1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 39 #define VERSION "0.409" 40 41 #include <linux/cache.h> 42 #include <linux/uaccess.h> 43 #include <linux/bitops.h> 44 #include <linux/types.h> 45 #include <linux/kernel.h> 46 #include <linux/mm.h> 47 #include <linux/string.h> 48 #include <linux/socket.h> 49 #include <linux/sockios.h> 50 #include <linux/errno.h> 51 #include <linux/in.h> 52 #include <linux/inet.h> 53 #include <linux/inetdevice.h> 54 #include <linux/netdevice.h> 55 #include <linux/if_arp.h> 56 #include <linux/proc_fs.h> 57 #include <linux/rcupdate.h> 58 #include <linux/skbuff.h> 59 #include <linux/netlink.h> 60 #include <linux/init.h> 61 #include <linux/list.h> 62 #include <linux/slab.h> 63 #include <linux/export.h> 64 #include <linux/vmalloc.h> 65 #include <linux/notifier.h> 66 #include <net/net_namespace.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/tcp.h> 71 #include <net/sock.h> 72 #include <net/ip_fib.h> 73 #include <net/fib_notifier.h> 74 #include <trace/events/fib.h> 75 #include "fib_lookup.h" 76 77 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 78 enum fib_event_type event_type, u32 dst, 79 int dst_len, struct fib_alias *fa) 80 { 81 struct fib_entry_notifier_info info = { 82 .dst = dst, 83 .dst_len = dst_len, 84 .fi = fa->fa_info, 85 .tos = fa->fa_tos, 86 .type = fa->fa_type, 87 .tb_id = fa->tb_id, 88 }; 89 return call_fib4_notifier(nb, net, event_type, &info.info); 90 } 91 92 static int call_fib_entry_notifiers(struct net *net, 93 enum fib_event_type event_type, u32 dst, 94 int dst_len, struct fib_alias *fa, 95 struct netlink_ext_ack *extack) 96 { 97 struct fib_entry_notifier_info info = { 98 .info.extack = extack, 99 .dst = dst, 100 .dst_len = dst_len, 101 .fi = fa->fa_info, 102 .tos = fa->fa_tos, 103 .type = fa->fa_type, 104 .tb_id = fa->tb_id, 105 }; 106 return call_fib4_notifiers(net, event_type, &info.info); 107 } 108 109 #define MAX_STAT_DEPTH 32 110 111 #define KEYLENGTH (8*sizeof(t_key)) 112 #define KEY_MAX ((t_key)~0) 113 114 typedef unsigned int t_key; 115 116 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 117 #define IS_TNODE(n) ((n)->bits) 118 #define IS_LEAF(n) (!(n)->bits) 119 120 struct key_vector { 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned char slen; 125 union { 126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 127 struct hlist_head leaf; 128 /* This array is valid if (pos | bits) > 0 (TNODE) */ 129 struct key_vector __rcu *tnode[0]; 130 }; 131 }; 132 133 struct tnode { 134 struct rcu_head rcu; 135 t_key empty_children; /* KEYLENGTH bits needed */ 136 t_key full_children; /* KEYLENGTH bits needed */ 137 struct key_vector __rcu *parent; 138 struct key_vector kv[1]; 139 #define tn_bits kv[0].bits 140 }; 141 142 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 143 #define LEAF_SIZE TNODE_SIZE(1) 144 145 #ifdef CONFIG_IP_FIB_TRIE_STATS 146 struct trie_use_stats { 147 unsigned int gets; 148 unsigned int backtrack; 149 unsigned int semantic_match_passed; 150 unsigned int semantic_match_miss; 151 unsigned int null_node_hit; 152 unsigned int resize_node_skipped; 153 }; 154 #endif 155 156 struct trie_stat { 157 unsigned int totdepth; 158 unsigned int maxdepth; 159 unsigned int tnodes; 160 unsigned int leaves; 161 unsigned int nullpointers; 162 unsigned int prefixes; 163 unsigned int nodesizes[MAX_STAT_DEPTH]; 164 }; 165 166 struct trie { 167 struct key_vector kv[1]; 168 #ifdef CONFIG_IP_FIB_TRIE_STATS 169 struct trie_use_stats __percpu *stats; 170 #endif 171 }; 172 173 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 174 static unsigned int tnode_free_size; 175 176 /* 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 178 * especially useful before resizing the root node with PREEMPT_NONE configs; 179 * the value was obtained experimentally, aiming to avoid visible slowdown. 180 */ 181 unsigned int sysctl_fib_sync_mem = 512 * 1024; 182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 184 185 static struct kmem_cache *fn_alias_kmem __ro_after_init; 186 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 187 188 static inline struct tnode *tn_info(struct key_vector *kv) 189 { 190 return container_of(kv, struct tnode, kv[0]); 191 } 192 193 /* caller must hold RTNL */ 194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 196 197 /* caller must hold RCU read lock or RTNL */ 198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 200 201 /* wrapper for rcu_assign_pointer */ 202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 203 { 204 if (n) 205 rcu_assign_pointer(tn_info(n)->parent, tp); 206 } 207 208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 209 210 /* This provides us with the number of children in this node, in the case of a 211 * leaf this will return 0 meaning none of the children are accessible. 212 */ 213 static inline unsigned long child_length(const struct key_vector *tn) 214 { 215 return (1ul << tn->bits) & ~(1ul); 216 } 217 218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 219 220 static inline unsigned long get_index(t_key key, struct key_vector *kv) 221 { 222 unsigned long index = key ^ kv->key; 223 224 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 225 return 0; 226 227 return index >> kv->pos; 228 } 229 230 /* To understand this stuff, an understanding of keys and all their bits is 231 * necessary. Every node in the trie has a key associated with it, but not 232 * all of the bits in that key are significant. 233 * 234 * Consider a node 'n' and its parent 'tp'. 235 * 236 * If n is a leaf, every bit in its key is significant. Its presence is 237 * necessitated by path compression, since during a tree traversal (when 238 * searching for a leaf - unless we are doing an insertion) we will completely 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 240 * a potentially successful search, that we have indeed been walking the 241 * correct key path. 242 * 243 * Note that we can never "miss" the correct key in the tree if present by 244 * following the wrong path. Path compression ensures that segments of the key 245 * that are the same for all keys with a given prefix are skipped, but the 246 * skipped part *is* identical for each node in the subtrie below the skipped 247 * bit! trie_insert() in this implementation takes care of that. 248 * 249 * if n is an internal node - a 'tnode' here, the various parts of its key 250 * have many different meanings. 251 * 252 * Example: 253 * _________________________________________________________________ 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 255 * ----------------------------------------------------------------- 256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 257 * 258 * _________________________________________________________________ 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 260 * ----------------------------------------------------------------- 261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 262 * 263 * tp->pos = 22 264 * tp->bits = 3 265 * n->pos = 13 266 * n->bits = 4 267 * 268 * First, let's just ignore the bits that come before the parent tp, that is 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 270 * point we do not use them for anything. 271 * 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 273 * index into the parent's child array. That is, they will be used to find 274 * 'n' among tp's children. 275 * 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 277 * for the node n. 278 * 279 * All the bits we have seen so far are significant to the node n. The rest 280 * of the bits are really not needed or indeed known in n->key. 281 * 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 283 * n's child array, and will of course be different for each child. 284 * 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 286 * at this point. 287 */ 288 289 static const int halve_threshold = 25; 290 static const int inflate_threshold = 50; 291 static const int halve_threshold_root = 15; 292 static const int inflate_threshold_root = 30; 293 294 static void __alias_free_mem(struct rcu_head *head) 295 { 296 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 297 kmem_cache_free(fn_alias_kmem, fa); 298 } 299 300 static inline void alias_free_mem_rcu(struct fib_alias *fa) 301 { 302 call_rcu(&fa->rcu, __alias_free_mem); 303 } 304 305 #define TNODE_KMALLOC_MAX \ 306 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 307 #define TNODE_VMALLOC_MAX \ 308 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 309 310 static void __node_free_rcu(struct rcu_head *head) 311 { 312 struct tnode *n = container_of(head, struct tnode, rcu); 313 314 if (!n->tn_bits) 315 kmem_cache_free(trie_leaf_kmem, n); 316 else 317 kvfree(n); 318 } 319 320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 321 322 static struct tnode *tnode_alloc(int bits) 323 { 324 size_t size; 325 326 /* verify bits is within bounds */ 327 if (bits > TNODE_VMALLOC_MAX) 328 return NULL; 329 330 /* determine size and verify it is non-zero and didn't overflow */ 331 size = TNODE_SIZE(1ul << bits); 332 333 if (size <= PAGE_SIZE) 334 return kzalloc(size, GFP_KERNEL); 335 else 336 return vzalloc(size); 337 } 338 339 static inline void empty_child_inc(struct key_vector *n) 340 { 341 tn_info(n)->empty_children++; 342 343 if (!tn_info(n)->empty_children) 344 tn_info(n)->full_children++; 345 } 346 347 static inline void empty_child_dec(struct key_vector *n) 348 { 349 if (!tn_info(n)->empty_children) 350 tn_info(n)->full_children--; 351 352 tn_info(n)->empty_children--; 353 } 354 355 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 356 { 357 struct key_vector *l; 358 struct tnode *kv; 359 360 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 361 if (!kv) 362 return NULL; 363 364 /* initialize key vector */ 365 l = kv->kv; 366 l->key = key; 367 l->pos = 0; 368 l->bits = 0; 369 l->slen = fa->fa_slen; 370 371 /* link leaf to fib alias */ 372 INIT_HLIST_HEAD(&l->leaf); 373 hlist_add_head(&fa->fa_list, &l->leaf); 374 375 return l; 376 } 377 378 static struct key_vector *tnode_new(t_key key, int pos, int bits) 379 { 380 unsigned int shift = pos + bits; 381 struct key_vector *tn; 382 struct tnode *tnode; 383 384 /* verify bits and pos their msb bits clear and values are valid */ 385 BUG_ON(!bits || (shift > KEYLENGTH)); 386 387 tnode = tnode_alloc(bits); 388 if (!tnode) 389 return NULL; 390 391 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 392 sizeof(struct key_vector *) << bits); 393 394 if (bits == KEYLENGTH) 395 tnode->full_children = 1; 396 else 397 tnode->empty_children = 1ul << bits; 398 399 tn = tnode->kv; 400 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 401 tn->pos = pos; 402 tn->bits = bits; 403 tn->slen = pos; 404 405 return tn; 406 } 407 408 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 409 * and no bits are skipped. See discussion in dyntree paper p. 6 410 */ 411 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 412 { 413 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 414 } 415 416 /* Add a child at position i overwriting the old value. 417 * Update the value of full_children and empty_children. 418 */ 419 static void put_child(struct key_vector *tn, unsigned long i, 420 struct key_vector *n) 421 { 422 struct key_vector *chi = get_child(tn, i); 423 int isfull, wasfull; 424 425 BUG_ON(i >= child_length(tn)); 426 427 /* update emptyChildren, overflow into fullChildren */ 428 if (!n && chi) 429 empty_child_inc(tn); 430 if (n && !chi) 431 empty_child_dec(tn); 432 433 /* update fullChildren */ 434 wasfull = tnode_full(tn, chi); 435 isfull = tnode_full(tn, n); 436 437 if (wasfull && !isfull) 438 tn_info(tn)->full_children--; 439 else if (!wasfull && isfull) 440 tn_info(tn)->full_children++; 441 442 if (n && (tn->slen < n->slen)) 443 tn->slen = n->slen; 444 445 rcu_assign_pointer(tn->tnode[i], n); 446 } 447 448 static void update_children(struct key_vector *tn) 449 { 450 unsigned long i; 451 452 /* update all of the child parent pointers */ 453 for (i = child_length(tn); i;) { 454 struct key_vector *inode = get_child(tn, --i); 455 456 if (!inode) 457 continue; 458 459 /* Either update the children of a tnode that 460 * already belongs to us or update the child 461 * to point to ourselves. 462 */ 463 if (node_parent(inode) == tn) 464 update_children(inode); 465 else 466 node_set_parent(inode, tn); 467 } 468 } 469 470 static inline void put_child_root(struct key_vector *tp, t_key key, 471 struct key_vector *n) 472 { 473 if (IS_TRIE(tp)) 474 rcu_assign_pointer(tp->tnode[0], n); 475 else 476 put_child(tp, get_index(key, tp), n); 477 } 478 479 static inline void tnode_free_init(struct key_vector *tn) 480 { 481 tn_info(tn)->rcu.next = NULL; 482 } 483 484 static inline void tnode_free_append(struct key_vector *tn, 485 struct key_vector *n) 486 { 487 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 488 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 489 } 490 491 static void tnode_free(struct key_vector *tn) 492 { 493 struct callback_head *head = &tn_info(tn)->rcu; 494 495 while (head) { 496 head = head->next; 497 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 498 node_free(tn); 499 500 tn = container_of(head, struct tnode, rcu)->kv; 501 } 502 503 if (tnode_free_size >= sysctl_fib_sync_mem) { 504 tnode_free_size = 0; 505 synchronize_rcu(); 506 } 507 } 508 509 static struct key_vector *replace(struct trie *t, 510 struct key_vector *oldtnode, 511 struct key_vector *tn) 512 { 513 struct key_vector *tp = node_parent(oldtnode); 514 unsigned long i; 515 516 /* setup the parent pointer out of and back into this node */ 517 NODE_INIT_PARENT(tn, tp); 518 put_child_root(tp, tn->key, tn); 519 520 /* update all of the child parent pointers */ 521 update_children(tn); 522 523 /* all pointers should be clean so we are done */ 524 tnode_free(oldtnode); 525 526 /* resize children now that oldtnode is freed */ 527 for (i = child_length(tn); i;) { 528 struct key_vector *inode = get_child(tn, --i); 529 530 /* resize child node */ 531 if (tnode_full(tn, inode)) 532 tn = resize(t, inode); 533 } 534 535 return tp; 536 } 537 538 static struct key_vector *inflate(struct trie *t, 539 struct key_vector *oldtnode) 540 { 541 struct key_vector *tn; 542 unsigned long i; 543 t_key m; 544 545 pr_debug("In inflate\n"); 546 547 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 548 if (!tn) 549 goto notnode; 550 551 /* prepare oldtnode to be freed */ 552 tnode_free_init(oldtnode); 553 554 /* Assemble all of the pointers in our cluster, in this case that 555 * represents all of the pointers out of our allocated nodes that 556 * point to existing tnodes and the links between our allocated 557 * nodes. 558 */ 559 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 560 struct key_vector *inode = get_child(oldtnode, --i); 561 struct key_vector *node0, *node1; 562 unsigned long j, k; 563 564 /* An empty child */ 565 if (!inode) 566 continue; 567 568 /* A leaf or an internal node with skipped bits */ 569 if (!tnode_full(oldtnode, inode)) { 570 put_child(tn, get_index(inode->key, tn), inode); 571 continue; 572 } 573 574 /* drop the node in the old tnode free list */ 575 tnode_free_append(oldtnode, inode); 576 577 /* An internal node with two children */ 578 if (inode->bits == 1) { 579 put_child(tn, 2 * i + 1, get_child(inode, 1)); 580 put_child(tn, 2 * i, get_child(inode, 0)); 581 continue; 582 } 583 584 /* We will replace this node 'inode' with two new 585 * ones, 'node0' and 'node1', each with half of the 586 * original children. The two new nodes will have 587 * a position one bit further down the key and this 588 * means that the "significant" part of their keys 589 * (see the discussion near the top of this file) 590 * will differ by one bit, which will be "0" in 591 * node0's key and "1" in node1's key. Since we are 592 * moving the key position by one step, the bit that 593 * we are moving away from - the bit at position 594 * (tn->pos) - is the one that will differ between 595 * node0 and node1. So... we synthesize that bit in the 596 * two new keys. 597 */ 598 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 599 if (!node1) 600 goto nomem; 601 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 602 603 tnode_free_append(tn, node1); 604 if (!node0) 605 goto nomem; 606 tnode_free_append(tn, node0); 607 608 /* populate child pointers in new nodes */ 609 for (k = child_length(inode), j = k / 2; j;) { 610 put_child(node1, --j, get_child(inode, --k)); 611 put_child(node0, j, get_child(inode, j)); 612 put_child(node1, --j, get_child(inode, --k)); 613 put_child(node0, j, get_child(inode, j)); 614 } 615 616 /* link new nodes to parent */ 617 NODE_INIT_PARENT(node1, tn); 618 NODE_INIT_PARENT(node0, tn); 619 620 /* link parent to nodes */ 621 put_child(tn, 2 * i + 1, node1); 622 put_child(tn, 2 * i, node0); 623 } 624 625 /* setup the parent pointers into and out of this node */ 626 return replace(t, oldtnode, tn); 627 nomem: 628 /* all pointers should be clean so we are done */ 629 tnode_free(tn); 630 notnode: 631 return NULL; 632 } 633 634 static struct key_vector *halve(struct trie *t, 635 struct key_vector *oldtnode) 636 { 637 struct key_vector *tn; 638 unsigned long i; 639 640 pr_debug("In halve\n"); 641 642 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 643 if (!tn) 644 goto notnode; 645 646 /* prepare oldtnode to be freed */ 647 tnode_free_init(oldtnode); 648 649 /* Assemble all of the pointers in our cluster, in this case that 650 * represents all of the pointers out of our allocated nodes that 651 * point to existing tnodes and the links between our allocated 652 * nodes. 653 */ 654 for (i = child_length(oldtnode); i;) { 655 struct key_vector *node1 = get_child(oldtnode, --i); 656 struct key_vector *node0 = get_child(oldtnode, --i); 657 struct key_vector *inode; 658 659 /* At least one of the children is empty */ 660 if (!node1 || !node0) { 661 put_child(tn, i / 2, node1 ? : node0); 662 continue; 663 } 664 665 /* Two nonempty children */ 666 inode = tnode_new(node0->key, oldtnode->pos, 1); 667 if (!inode) 668 goto nomem; 669 tnode_free_append(tn, inode); 670 671 /* initialize pointers out of node */ 672 put_child(inode, 1, node1); 673 put_child(inode, 0, node0); 674 NODE_INIT_PARENT(inode, tn); 675 676 /* link parent to node */ 677 put_child(tn, i / 2, inode); 678 } 679 680 /* setup the parent pointers into and out of this node */ 681 return replace(t, oldtnode, tn); 682 nomem: 683 /* all pointers should be clean so we are done */ 684 tnode_free(tn); 685 notnode: 686 return NULL; 687 } 688 689 static struct key_vector *collapse(struct trie *t, 690 struct key_vector *oldtnode) 691 { 692 struct key_vector *n, *tp; 693 unsigned long i; 694 695 /* scan the tnode looking for that one child that might still exist */ 696 for (n = NULL, i = child_length(oldtnode); !n && i;) 697 n = get_child(oldtnode, --i); 698 699 /* compress one level */ 700 tp = node_parent(oldtnode); 701 put_child_root(tp, oldtnode->key, n); 702 node_set_parent(n, tp); 703 704 /* drop dead node */ 705 node_free(oldtnode); 706 707 return tp; 708 } 709 710 static unsigned char update_suffix(struct key_vector *tn) 711 { 712 unsigned char slen = tn->pos; 713 unsigned long stride, i; 714 unsigned char slen_max; 715 716 /* only vector 0 can have a suffix length greater than or equal to 717 * tn->pos + tn->bits, the second highest node will have a suffix 718 * length at most of tn->pos + tn->bits - 1 719 */ 720 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 721 722 /* search though the list of children looking for nodes that might 723 * have a suffix greater than the one we currently have. This is 724 * why we start with a stride of 2 since a stride of 1 would 725 * represent the nodes with suffix length equal to tn->pos 726 */ 727 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 728 struct key_vector *n = get_child(tn, i); 729 730 if (!n || (n->slen <= slen)) 731 continue; 732 733 /* update stride and slen based on new value */ 734 stride <<= (n->slen - slen); 735 slen = n->slen; 736 i &= ~(stride - 1); 737 738 /* stop searching if we have hit the maximum possible value */ 739 if (slen >= slen_max) 740 break; 741 } 742 743 tn->slen = slen; 744 745 return slen; 746 } 747 748 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 749 * the Helsinki University of Technology and Matti Tikkanen of Nokia 750 * Telecommunications, page 6: 751 * "A node is doubled if the ratio of non-empty children to all 752 * children in the *doubled* node is at least 'high'." 753 * 754 * 'high' in this instance is the variable 'inflate_threshold'. It 755 * is expressed as a percentage, so we multiply it with 756 * child_length() and instead of multiplying by 2 (since the 757 * child array will be doubled by inflate()) and multiplying 758 * the left-hand side by 100 (to handle the percentage thing) we 759 * multiply the left-hand side by 50. 760 * 761 * The left-hand side may look a bit weird: child_length(tn) 762 * - tn->empty_children is of course the number of non-null children 763 * in the current node. tn->full_children is the number of "full" 764 * children, that is non-null tnodes with a skip value of 0. 765 * All of those will be doubled in the resulting inflated tnode, so 766 * we just count them one extra time here. 767 * 768 * A clearer way to write this would be: 769 * 770 * to_be_doubled = tn->full_children; 771 * not_to_be_doubled = child_length(tn) - tn->empty_children - 772 * tn->full_children; 773 * 774 * new_child_length = child_length(tn) * 2; 775 * 776 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 777 * new_child_length; 778 * if (new_fill_factor >= inflate_threshold) 779 * 780 * ...and so on, tho it would mess up the while () loop. 781 * 782 * anyway, 783 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 784 * inflate_threshold 785 * 786 * avoid a division: 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 788 * inflate_threshold * new_child_length 789 * 790 * expand not_to_be_doubled and to_be_doubled, and shorten: 791 * 100 * (child_length(tn) - tn->empty_children + 792 * tn->full_children) >= inflate_threshold * new_child_length 793 * 794 * expand new_child_length: 795 * 100 * (child_length(tn) - tn->empty_children + 796 * tn->full_children) >= 797 * inflate_threshold * child_length(tn) * 2 798 * 799 * shorten again: 800 * 50 * (tn->full_children + child_length(tn) - 801 * tn->empty_children) >= inflate_threshold * 802 * child_length(tn) 803 * 804 */ 805 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 806 { 807 unsigned long used = child_length(tn); 808 unsigned long threshold = used; 809 810 /* Keep root node larger */ 811 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 812 used -= tn_info(tn)->empty_children; 813 used += tn_info(tn)->full_children; 814 815 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 816 817 return (used > 1) && tn->pos && ((50 * used) >= threshold); 818 } 819 820 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 821 { 822 unsigned long used = child_length(tn); 823 unsigned long threshold = used; 824 825 /* Keep root node larger */ 826 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 827 used -= tn_info(tn)->empty_children; 828 829 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 830 831 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 832 } 833 834 static inline bool should_collapse(struct key_vector *tn) 835 { 836 unsigned long used = child_length(tn); 837 838 used -= tn_info(tn)->empty_children; 839 840 /* account for bits == KEYLENGTH case */ 841 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 842 used -= KEY_MAX; 843 844 /* One child or none, time to drop us from the trie */ 845 return used < 2; 846 } 847 848 #define MAX_WORK 10 849 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 850 { 851 #ifdef CONFIG_IP_FIB_TRIE_STATS 852 struct trie_use_stats __percpu *stats = t->stats; 853 #endif 854 struct key_vector *tp = node_parent(tn); 855 unsigned long cindex = get_index(tn->key, tp); 856 int max_work = MAX_WORK; 857 858 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 859 tn, inflate_threshold, halve_threshold); 860 861 /* track the tnode via the pointer from the parent instead of 862 * doing it ourselves. This way we can let RCU fully do its 863 * thing without us interfering 864 */ 865 BUG_ON(tn != get_child(tp, cindex)); 866 867 /* Double as long as the resulting node has a number of 868 * nonempty nodes that are above the threshold. 869 */ 870 while (should_inflate(tp, tn) && max_work) { 871 tp = inflate(t, tn); 872 if (!tp) { 873 #ifdef CONFIG_IP_FIB_TRIE_STATS 874 this_cpu_inc(stats->resize_node_skipped); 875 #endif 876 break; 877 } 878 879 max_work--; 880 tn = get_child(tp, cindex); 881 } 882 883 /* update parent in case inflate failed */ 884 tp = node_parent(tn); 885 886 /* Return if at least one inflate is run */ 887 if (max_work != MAX_WORK) 888 return tp; 889 890 /* Halve as long as the number of empty children in this 891 * node is above threshold. 892 */ 893 while (should_halve(tp, tn) && max_work) { 894 tp = halve(t, tn); 895 if (!tp) { 896 #ifdef CONFIG_IP_FIB_TRIE_STATS 897 this_cpu_inc(stats->resize_node_skipped); 898 #endif 899 break; 900 } 901 902 max_work--; 903 tn = get_child(tp, cindex); 904 } 905 906 /* Only one child remains */ 907 if (should_collapse(tn)) 908 return collapse(t, tn); 909 910 /* update parent in case halve failed */ 911 return node_parent(tn); 912 } 913 914 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 915 { 916 unsigned char node_slen = tn->slen; 917 918 while ((node_slen > tn->pos) && (node_slen > slen)) { 919 slen = update_suffix(tn); 920 if (node_slen == slen) 921 break; 922 923 tn = node_parent(tn); 924 node_slen = tn->slen; 925 } 926 } 927 928 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 929 { 930 while (tn->slen < slen) { 931 tn->slen = slen; 932 tn = node_parent(tn); 933 } 934 } 935 936 /* rcu_read_lock needs to be hold by caller from readside */ 937 static struct key_vector *fib_find_node(struct trie *t, 938 struct key_vector **tp, u32 key) 939 { 940 struct key_vector *pn, *n = t->kv; 941 unsigned long index = 0; 942 943 do { 944 pn = n; 945 n = get_child_rcu(n, index); 946 947 if (!n) 948 break; 949 950 index = get_cindex(key, n); 951 952 /* This bit of code is a bit tricky but it combines multiple 953 * checks into a single check. The prefix consists of the 954 * prefix plus zeros for the bits in the cindex. The index 955 * is the difference between the key and this value. From 956 * this we can actually derive several pieces of data. 957 * if (index >= (1ul << bits)) 958 * we have a mismatch in skip bits and failed 959 * else 960 * we know the value is cindex 961 * 962 * This check is safe even if bits == KEYLENGTH due to the 963 * fact that we can only allocate a node with 32 bits if a 964 * long is greater than 32 bits. 965 */ 966 if (index >= (1ul << n->bits)) { 967 n = NULL; 968 break; 969 } 970 971 /* keep searching until we find a perfect match leaf or NULL */ 972 } while (IS_TNODE(n)); 973 974 *tp = pn; 975 976 return n; 977 } 978 979 /* Return the first fib alias matching TOS with 980 * priority less than or equal to PRIO. 981 */ 982 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 983 u8 tos, u32 prio, u32 tb_id) 984 { 985 struct fib_alias *fa; 986 987 if (!fah) 988 return NULL; 989 990 hlist_for_each_entry(fa, fah, fa_list) { 991 if (fa->fa_slen < slen) 992 continue; 993 if (fa->fa_slen != slen) 994 break; 995 if (fa->tb_id > tb_id) 996 continue; 997 if (fa->tb_id != tb_id) 998 break; 999 if (fa->fa_tos > tos) 1000 continue; 1001 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1002 return fa; 1003 } 1004 1005 return NULL; 1006 } 1007 1008 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1009 { 1010 while (!IS_TRIE(tn)) 1011 tn = resize(t, tn); 1012 } 1013 1014 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1015 struct fib_alias *new, t_key key) 1016 { 1017 struct key_vector *n, *l; 1018 1019 l = leaf_new(key, new); 1020 if (!l) 1021 goto noleaf; 1022 1023 /* retrieve child from parent node */ 1024 n = get_child(tp, get_index(key, tp)); 1025 1026 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1027 * 1028 * Add a new tnode here 1029 * first tnode need some special handling 1030 * leaves us in position for handling as case 3 1031 */ 1032 if (n) { 1033 struct key_vector *tn; 1034 1035 tn = tnode_new(key, __fls(key ^ n->key), 1); 1036 if (!tn) 1037 goto notnode; 1038 1039 /* initialize routes out of node */ 1040 NODE_INIT_PARENT(tn, tp); 1041 put_child(tn, get_index(key, tn) ^ 1, n); 1042 1043 /* start adding routes into the node */ 1044 put_child_root(tp, key, tn); 1045 node_set_parent(n, tn); 1046 1047 /* parent now has a NULL spot where the leaf can go */ 1048 tp = tn; 1049 } 1050 1051 /* Case 3: n is NULL, and will just insert a new leaf */ 1052 node_push_suffix(tp, new->fa_slen); 1053 NODE_INIT_PARENT(l, tp); 1054 put_child_root(tp, key, l); 1055 trie_rebalance(t, tp); 1056 1057 return 0; 1058 notnode: 1059 node_free(l); 1060 noleaf: 1061 return -ENOMEM; 1062 } 1063 1064 /* fib notifier for ADD is sent before calling fib_insert_alias with 1065 * the expectation that the only possible failure ENOMEM 1066 */ 1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1068 struct key_vector *l, struct fib_alias *new, 1069 struct fib_alias *fa, t_key key) 1070 { 1071 if (!l) 1072 return fib_insert_node(t, tp, new, key); 1073 1074 if (fa) { 1075 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1076 } else { 1077 struct fib_alias *last; 1078 1079 hlist_for_each_entry(last, &l->leaf, fa_list) { 1080 if (new->fa_slen < last->fa_slen) 1081 break; 1082 if ((new->fa_slen == last->fa_slen) && 1083 (new->tb_id > last->tb_id)) 1084 break; 1085 fa = last; 1086 } 1087 1088 if (fa) 1089 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1090 else 1091 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1092 } 1093 1094 /* if we added to the tail node then we need to update slen */ 1095 if (l->slen < new->fa_slen) { 1096 l->slen = new->fa_slen; 1097 node_push_suffix(tp, new->fa_slen); 1098 } 1099 1100 return 0; 1101 } 1102 1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1104 { 1105 if (plen > KEYLENGTH) { 1106 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1107 return false; 1108 } 1109 1110 if ((plen < KEYLENGTH) && (key << plen)) { 1111 NL_SET_ERR_MSG(extack, 1112 "Invalid prefix for given prefix length"); 1113 return false; 1114 } 1115 1116 return true; 1117 } 1118 1119 /* Caller must hold RTNL. */ 1120 int fib_table_insert(struct net *net, struct fib_table *tb, 1121 struct fib_config *cfg, struct netlink_ext_ack *extack) 1122 { 1123 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1124 struct trie *t = (struct trie *)tb->tb_data; 1125 struct fib_alias *fa, *new_fa; 1126 struct key_vector *l, *tp; 1127 u16 nlflags = NLM_F_EXCL; 1128 struct fib_info *fi; 1129 u8 plen = cfg->fc_dst_len; 1130 u8 slen = KEYLENGTH - plen; 1131 u8 tos = cfg->fc_tos; 1132 u32 key; 1133 int err; 1134 1135 key = ntohl(cfg->fc_dst); 1136 1137 if (!fib_valid_key_len(key, plen, extack)) 1138 return -EINVAL; 1139 1140 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1141 1142 fi = fib_create_info(cfg, extack); 1143 if (IS_ERR(fi)) { 1144 err = PTR_ERR(fi); 1145 goto err; 1146 } 1147 1148 l = fib_find_node(t, &tp, key); 1149 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1150 tb->tb_id) : NULL; 1151 1152 /* Now fa, if non-NULL, points to the first fib alias 1153 * with the same keys [prefix,tos,priority], if such key already 1154 * exists or to the node before which we will insert new one. 1155 * 1156 * If fa is NULL, we will need to allocate a new one and 1157 * insert to the tail of the section matching the suffix length 1158 * of the new alias. 1159 */ 1160 1161 if (fa && fa->fa_tos == tos && 1162 fa->fa_info->fib_priority == fi->fib_priority) { 1163 struct fib_alias *fa_first, *fa_match; 1164 1165 err = -EEXIST; 1166 if (cfg->fc_nlflags & NLM_F_EXCL) 1167 goto out; 1168 1169 nlflags &= ~NLM_F_EXCL; 1170 1171 /* We have 2 goals: 1172 * 1. Find exact match for type, scope, fib_info to avoid 1173 * duplicate routes 1174 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1175 */ 1176 fa_match = NULL; 1177 fa_first = fa; 1178 hlist_for_each_entry_from(fa, fa_list) { 1179 if ((fa->fa_slen != slen) || 1180 (fa->tb_id != tb->tb_id) || 1181 (fa->fa_tos != tos)) 1182 break; 1183 if (fa->fa_info->fib_priority != fi->fib_priority) 1184 break; 1185 if (fa->fa_type == cfg->fc_type && 1186 fa->fa_info == fi) { 1187 fa_match = fa; 1188 break; 1189 } 1190 } 1191 1192 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1193 struct fib_info *fi_drop; 1194 u8 state; 1195 1196 nlflags |= NLM_F_REPLACE; 1197 fa = fa_first; 1198 if (fa_match) { 1199 if (fa == fa_match) 1200 err = 0; 1201 goto out; 1202 } 1203 err = -ENOBUFS; 1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1205 if (!new_fa) 1206 goto out; 1207 1208 fi_drop = fa->fa_info; 1209 new_fa->fa_tos = fa->fa_tos; 1210 new_fa->fa_info = fi; 1211 new_fa->fa_type = cfg->fc_type; 1212 state = fa->fa_state; 1213 new_fa->fa_state = state & ~FA_S_ACCESSED; 1214 new_fa->fa_slen = fa->fa_slen; 1215 new_fa->tb_id = tb->tb_id; 1216 new_fa->fa_default = -1; 1217 1218 err = call_fib_entry_notifiers(net, 1219 FIB_EVENT_ENTRY_REPLACE, 1220 key, plen, new_fa, 1221 extack); 1222 if (err) 1223 goto out_free_new_fa; 1224 1225 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1226 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1227 1228 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1229 1230 alias_free_mem_rcu(fa); 1231 1232 fib_release_info(fi_drop); 1233 if (state & FA_S_ACCESSED) 1234 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1235 1236 goto succeeded; 1237 } 1238 /* Error if we find a perfect match which 1239 * uses the same scope, type, and nexthop 1240 * information. 1241 */ 1242 if (fa_match) 1243 goto out; 1244 1245 if (cfg->fc_nlflags & NLM_F_APPEND) { 1246 event = FIB_EVENT_ENTRY_APPEND; 1247 nlflags |= NLM_F_APPEND; 1248 } else { 1249 fa = fa_first; 1250 } 1251 } 1252 err = -ENOENT; 1253 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1254 goto out; 1255 1256 nlflags |= NLM_F_CREATE; 1257 err = -ENOBUFS; 1258 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1259 if (!new_fa) 1260 goto out; 1261 1262 new_fa->fa_info = fi; 1263 new_fa->fa_tos = tos; 1264 new_fa->fa_type = cfg->fc_type; 1265 new_fa->fa_state = 0; 1266 new_fa->fa_slen = slen; 1267 new_fa->tb_id = tb->tb_id; 1268 new_fa->fa_default = -1; 1269 1270 err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack); 1271 if (err) 1272 goto out_free_new_fa; 1273 1274 /* Insert new entry to the list. */ 1275 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1276 if (err) 1277 goto out_fib_notif; 1278 1279 if (!plen) 1280 tb->tb_num_default++; 1281 1282 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1283 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1284 &cfg->fc_nlinfo, nlflags); 1285 succeeded: 1286 return 0; 1287 1288 out_fib_notif: 1289 /* notifier was sent that entry would be added to trie, but 1290 * the add failed and need to recover. Only failure for 1291 * fib_insert_alias is ENOMEM. 1292 */ 1293 NL_SET_ERR_MSG(extack, "Failed to insert route into trie"); 1294 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, 1295 plen, new_fa, NULL); 1296 out_free_new_fa: 1297 kmem_cache_free(fn_alias_kmem, new_fa); 1298 out: 1299 fib_release_info(fi); 1300 err: 1301 return err; 1302 } 1303 1304 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1305 { 1306 t_key prefix = n->key; 1307 1308 return (key ^ prefix) & (prefix | -prefix); 1309 } 1310 1311 /* should be called with rcu_read_lock */ 1312 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1313 struct fib_result *res, int fib_flags) 1314 { 1315 struct trie *t = (struct trie *) tb->tb_data; 1316 #ifdef CONFIG_IP_FIB_TRIE_STATS 1317 struct trie_use_stats __percpu *stats = t->stats; 1318 #endif 1319 const t_key key = ntohl(flp->daddr); 1320 struct key_vector *n, *pn; 1321 struct fib_alias *fa; 1322 unsigned long index; 1323 t_key cindex; 1324 1325 pn = t->kv; 1326 cindex = 0; 1327 1328 n = get_child_rcu(pn, cindex); 1329 if (!n) { 1330 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1331 return -EAGAIN; 1332 } 1333 1334 #ifdef CONFIG_IP_FIB_TRIE_STATS 1335 this_cpu_inc(stats->gets); 1336 #endif 1337 1338 /* Step 1: Travel to the longest prefix match in the trie */ 1339 for (;;) { 1340 index = get_cindex(key, n); 1341 1342 /* This bit of code is a bit tricky but it combines multiple 1343 * checks into a single check. The prefix consists of the 1344 * prefix plus zeros for the "bits" in the prefix. The index 1345 * is the difference between the key and this value. From 1346 * this we can actually derive several pieces of data. 1347 * if (index >= (1ul << bits)) 1348 * we have a mismatch in skip bits and failed 1349 * else 1350 * we know the value is cindex 1351 * 1352 * This check is safe even if bits == KEYLENGTH due to the 1353 * fact that we can only allocate a node with 32 bits if a 1354 * long is greater than 32 bits. 1355 */ 1356 if (index >= (1ul << n->bits)) 1357 break; 1358 1359 /* we have found a leaf. Prefixes have already been compared */ 1360 if (IS_LEAF(n)) 1361 goto found; 1362 1363 /* only record pn and cindex if we are going to be chopping 1364 * bits later. Otherwise we are just wasting cycles. 1365 */ 1366 if (n->slen > n->pos) { 1367 pn = n; 1368 cindex = index; 1369 } 1370 1371 n = get_child_rcu(n, index); 1372 if (unlikely(!n)) 1373 goto backtrace; 1374 } 1375 1376 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1377 for (;;) { 1378 /* record the pointer where our next node pointer is stored */ 1379 struct key_vector __rcu **cptr = n->tnode; 1380 1381 /* This test verifies that none of the bits that differ 1382 * between the key and the prefix exist in the region of 1383 * the lsb and higher in the prefix. 1384 */ 1385 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1386 goto backtrace; 1387 1388 /* exit out and process leaf */ 1389 if (unlikely(IS_LEAF(n))) 1390 break; 1391 1392 /* Don't bother recording parent info. Since we are in 1393 * prefix match mode we will have to come back to wherever 1394 * we started this traversal anyway 1395 */ 1396 1397 while ((n = rcu_dereference(*cptr)) == NULL) { 1398 backtrace: 1399 #ifdef CONFIG_IP_FIB_TRIE_STATS 1400 if (!n) 1401 this_cpu_inc(stats->null_node_hit); 1402 #endif 1403 /* If we are at cindex 0 there are no more bits for 1404 * us to strip at this level so we must ascend back 1405 * up one level to see if there are any more bits to 1406 * be stripped there. 1407 */ 1408 while (!cindex) { 1409 t_key pkey = pn->key; 1410 1411 /* If we don't have a parent then there is 1412 * nothing for us to do as we do not have any 1413 * further nodes to parse. 1414 */ 1415 if (IS_TRIE(pn)) { 1416 trace_fib_table_lookup(tb->tb_id, flp, 1417 NULL, -EAGAIN); 1418 return -EAGAIN; 1419 } 1420 #ifdef CONFIG_IP_FIB_TRIE_STATS 1421 this_cpu_inc(stats->backtrack); 1422 #endif 1423 /* Get Child's index */ 1424 pn = node_parent_rcu(pn); 1425 cindex = get_index(pkey, pn); 1426 } 1427 1428 /* strip the least significant bit from the cindex */ 1429 cindex &= cindex - 1; 1430 1431 /* grab pointer for next child node */ 1432 cptr = &pn->tnode[cindex]; 1433 } 1434 } 1435 1436 found: 1437 /* this line carries forward the xor from earlier in the function */ 1438 index = key ^ n->key; 1439 1440 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1441 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1442 struct fib_info *fi = fa->fa_info; 1443 int nhsel, err; 1444 1445 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1446 if (index >= (1ul << fa->fa_slen)) 1447 continue; 1448 } 1449 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1450 continue; 1451 if (fi->fib_dead) 1452 continue; 1453 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1454 continue; 1455 fib_alias_accessed(fa); 1456 err = fib_props[fa->fa_type].error; 1457 if (unlikely(err < 0)) { 1458 out_reject: 1459 #ifdef CONFIG_IP_FIB_TRIE_STATS 1460 this_cpu_inc(stats->semantic_match_passed); 1461 #endif 1462 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1463 return err; 1464 } 1465 if (fi->fib_flags & RTNH_F_DEAD) 1466 continue; 1467 1468 if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) { 1469 err = fib_props[RTN_BLACKHOLE].error; 1470 goto out_reject; 1471 } 1472 1473 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1474 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel); 1475 1476 if (nhc->nhc_flags & RTNH_F_DEAD) 1477 continue; 1478 if (ip_ignore_linkdown(nhc->nhc_dev) && 1479 nhc->nhc_flags & RTNH_F_LINKDOWN && 1480 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1481 continue; 1482 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1483 if (flp->flowi4_oif && 1484 flp->flowi4_oif != nhc->nhc_oif) 1485 continue; 1486 } 1487 1488 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1489 refcount_inc(&fi->fib_clntref); 1490 1491 res->prefix = htonl(n->key); 1492 res->prefixlen = KEYLENGTH - fa->fa_slen; 1493 res->nh_sel = nhsel; 1494 res->nhc = nhc; 1495 res->type = fa->fa_type; 1496 res->scope = fi->fib_scope; 1497 res->fi = fi; 1498 res->table = tb; 1499 res->fa_head = &n->leaf; 1500 #ifdef CONFIG_IP_FIB_TRIE_STATS 1501 this_cpu_inc(stats->semantic_match_passed); 1502 #endif 1503 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1504 1505 return err; 1506 } 1507 } 1508 #ifdef CONFIG_IP_FIB_TRIE_STATS 1509 this_cpu_inc(stats->semantic_match_miss); 1510 #endif 1511 goto backtrace; 1512 } 1513 EXPORT_SYMBOL_GPL(fib_table_lookup); 1514 1515 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1516 struct key_vector *l, struct fib_alias *old) 1517 { 1518 /* record the location of the previous list_info entry */ 1519 struct hlist_node **pprev = old->fa_list.pprev; 1520 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1521 1522 /* remove the fib_alias from the list */ 1523 hlist_del_rcu(&old->fa_list); 1524 1525 /* if we emptied the list this leaf will be freed and we can sort 1526 * out parent suffix lengths as a part of trie_rebalance 1527 */ 1528 if (hlist_empty(&l->leaf)) { 1529 if (tp->slen == l->slen) 1530 node_pull_suffix(tp, tp->pos); 1531 put_child_root(tp, l->key, NULL); 1532 node_free(l); 1533 trie_rebalance(t, tp); 1534 return; 1535 } 1536 1537 /* only access fa if it is pointing at the last valid hlist_node */ 1538 if (*pprev) 1539 return; 1540 1541 /* update the trie with the latest suffix length */ 1542 l->slen = fa->fa_slen; 1543 node_pull_suffix(tp, fa->fa_slen); 1544 } 1545 1546 /* Caller must hold RTNL. */ 1547 int fib_table_delete(struct net *net, struct fib_table *tb, 1548 struct fib_config *cfg, struct netlink_ext_ack *extack) 1549 { 1550 struct trie *t = (struct trie *) tb->tb_data; 1551 struct fib_alias *fa, *fa_to_delete; 1552 struct key_vector *l, *tp; 1553 u8 plen = cfg->fc_dst_len; 1554 u8 slen = KEYLENGTH - plen; 1555 u8 tos = cfg->fc_tos; 1556 u32 key; 1557 1558 key = ntohl(cfg->fc_dst); 1559 1560 if (!fib_valid_key_len(key, plen, extack)) 1561 return -EINVAL; 1562 1563 l = fib_find_node(t, &tp, key); 1564 if (!l) 1565 return -ESRCH; 1566 1567 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1568 if (!fa) 1569 return -ESRCH; 1570 1571 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1572 1573 fa_to_delete = NULL; 1574 hlist_for_each_entry_from(fa, fa_list) { 1575 struct fib_info *fi = fa->fa_info; 1576 1577 if ((fa->fa_slen != slen) || 1578 (fa->tb_id != tb->tb_id) || 1579 (fa->fa_tos != tos)) 1580 break; 1581 1582 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1583 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1584 fa->fa_info->fib_scope == cfg->fc_scope) && 1585 (!cfg->fc_prefsrc || 1586 fi->fib_prefsrc == cfg->fc_prefsrc) && 1587 (!cfg->fc_protocol || 1588 fi->fib_protocol == cfg->fc_protocol) && 1589 fib_nh_match(cfg, fi, extack) == 0 && 1590 fib_metrics_match(cfg, fi)) { 1591 fa_to_delete = fa; 1592 break; 1593 } 1594 } 1595 1596 if (!fa_to_delete) 1597 return -ESRCH; 1598 1599 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1600 fa_to_delete, extack); 1601 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1602 &cfg->fc_nlinfo, 0); 1603 1604 if (!plen) 1605 tb->tb_num_default--; 1606 1607 fib_remove_alias(t, tp, l, fa_to_delete); 1608 1609 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1610 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1611 1612 fib_release_info(fa_to_delete->fa_info); 1613 alias_free_mem_rcu(fa_to_delete); 1614 return 0; 1615 } 1616 1617 /* Scan for the next leaf starting at the provided key value */ 1618 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1619 { 1620 struct key_vector *pn, *n = *tn; 1621 unsigned long cindex; 1622 1623 /* this loop is meant to try and find the key in the trie */ 1624 do { 1625 /* record parent and next child index */ 1626 pn = n; 1627 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1628 1629 if (cindex >> pn->bits) 1630 break; 1631 1632 /* descend into the next child */ 1633 n = get_child_rcu(pn, cindex++); 1634 if (!n) 1635 break; 1636 1637 /* guarantee forward progress on the keys */ 1638 if (IS_LEAF(n) && (n->key >= key)) 1639 goto found; 1640 } while (IS_TNODE(n)); 1641 1642 /* this loop will search for the next leaf with a greater key */ 1643 while (!IS_TRIE(pn)) { 1644 /* if we exhausted the parent node we will need to climb */ 1645 if (cindex >= (1ul << pn->bits)) { 1646 t_key pkey = pn->key; 1647 1648 pn = node_parent_rcu(pn); 1649 cindex = get_index(pkey, pn) + 1; 1650 continue; 1651 } 1652 1653 /* grab the next available node */ 1654 n = get_child_rcu(pn, cindex++); 1655 if (!n) 1656 continue; 1657 1658 /* no need to compare keys since we bumped the index */ 1659 if (IS_LEAF(n)) 1660 goto found; 1661 1662 /* Rescan start scanning in new node */ 1663 pn = n; 1664 cindex = 0; 1665 } 1666 1667 *tn = pn; 1668 return NULL; /* Root of trie */ 1669 found: 1670 /* if we are at the limit for keys just return NULL for the tnode */ 1671 *tn = pn; 1672 return n; 1673 } 1674 1675 static void fib_trie_free(struct fib_table *tb) 1676 { 1677 struct trie *t = (struct trie *)tb->tb_data; 1678 struct key_vector *pn = t->kv; 1679 unsigned long cindex = 1; 1680 struct hlist_node *tmp; 1681 struct fib_alias *fa; 1682 1683 /* walk trie in reverse order and free everything */ 1684 for (;;) { 1685 struct key_vector *n; 1686 1687 if (!(cindex--)) { 1688 t_key pkey = pn->key; 1689 1690 if (IS_TRIE(pn)) 1691 break; 1692 1693 n = pn; 1694 pn = node_parent(pn); 1695 1696 /* drop emptied tnode */ 1697 put_child_root(pn, n->key, NULL); 1698 node_free(n); 1699 1700 cindex = get_index(pkey, pn); 1701 1702 continue; 1703 } 1704 1705 /* grab the next available node */ 1706 n = get_child(pn, cindex); 1707 if (!n) 1708 continue; 1709 1710 if (IS_TNODE(n)) { 1711 /* record pn and cindex for leaf walking */ 1712 pn = n; 1713 cindex = 1ul << n->bits; 1714 1715 continue; 1716 } 1717 1718 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1719 hlist_del_rcu(&fa->fa_list); 1720 alias_free_mem_rcu(fa); 1721 } 1722 1723 put_child_root(pn, n->key, NULL); 1724 node_free(n); 1725 } 1726 1727 #ifdef CONFIG_IP_FIB_TRIE_STATS 1728 free_percpu(t->stats); 1729 #endif 1730 kfree(tb); 1731 } 1732 1733 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1734 { 1735 struct trie *ot = (struct trie *)oldtb->tb_data; 1736 struct key_vector *l, *tp = ot->kv; 1737 struct fib_table *local_tb; 1738 struct fib_alias *fa; 1739 struct trie *lt; 1740 t_key key = 0; 1741 1742 if (oldtb->tb_data == oldtb->__data) 1743 return oldtb; 1744 1745 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1746 if (!local_tb) 1747 return NULL; 1748 1749 lt = (struct trie *)local_tb->tb_data; 1750 1751 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1752 struct key_vector *local_l = NULL, *local_tp; 1753 1754 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1755 struct fib_alias *new_fa; 1756 1757 if (local_tb->tb_id != fa->tb_id) 1758 continue; 1759 1760 /* clone fa for new local table */ 1761 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1762 if (!new_fa) 1763 goto out; 1764 1765 memcpy(new_fa, fa, sizeof(*fa)); 1766 1767 /* insert clone into table */ 1768 if (!local_l) 1769 local_l = fib_find_node(lt, &local_tp, l->key); 1770 1771 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1772 NULL, l->key)) { 1773 kmem_cache_free(fn_alias_kmem, new_fa); 1774 goto out; 1775 } 1776 } 1777 1778 /* stop loop if key wrapped back to 0 */ 1779 key = l->key + 1; 1780 if (key < l->key) 1781 break; 1782 } 1783 1784 return local_tb; 1785 out: 1786 fib_trie_free(local_tb); 1787 1788 return NULL; 1789 } 1790 1791 /* Caller must hold RTNL */ 1792 void fib_table_flush_external(struct fib_table *tb) 1793 { 1794 struct trie *t = (struct trie *)tb->tb_data; 1795 struct key_vector *pn = t->kv; 1796 unsigned long cindex = 1; 1797 struct hlist_node *tmp; 1798 struct fib_alias *fa; 1799 1800 /* walk trie in reverse order */ 1801 for (;;) { 1802 unsigned char slen = 0; 1803 struct key_vector *n; 1804 1805 if (!(cindex--)) { 1806 t_key pkey = pn->key; 1807 1808 /* cannot resize the trie vector */ 1809 if (IS_TRIE(pn)) 1810 break; 1811 1812 /* update the suffix to address pulled leaves */ 1813 if (pn->slen > pn->pos) 1814 update_suffix(pn); 1815 1816 /* resize completed node */ 1817 pn = resize(t, pn); 1818 cindex = get_index(pkey, pn); 1819 1820 continue; 1821 } 1822 1823 /* grab the next available node */ 1824 n = get_child(pn, cindex); 1825 if (!n) 1826 continue; 1827 1828 if (IS_TNODE(n)) { 1829 /* record pn and cindex for leaf walking */ 1830 pn = n; 1831 cindex = 1ul << n->bits; 1832 1833 continue; 1834 } 1835 1836 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1837 /* if alias was cloned to local then we just 1838 * need to remove the local copy from main 1839 */ 1840 if (tb->tb_id != fa->tb_id) { 1841 hlist_del_rcu(&fa->fa_list); 1842 alias_free_mem_rcu(fa); 1843 continue; 1844 } 1845 1846 /* record local slen */ 1847 slen = fa->fa_slen; 1848 } 1849 1850 /* update leaf slen */ 1851 n->slen = slen; 1852 1853 if (hlist_empty(&n->leaf)) { 1854 put_child_root(pn, n->key, NULL); 1855 node_free(n); 1856 } 1857 } 1858 } 1859 1860 /* Caller must hold RTNL. */ 1861 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 1862 { 1863 struct trie *t = (struct trie *)tb->tb_data; 1864 struct key_vector *pn = t->kv; 1865 unsigned long cindex = 1; 1866 struct hlist_node *tmp; 1867 struct fib_alias *fa; 1868 int found = 0; 1869 1870 /* walk trie in reverse order */ 1871 for (;;) { 1872 unsigned char slen = 0; 1873 struct key_vector *n; 1874 1875 if (!(cindex--)) { 1876 t_key pkey = pn->key; 1877 1878 /* cannot resize the trie vector */ 1879 if (IS_TRIE(pn)) 1880 break; 1881 1882 /* update the suffix to address pulled leaves */ 1883 if (pn->slen > pn->pos) 1884 update_suffix(pn); 1885 1886 /* resize completed node */ 1887 pn = resize(t, pn); 1888 cindex = get_index(pkey, pn); 1889 1890 continue; 1891 } 1892 1893 /* grab the next available node */ 1894 n = get_child(pn, cindex); 1895 if (!n) 1896 continue; 1897 1898 if (IS_TNODE(n)) { 1899 /* record pn and cindex for leaf walking */ 1900 pn = n; 1901 cindex = 1ul << n->bits; 1902 1903 continue; 1904 } 1905 1906 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1907 struct fib_info *fi = fa->fa_info; 1908 1909 if (!fi || tb->tb_id != fa->tb_id || 1910 (!(fi->fib_flags & RTNH_F_DEAD) && 1911 !fib_props[fa->fa_type].error)) { 1912 slen = fa->fa_slen; 1913 continue; 1914 } 1915 1916 /* Do not flush error routes if network namespace is 1917 * not being dismantled 1918 */ 1919 if (!flush_all && fib_props[fa->fa_type].error) { 1920 slen = fa->fa_slen; 1921 continue; 1922 } 1923 1924 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1925 n->key, 1926 KEYLENGTH - fa->fa_slen, fa, 1927 NULL); 1928 hlist_del_rcu(&fa->fa_list); 1929 fib_release_info(fa->fa_info); 1930 alias_free_mem_rcu(fa); 1931 found++; 1932 } 1933 1934 /* update leaf slen */ 1935 n->slen = slen; 1936 1937 if (hlist_empty(&n->leaf)) { 1938 put_child_root(pn, n->key, NULL); 1939 node_free(n); 1940 } 1941 } 1942 1943 pr_debug("trie_flush found=%d\n", found); 1944 return found; 1945 } 1946 1947 /* derived from fib_trie_free */ 1948 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 1949 struct nl_info *info) 1950 { 1951 struct trie *t = (struct trie *)tb->tb_data; 1952 struct key_vector *pn = t->kv; 1953 unsigned long cindex = 1; 1954 struct fib_alias *fa; 1955 1956 for (;;) { 1957 struct key_vector *n; 1958 1959 if (!(cindex--)) { 1960 t_key pkey = pn->key; 1961 1962 if (IS_TRIE(pn)) 1963 break; 1964 1965 pn = node_parent(pn); 1966 cindex = get_index(pkey, pn); 1967 continue; 1968 } 1969 1970 /* grab the next available node */ 1971 n = get_child(pn, cindex); 1972 if (!n) 1973 continue; 1974 1975 if (IS_TNODE(n)) { 1976 /* record pn and cindex for leaf walking */ 1977 pn = n; 1978 cindex = 1ul << n->bits; 1979 1980 continue; 1981 } 1982 1983 hlist_for_each_entry(fa, &n->leaf, fa_list) { 1984 struct fib_info *fi = fa->fa_info; 1985 1986 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 1987 continue; 1988 1989 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 1990 KEYLENGTH - fa->fa_slen, tb->tb_id, 1991 info, NLM_F_REPLACE); 1992 1993 /* call_fib_entry_notifiers will be removed when 1994 * in-kernel notifier is implemented and supported 1995 * for nexthop objects 1996 */ 1997 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1998 n->key, 1999 KEYLENGTH - fa->fa_slen, fa, 2000 NULL); 2001 } 2002 } 2003 } 2004 2005 void fib_info_notify_update(struct net *net, struct nl_info *info) 2006 { 2007 unsigned int h; 2008 2009 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2010 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2011 struct fib_table *tb; 2012 2013 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2014 __fib_info_notify_update(net, tb, info); 2015 } 2016 } 2017 2018 static void fib_leaf_notify(struct net *net, struct key_vector *l, 2019 struct fib_table *tb, struct notifier_block *nb) 2020 { 2021 struct fib_alias *fa; 2022 2023 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2024 struct fib_info *fi = fa->fa_info; 2025 2026 if (!fi) 2027 continue; 2028 2029 /* local and main table can share the same trie, 2030 * so don't notify twice for the same entry. 2031 */ 2032 if (tb->tb_id != fa->tb_id) 2033 continue; 2034 2035 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 2036 KEYLENGTH - fa->fa_slen, fa); 2037 } 2038 } 2039 2040 static void fib_table_notify(struct net *net, struct fib_table *tb, 2041 struct notifier_block *nb) 2042 { 2043 struct trie *t = (struct trie *)tb->tb_data; 2044 struct key_vector *l, *tp = t->kv; 2045 t_key key = 0; 2046 2047 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2048 fib_leaf_notify(net, l, tb, nb); 2049 2050 key = l->key + 1; 2051 /* stop in case of wrap around */ 2052 if (key < l->key) 2053 break; 2054 } 2055 } 2056 2057 void fib_notify(struct net *net, struct notifier_block *nb) 2058 { 2059 unsigned int h; 2060 2061 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2062 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2063 struct fib_table *tb; 2064 2065 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2066 fib_table_notify(net, tb, nb); 2067 } 2068 } 2069 2070 static void __trie_free_rcu(struct rcu_head *head) 2071 { 2072 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2073 #ifdef CONFIG_IP_FIB_TRIE_STATS 2074 struct trie *t = (struct trie *)tb->tb_data; 2075 2076 if (tb->tb_data == tb->__data) 2077 free_percpu(t->stats); 2078 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2079 kfree(tb); 2080 } 2081 2082 void fib_free_table(struct fib_table *tb) 2083 { 2084 call_rcu(&tb->rcu, __trie_free_rcu); 2085 } 2086 2087 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2088 struct sk_buff *skb, struct netlink_callback *cb, 2089 struct fib_dump_filter *filter) 2090 { 2091 unsigned int flags = NLM_F_MULTI; 2092 __be32 xkey = htonl(l->key); 2093 int i, s_i, i_fa, s_fa, err; 2094 struct fib_alias *fa; 2095 2096 if (filter->filter_set || 2097 !filter->dump_exceptions || !filter->dump_routes) 2098 flags |= NLM_F_DUMP_FILTERED; 2099 2100 s_i = cb->args[4]; 2101 s_fa = cb->args[5]; 2102 i = 0; 2103 2104 /* rcu_read_lock is hold by caller */ 2105 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2106 struct fib_info *fi = fa->fa_info; 2107 2108 if (i < s_i) 2109 goto next; 2110 2111 i_fa = 0; 2112 2113 if (tb->tb_id != fa->tb_id) 2114 goto next; 2115 2116 if (filter->filter_set) { 2117 if (filter->rt_type && fa->fa_type != filter->rt_type) 2118 goto next; 2119 2120 if ((filter->protocol && 2121 fi->fib_protocol != filter->protocol)) 2122 goto next; 2123 2124 if (filter->dev && 2125 !fib_info_nh_uses_dev(fi, filter->dev)) 2126 goto next; 2127 } 2128 2129 if (filter->dump_routes) { 2130 if (!s_fa) { 2131 err = fib_dump_info(skb, 2132 NETLINK_CB(cb->skb).portid, 2133 cb->nlh->nlmsg_seq, 2134 RTM_NEWROUTE, 2135 tb->tb_id, fa->fa_type, 2136 xkey, 2137 KEYLENGTH - fa->fa_slen, 2138 fa->fa_tos, fi, flags); 2139 if (err < 0) 2140 goto stop; 2141 } 2142 2143 i_fa++; 2144 } 2145 2146 if (filter->dump_exceptions) { 2147 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2148 &i_fa, s_fa); 2149 if (err < 0) 2150 goto stop; 2151 } 2152 2153 next: 2154 i++; 2155 } 2156 2157 cb->args[4] = i; 2158 return skb->len; 2159 2160 stop: 2161 cb->args[4] = i; 2162 cb->args[5] = i_fa; 2163 return err; 2164 } 2165 2166 /* rcu_read_lock needs to be hold by caller from readside */ 2167 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2168 struct netlink_callback *cb, struct fib_dump_filter *filter) 2169 { 2170 struct trie *t = (struct trie *)tb->tb_data; 2171 struct key_vector *l, *tp = t->kv; 2172 /* Dump starting at last key. 2173 * Note: 0.0.0.0/0 (ie default) is first key. 2174 */ 2175 int count = cb->args[2]; 2176 t_key key = cb->args[3]; 2177 2178 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2179 int err; 2180 2181 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2182 if (err < 0) { 2183 cb->args[3] = key; 2184 cb->args[2] = count; 2185 return err; 2186 } 2187 2188 ++count; 2189 key = l->key + 1; 2190 2191 memset(&cb->args[4], 0, 2192 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2193 2194 /* stop loop if key wrapped back to 0 */ 2195 if (key < l->key) 2196 break; 2197 } 2198 2199 cb->args[3] = key; 2200 cb->args[2] = count; 2201 2202 return skb->len; 2203 } 2204 2205 void __init fib_trie_init(void) 2206 { 2207 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2208 sizeof(struct fib_alias), 2209 0, SLAB_PANIC, NULL); 2210 2211 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2212 LEAF_SIZE, 2213 0, SLAB_PANIC, NULL); 2214 } 2215 2216 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2217 { 2218 struct fib_table *tb; 2219 struct trie *t; 2220 size_t sz = sizeof(*tb); 2221 2222 if (!alias) 2223 sz += sizeof(struct trie); 2224 2225 tb = kzalloc(sz, GFP_KERNEL); 2226 if (!tb) 2227 return NULL; 2228 2229 tb->tb_id = id; 2230 tb->tb_num_default = 0; 2231 tb->tb_data = (alias ? alias->__data : tb->__data); 2232 2233 if (alias) 2234 return tb; 2235 2236 t = (struct trie *) tb->tb_data; 2237 t->kv[0].pos = KEYLENGTH; 2238 t->kv[0].slen = KEYLENGTH; 2239 #ifdef CONFIG_IP_FIB_TRIE_STATS 2240 t->stats = alloc_percpu(struct trie_use_stats); 2241 if (!t->stats) { 2242 kfree(tb); 2243 tb = NULL; 2244 } 2245 #endif 2246 2247 return tb; 2248 } 2249 2250 #ifdef CONFIG_PROC_FS 2251 /* Depth first Trie walk iterator */ 2252 struct fib_trie_iter { 2253 struct seq_net_private p; 2254 struct fib_table *tb; 2255 struct key_vector *tnode; 2256 unsigned int index; 2257 unsigned int depth; 2258 }; 2259 2260 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2261 { 2262 unsigned long cindex = iter->index; 2263 struct key_vector *pn = iter->tnode; 2264 t_key pkey; 2265 2266 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2267 iter->tnode, iter->index, iter->depth); 2268 2269 while (!IS_TRIE(pn)) { 2270 while (cindex < child_length(pn)) { 2271 struct key_vector *n = get_child_rcu(pn, cindex++); 2272 2273 if (!n) 2274 continue; 2275 2276 if (IS_LEAF(n)) { 2277 iter->tnode = pn; 2278 iter->index = cindex; 2279 } else { 2280 /* push down one level */ 2281 iter->tnode = n; 2282 iter->index = 0; 2283 ++iter->depth; 2284 } 2285 2286 return n; 2287 } 2288 2289 /* Current node exhausted, pop back up */ 2290 pkey = pn->key; 2291 pn = node_parent_rcu(pn); 2292 cindex = get_index(pkey, pn) + 1; 2293 --iter->depth; 2294 } 2295 2296 /* record root node so further searches know we are done */ 2297 iter->tnode = pn; 2298 iter->index = 0; 2299 2300 return NULL; 2301 } 2302 2303 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2304 struct trie *t) 2305 { 2306 struct key_vector *n, *pn; 2307 2308 if (!t) 2309 return NULL; 2310 2311 pn = t->kv; 2312 n = rcu_dereference(pn->tnode[0]); 2313 if (!n) 2314 return NULL; 2315 2316 if (IS_TNODE(n)) { 2317 iter->tnode = n; 2318 iter->index = 0; 2319 iter->depth = 1; 2320 } else { 2321 iter->tnode = pn; 2322 iter->index = 0; 2323 iter->depth = 0; 2324 } 2325 2326 return n; 2327 } 2328 2329 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2330 { 2331 struct key_vector *n; 2332 struct fib_trie_iter iter; 2333 2334 memset(s, 0, sizeof(*s)); 2335 2336 rcu_read_lock(); 2337 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2338 if (IS_LEAF(n)) { 2339 struct fib_alias *fa; 2340 2341 s->leaves++; 2342 s->totdepth += iter.depth; 2343 if (iter.depth > s->maxdepth) 2344 s->maxdepth = iter.depth; 2345 2346 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2347 ++s->prefixes; 2348 } else { 2349 s->tnodes++; 2350 if (n->bits < MAX_STAT_DEPTH) 2351 s->nodesizes[n->bits]++; 2352 s->nullpointers += tn_info(n)->empty_children; 2353 } 2354 } 2355 rcu_read_unlock(); 2356 } 2357 2358 /* 2359 * This outputs /proc/net/fib_triestats 2360 */ 2361 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2362 { 2363 unsigned int i, max, pointers, bytes, avdepth; 2364 2365 if (stat->leaves) 2366 avdepth = stat->totdepth*100 / stat->leaves; 2367 else 2368 avdepth = 0; 2369 2370 seq_printf(seq, "\tAver depth: %u.%02d\n", 2371 avdepth / 100, avdepth % 100); 2372 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2373 2374 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2375 bytes = LEAF_SIZE * stat->leaves; 2376 2377 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2378 bytes += sizeof(struct fib_alias) * stat->prefixes; 2379 2380 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2381 bytes += TNODE_SIZE(0) * stat->tnodes; 2382 2383 max = MAX_STAT_DEPTH; 2384 while (max > 0 && stat->nodesizes[max-1] == 0) 2385 max--; 2386 2387 pointers = 0; 2388 for (i = 1; i < max; i++) 2389 if (stat->nodesizes[i] != 0) { 2390 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2391 pointers += (1<<i) * stat->nodesizes[i]; 2392 } 2393 seq_putc(seq, '\n'); 2394 seq_printf(seq, "\tPointers: %u\n", pointers); 2395 2396 bytes += sizeof(struct key_vector *) * pointers; 2397 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2398 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2399 } 2400 2401 #ifdef CONFIG_IP_FIB_TRIE_STATS 2402 static void trie_show_usage(struct seq_file *seq, 2403 const struct trie_use_stats __percpu *stats) 2404 { 2405 struct trie_use_stats s = { 0 }; 2406 int cpu; 2407 2408 /* loop through all of the CPUs and gather up the stats */ 2409 for_each_possible_cpu(cpu) { 2410 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2411 2412 s.gets += pcpu->gets; 2413 s.backtrack += pcpu->backtrack; 2414 s.semantic_match_passed += pcpu->semantic_match_passed; 2415 s.semantic_match_miss += pcpu->semantic_match_miss; 2416 s.null_node_hit += pcpu->null_node_hit; 2417 s.resize_node_skipped += pcpu->resize_node_skipped; 2418 } 2419 2420 seq_printf(seq, "\nCounters:\n---------\n"); 2421 seq_printf(seq, "gets = %u\n", s.gets); 2422 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2423 seq_printf(seq, "semantic match passed = %u\n", 2424 s.semantic_match_passed); 2425 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2426 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2427 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2428 } 2429 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2430 2431 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2432 { 2433 if (tb->tb_id == RT_TABLE_LOCAL) 2434 seq_puts(seq, "Local:\n"); 2435 else if (tb->tb_id == RT_TABLE_MAIN) 2436 seq_puts(seq, "Main:\n"); 2437 else 2438 seq_printf(seq, "Id %d:\n", tb->tb_id); 2439 } 2440 2441 2442 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2443 { 2444 struct net *net = (struct net *)seq->private; 2445 unsigned int h; 2446 2447 seq_printf(seq, 2448 "Basic info: size of leaf:" 2449 " %zd bytes, size of tnode: %zd bytes.\n", 2450 LEAF_SIZE, TNODE_SIZE(0)); 2451 2452 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2453 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2454 struct fib_table *tb; 2455 2456 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2457 struct trie *t = (struct trie *) tb->tb_data; 2458 struct trie_stat stat; 2459 2460 if (!t) 2461 continue; 2462 2463 fib_table_print(seq, tb); 2464 2465 trie_collect_stats(t, &stat); 2466 trie_show_stats(seq, &stat); 2467 #ifdef CONFIG_IP_FIB_TRIE_STATS 2468 trie_show_usage(seq, t->stats); 2469 #endif 2470 } 2471 } 2472 2473 return 0; 2474 } 2475 2476 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2477 { 2478 struct fib_trie_iter *iter = seq->private; 2479 struct net *net = seq_file_net(seq); 2480 loff_t idx = 0; 2481 unsigned int h; 2482 2483 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2484 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2485 struct fib_table *tb; 2486 2487 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2488 struct key_vector *n; 2489 2490 for (n = fib_trie_get_first(iter, 2491 (struct trie *) tb->tb_data); 2492 n; n = fib_trie_get_next(iter)) 2493 if (pos == idx++) { 2494 iter->tb = tb; 2495 return n; 2496 } 2497 } 2498 } 2499 2500 return NULL; 2501 } 2502 2503 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2504 __acquires(RCU) 2505 { 2506 rcu_read_lock(); 2507 return fib_trie_get_idx(seq, *pos); 2508 } 2509 2510 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2511 { 2512 struct fib_trie_iter *iter = seq->private; 2513 struct net *net = seq_file_net(seq); 2514 struct fib_table *tb = iter->tb; 2515 struct hlist_node *tb_node; 2516 unsigned int h; 2517 struct key_vector *n; 2518 2519 ++*pos; 2520 /* next node in same table */ 2521 n = fib_trie_get_next(iter); 2522 if (n) 2523 return n; 2524 2525 /* walk rest of this hash chain */ 2526 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2527 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2528 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2529 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2530 if (n) 2531 goto found; 2532 } 2533 2534 /* new hash chain */ 2535 while (++h < FIB_TABLE_HASHSZ) { 2536 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2537 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2538 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2539 if (n) 2540 goto found; 2541 } 2542 } 2543 return NULL; 2544 2545 found: 2546 iter->tb = tb; 2547 return n; 2548 } 2549 2550 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2551 __releases(RCU) 2552 { 2553 rcu_read_unlock(); 2554 } 2555 2556 static void seq_indent(struct seq_file *seq, int n) 2557 { 2558 while (n-- > 0) 2559 seq_puts(seq, " "); 2560 } 2561 2562 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2563 { 2564 switch (s) { 2565 case RT_SCOPE_UNIVERSE: return "universe"; 2566 case RT_SCOPE_SITE: return "site"; 2567 case RT_SCOPE_LINK: return "link"; 2568 case RT_SCOPE_HOST: return "host"; 2569 case RT_SCOPE_NOWHERE: return "nowhere"; 2570 default: 2571 snprintf(buf, len, "scope=%d", s); 2572 return buf; 2573 } 2574 } 2575 2576 static const char *const rtn_type_names[__RTN_MAX] = { 2577 [RTN_UNSPEC] = "UNSPEC", 2578 [RTN_UNICAST] = "UNICAST", 2579 [RTN_LOCAL] = "LOCAL", 2580 [RTN_BROADCAST] = "BROADCAST", 2581 [RTN_ANYCAST] = "ANYCAST", 2582 [RTN_MULTICAST] = "MULTICAST", 2583 [RTN_BLACKHOLE] = "BLACKHOLE", 2584 [RTN_UNREACHABLE] = "UNREACHABLE", 2585 [RTN_PROHIBIT] = "PROHIBIT", 2586 [RTN_THROW] = "THROW", 2587 [RTN_NAT] = "NAT", 2588 [RTN_XRESOLVE] = "XRESOLVE", 2589 }; 2590 2591 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2592 { 2593 if (t < __RTN_MAX && rtn_type_names[t]) 2594 return rtn_type_names[t]; 2595 snprintf(buf, len, "type %u", t); 2596 return buf; 2597 } 2598 2599 /* Pretty print the trie */ 2600 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2601 { 2602 const struct fib_trie_iter *iter = seq->private; 2603 struct key_vector *n = v; 2604 2605 if (IS_TRIE(node_parent_rcu(n))) 2606 fib_table_print(seq, iter->tb); 2607 2608 if (IS_TNODE(n)) { 2609 __be32 prf = htonl(n->key); 2610 2611 seq_indent(seq, iter->depth-1); 2612 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2613 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2614 tn_info(n)->full_children, 2615 tn_info(n)->empty_children); 2616 } else { 2617 __be32 val = htonl(n->key); 2618 struct fib_alias *fa; 2619 2620 seq_indent(seq, iter->depth); 2621 seq_printf(seq, " |-- %pI4\n", &val); 2622 2623 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2624 char buf1[32], buf2[32]; 2625 2626 seq_indent(seq, iter->depth + 1); 2627 seq_printf(seq, " /%zu %s %s", 2628 KEYLENGTH - fa->fa_slen, 2629 rtn_scope(buf1, sizeof(buf1), 2630 fa->fa_info->fib_scope), 2631 rtn_type(buf2, sizeof(buf2), 2632 fa->fa_type)); 2633 if (fa->fa_tos) 2634 seq_printf(seq, " tos=%d", fa->fa_tos); 2635 seq_putc(seq, '\n'); 2636 } 2637 } 2638 2639 return 0; 2640 } 2641 2642 static const struct seq_operations fib_trie_seq_ops = { 2643 .start = fib_trie_seq_start, 2644 .next = fib_trie_seq_next, 2645 .stop = fib_trie_seq_stop, 2646 .show = fib_trie_seq_show, 2647 }; 2648 2649 struct fib_route_iter { 2650 struct seq_net_private p; 2651 struct fib_table *main_tb; 2652 struct key_vector *tnode; 2653 loff_t pos; 2654 t_key key; 2655 }; 2656 2657 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2658 loff_t pos) 2659 { 2660 struct key_vector *l, **tp = &iter->tnode; 2661 t_key key; 2662 2663 /* use cached location of previously found key */ 2664 if (iter->pos > 0 && pos >= iter->pos) { 2665 key = iter->key; 2666 } else { 2667 iter->pos = 1; 2668 key = 0; 2669 } 2670 2671 pos -= iter->pos; 2672 2673 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2674 key = l->key + 1; 2675 iter->pos++; 2676 l = NULL; 2677 2678 /* handle unlikely case of a key wrap */ 2679 if (!key) 2680 break; 2681 } 2682 2683 if (l) 2684 iter->key = l->key; /* remember it */ 2685 else 2686 iter->pos = 0; /* forget it */ 2687 2688 return l; 2689 } 2690 2691 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2692 __acquires(RCU) 2693 { 2694 struct fib_route_iter *iter = seq->private; 2695 struct fib_table *tb; 2696 struct trie *t; 2697 2698 rcu_read_lock(); 2699 2700 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2701 if (!tb) 2702 return NULL; 2703 2704 iter->main_tb = tb; 2705 t = (struct trie *)tb->tb_data; 2706 iter->tnode = t->kv; 2707 2708 if (*pos != 0) 2709 return fib_route_get_idx(iter, *pos); 2710 2711 iter->pos = 0; 2712 iter->key = KEY_MAX; 2713 2714 return SEQ_START_TOKEN; 2715 } 2716 2717 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2718 { 2719 struct fib_route_iter *iter = seq->private; 2720 struct key_vector *l = NULL; 2721 t_key key = iter->key + 1; 2722 2723 ++*pos; 2724 2725 /* only allow key of 0 for start of sequence */ 2726 if ((v == SEQ_START_TOKEN) || key) 2727 l = leaf_walk_rcu(&iter->tnode, key); 2728 2729 if (l) { 2730 iter->key = l->key; 2731 iter->pos++; 2732 } else { 2733 iter->pos = 0; 2734 } 2735 2736 return l; 2737 } 2738 2739 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2740 __releases(RCU) 2741 { 2742 rcu_read_unlock(); 2743 } 2744 2745 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2746 { 2747 unsigned int flags = 0; 2748 2749 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2750 flags = RTF_REJECT; 2751 if (fi) { 2752 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2753 2754 if (nhc->nhc_gw.ipv4) 2755 flags |= RTF_GATEWAY; 2756 } 2757 if (mask == htonl(0xFFFFFFFF)) 2758 flags |= RTF_HOST; 2759 flags |= RTF_UP; 2760 return flags; 2761 } 2762 2763 /* 2764 * This outputs /proc/net/route. 2765 * The format of the file is not supposed to be changed 2766 * and needs to be same as fib_hash output to avoid breaking 2767 * legacy utilities 2768 */ 2769 static int fib_route_seq_show(struct seq_file *seq, void *v) 2770 { 2771 struct fib_route_iter *iter = seq->private; 2772 struct fib_table *tb = iter->main_tb; 2773 struct fib_alias *fa; 2774 struct key_vector *l = v; 2775 __be32 prefix; 2776 2777 if (v == SEQ_START_TOKEN) { 2778 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2779 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2780 "\tWindow\tIRTT"); 2781 return 0; 2782 } 2783 2784 prefix = htonl(l->key); 2785 2786 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2787 struct fib_info *fi = fa->fa_info; 2788 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2789 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2790 2791 if ((fa->fa_type == RTN_BROADCAST) || 2792 (fa->fa_type == RTN_MULTICAST)) 2793 continue; 2794 2795 if (fa->tb_id != tb->tb_id) 2796 continue; 2797 2798 seq_setwidth(seq, 127); 2799 2800 if (fi) { 2801 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2802 __be32 gw = 0; 2803 2804 if (nhc->nhc_gw_family == AF_INET) 2805 gw = nhc->nhc_gw.ipv4; 2806 2807 seq_printf(seq, 2808 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2809 "%d\t%08X\t%d\t%u\t%u", 2810 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2811 prefix, gw, flags, 0, 0, 2812 fi->fib_priority, 2813 mask, 2814 (fi->fib_advmss ? 2815 fi->fib_advmss + 40 : 0), 2816 fi->fib_window, 2817 fi->fib_rtt >> 3); 2818 } else { 2819 seq_printf(seq, 2820 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2821 "%d\t%08X\t%d\t%u\t%u", 2822 prefix, 0, flags, 0, 0, 0, 2823 mask, 0, 0, 0); 2824 } 2825 seq_pad(seq, '\n'); 2826 } 2827 2828 return 0; 2829 } 2830 2831 static const struct seq_operations fib_route_seq_ops = { 2832 .start = fib_route_seq_start, 2833 .next = fib_route_seq_next, 2834 .stop = fib_route_seq_stop, 2835 .show = fib_route_seq_show, 2836 }; 2837 2838 int __net_init fib_proc_init(struct net *net) 2839 { 2840 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 2841 sizeof(struct fib_trie_iter))) 2842 goto out1; 2843 2844 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 2845 fib_triestat_seq_show, NULL)) 2846 goto out2; 2847 2848 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 2849 sizeof(struct fib_route_iter))) 2850 goto out3; 2851 2852 return 0; 2853 2854 out3: 2855 remove_proc_entry("fib_triestat", net->proc_net); 2856 out2: 2857 remove_proc_entry("fib_trie", net->proc_net); 2858 out1: 2859 return -ENOMEM; 2860 } 2861 2862 void __net_exit fib_proc_exit(struct net *net) 2863 { 2864 remove_proc_entry("fib_trie", net->proc_net); 2865 remove_proc_entry("fib_triestat", net->proc_net); 2866 remove_proc_entry("route", net->proc_net); 2867 } 2868 2869 #endif /* CONFIG_PROC_FS */ 2870