121 max--; 2122 2123 pointers = 0; 2124 for (i = 1; i <= max; i++) 2125 if (stat->nodesizes[i] != 0) { 2126 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]); 2127 pointers += (1<<i) * stat->nodesizes[i]; 2128 } 2129 seq_putc(seq, '\n'); 2130 seq_printf(seq, "\tPointers: %d\n", pointers); 2131 2132 bytes += sizeof(struct node *) * pointers; 2133 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers); 2134 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024); 2135 2136 #ifdef CONFIG_IP_FIB_TRIE_STATS 2137 seq_printf(seq, "Counters:\n---------\n"); 2138 seq_printf(seq,"gets = %d\n", t->stats.gets); 2139 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack); 2140 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed); 2141 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss); 2142 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit); 2143 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped); 2144 #ifdef CLEAR_STATS 2145 memset(&(t->stats), 0, sizeof(t->stats)); 2146 #endif 2147 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2148 } 2149 2150 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2151 { 2152 struct trie_stat *stat; 2153 2154 stat = kmalloc(sizeof(*stat), GFP_KERNEL); 2155 if (!stat) 2156 return -ENOMEM; 2157 2158 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n", 2159 sizeof(struct leaf), sizeof(struct tnode)); 2160 2161 if (trie_local) { 2162 seq_printf(seq, "Local:\n"); 2163 trie_collect_stats(trie_local, stat); 2164 trie_show_stats(seq, stat); 2165 } 2166 2167 if (trie_main) { 2168 seq_printf(seq, "Main:\n"); 2169 trie_collect_stats(trie_main, stat); 2170 trie_show_stats(seq, stat); 2171 } 2172 kfree(stat); 2173 2174 return 0; 2175 } 2176 2177 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2178 { 2179 return single_open(file, fib_triestat_seq_show, NULL); 2180 } 2181 2182 static const struct file_operations fib_triestat_fops = { 2183 .owner = THIS_MODULE, 2184 .open = fib_triestat_seq_open, 2185 .read = seq_read, 2186 .llseek = seq_lseek, 2187 .release = single_release, 2188 }; 2189 2190 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter, 2191 loff_t pos) 2192 { 2193 loff_t idx = 0; 2194 struct node *n; 2195 2196 for (n = fib_trie_get_first(iter, trie_local); 2197 n; ++idx, n = fib_trie_get_next(iter)) { 2198 if (pos == idx) 2199 return n; 2200 } 2201 2202 for (n = fib_trie_get_first(iter, trie_main); 2203 n; ++idx, n = fib_trie_get_next(iter)) { 2204 if (pos == idx) 2205 return n; 2206 } 2207 return NULL; 2208 } 2209 2210 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2211 { 2212 rcu_read_lock(); 2213 if (*pos == 0) 2214 return SEQ_START_TOKEN; 2215 return fib_trie_get_idx(seq->private, *pos - 1); 2216 } 2217 2218 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2219 { 2220 struct fib_trie_iter *iter = seq->private; 2221 void *l = v; 2222 2223 ++*pos; 2224 if (v == SEQ_START_TOKEN) 2225 return fib_trie_get_idx(iter, 0); 2226 2227 v = fib_trie_get_next(iter); 2228 BUG_ON(v == l); 2229 if (v) 2230 return v; 2231 2232 /* continue scan in next trie */ 2233 if (iter->trie == trie_local) 2234 return fib_trie_get_first(iter, trie_main); 2235 2236 return NULL; 2237 } 2238 2239 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2240 { 2241 rcu_read_unlock(); 2242 } 2243 2244 static void seq_indent(struct seq_file *seq, int n) 2245 { 2246 while (n-- > 0) seq_puts(seq, " "); 2247 } 2248 2249 static inline const char *rtn_scope(enum rt_scope_t s) 2250 { 2251 static char buf[32]; 2252 2253 switch(s) { 2254 case RT_SCOPE_UNIVERSE: return "universe"; 2255 case RT_SCOPE_SITE: return "site"; 2256 case RT_SCOPE_LINK: return "link"; 2257 case RT_SCOPE_HOST: return "host"; 2258 case RT_SCOPE_NOWHERE: return "nowhere"; 2259 default: 2260 snprintf(buf, sizeof(buf), "scope=%d", s); 2261 return buf; 2262 } 2263 } 2264 2265 static const char *rtn_type_names[__RTN_MAX] = { 2266 [RTN_UNSPEC] = "UNSPEC", 2267 [RTN_UNICAST] = "UNICAST", 2268 [RTN_LOCAL] = "LOCAL", 2269 [RTN_BROADCAST] = "BROADCAST", 2270 [RTN_ANYCAST] = "ANYCAST", 2271 [RTN_MULTICAST] = "MULTICAST", 2272 [RTN_BLACKHOLE] = "BLACKHOLE", 2273 [RTN_UNREACHABLE] = "UNREACHABLE", 2274 [RTN_PROHIBIT] = "PROHIBIT", 2275 [RTN_THROW] = "THROW", 2276 [RTN_NAT] = "NAT", 2277 [RTN_XRESOLVE] = "XRESOLVE", 2278 }; 2279 2280 static inline const char *rtn_type(unsigned t) 2281 { 2282 static char buf[32]; 2283 2284 if (t < __RTN_MAX && rtn_type_names[t]) 2285 return rtn_type_names[t]; 2286 snprintf(buf, sizeof(buf), "type %d", t); 2287 return buf; 2288 } 2289 2290 /* Pretty print the trie */ 2291 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2292 { 2293 const struct fib_trie_iter *iter = seq->private; 2294 struct node *n = v; 2295 2296 if (v == SEQ_START_TOKEN) 2297 return 0; 2298 2299 if (!NODE_PARENT(n)) { 2300 if (iter->trie == trie_local) 2301 seq_puts(seq, "<local>:\n"); 2302 else 2303 seq_puts(seq, "<main>:\n"); 2304 } 2305 2306 if (IS_TNODE(n)) { 2307 struct tnode *tn = (struct tnode *) n; 2308 __be32 prf = htonl(MASK_PFX(tn->key, tn->pos)); 2309 2310 seq_indent(seq, iter->depth-1); 2311 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n", 2312 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children, 2313 tn->empty_children); 2314 2315 } else { 2316 struct leaf *l = (struct leaf *) n; 2317 int i; 2318 __be32 val = htonl(l->key); 2319 2320 seq_indent(seq, iter->depth); 2321 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val)); 2322 for (i = 32; i >= 0; i--) { 2323 struct leaf_info *li = find_leaf_info(l, i); 2324 if (li) { 2325 struct fib_alias *fa; 2326 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2327 seq_indent(seq, iter->depth+1); 2328 seq_printf(seq, " /%d %s %s", i, 2329 rtn_scope(fa->fa_scope), 2330 rtn_type(fa->fa_type)); 2331 if (fa->fa_tos) 2332 seq_printf(seq, "tos =%d\n", 2333 fa->fa_tos); 2334 seq_putc(seq, '\n'); 2335 } 2336 } 2337 } 2338 } 2339 2340 return 0; 2341 } 2342 2343 static struct seq_operations fib_trie_seq_ops = { 2344 .start = fib_trie_seq_start, 2345 .next = fib_trie_seq_next, 2346 .stop = fib_trie_seq_stop, 2347 .show = fib_trie_seq_show, 2348 }; 2349 2350 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2351 { 2352 struct seq_file *seq; 2353 int rc = -ENOMEM; 2354 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL); 2355 2356 if (!s) 2357 goto out; 2358 2359 rc = seq_open(file, &fib_trie_seq_ops); 2360 if (rc) 2361 goto out_kfree; 2362 2363 seq = file->private_data; 2364 seq->private = s; 2365 memset(s, 0, sizeof(*s)); 2366 out: 2367 return rc; 2368 out_kfree: 2369 kfree(s); 2370 goto out; 2371 } 2372 2373 static const struct file_operations fib_trie_fops = { 2374 .owner = THIS_MODULE, 2375 .open = fib_trie_seq_open, 2376 .read = seq_read, 2377 .llseek = seq_lseek, 2378 .release = seq_release_private, 2379 }; 2380 2381 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2382 { 2383 static unsigned type2flags[RTN_MAX + 1] = { 2384 [7] = RTF_REJECT, [8] = RTF_REJECT, 2385 }; 2386 unsigned flags = type2flags[type]; 2387 2388 if (fi && fi->fib_nh->nh_gw) 2389 flags |= RTF_GATEWAY; 2390 if (mask == htonl(0xFFFFFFFF)) 2391 flags |= RTF_HOST; 2392 flags |= RTF_UP; 2393 return flags; 2394 } 2395 2396 /* 2397 * This outputs /proc/net/route. 2398 * The format of the file is not supposed to be changed 2399 * and needs to be same as fib_hash output to avoid breaking 2400 * legacy utilities 2401 */ 2402 static int fib_route_seq_show(struct seq_file *seq, void *v) 2403 { 2404 const struct fib_trie_iter *iter = seq->private; 2405 struct leaf *l = v; 2406 int i; 2407 char bf[128]; 2408 2409 if (v == SEQ_START_TOKEN) { 2410 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2411 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2412 "\tWindow\tIRTT"); 2413 return 0; 2414 } 2415 2416 if (iter->trie == trie_local) 2417 return 0; 2418 if (IS_TNODE(l)) 2419 return 0; 2420 2421 for (i=32; i>=0; i--) { 2422 struct leaf_info *li = find_leaf_info(l, i); 2423 struct fib_alias *fa; 2424 __be32 mask, prefix; 2425 2426 if (!li) 2427 continue; 2428 2429 mask = inet_make_mask(li->plen); 2430 prefix = htonl(l->key); 2431 2432 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2433 const struct fib_info *fi = fa->fa_info; 2434 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi); 2435 2436 if (fa->fa_type == RTN_BROADCAST 2437 || fa->fa_type == RTN_MULTICAST) 2438 continue; 2439 2440 if (fi) 2441 snprintf(bf, sizeof(bf), 2442 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u", 2443 fi->fib_dev ? fi->fib_dev->name : "*", 2444 prefix, 2445 fi->fib_nh->nh_gw, flags, 0, 0, 2446 fi->fib_priority, 2447 mask, 2448 (fi->fib_advmss ? fi->fib_advmss + 40 : 0), 2449 fi->fib_window, 2450 fi->fib_rtt >> 3); 2451 else 2452 snprintf(bf, sizeof(bf), 2453 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u", 2454 prefix, 0, flags, 0, 0, 0, 2455 mask, 0, 0, 0); 2456 2457 seq_printf(seq, "%-127s\n", bf); 2458 } 2459 } 2460 2461 return 0; 2462 } 2463 2464 static struct seq_operations fib_route_seq_ops = { 2465 .start = fib_trie_seq_start, 2466 .next = fib_trie_seq_next, 2467 .stop = fib_trie_seq_stop, 2468 .show = fib_route_seq_show, 2469 }; 2470 2471 static int fib_route_seq_open(struct inode *inode, struct file *file) 2472 { 2473 struct seq_file *seq; 2474 int rc = -ENOMEM; 2475 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL); 2476 2477 if (!s) 2478 goto out; 2479 2480 rc = seq_open(file, &fib_route_seq_ops); 2481 if (rc) 2482 goto out_kfree; 2483 2484 seq = file->private_data; 2485 seq->private = s; 2486 memset(s, 0, sizeof(*s)); 2487 out: 2488 return rc; 2489 out_kfree: 2490 kfree(s); 2491 goto out; 2492 } 2493 2494 static const struct file_operations fib_route_fops = { 2495 .owner = THIS_MODULE, 2496 .open = fib_route_seq_open, 2497 .read = seq_read, 2498 .llseek = seq_lseek, 2499 .release = seq_release_private, 2500 }; 2501 2502 int __init fib_proc_init(void) 2503 { 2504 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops)) 2505 goto out1; 2506 2507 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops)) 2508 goto out2; 2509 2510 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops)) 2511 goto out3; 2512 2513 return 0; 2514 2515 out3: 2516 proc_net_remove("fib_triestat"); 2517 out2: 2518 proc_net_remove("fib_trie"); 2519 out1: 2520 return -ENOMEM; 2521 } 2522 2523 void __init fib_proc_exit(void) 2524 { 2525 proc_net_remove("fib_trie"); 2526 proc_net_remove("fib_triestat"); 2527 proc_net_remove("route"); 2528 } 2529 2530 #endif /* CONFIG_PROC_FS */ 2531