1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <linux/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 static unsigned int fib_seq_sum(void) 88 { 89 unsigned int fib_seq = 0; 90 struct net *net; 91 92 rtnl_lock(); 93 for_each_net(net) 94 fib_seq += net->ipv4.fib_seq; 95 rtnl_unlock(); 96 97 return fib_seq; 98 } 99 100 static ATOMIC_NOTIFIER_HEAD(fib_chain); 101 102 static int call_fib_notifier(struct notifier_block *nb, struct net *net, 103 enum fib_event_type event_type, 104 struct fib_notifier_info *info) 105 { 106 info->net = net; 107 return nb->notifier_call(nb, event_type, info); 108 } 109 110 static void fib_rules_notify(struct net *net, struct notifier_block *nb, 111 enum fib_event_type event_type) 112 { 113 #ifdef CONFIG_IP_MULTIPLE_TABLES 114 struct fib_notifier_info info; 115 116 if (net->ipv4.fib_has_custom_rules) 117 call_fib_notifier(nb, net, event_type, &info); 118 #endif 119 } 120 121 static void fib_notify(struct net *net, struct notifier_block *nb, 122 enum fib_event_type event_type); 123 124 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 125 enum fib_event_type event_type, u32 dst, 126 int dst_len, struct fib_info *fi, 127 u8 tos, u8 type, u32 tb_id) 128 { 129 struct fib_entry_notifier_info info = { 130 .dst = dst, 131 .dst_len = dst_len, 132 .fi = fi, 133 .tos = tos, 134 .type = type, 135 .tb_id = tb_id, 136 }; 137 return call_fib_notifier(nb, net, event_type, &info.info); 138 } 139 140 static bool fib_dump_is_consistent(struct notifier_block *nb, 141 void (*cb)(struct notifier_block *nb), 142 unsigned int fib_seq) 143 { 144 atomic_notifier_chain_register(&fib_chain, nb); 145 if (fib_seq == fib_seq_sum()) 146 return true; 147 atomic_notifier_chain_unregister(&fib_chain, nb); 148 if (cb) 149 cb(nb); 150 return false; 151 } 152 153 #define FIB_DUMP_MAX_RETRIES 5 154 int register_fib_notifier(struct notifier_block *nb, 155 void (*cb)(struct notifier_block *nb)) 156 { 157 int retries = 0; 158 159 do { 160 unsigned int fib_seq = fib_seq_sum(); 161 struct net *net; 162 163 /* Mutex semantics guarantee that every change done to 164 * FIB tries before we read the change sequence counter 165 * is now visible to us. 166 */ 167 rcu_read_lock(); 168 for_each_net_rcu(net) { 169 fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD); 170 fib_notify(net, nb, FIB_EVENT_ENTRY_ADD); 171 } 172 rcu_read_unlock(); 173 174 if (fib_dump_is_consistent(nb, cb, fib_seq)) 175 return 0; 176 } while (++retries < FIB_DUMP_MAX_RETRIES); 177 178 return -EBUSY; 179 } 180 EXPORT_SYMBOL(register_fib_notifier); 181 182 int unregister_fib_notifier(struct notifier_block *nb) 183 { 184 return atomic_notifier_chain_unregister(&fib_chain, nb); 185 } 186 EXPORT_SYMBOL(unregister_fib_notifier); 187 188 int call_fib_notifiers(struct net *net, enum fib_event_type event_type, 189 struct fib_notifier_info *info) 190 { 191 net->ipv4.fib_seq++; 192 info->net = net; 193 return atomic_notifier_call_chain(&fib_chain, event_type, info); 194 } 195 196 static int call_fib_entry_notifiers(struct net *net, 197 enum fib_event_type event_type, u32 dst, 198 int dst_len, struct fib_info *fi, 199 u8 tos, u8 type, u32 tb_id) 200 { 201 struct fib_entry_notifier_info info = { 202 .dst = dst, 203 .dst_len = dst_len, 204 .fi = fi, 205 .tos = tos, 206 .type = type, 207 .tb_id = tb_id, 208 }; 209 return call_fib_notifiers(net, event_type, &info.info); 210 } 211 212 #define MAX_STAT_DEPTH 32 213 214 #define KEYLENGTH (8*sizeof(t_key)) 215 #define KEY_MAX ((t_key)~0) 216 217 typedef unsigned int t_key; 218 219 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 220 #define IS_TNODE(n) ((n)->bits) 221 #define IS_LEAF(n) (!(n)->bits) 222 223 struct key_vector { 224 t_key key; 225 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 226 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 227 unsigned char slen; 228 union { 229 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 230 struct hlist_head leaf; 231 /* This array is valid if (pos | bits) > 0 (TNODE) */ 232 struct key_vector __rcu *tnode[0]; 233 }; 234 }; 235 236 struct tnode { 237 struct rcu_head rcu; 238 t_key empty_children; /* KEYLENGTH bits needed */ 239 t_key full_children; /* KEYLENGTH bits needed */ 240 struct key_vector __rcu *parent; 241 struct key_vector kv[1]; 242 #define tn_bits kv[0].bits 243 }; 244 245 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 246 #define LEAF_SIZE TNODE_SIZE(1) 247 248 #ifdef CONFIG_IP_FIB_TRIE_STATS 249 struct trie_use_stats { 250 unsigned int gets; 251 unsigned int backtrack; 252 unsigned int semantic_match_passed; 253 unsigned int semantic_match_miss; 254 unsigned int null_node_hit; 255 unsigned int resize_node_skipped; 256 }; 257 #endif 258 259 struct trie_stat { 260 unsigned int totdepth; 261 unsigned int maxdepth; 262 unsigned int tnodes; 263 unsigned int leaves; 264 unsigned int nullpointers; 265 unsigned int prefixes; 266 unsigned int nodesizes[MAX_STAT_DEPTH]; 267 }; 268 269 struct trie { 270 struct key_vector kv[1]; 271 #ifdef CONFIG_IP_FIB_TRIE_STATS 272 struct trie_use_stats __percpu *stats; 273 #endif 274 }; 275 276 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 277 static size_t tnode_free_size; 278 279 /* 280 * synchronize_rcu after call_rcu for that many pages; it should be especially 281 * useful before resizing the root node with PREEMPT_NONE configs; the value was 282 * obtained experimentally, aiming to avoid visible slowdown. 283 */ 284 static const int sync_pages = 128; 285 286 static struct kmem_cache *fn_alias_kmem __read_mostly; 287 static struct kmem_cache *trie_leaf_kmem __read_mostly; 288 289 static inline struct tnode *tn_info(struct key_vector *kv) 290 { 291 return container_of(kv, struct tnode, kv[0]); 292 } 293 294 /* caller must hold RTNL */ 295 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 296 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 297 298 /* caller must hold RCU read lock or RTNL */ 299 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 300 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 301 302 /* wrapper for rcu_assign_pointer */ 303 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 304 { 305 if (n) 306 rcu_assign_pointer(tn_info(n)->parent, tp); 307 } 308 309 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 310 311 /* This provides us with the number of children in this node, in the case of a 312 * leaf this will return 0 meaning none of the children are accessible. 313 */ 314 static inline unsigned long child_length(const struct key_vector *tn) 315 { 316 return (1ul << tn->bits) & ~(1ul); 317 } 318 319 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 320 321 static inline unsigned long get_index(t_key key, struct key_vector *kv) 322 { 323 unsigned long index = key ^ kv->key; 324 325 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 326 return 0; 327 328 return index >> kv->pos; 329 } 330 331 /* To understand this stuff, an understanding of keys and all their bits is 332 * necessary. Every node in the trie has a key associated with it, but not 333 * all of the bits in that key are significant. 334 * 335 * Consider a node 'n' and its parent 'tp'. 336 * 337 * If n is a leaf, every bit in its key is significant. Its presence is 338 * necessitated by path compression, since during a tree traversal (when 339 * searching for a leaf - unless we are doing an insertion) we will completely 340 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 341 * a potentially successful search, that we have indeed been walking the 342 * correct key path. 343 * 344 * Note that we can never "miss" the correct key in the tree if present by 345 * following the wrong path. Path compression ensures that segments of the key 346 * that are the same for all keys with a given prefix are skipped, but the 347 * skipped part *is* identical for each node in the subtrie below the skipped 348 * bit! trie_insert() in this implementation takes care of that. 349 * 350 * if n is an internal node - a 'tnode' here, the various parts of its key 351 * have many different meanings. 352 * 353 * Example: 354 * _________________________________________________________________ 355 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 356 * ----------------------------------------------------------------- 357 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 358 * 359 * _________________________________________________________________ 360 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 361 * ----------------------------------------------------------------- 362 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 363 * 364 * tp->pos = 22 365 * tp->bits = 3 366 * n->pos = 13 367 * n->bits = 4 368 * 369 * First, let's just ignore the bits that come before the parent tp, that is 370 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 371 * point we do not use them for anything. 372 * 373 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 374 * index into the parent's child array. That is, they will be used to find 375 * 'n' among tp's children. 376 * 377 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 378 * for the node n. 379 * 380 * All the bits we have seen so far are significant to the node n. The rest 381 * of the bits are really not needed or indeed known in n->key. 382 * 383 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 384 * n's child array, and will of course be different for each child. 385 * 386 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 387 * at this point. 388 */ 389 390 static const int halve_threshold = 25; 391 static const int inflate_threshold = 50; 392 static const int halve_threshold_root = 15; 393 static const int inflate_threshold_root = 30; 394 395 static void __alias_free_mem(struct rcu_head *head) 396 { 397 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 398 kmem_cache_free(fn_alias_kmem, fa); 399 } 400 401 static inline void alias_free_mem_rcu(struct fib_alias *fa) 402 { 403 call_rcu(&fa->rcu, __alias_free_mem); 404 } 405 406 #define TNODE_KMALLOC_MAX \ 407 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 408 #define TNODE_VMALLOC_MAX \ 409 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 410 411 static void __node_free_rcu(struct rcu_head *head) 412 { 413 struct tnode *n = container_of(head, struct tnode, rcu); 414 415 if (!n->tn_bits) 416 kmem_cache_free(trie_leaf_kmem, n); 417 else 418 kvfree(n); 419 } 420 421 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 422 423 static struct tnode *tnode_alloc(int bits) 424 { 425 size_t size; 426 427 /* verify bits is within bounds */ 428 if (bits > TNODE_VMALLOC_MAX) 429 return NULL; 430 431 /* determine size and verify it is non-zero and didn't overflow */ 432 size = TNODE_SIZE(1ul << bits); 433 434 if (size <= PAGE_SIZE) 435 return kzalloc(size, GFP_KERNEL); 436 else 437 return vzalloc(size); 438 } 439 440 static inline void empty_child_inc(struct key_vector *n) 441 { 442 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 443 } 444 445 static inline void empty_child_dec(struct key_vector *n) 446 { 447 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 448 } 449 450 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 451 { 452 struct key_vector *l; 453 struct tnode *kv; 454 455 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 456 if (!kv) 457 return NULL; 458 459 /* initialize key vector */ 460 l = kv->kv; 461 l->key = key; 462 l->pos = 0; 463 l->bits = 0; 464 l->slen = fa->fa_slen; 465 466 /* link leaf to fib alias */ 467 INIT_HLIST_HEAD(&l->leaf); 468 hlist_add_head(&fa->fa_list, &l->leaf); 469 470 return l; 471 } 472 473 static struct key_vector *tnode_new(t_key key, int pos, int bits) 474 { 475 unsigned int shift = pos + bits; 476 struct key_vector *tn; 477 struct tnode *tnode; 478 479 /* verify bits and pos their msb bits clear and values are valid */ 480 BUG_ON(!bits || (shift > KEYLENGTH)); 481 482 tnode = tnode_alloc(bits); 483 if (!tnode) 484 return NULL; 485 486 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 487 sizeof(struct key_vector *) << bits); 488 489 if (bits == KEYLENGTH) 490 tnode->full_children = 1; 491 else 492 tnode->empty_children = 1ul << bits; 493 494 tn = tnode->kv; 495 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 496 tn->pos = pos; 497 tn->bits = bits; 498 tn->slen = pos; 499 500 return tn; 501 } 502 503 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 504 * and no bits are skipped. See discussion in dyntree paper p. 6 505 */ 506 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 507 { 508 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 509 } 510 511 /* Add a child at position i overwriting the old value. 512 * Update the value of full_children and empty_children. 513 */ 514 static void put_child(struct key_vector *tn, unsigned long i, 515 struct key_vector *n) 516 { 517 struct key_vector *chi = get_child(tn, i); 518 int isfull, wasfull; 519 520 BUG_ON(i >= child_length(tn)); 521 522 /* update emptyChildren, overflow into fullChildren */ 523 if (!n && chi) 524 empty_child_inc(tn); 525 if (n && !chi) 526 empty_child_dec(tn); 527 528 /* update fullChildren */ 529 wasfull = tnode_full(tn, chi); 530 isfull = tnode_full(tn, n); 531 532 if (wasfull && !isfull) 533 tn_info(tn)->full_children--; 534 else if (!wasfull && isfull) 535 tn_info(tn)->full_children++; 536 537 if (n && (tn->slen < n->slen)) 538 tn->slen = n->slen; 539 540 rcu_assign_pointer(tn->tnode[i], n); 541 } 542 543 static void update_children(struct key_vector *tn) 544 { 545 unsigned long i; 546 547 /* update all of the child parent pointers */ 548 for (i = child_length(tn); i;) { 549 struct key_vector *inode = get_child(tn, --i); 550 551 if (!inode) 552 continue; 553 554 /* Either update the children of a tnode that 555 * already belongs to us or update the child 556 * to point to ourselves. 557 */ 558 if (node_parent(inode) == tn) 559 update_children(inode); 560 else 561 node_set_parent(inode, tn); 562 } 563 } 564 565 static inline void put_child_root(struct key_vector *tp, t_key key, 566 struct key_vector *n) 567 { 568 if (IS_TRIE(tp)) 569 rcu_assign_pointer(tp->tnode[0], n); 570 else 571 put_child(tp, get_index(key, tp), n); 572 } 573 574 static inline void tnode_free_init(struct key_vector *tn) 575 { 576 tn_info(tn)->rcu.next = NULL; 577 } 578 579 static inline void tnode_free_append(struct key_vector *tn, 580 struct key_vector *n) 581 { 582 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 583 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 584 } 585 586 static void tnode_free(struct key_vector *tn) 587 { 588 struct callback_head *head = &tn_info(tn)->rcu; 589 590 while (head) { 591 head = head->next; 592 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 593 node_free(tn); 594 595 tn = container_of(head, struct tnode, rcu)->kv; 596 } 597 598 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 599 tnode_free_size = 0; 600 synchronize_rcu(); 601 } 602 } 603 604 static struct key_vector *replace(struct trie *t, 605 struct key_vector *oldtnode, 606 struct key_vector *tn) 607 { 608 struct key_vector *tp = node_parent(oldtnode); 609 unsigned long i; 610 611 /* setup the parent pointer out of and back into this node */ 612 NODE_INIT_PARENT(tn, tp); 613 put_child_root(tp, tn->key, tn); 614 615 /* update all of the child parent pointers */ 616 update_children(tn); 617 618 /* all pointers should be clean so we are done */ 619 tnode_free(oldtnode); 620 621 /* resize children now that oldtnode is freed */ 622 for (i = child_length(tn); i;) { 623 struct key_vector *inode = get_child(tn, --i); 624 625 /* resize child node */ 626 if (tnode_full(tn, inode)) 627 tn = resize(t, inode); 628 } 629 630 return tp; 631 } 632 633 static struct key_vector *inflate(struct trie *t, 634 struct key_vector *oldtnode) 635 { 636 struct key_vector *tn; 637 unsigned long i; 638 t_key m; 639 640 pr_debug("In inflate\n"); 641 642 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 643 if (!tn) 644 goto notnode; 645 646 /* prepare oldtnode to be freed */ 647 tnode_free_init(oldtnode); 648 649 /* Assemble all of the pointers in our cluster, in this case that 650 * represents all of the pointers out of our allocated nodes that 651 * point to existing tnodes and the links between our allocated 652 * nodes. 653 */ 654 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 655 struct key_vector *inode = get_child(oldtnode, --i); 656 struct key_vector *node0, *node1; 657 unsigned long j, k; 658 659 /* An empty child */ 660 if (!inode) 661 continue; 662 663 /* A leaf or an internal node with skipped bits */ 664 if (!tnode_full(oldtnode, inode)) { 665 put_child(tn, get_index(inode->key, tn), inode); 666 continue; 667 } 668 669 /* drop the node in the old tnode free list */ 670 tnode_free_append(oldtnode, inode); 671 672 /* An internal node with two children */ 673 if (inode->bits == 1) { 674 put_child(tn, 2 * i + 1, get_child(inode, 1)); 675 put_child(tn, 2 * i, get_child(inode, 0)); 676 continue; 677 } 678 679 /* We will replace this node 'inode' with two new 680 * ones, 'node0' and 'node1', each with half of the 681 * original children. The two new nodes will have 682 * a position one bit further down the key and this 683 * means that the "significant" part of their keys 684 * (see the discussion near the top of this file) 685 * will differ by one bit, which will be "0" in 686 * node0's key and "1" in node1's key. Since we are 687 * moving the key position by one step, the bit that 688 * we are moving away from - the bit at position 689 * (tn->pos) - is the one that will differ between 690 * node0 and node1. So... we synthesize that bit in the 691 * two new keys. 692 */ 693 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 694 if (!node1) 695 goto nomem; 696 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 697 698 tnode_free_append(tn, node1); 699 if (!node0) 700 goto nomem; 701 tnode_free_append(tn, node0); 702 703 /* populate child pointers in new nodes */ 704 for (k = child_length(inode), j = k / 2; j;) { 705 put_child(node1, --j, get_child(inode, --k)); 706 put_child(node0, j, get_child(inode, j)); 707 put_child(node1, --j, get_child(inode, --k)); 708 put_child(node0, j, get_child(inode, j)); 709 } 710 711 /* link new nodes to parent */ 712 NODE_INIT_PARENT(node1, tn); 713 NODE_INIT_PARENT(node0, tn); 714 715 /* link parent to nodes */ 716 put_child(tn, 2 * i + 1, node1); 717 put_child(tn, 2 * i, node0); 718 } 719 720 /* setup the parent pointers into and out of this node */ 721 return replace(t, oldtnode, tn); 722 nomem: 723 /* all pointers should be clean so we are done */ 724 tnode_free(tn); 725 notnode: 726 return NULL; 727 } 728 729 static struct key_vector *halve(struct trie *t, 730 struct key_vector *oldtnode) 731 { 732 struct key_vector *tn; 733 unsigned long i; 734 735 pr_debug("In halve\n"); 736 737 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 738 if (!tn) 739 goto notnode; 740 741 /* prepare oldtnode to be freed */ 742 tnode_free_init(oldtnode); 743 744 /* Assemble all of the pointers in our cluster, in this case that 745 * represents all of the pointers out of our allocated nodes that 746 * point to existing tnodes and the links between our allocated 747 * nodes. 748 */ 749 for (i = child_length(oldtnode); i;) { 750 struct key_vector *node1 = get_child(oldtnode, --i); 751 struct key_vector *node0 = get_child(oldtnode, --i); 752 struct key_vector *inode; 753 754 /* At least one of the children is empty */ 755 if (!node1 || !node0) { 756 put_child(tn, i / 2, node1 ? : node0); 757 continue; 758 } 759 760 /* Two nonempty children */ 761 inode = tnode_new(node0->key, oldtnode->pos, 1); 762 if (!inode) 763 goto nomem; 764 tnode_free_append(tn, inode); 765 766 /* initialize pointers out of node */ 767 put_child(inode, 1, node1); 768 put_child(inode, 0, node0); 769 NODE_INIT_PARENT(inode, tn); 770 771 /* link parent to node */ 772 put_child(tn, i / 2, inode); 773 } 774 775 /* setup the parent pointers into and out of this node */ 776 return replace(t, oldtnode, tn); 777 nomem: 778 /* all pointers should be clean so we are done */ 779 tnode_free(tn); 780 notnode: 781 return NULL; 782 } 783 784 static struct key_vector *collapse(struct trie *t, 785 struct key_vector *oldtnode) 786 { 787 struct key_vector *n, *tp; 788 unsigned long i; 789 790 /* scan the tnode looking for that one child that might still exist */ 791 for (n = NULL, i = child_length(oldtnode); !n && i;) 792 n = get_child(oldtnode, --i); 793 794 /* compress one level */ 795 tp = node_parent(oldtnode); 796 put_child_root(tp, oldtnode->key, n); 797 node_set_parent(n, tp); 798 799 /* drop dead node */ 800 node_free(oldtnode); 801 802 return tp; 803 } 804 805 static unsigned char update_suffix(struct key_vector *tn) 806 { 807 unsigned char slen = tn->pos; 808 unsigned long stride, i; 809 unsigned char slen_max; 810 811 /* only vector 0 can have a suffix length greater than or equal to 812 * tn->pos + tn->bits, the second highest node will have a suffix 813 * length at most of tn->pos + tn->bits - 1 814 */ 815 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 816 817 /* search though the list of children looking for nodes that might 818 * have a suffix greater than the one we currently have. This is 819 * why we start with a stride of 2 since a stride of 1 would 820 * represent the nodes with suffix length equal to tn->pos 821 */ 822 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 823 struct key_vector *n = get_child(tn, i); 824 825 if (!n || (n->slen <= slen)) 826 continue; 827 828 /* update stride and slen based on new value */ 829 stride <<= (n->slen - slen); 830 slen = n->slen; 831 i &= ~(stride - 1); 832 833 /* stop searching if we have hit the maximum possible value */ 834 if (slen >= slen_max) 835 break; 836 } 837 838 tn->slen = slen; 839 840 return slen; 841 } 842 843 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 844 * the Helsinki University of Technology and Matti Tikkanen of Nokia 845 * Telecommunications, page 6: 846 * "A node is doubled if the ratio of non-empty children to all 847 * children in the *doubled* node is at least 'high'." 848 * 849 * 'high' in this instance is the variable 'inflate_threshold'. It 850 * is expressed as a percentage, so we multiply it with 851 * child_length() and instead of multiplying by 2 (since the 852 * child array will be doubled by inflate()) and multiplying 853 * the left-hand side by 100 (to handle the percentage thing) we 854 * multiply the left-hand side by 50. 855 * 856 * The left-hand side may look a bit weird: child_length(tn) 857 * - tn->empty_children is of course the number of non-null children 858 * in the current node. tn->full_children is the number of "full" 859 * children, that is non-null tnodes with a skip value of 0. 860 * All of those will be doubled in the resulting inflated tnode, so 861 * we just count them one extra time here. 862 * 863 * A clearer way to write this would be: 864 * 865 * to_be_doubled = tn->full_children; 866 * not_to_be_doubled = child_length(tn) - tn->empty_children - 867 * tn->full_children; 868 * 869 * new_child_length = child_length(tn) * 2; 870 * 871 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 872 * new_child_length; 873 * if (new_fill_factor >= inflate_threshold) 874 * 875 * ...and so on, tho it would mess up the while () loop. 876 * 877 * anyway, 878 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 879 * inflate_threshold 880 * 881 * avoid a division: 882 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 883 * inflate_threshold * new_child_length 884 * 885 * expand not_to_be_doubled and to_be_doubled, and shorten: 886 * 100 * (child_length(tn) - tn->empty_children + 887 * tn->full_children) >= inflate_threshold * new_child_length 888 * 889 * expand new_child_length: 890 * 100 * (child_length(tn) - tn->empty_children + 891 * tn->full_children) >= 892 * inflate_threshold * child_length(tn) * 2 893 * 894 * shorten again: 895 * 50 * (tn->full_children + child_length(tn) - 896 * tn->empty_children) >= inflate_threshold * 897 * child_length(tn) 898 * 899 */ 900 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 901 { 902 unsigned long used = child_length(tn); 903 unsigned long threshold = used; 904 905 /* Keep root node larger */ 906 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 907 used -= tn_info(tn)->empty_children; 908 used += tn_info(tn)->full_children; 909 910 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 911 912 return (used > 1) && tn->pos && ((50 * used) >= threshold); 913 } 914 915 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 916 { 917 unsigned long used = child_length(tn); 918 unsigned long threshold = used; 919 920 /* Keep root node larger */ 921 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 922 used -= tn_info(tn)->empty_children; 923 924 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 925 926 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 927 } 928 929 static inline bool should_collapse(struct key_vector *tn) 930 { 931 unsigned long used = child_length(tn); 932 933 used -= tn_info(tn)->empty_children; 934 935 /* account for bits == KEYLENGTH case */ 936 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 937 used -= KEY_MAX; 938 939 /* One child or none, time to drop us from the trie */ 940 return used < 2; 941 } 942 943 #define MAX_WORK 10 944 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 945 { 946 #ifdef CONFIG_IP_FIB_TRIE_STATS 947 struct trie_use_stats __percpu *stats = t->stats; 948 #endif 949 struct key_vector *tp = node_parent(tn); 950 unsigned long cindex = get_index(tn->key, tp); 951 int max_work = MAX_WORK; 952 953 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 954 tn, inflate_threshold, halve_threshold); 955 956 /* track the tnode via the pointer from the parent instead of 957 * doing it ourselves. This way we can let RCU fully do its 958 * thing without us interfering 959 */ 960 BUG_ON(tn != get_child(tp, cindex)); 961 962 /* Double as long as the resulting node has a number of 963 * nonempty nodes that are above the threshold. 964 */ 965 while (should_inflate(tp, tn) && max_work) { 966 tp = inflate(t, tn); 967 if (!tp) { 968 #ifdef CONFIG_IP_FIB_TRIE_STATS 969 this_cpu_inc(stats->resize_node_skipped); 970 #endif 971 break; 972 } 973 974 max_work--; 975 tn = get_child(tp, cindex); 976 } 977 978 /* update parent in case inflate failed */ 979 tp = node_parent(tn); 980 981 /* Return if at least one inflate is run */ 982 if (max_work != MAX_WORK) 983 return tp; 984 985 /* Halve as long as the number of empty children in this 986 * node is above threshold. 987 */ 988 while (should_halve(tp, tn) && max_work) { 989 tp = halve(t, tn); 990 if (!tp) { 991 #ifdef CONFIG_IP_FIB_TRIE_STATS 992 this_cpu_inc(stats->resize_node_skipped); 993 #endif 994 break; 995 } 996 997 max_work--; 998 tn = get_child(tp, cindex); 999 } 1000 1001 /* Only one child remains */ 1002 if (should_collapse(tn)) 1003 return collapse(t, tn); 1004 1005 /* update parent in case halve failed */ 1006 return node_parent(tn); 1007 } 1008 1009 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 1010 { 1011 unsigned char node_slen = tn->slen; 1012 1013 while ((node_slen > tn->pos) && (node_slen > slen)) { 1014 slen = update_suffix(tn); 1015 if (node_slen == slen) 1016 break; 1017 1018 tn = node_parent(tn); 1019 node_slen = tn->slen; 1020 } 1021 } 1022 1023 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 1024 { 1025 while (tn->slen < slen) { 1026 tn->slen = slen; 1027 tn = node_parent(tn); 1028 } 1029 } 1030 1031 /* rcu_read_lock needs to be hold by caller from readside */ 1032 static struct key_vector *fib_find_node(struct trie *t, 1033 struct key_vector **tp, u32 key) 1034 { 1035 struct key_vector *pn, *n = t->kv; 1036 unsigned long index = 0; 1037 1038 do { 1039 pn = n; 1040 n = get_child_rcu(n, index); 1041 1042 if (!n) 1043 break; 1044 1045 index = get_cindex(key, n); 1046 1047 /* This bit of code is a bit tricky but it combines multiple 1048 * checks into a single check. The prefix consists of the 1049 * prefix plus zeros for the bits in the cindex. The index 1050 * is the difference between the key and this value. From 1051 * this we can actually derive several pieces of data. 1052 * if (index >= (1ul << bits)) 1053 * we have a mismatch in skip bits and failed 1054 * else 1055 * we know the value is cindex 1056 * 1057 * This check is safe even if bits == KEYLENGTH due to the 1058 * fact that we can only allocate a node with 32 bits if a 1059 * long is greater than 32 bits. 1060 */ 1061 if (index >= (1ul << n->bits)) { 1062 n = NULL; 1063 break; 1064 } 1065 1066 /* keep searching until we find a perfect match leaf or NULL */ 1067 } while (IS_TNODE(n)); 1068 1069 *tp = pn; 1070 1071 return n; 1072 } 1073 1074 /* Return the first fib alias matching TOS with 1075 * priority less than or equal to PRIO. 1076 */ 1077 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 1078 u8 tos, u32 prio, u32 tb_id) 1079 { 1080 struct fib_alias *fa; 1081 1082 if (!fah) 1083 return NULL; 1084 1085 hlist_for_each_entry(fa, fah, fa_list) { 1086 if (fa->fa_slen < slen) 1087 continue; 1088 if (fa->fa_slen != slen) 1089 break; 1090 if (fa->tb_id > tb_id) 1091 continue; 1092 if (fa->tb_id != tb_id) 1093 break; 1094 if (fa->fa_tos > tos) 1095 continue; 1096 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1097 return fa; 1098 } 1099 1100 return NULL; 1101 } 1102 1103 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1104 { 1105 while (!IS_TRIE(tn)) 1106 tn = resize(t, tn); 1107 } 1108 1109 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1110 struct fib_alias *new, t_key key) 1111 { 1112 struct key_vector *n, *l; 1113 1114 l = leaf_new(key, new); 1115 if (!l) 1116 goto noleaf; 1117 1118 /* retrieve child from parent node */ 1119 n = get_child(tp, get_index(key, tp)); 1120 1121 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1122 * 1123 * Add a new tnode here 1124 * first tnode need some special handling 1125 * leaves us in position for handling as case 3 1126 */ 1127 if (n) { 1128 struct key_vector *tn; 1129 1130 tn = tnode_new(key, __fls(key ^ n->key), 1); 1131 if (!tn) 1132 goto notnode; 1133 1134 /* initialize routes out of node */ 1135 NODE_INIT_PARENT(tn, tp); 1136 put_child(tn, get_index(key, tn) ^ 1, n); 1137 1138 /* start adding routes into the node */ 1139 put_child_root(tp, key, tn); 1140 node_set_parent(n, tn); 1141 1142 /* parent now has a NULL spot where the leaf can go */ 1143 tp = tn; 1144 } 1145 1146 /* Case 3: n is NULL, and will just insert a new leaf */ 1147 node_push_suffix(tp, new->fa_slen); 1148 NODE_INIT_PARENT(l, tp); 1149 put_child_root(tp, key, l); 1150 trie_rebalance(t, tp); 1151 1152 return 0; 1153 notnode: 1154 node_free(l); 1155 noleaf: 1156 return -ENOMEM; 1157 } 1158 1159 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1160 struct key_vector *l, struct fib_alias *new, 1161 struct fib_alias *fa, t_key key) 1162 { 1163 if (!l) 1164 return fib_insert_node(t, tp, new, key); 1165 1166 if (fa) { 1167 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1168 } else { 1169 struct fib_alias *last; 1170 1171 hlist_for_each_entry(last, &l->leaf, fa_list) { 1172 if (new->fa_slen < last->fa_slen) 1173 break; 1174 if ((new->fa_slen == last->fa_slen) && 1175 (new->tb_id > last->tb_id)) 1176 break; 1177 fa = last; 1178 } 1179 1180 if (fa) 1181 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1182 else 1183 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1184 } 1185 1186 /* if we added to the tail node then we need to update slen */ 1187 if (l->slen < new->fa_slen) { 1188 l->slen = new->fa_slen; 1189 node_push_suffix(tp, new->fa_slen); 1190 } 1191 1192 return 0; 1193 } 1194 1195 /* Caller must hold RTNL. */ 1196 int fib_table_insert(struct net *net, struct fib_table *tb, 1197 struct fib_config *cfg) 1198 { 1199 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1200 struct trie *t = (struct trie *)tb->tb_data; 1201 struct fib_alias *fa, *new_fa; 1202 struct key_vector *l, *tp; 1203 u16 nlflags = NLM_F_EXCL; 1204 struct fib_info *fi; 1205 u8 plen = cfg->fc_dst_len; 1206 u8 slen = KEYLENGTH - plen; 1207 u8 tos = cfg->fc_tos; 1208 u32 key; 1209 int err; 1210 1211 if (plen > KEYLENGTH) 1212 return -EINVAL; 1213 1214 key = ntohl(cfg->fc_dst); 1215 1216 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1217 1218 if ((plen < KEYLENGTH) && (key << plen)) 1219 return -EINVAL; 1220 1221 fi = fib_create_info(cfg); 1222 if (IS_ERR(fi)) { 1223 err = PTR_ERR(fi); 1224 goto err; 1225 } 1226 1227 l = fib_find_node(t, &tp, key); 1228 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1229 tb->tb_id) : NULL; 1230 1231 /* Now fa, if non-NULL, points to the first fib alias 1232 * with the same keys [prefix,tos,priority], if such key already 1233 * exists or to the node before which we will insert new one. 1234 * 1235 * If fa is NULL, we will need to allocate a new one and 1236 * insert to the tail of the section matching the suffix length 1237 * of the new alias. 1238 */ 1239 1240 if (fa && fa->fa_tos == tos && 1241 fa->fa_info->fib_priority == fi->fib_priority) { 1242 struct fib_alias *fa_first, *fa_match; 1243 1244 err = -EEXIST; 1245 if (cfg->fc_nlflags & NLM_F_EXCL) 1246 goto out; 1247 1248 nlflags &= ~NLM_F_EXCL; 1249 1250 /* We have 2 goals: 1251 * 1. Find exact match for type, scope, fib_info to avoid 1252 * duplicate routes 1253 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1254 */ 1255 fa_match = NULL; 1256 fa_first = fa; 1257 hlist_for_each_entry_from(fa, fa_list) { 1258 if ((fa->fa_slen != slen) || 1259 (fa->tb_id != tb->tb_id) || 1260 (fa->fa_tos != tos)) 1261 break; 1262 if (fa->fa_info->fib_priority != fi->fib_priority) 1263 break; 1264 if (fa->fa_type == cfg->fc_type && 1265 fa->fa_info == fi) { 1266 fa_match = fa; 1267 break; 1268 } 1269 } 1270 1271 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1272 struct fib_info *fi_drop; 1273 u8 state; 1274 1275 nlflags |= NLM_F_REPLACE; 1276 fa = fa_first; 1277 if (fa_match) { 1278 if (fa == fa_match) 1279 err = 0; 1280 goto out; 1281 } 1282 err = -ENOBUFS; 1283 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1284 if (!new_fa) 1285 goto out; 1286 1287 fi_drop = fa->fa_info; 1288 new_fa->fa_tos = fa->fa_tos; 1289 new_fa->fa_info = fi; 1290 new_fa->fa_type = cfg->fc_type; 1291 state = fa->fa_state; 1292 new_fa->fa_state = state & ~FA_S_ACCESSED; 1293 new_fa->fa_slen = fa->fa_slen; 1294 new_fa->tb_id = tb->tb_id; 1295 new_fa->fa_default = -1; 1296 1297 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1298 key, plen, fi, 1299 new_fa->fa_tos, cfg->fc_type, 1300 tb->tb_id); 1301 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1302 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1303 1304 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1305 1306 alias_free_mem_rcu(fa); 1307 1308 fib_release_info(fi_drop); 1309 if (state & FA_S_ACCESSED) 1310 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1311 1312 goto succeeded; 1313 } 1314 /* Error if we find a perfect match which 1315 * uses the same scope, type, and nexthop 1316 * information. 1317 */ 1318 if (fa_match) 1319 goto out; 1320 1321 if (cfg->fc_nlflags & NLM_F_APPEND) { 1322 event = FIB_EVENT_ENTRY_APPEND; 1323 nlflags |= NLM_F_APPEND; 1324 } else { 1325 fa = fa_first; 1326 } 1327 } 1328 err = -ENOENT; 1329 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1330 goto out; 1331 1332 nlflags |= NLM_F_CREATE; 1333 err = -ENOBUFS; 1334 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1335 if (!new_fa) 1336 goto out; 1337 1338 new_fa->fa_info = fi; 1339 new_fa->fa_tos = tos; 1340 new_fa->fa_type = cfg->fc_type; 1341 new_fa->fa_state = 0; 1342 new_fa->fa_slen = slen; 1343 new_fa->tb_id = tb->tb_id; 1344 new_fa->fa_default = -1; 1345 1346 /* Insert new entry to the list. */ 1347 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1348 if (err) 1349 goto out_free_new_fa; 1350 1351 if (!plen) 1352 tb->tb_num_default++; 1353 1354 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1355 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type, 1356 tb->tb_id); 1357 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1358 &cfg->fc_nlinfo, nlflags); 1359 succeeded: 1360 return 0; 1361 1362 out_free_new_fa: 1363 kmem_cache_free(fn_alias_kmem, new_fa); 1364 out: 1365 fib_release_info(fi); 1366 err: 1367 return err; 1368 } 1369 1370 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1371 { 1372 t_key prefix = n->key; 1373 1374 return (key ^ prefix) & (prefix | -prefix); 1375 } 1376 1377 /* should be called with rcu_read_lock */ 1378 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1379 struct fib_result *res, int fib_flags) 1380 { 1381 struct trie *t = (struct trie *) tb->tb_data; 1382 #ifdef CONFIG_IP_FIB_TRIE_STATS 1383 struct trie_use_stats __percpu *stats = t->stats; 1384 #endif 1385 const t_key key = ntohl(flp->daddr); 1386 struct key_vector *n, *pn; 1387 struct fib_alias *fa; 1388 unsigned long index; 1389 t_key cindex; 1390 1391 trace_fib_table_lookup(tb->tb_id, flp); 1392 1393 pn = t->kv; 1394 cindex = 0; 1395 1396 n = get_child_rcu(pn, cindex); 1397 if (!n) 1398 return -EAGAIN; 1399 1400 #ifdef CONFIG_IP_FIB_TRIE_STATS 1401 this_cpu_inc(stats->gets); 1402 #endif 1403 1404 /* Step 1: Travel to the longest prefix match in the trie */ 1405 for (;;) { 1406 index = get_cindex(key, n); 1407 1408 /* This bit of code is a bit tricky but it combines multiple 1409 * checks into a single check. The prefix consists of the 1410 * prefix plus zeros for the "bits" in the prefix. The index 1411 * is the difference between the key and this value. From 1412 * this we can actually derive several pieces of data. 1413 * if (index >= (1ul << bits)) 1414 * we have a mismatch in skip bits and failed 1415 * else 1416 * we know the value is cindex 1417 * 1418 * This check is safe even if bits == KEYLENGTH due to the 1419 * fact that we can only allocate a node with 32 bits if a 1420 * long is greater than 32 bits. 1421 */ 1422 if (index >= (1ul << n->bits)) 1423 break; 1424 1425 /* we have found a leaf. Prefixes have already been compared */ 1426 if (IS_LEAF(n)) 1427 goto found; 1428 1429 /* only record pn and cindex if we are going to be chopping 1430 * bits later. Otherwise we are just wasting cycles. 1431 */ 1432 if (n->slen > n->pos) { 1433 pn = n; 1434 cindex = index; 1435 } 1436 1437 n = get_child_rcu(n, index); 1438 if (unlikely(!n)) 1439 goto backtrace; 1440 } 1441 1442 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1443 for (;;) { 1444 /* record the pointer where our next node pointer is stored */ 1445 struct key_vector __rcu **cptr = n->tnode; 1446 1447 /* This test verifies that none of the bits that differ 1448 * between the key and the prefix exist in the region of 1449 * the lsb and higher in the prefix. 1450 */ 1451 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1452 goto backtrace; 1453 1454 /* exit out and process leaf */ 1455 if (unlikely(IS_LEAF(n))) 1456 break; 1457 1458 /* Don't bother recording parent info. Since we are in 1459 * prefix match mode we will have to come back to wherever 1460 * we started this traversal anyway 1461 */ 1462 1463 while ((n = rcu_dereference(*cptr)) == NULL) { 1464 backtrace: 1465 #ifdef CONFIG_IP_FIB_TRIE_STATS 1466 if (!n) 1467 this_cpu_inc(stats->null_node_hit); 1468 #endif 1469 /* If we are at cindex 0 there are no more bits for 1470 * us to strip at this level so we must ascend back 1471 * up one level to see if there are any more bits to 1472 * be stripped there. 1473 */ 1474 while (!cindex) { 1475 t_key pkey = pn->key; 1476 1477 /* If we don't have a parent then there is 1478 * nothing for us to do as we do not have any 1479 * further nodes to parse. 1480 */ 1481 if (IS_TRIE(pn)) 1482 return -EAGAIN; 1483 #ifdef CONFIG_IP_FIB_TRIE_STATS 1484 this_cpu_inc(stats->backtrack); 1485 #endif 1486 /* Get Child's index */ 1487 pn = node_parent_rcu(pn); 1488 cindex = get_index(pkey, pn); 1489 } 1490 1491 /* strip the least significant bit from the cindex */ 1492 cindex &= cindex - 1; 1493 1494 /* grab pointer for next child node */ 1495 cptr = &pn->tnode[cindex]; 1496 } 1497 } 1498 1499 found: 1500 /* this line carries forward the xor from earlier in the function */ 1501 index = key ^ n->key; 1502 1503 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1504 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1505 struct fib_info *fi = fa->fa_info; 1506 int nhsel, err; 1507 1508 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1509 if (index >= (1ul << fa->fa_slen)) 1510 continue; 1511 } 1512 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1513 continue; 1514 if (fi->fib_dead) 1515 continue; 1516 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1517 continue; 1518 fib_alias_accessed(fa); 1519 err = fib_props[fa->fa_type].error; 1520 if (unlikely(err < 0)) { 1521 #ifdef CONFIG_IP_FIB_TRIE_STATS 1522 this_cpu_inc(stats->semantic_match_passed); 1523 #endif 1524 return err; 1525 } 1526 if (fi->fib_flags & RTNH_F_DEAD) 1527 continue; 1528 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1529 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1530 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1531 1532 if (nh->nh_flags & RTNH_F_DEAD) 1533 continue; 1534 if (in_dev && 1535 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1536 nh->nh_flags & RTNH_F_LINKDOWN && 1537 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1538 continue; 1539 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1540 if (flp->flowi4_oif && 1541 flp->flowi4_oif != nh->nh_oif) 1542 continue; 1543 } 1544 1545 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1546 atomic_inc(&fi->fib_clntref); 1547 1548 res->prefixlen = KEYLENGTH - fa->fa_slen; 1549 res->nh_sel = nhsel; 1550 res->type = fa->fa_type; 1551 res->scope = fi->fib_scope; 1552 res->fi = fi; 1553 res->table = tb; 1554 res->fa_head = &n->leaf; 1555 #ifdef CONFIG_IP_FIB_TRIE_STATS 1556 this_cpu_inc(stats->semantic_match_passed); 1557 #endif 1558 trace_fib_table_lookup_nh(nh); 1559 1560 return err; 1561 } 1562 } 1563 #ifdef CONFIG_IP_FIB_TRIE_STATS 1564 this_cpu_inc(stats->semantic_match_miss); 1565 #endif 1566 goto backtrace; 1567 } 1568 EXPORT_SYMBOL_GPL(fib_table_lookup); 1569 1570 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1571 struct key_vector *l, struct fib_alias *old) 1572 { 1573 /* record the location of the previous list_info entry */ 1574 struct hlist_node **pprev = old->fa_list.pprev; 1575 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1576 1577 /* remove the fib_alias from the list */ 1578 hlist_del_rcu(&old->fa_list); 1579 1580 /* if we emptied the list this leaf will be freed and we can sort 1581 * out parent suffix lengths as a part of trie_rebalance 1582 */ 1583 if (hlist_empty(&l->leaf)) { 1584 if (tp->slen == l->slen) 1585 node_pull_suffix(tp, tp->pos); 1586 put_child_root(tp, l->key, NULL); 1587 node_free(l); 1588 trie_rebalance(t, tp); 1589 return; 1590 } 1591 1592 /* only access fa if it is pointing at the last valid hlist_node */ 1593 if (*pprev) 1594 return; 1595 1596 /* update the trie with the latest suffix length */ 1597 l->slen = fa->fa_slen; 1598 node_pull_suffix(tp, fa->fa_slen); 1599 } 1600 1601 /* Caller must hold RTNL. */ 1602 int fib_table_delete(struct net *net, struct fib_table *tb, 1603 struct fib_config *cfg) 1604 { 1605 struct trie *t = (struct trie *) tb->tb_data; 1606 struct fib_alias *fa, *fa_to_delete; 1607 struct key_vector *l, *tp; 1608 u8 plen = cfg->fc_dst_len; 1609 u8 slen = KEYLENGTH - plen; 1610 u8 tos = cfg->fc_tos; 1611 u32 key; 1612 1613 if (plen > KEYLENGTH) 1614 return -EINVAL; 1615 1616 key = ntohl(cfg->fc_dst); 1617 1618 if ((plen < KEYLENGTH) && (key << plen)) 1619 return -EINVAL; 1620 1621 l = fib_find_node(t, &tp, key); 1622 if (!l) 1623 return -ESRCH; 1624 1625 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1626 if (!fa) 1627 return -ESRCH; 1628 1629 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1630 1631 fa_to_delete = NULL; 1632 hlist_for_each_entry_from(fa, fa_list) { 1633 struct fib_info *fi = fa->fa_info; 1634 1635 if ((fa->fa_slen != slen) || 1636 (fa->tb_id != tb->tb_id) || 1637 (fa->fa_tos != tos)) 1638 break; 1639 1640 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1641 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1642 fa->fa_info->fib_scope == cfg->fc_scope) && 1643 (!cfg->fc_prefsrc || 1644 fi->fib_prefsrc == cfg->fc_prefsrc) && 1645 (!cfg->fc_protocol || 1646 fi->fib_protocol == cfg->fc_protocol) && 1647 fib_nh_match(cfg, fi) == 0) { 1648 fa_to_delete = fa; 1649 break; 1650 } 1651 } 1652 1653 if (!fa_to_delete) 1654 return -ESRCH; 1655 1656 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1657 fa_to_delete->fa_info, tos, 1658 fa_to_delete->fa_type, tb->tb_id); 1659 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1660 &cfg->fc_nlinfo, 0); 1661 1662 if (!plen) 1663 tb->tb_num_default--; 1664 1665 fib_remove_alias(t, tp, l, fa_to_delete); 1666 1667 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1668 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1669 1670 fib_release_info(fa_to_delete->fa_info); 1671 alias_free_mem_rcu(fa_to_delete); 1672 return 0; 1673 } 1674 1675 /* Scan for the next leaf starting at the provided key value */ 1676 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1677 { 1678 struct key_vector *pn, *n = *tn; 1679 unsigned long cindex; 1680 1681 /* this loop is meant to try and find the key in the trie */ 1682 do { 1683 /* record parent and next child index */ 1684 pn = n; 1685 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1686 1687 if (cindex >> pn->bits) 1688 break; 1689 1690 /* descend into the next child */ 1691 n = get_child_rcu(pn, cindex++); 1692 if (!n) 1693 break; 1694 1695 /* guarantee forward progress on the keys */ 1696 if (IS_LEAF(n) && (n->key >= key)) 1697 goto found; 1698 } while (IS_TNODE(n)); 1699 1700 /* this loop will search for the next leaf with a greater key */ 1701 while (!IS_TRIE(pn)) { 1702 /* if we exhausted the parent node we will need to climb */ 1703 if (cindex >= (1ul << pn->bits)) { 1704 t_key pkey = pn->key; 1705 1706 pn = node_parent_rcu(pn); 1707 cindex = get_index(pkey, pn) + 1; 1708 continue; 1709 } 1710 1711 /* grab the next available node */ 1712 n = get_child_rcu(pn, cindex++); 1713 if (!n) 1714 continue; 1715 1716 /* no need to compare keys since we bumped the index */ 1717 if (IS_LEAF(n)) 1718 goto found; 1719 1720 /* Rescan start scanning in new node */ 1721 pn = n; 1722 cindex = 0; 1723 } 1724 1725 *tn = pn; 1726 return NULL; /* Root of trie */ 1727 found: 1728 /* if we are at the limit for keys just return NULL for the tnode */ 1729 *tn = pn; 1730 return n; 1731 } 1732 1733 static void fib_trie_free(struct fib_table *tb) 1734 { 1735 struct trie *t = (struct trie *)tb->tb_data; 1736 struct key_vector *pn = t->kv; 1737 unsigned long cindex = 1; 1738 struct hlist_node *tmp; 1739 struct fib_alias *fa; 1740 1741 /* walk trie in reverse order and free everything */ 1742 for (;;) { 1743 struct key_vector *n; 1744 1745 if (!(cindex--)) { 1746 t_key pkey = pn->key; 1747 1748 if (IS_TRIE(pn)) 1749 break; 1750 1751 n = pn; 1752 pn = node_parent(pn); 1753 1754 /* drop emptied tnode */ 1755 put_child_root(pn, n->key, NULL); 1756 node_free(n); 1757 1758 cindex = get_index(pkey, pn); 1759 1760 continue; 1761 } 1762 1763 /* grab the next available node */ 1764 n = get_child(pn, cindex); 1765 if (!n) 1766 continue; 1767 1768 if (IS_TNODE(n)) { 1769 /* record pn and cindex for leaf walking */ 1770 pn = n; 1771 cindex = 1ul << n->bits; 1772 1773 continue; 1774 } 1775 1776 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1777 hlist_del_rcu(&fa->fa_list); 1778 alias_free_mem_rcu(fa); 1779 } 1780 1781 put_child_root(pn, n->key, NULL); 1782 node_free(n); 1783 } 1784 1785 #ifdef CONFIG_IP_FIB_TRIE_STATS 1786 free_percpu(t->stats); 1787 #endif 1788 kfree(tb); 1789 } 1790 1791 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1792 { 1793 struct trie *ot = (struct trie *)oldtb->tb_data; 1794 struct key_vector *l, *tp = ot->kv; 1795 struct fib_table *local_tb; 1796 struct fib_alias *fa; 1797 struct trie *lt; 1798 t_key key = 0; 1799 1800 if (oldtb->tb_data == oldtb->__data) 1801 return oldtb; 1802 1803 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1804 if (!local_tb) 1805 return NULL; 1806 1807 lt = (struct trie *)local_tb->tb_data; 1808 1809 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1810 struct key_vector *local_l = NULL, *local_tp; 1811 1812 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1813 struct fib_alias *new_fa; 1814 1815 if (local_tb->tb_id != fa->tb_id) 1816 continue; 1817 1818 /* clone fa for new local table */ 1819 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1820 if (!new_fa) 1821 goto out; 1822 1823 memcpy(new_fa, fa, sizeof(*fa)); 1824 1825 /* insert clone into table */ 1826 if (!local_l) 1827 local_l = fib_find_node(lt, &local_tp, l->key); 1828 1829 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1830 NULL, l->key)) { 1831 kmem_cache_free(fn_alias_kmem, new_fa); 1832 goto out; 1833 } 1834 } 1835 1836 /* stop loop if key wrapped back to 0 */ 1837 key = l->key + 1; 1838 if (key < l->key) 1839 break; 1840 } 1841 1842 return local_tb; 1843 out: 1844 fib_trie_free(local_tb); 1845 1846 return NULL; 1847 } 1848 1849 /* Caller must hold RTNL */ 1850 void fib_table_flush_external(struct fib_table *tb) 1851 { 1852 struct trie *t = (struct trie *)tb->tb_data; 1853 struct key_vector *pn = t->kv; 1854 unsigned long cindex = 1; 1855 struct hlist_node *tmp; 1856 struct fib_alias *fa; 1857 1858 /* walk trie in reverse order */ 1859 for (;;) { 1860 unsigned char slen = 0; 1861 struct key_vector *n; 1862 1863 if (!(cindex--)) { 1864 t_key pkey = pn->key; 1865 1866 /* cannot resize the trie vector */ 1867 if (IS_TRIE(pn)) 1868 break; 1869 1870 /* update the suffix to address pulled leaves */ 1871 if (pn->slen > pn->pos) 1872 update_suffix(pn); 1873 1874 /* resize completed node */ 1875 pn = resize(t, pn); 1876 cindex = get_index(pkey, pn); 1877 1878 continue; 1879 } 1880 1881 /* grab the next available node */ 1882 n = get_child(pn, cindex); 1883 if (!n) 1884 continue; 1885 1886 if (IS_TNODE(n)) { 1887 /* record pn and cindex for leaf walking */ 1888 pn = n; 1889 cindex = 1ul << n->bits; 1890 1891 continue; 1892 } 1893 1894 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1895 /* if alias was cloned to local then we just 1896 * need to remove the local copy from main 1897 */ 1898 if (tb->tb_id != fa->tb_id) { 1899 hlist_del_rcu(&fa->fa_list); 1900 alias_free_mem_rcu(fa); 1901 continue; 1902 } 1903 1904 /* record local slen */ 1905 slen = fa->fa_slen; 1906 } 1907 1908 /* update leaf slen */ 1909 n->slen = slen; 1910 1911 if (hlist_empty(&n->leaf)) { 1912 put_child_root(pn, n->key, NULL); 1913 node_free(n); 1914 } 1915 } 1916 } 1917 1918 /* Caller must hold RTNL. */ 1919 int fib_table_flush(struct net *net, struct fib_table *tb) 1920 { 1921 struct trie *t = (struct trie *)tb->tb_data; 1922 struct key_vector *pn = t->kv; 1923 unsigned long cindex = 1; 1924 struct hlist_node *tmp; 1925 struct fib_alias *fa; 1926 int found = 0; 1927 1928 /* walk trie in reverse order */ 1929 for (;;) { 1930 unsigned char slen = 0; 1931 struct key_vector *n; 1932 1933 if (!(cindex--)) { 1934 t_key pkey = pn->key; 1935 1936 /* cannot resize the trie vector */ 1937 if (IS_TRIE(pn)) 1938 break; 1939 1940 /* update the suffix to address pulled leaves */ 1941 if (pn->slen > pn->pos) 1942 update_suffix(pn); 1943 1944 /* resize completed node */ 1945 pn = resize(t, pn); 1946 cindex = get_index(pkey, pn); 1947 1948 continue; 1949 } 1950 1951 /* grab the next available node */ 1952 n = get_child(pn, cindex); 1953 if (!n) 1954 continue; 1955 1956 if (IS_TNODE(n)) { 1957 /* record pn and cindex for leaf walking */ 1958 pn = n; 1959 cindex = 1ul << n->bits; 1960 1961 continue; 1962 } 1963 1964 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1965 struct fib_info *fi = fa->fa_info; 1966 1967 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || 1968 tb->tb_id != fa->tb_id) { 1969 slen = fa->fa_slen; 1970 continue; 1971 } 1972 1973 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1974 n->key, 1975 KEYLENGTH - fa->fa_slen, 1976 fi, fa->fa_tos, fa->fa_type, 1977 tb->tb_id); 1978 hlist_del_rcu(&fa->fa_list); 1979 fib_release_info(fa->fa_info); 1980 alias_free_mem_rcu(fa); 1981 found++; 1982 } 1983 1984 /* update leaf slen */ 1985 n->slen = slen; 1986 1987 if (hlist_empty(&n->leaf)) { 1988 put_child_root(pn, n->key, NULL); 1989 node_free(n); 1990 } 1991 } 1992 1993 pr_debug("trie_flush found=%d\n", found); 1994 return found; 1995 } 1996 1997 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1998 struct fib_table *tb, struct notifier_block *nb, 1999 enum fib_event_type event_type) 2000 { 2001 struct fib_alias *fa; 2002 2003 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2004 struct fib_info *fi = fa->fa_info; 2005 2006 if (!fi) 2007 continue; 2008 2009 /* local and main table can share the same trie, 2010 * so don't notify twice for the same entry. 2011 */ 2012 if (tb->tb_id != fa->tb_id) 2013 continue; 2014 2015 call_fib_entry_notifier(nb, net, event_type, l->key, 2016 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos, 2017 fa->fa_type, fa->tb_id); 2018 } 2019 } 2020 2021 static void fib_table_notify(struct net *net, struct fib_table *tb, 2022 struct notifier_block *nb, 2023 enum fib_event_type event_type) 2024 { 2025 struct trie *t = (struct trie *)tb->tb_data; 2026 struct key_vector *l, *tp = t->kv; 2027 t_key key = 0; 2028 2029 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2030 fib_leaf_notify(net, l, tb, nb, event_type); 2031 2032 key = l->key + 1; 2033 /* stop in case of wrap around */ 2034 if (key < l->key) 2035 break; 2036 } 2037 } 2038 2039 static void fib_notify(struct net *net, struct notifier_block *nb, 2040 enum fib_event_type event_type) 2041 { 2042 unsigned int h; 2043 2044 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2045 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2046 struct fib_table *tb; 2047 2048 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2049 fib_table_notify(net, tb, nb, event_type); 2050 } 2051 } 2052 2053 static void __trie_free_rcu(struct rcu_head *head) 2054 { 2055 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2056 #ifdef CONFIG_IP_FIB_TRIE_STATS 2057 struct trie *t = (struct trie *)tb->tb_data; 2058 2059 if (tb->tb_data == tb->__data) 2060 free_percpu(t->stats); 2061 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2062 kfree(tb); 2063 } 2064 2065 void fib_free_table(struct fib_table *tb) 2066 { 2067 call_rcu(&tb->rcu, __trie_free_rcu); 2068 } 2069 2070 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2071 struct sk_buff *skb, struct netlink_callback *cb) 2072 { 2073 __be32 xkey = htonl(l->key); 2074 struct fib_alias *fa; 2075 int i, s_i; 2076 2077 s_i = cb->args[4]; 2078 i = 0; 2079 2080 /* rcu_read_lock is hold by caller */ 2081 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2082 if (i < s_i) { 2083 i++; 2084 continue; 2085 } 2086 2087 if (tb->tb_id != fa->tb_id) { 2088 i++; 2089 continue; 2090 } 2091 2092 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2093 cb->nlh->nlmsg_seq, 2094 RTM_NEWROUTE, 2095 tb->tb_id, 2096 fa->fa_type, 2097 xkey, 2098 KEYLENGTH - fa->fa_slen, 2099 fa->fa_tos, 2100 fa->fa_info, NLM_F_MULTI) < 0) { 2101 cb->args[4] = i; 2102 return -1; 2103 } 2104 i++; 2105 } 2106 2107 cb->args[4] = i; 2108 return skb->len; 2109 } 2110 2111 /* rcu_read_lock needs to be hold by caller from readside */ 2112 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2113 struct netlink_callback *cb) 2114 { 2115 struct trie *t = (struct trie *)tb->tb_data; 2116 struct key_vector *l, *tp = t->kv; 2117 /* Dump starting at last key. 2118 * Note: 0.0.0.0/0 (ie default) is first key. 2119 */ 2120 int count = cb->args[2]; 2121 t_key key = cb->args[3]; 2122 2123 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2124 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 2125 cb->args[3] = key; 2126 cb->args[2] = count; 2127 return -1; 2128 } 2129 2130 ++count; 2131 key = l->key + 1; 2132 2133 memset(&cb->args[4], 0, 2134 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2135 2136 /* stop loop if key wrapped back to 0 */ 2137 if (key < l->key) 2138 break; 2139 } 2140 2141 cb->args[3] = key; 2142 cb->args[2] = count; 2143 2144 return skb->len; 2145 } 2146 2147 void __init fib_trie_init(void) 2148 { 2149 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2150 sizeof(struct fib_alias), 2151 0, SLAB_PANIC, NULL); 2152 2153 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2154 LEAF_SIZE, 2155 0, SLAB_PANIC, NULL); 2156 } 2157 2158 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2159 { 2160 struct fib_table *tb; 2161 struct trie *t; 2162 size_t sz = sizeof(*tb); 2163 2164 if (!alias) 2165 sz += sizeof(struct trie); 2166 2167 tb = kzalloc(sz, GFP_KERNEL); 2168 if (!tb) 2169 return NULL; 2170 2171 tb->tb_id = id; 2172 tb->tb_num_default = 0; 2173 tb->tb_data = (alias ? alias->__data : tb->__data); 2174 2175 if (alias) 2176 return tb; 2177 2178 t = (struct trie *) tb->tb_data; 2179 t->kv[0].pos = KEYLENGTH; 2180 t->kv[0].slen = KEYLENGTH; 2181 #ifdef CONFIG_IP_FIB_TRIE_STATS 2182 t->stats = alloc_percpu(struct trie_use_stats); 2183 if (!t->stats) { 2184 kfree(tb); 2185 tb = NULL; 2186 } 2187 #endif 2188 2189 return tb; 2190 } 2191 2192 #ifdef CONFIG_PROC_FS 2193 /* Depth first Trie walk iterator */ 2194 struct fib_trie_iter { 2195 struct seq_net_private p; 2196 struct fib_table *tb; 2197 struct key_vector *tnode; 2198 unsigned int index; 2199 unsigned int depth; 2200 }; 2201 2202 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2203 { 2204 unsigned long cindex = iter->index; 2205 struct key_vector *pn = iter->tnode; 2206 t_key pkey; 2207 2208 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2209 iter->tnode, iter->index, iter->depth); 2210 2211 while (!IS_TRIE(pn)) { 2212 while (cindex < child_length(pn)) { 2213 struct key_vector *n = get_child_rcu(pn, cindex++); 2214 2215 if (!n) 2216 continue; 2217 2218 if (IS_LEAF(n)) { 2219 iter->tnode = pn; 2220 iter->index = cindex; 2221 } else { 2222 /* push down one level */ 2223 iter->tnode = n; 2224 iter->index = 0; 2225 ++iter->depth; 2226 } 2227 2228 return n; 2229 } 2230 2231 /* Current node exhausted, pop back up */ 2232 pkey = pn->key; 2233 pn = node_parent_rcu(pn); 2234 cindex = get_index(pkey, pn) + 1; 2235 --iter->depth; 2236 } 2237 2238 /* record root node so further searches know we are done */ 2239 iter->tnode = pn; 2240 iter->index = 0; 2241 2242 return NULL; 2243 } 2244 2245 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2246 struct trie *t) 2247 { 2248 struct key_vector *n, *pn; 2249 2250 if (!t) 2251 return NULL; 2252 2253 pn = t->kv; 2254 n = rcu_dereference(pn->tnode[0]); 2255 if (!n) 2256 return NULL; 2257 2258 if (IS_TNODE(n)) { 2259 iter->tnode = n; 2260 iter->index = 0; 2261 iter->depth = 1; 2262 } else { 2263 iter->tnode = pn; 2264 iter->index = 0; 2265 iter->depth = 0; 2266 } 2267 2268 return n; 2269 } 2270 2271 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2272 { 2273 struct key_vector *n; 2274 struct fib_trie_iter iter; 2275 2276 memset(s, 0, sizeof(*s)); 2277 2278 rcu_read_lock(); 2279 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2280 if (IS_LEAF(n)) { 2281 struct fib_alias *fa; 2282 2283 s->leaves++; 2284 s->totdepth += iter.depth; 2285 if (iter.depth > s->maxdepth) 2286 s->maxdepth = iter.depth; 2287 2288 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2289 ++s->prefixes; 2290 } else { 2291 s->tnodes++; 2292 if (n->bits < MAX_STAT_DEPTH) 2293 s->nodesizes[n->bits]++; 2294 s->nullpointers += tn_info(n)->empty_children; 2295 } 2296 } 2297 rcu_read_unlock(); 2298 } 2299 2300 /* 2301 * This outputs /proc/net/fib_triestats 2302 */ 2303 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2304 { 2305 unsigned int i, max, pointers, bytes, avdepth; 2306 2307 if (stat->leaves) 2308 avdepth = stat->totdepth*100 / stat->leaves; 2309 else 2310 avdepth = 0; 2311 2312 seq_printf(seq, "\tAver depth: %u.%02d\n", 2313 avdepth / 100, avdepth % 100); 2314 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2315 2316 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2317 bytes = LEAF_SIZE * stat->leaves; 2318 2319 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2320 bytes += sizeof(struct fib_alias) * stat->prefixes; 2321 2322 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2323 bytes += TNODE_SIZE(0) * stat->tnodes; 2324 2325 max = MAX_STAT_DEPTH; 2326 while (max > 0 && stat->nodesizes[max-1] == 0) 2327 max--; 2328 2329 pointers = 0; 2330 for (i = 1; i < max; i++) 2331 if (stat->nodesizes[i] != 0) { 2332 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2333 pointers += (1<<i) * stat->nodesizes[i]; 2334 } 2335 seq_putc(seq, '\n'); 2336 seq_printf(seq, "\tPointers: %u\n", pointers); 2337 2338 bytes += sizeof(struct key_vector *) * pointers; 2339 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2340 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2341 } 2342 2343 #ifdef CONFIG_IP_FIB_TRIE_STATS 2344 static void trie_show_usage(struct seq_file *seq, 2345 const struct trie_use_stats __percpu *stats) 2346 { 2347 struct trie_use_stats s = { 0 }; 2348 int cpu; 2349 2350 /* loop through all of the CPUs and gather up the stats */ 2351 for_each_possible_cpu(cpu) { 2352 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2353 2354 s.gets += pcpu->gets; 2355 s.backtrack += pcpu->backtrack; 2356 s.semantic_match_passed += pcpu->semantic_match_passed; 2357 s.semantic_match_miss += pcpu->semantic_match_miss; 2358 s.null_node_hit += pcpu->null_node_hit; 2359 s.resize_node_skipped += pcpu->resize_node_skipped; 2360 } 2361 2362 seq_printf(seq, "\nCounters:\n---------\n"); 2363 seq_printf(seq, "gets = %u\n", s.gets); 2364 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2365 seq_printf(seq, "semantic match passed = %u\n", 2366 s.semantic_match_passed); 2367 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2368 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2369 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2370 } 2371 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2372 2373 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2374 { 2375 if (tb->tb_id == RT_TABLE_LOCAL) 2376 seq_puts(seq, "Local:\n"); 2377 else if (tb->tb_id == RT_TABLE_MAIN) 2378 seq_puts(seq, "Main:\n"); 2379 else 2380 seq_printf(seq, "Id %d:\n", tb->tb_id); 2381 } 2382 2383 2384 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2385 { 2386 struct net *net = (struct net *)seq->private; 2387 unsigned int h; 2388 2389 seq_printf(seq, 2390 "Basic info: size of leaf:" 2391 " %zd bytes, size of tnode: %zd bytes.\n", 2392 LEAF_SIZE, TNODE_SIZE(0)); 2393 2394 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2395 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2396 struct fib_table *tb; 2397 2398 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2399 struct trie *t = (struct trie *) tb->tb_data; 2400 struct trie_stat stat; 2401 2402 if (!t) 2403 continue; 2404 2405 fib_table_print(seq, tb); 2406 2407 trie_collect_stats(t, &stat); 2408 trie_show_stats(seq, &stat); 2409 #ifdef CONFIG_IP_FIB_TRIE_STATS 2410 trie_show_usage(seq, t->stats); 2411 #endif 2412 } 2413 } 2414 2415 return 0; 2416 } 2417 2418 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2419 { 2420 return single_open_net(inode, file, fib_triestat_seq_show); 2421 } 2422 2423 static const struct file_operations fib_triestat_fops = { 2424 .owner = THIS_MODULE, 2425 .open = fib_triestat_seq_open, 2426 .read = seq_read, 2427 .llseek = seq_lseek, 2428 .release = single_release_net, 2429 }; 2430 2431 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2432 { 2433 struct fib_trie_iter *iter = seq->private; 2434 struct net *net = seq_file_net(seq); 2435 loff_t idx = 0; 2436 unsigned int h; 2437 2438 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2439 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2440 struct fib_table *tb; 2441 2442 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2443 struct key_vector *n; 2444 2445 for (n = fib_trie_get_first(iter, 2446 (struct trie *) tb->tb_data); 2447 n; n = fib_trie_get_next(iter)) 2448 if (pos == idx++) { 2449 iter->tb = tb; 2450 return n; 2451 } 2452 } 2453 } 2454 2455 return NULL; 2456 } 2457 2458 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2459 __acquires(RCU) 2460 { 2461 rcu_read_lock(); 2462 return fib_trie_get_idx(seq, *pos); 2463 } 2464 2465 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2466 { 2467 struct fib_trie_iter *iter = seq->private; 2468 struct net *net = seq_file_net(seq); 2469 struct fib_table *tb = iter->tb; 2470 struct hlist_node *tb_node; 2471 unsigned int h; 2472 struct key_vector *n; 2473 2474 ++*pos; 2475 /* next node in same table */ 2476 n = fib_trie_get_next(iter); 2477 if (n) 2478 return n; 2479 2480 /* walk rest of this hash chain */ 2481 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2482 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2483 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2484 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2485 if (n) 2486 goto found; 2487 } 2488 2489 /* new hash chain */ 2490 while (++h < FIB_TABLE_HASHSZ) { 2491 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2492 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2493 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2494 if (n) 2495 goto found; 2496 } 2497 } 2498 return NULL; 2499 2500 found: 2501 iter->tb = tb; 2502 return n; 2503 } 2504 2505 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2506 __releases(RCU) 2507 { 2508 rcu_read_unlock(); 2509 } 2510 2511 static void seq_indent(struct seq_file *seq, int n) 2512 { 2513 while (n-- > 0) 2514 seq_puts(seq, " "); 2515 } 2516 2517 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2518 { 2519 switch (s) { 2520 case RT_SCOPE_UNIVERSE: return "universe"; 2521 case RT_SCOPE_SITE: return "site"; 2522 case RT_SCOPE_LINK: return "link"; 2523 case RT_SCOPE_HOST: return "host"; 2524 case RT_SCOPE_NOWHERE: return "nowhere"; 2525 default: 2526 snprintf(buf, len, "scope=%d", s); 2527 return buf; 2528 } 2529 } 2530 2531 static const char *const rtn_type_names[__RTN_MAX] = { 2532 [RTN_UNSPEC] = "UNSPEC", 2533 [RTN_UNICAST] = "UNICAST", 2534 [RTN_LOCAL] = "LOCAL", 2535 [RTN_BROADCAST] = "BROADCAST", 2536 [RTN_ANYCAST] = "ANYCAST", 2537 [RTN_MULTICAST] = "MULTICAST", 2538 [RTN_BLACKHOLE] = "BLACKHOLE", 2539 [RTN_UNREACHABLE] = "UNREACHABLE", 2540 [RTN_PROHIBIT] = "PROHIBIT", 2541 [RTN_THROW] = "THROW", 2542 [RTN_NAT] = "NAT", 2543 [RTN_XRESOLVE] = "XRESOLVE", 2544 }; 2545 2546 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2547 { 2548 if (t < __RTN_MAX && rtn_type_names[t]) 2549 return rtn_type_names[t]; 2550 snprintf(buf, len, "type %u", t); 2551 return buf; 2552 } 2553 2554 /* Pretty print the trie */ 2555 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2556 { 2557 const struct fib_trie_iter *iter = seq->private; 2558 struct key_vector *n = v; 2559 2560 if (IS_TRIE(node_parent_rcu(n))) 2561 fib_table_print(seq, iter->tb); 2562 2563 if (IS_TNODE(n)) { 2564 __be32 prf = htonl(n->key); 2565 2566 seq_indent(seq, iter->depth-1); 2567 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2568 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2569 tn_info(n)->full_children, 2570 tn_info(n)->empty_children); 2571 } else { 2572 __be32 val = htonl(n->key); 2573 struct fib_alias *fa; 2574 2575 seq_indent(seq, iter->depth); 2576 seq_printf(seq, " |-- %pI4\n", &val); 2577 2578 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2579 char buf1[32], buf2[32]; 2580 2581 seq_indent(seq, iter->depth + 1); 2582 seq_printf(seq, " /%zu %s %s", 2583 KEYLENGTH - fa->fa_slen, 2584 rtn_scope(buf1, sizeof(buf1), 2585 fa->fa_info->fib_scope), 2586 rtn_type(buf2, sizeof(buf2), 2587 fa->fa_type)); 2588 if (fa->fa_tos) 2589 seq_printf(seq, " tos=%d", fa->fa_tos); 2590 seq_putc(seq, '\n'); 2591 } 2592 } 2593 2594 return 0; 2595 } 2596 2597 static const struct seq_operations fib_trie_seq_ops = { 2598 .start = fib_trie_seq_start, 2599 .next = fib_trie_seq_next, 2600 .stop = fib_trie_seq_stop, 2601 .show = fib_trie_seq_show, 2602 }; 2603 2604 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2605 { 2606 return seq_open_net(inode, file, &fib_trie_seq_ops, 2607 sizeof(struct fib_trie_iter)); 2608 } 2609 2610 static const struct file_operations fib_trie_fops = { 2611 .owner = THIS_MODULE, 2612 .open = fib_trie_seq_open, 2613 .read = seq_read, 2614 .llseek = seq_lseek, 2615 .release = seq_release_net, 2616 }; 2617 2618 struct fib_route_iter { 2619 struct seq_net_private p; 2620 struct fib_table *main_tb; 2621 struct key_vector *tnode; 2622 loff_t pos; 2623 t_key key; 2624 }; 2625 2626 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2627 loff_t pos) 2628 { 2629 struct key_vector *l, **tp = &iter->tnode; 2630 t_key key; 2631 2632 /* use cached location of previously found key */ 2633 if (iter->pos > 0 && pos >= iter->pos) { 2634 key = iter->key; 2635 } else { 2636 iter->pos = 1; 2637 key = 0; 2638 } 2639 2640 pos -= iter->pos; 2641 2642 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2643 key = l->key + 1; 2644 iter->pos++; 2645 l = NULL; 2646 2647 /* handle unlikely case of a key wrap */ 2648 if (!key) 2649 break; 2650 } 2651 2652 if (l) 2653 iter->key = l->key; /* remember it */ 2654 else 2655 iter->pos = 0; /* forget it */ 2656 2657 return l; 2658 } 2659 2660 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2661 __acquires(RCU) 2662 { 2663 struct fib_route_iter *iter = seq->private; 2664 struct fib_table *tb; 2665 struct trie *t; 2666 2667 rcu_read_lock(); 2668 2669 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2670 if (!tb) 2671 return NULL; 2672 2673 iter->main_tb = tb; 2674 t = (struct trie *)tb->tb_data; 2675 iter->tnode = t->kv; 2676 2677 if (*pos != 0) 2678 return fib_route_get_idx(iter, *pos); 2679 2680 iter->pos = 0; 2681 iter->key = KEY_MAX; 2682 2683 return SEQ_START_TOKEN; 2684 } 2685 2686 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2687 { 2688 struct fib_route_iter *iter = seq->private; 2689 struct key_vector *l = NULL; 2690 t_key key = iter->key + 1; 2691 2692 ++*pos; 2693 2694 /* only allow key of 0 for start of sequence */ 2695 if ((v == SEQ_START_TOKEN) || key) 2696 l = leaf_walk_rcu(&iter->tnode, key); 2697 2698 if (l) { 2699 iter->key = l->key; 2700 iter->pos++; 2701 } else { 2702 iter->pos = 0; 2703 } 2704 2705 return l; 2706 } 2707 2708 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2709 __releases(RCU) 2710 { 2711 rcu_read_unlock(); 2712 } 2713 2714 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2715 { 2716 unsigned int flags = 0; 2717 2718 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2719 flags = RTF_REJECT; 2720 if (fi && fi->fib_nh->nh_gw) 2721 flags |= RTF_GATEWAY; 2722 if (mask == htonl(0xFFFFFFFF)) 2723 flags |= RTF_HOST; 2724 flags |= RTF_UP; 2725 return flags; 2726 } 2727 2728 /* 2729 * This outputs /proc/net/route. 2730 * The format of the file is not supposed to be changed 2731 * and needs to be same as fib_hash output to avoid breaking 2732 * legacy utilities 2733 */ 2734 static int fib_route_seq_show(struct seq_file *seq, void *v) 2735 { 2736 struct fib_route_iter *iter = seq->private; 2737 struct fib_table *tb = iter->main_tb; 2738 struct fib_alias *fa; 2739 struct key_vector *l = v; 2740 __be32 prefix; 2741 2742 if (v == SEQ_START_TOKEN) { 2743 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2744 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2745 "\tWindow\tIRTT"); 2746 return 0; 2747 } 2748 2749 prefix = htonl(l->key); 2750 2751 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2752 const struct fib_info *fi = fa->fa_info; 2753 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2754 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2755 2756 if ((fa->fa_type == RTN_BROADCAST) || 2757 (fa->fa_type == RTN_MULTICAST)) 2758 continue; 2759 2760 if (fa->tb_id != tb->tb_id) 2761 continue; 2762 2763 seq_setwidth(seq, 127); 2764 2765 if (fi) 2766 seq_printf(seq, 2767 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2768 "%d\t%08X\t%d\t%u\t%u", 2769 fi->fib_dev ? fi->fib_dev->name : "*", 2770 prefix, 2771 fi->fib_nh->nh_gw, flags, 0, 0, 2772 fi->fib_priority, 2773 mask, 2774 (fi->fib_advmss ? 2775 fi->fib_advmss + 40 : 0), 2776 fi->fib_window, 2777 fi->fib_rtt >> 3); 2778 else 2779 seq_printf(seq, 2780 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2781 "%d\t%08X\t%d\t%u\t%u", 2782 prefix, 0, flags, 0, 0, 0, 2783 mask, 0, 0, 0); 2784 2785 seq_pad(seq, '\n'); 2786 } 2787 2788 return 0; 2789 } 2790 2791 static const struct seq_operations fib_route_seq_ops = { 2792 .start = fib_route_seq_start, 2793 .next = fib_route_seq_next, 2794 .stop = fib_route_seq_stop, 2795 .show = fib_route_seq_show, 2796 }; 2797 2798 static int fib_route_seq_open(struct inode *inode, struct file *file) 2799 { 2800 return seq_open_net(inode, file, &fib_route_seq_ops, 2801 sizeof(struct fib_route_iter)); 2802 } 2803 2804 static const struct file_operations fib_route_fops = { 2805 .owner = THIS_MODULE, 2806 .open = fib_route_seq_open, 2807 .read = seq_read, 2808 .llseek = seq_lseek, 2809 .release = seq_release_net, 2810 }; 2811 2812 int __net_init fib_proc_init(struct net *net) 2813 { 2814 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2815 goto out1; 2816 2817 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2818 &fib_triestat_fops)) 2819 goto out2; 2820 2821 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2822 goto out3; 2823 2824 return 0; 2825 2826 out3: 2827 remove_proc_entry("fib_triestat", net->proc_net); 2828 out2: 2829 remove_proc_entry("fib_trie", net->proc_net); 2830 out1: 2831 return -ENOMEM; 2832 } 2833 2834 void __net_exit fib_proc_exit(struct net *net) 2835 { 2836 remove_proc_entry("fib_trie", net->proc_net); 2837 remove_proc_entry("fib_triestat", net->proc_net); 2838 remove_proc_entry("route", net->proc_net); 2839 } 2840 2841 #endif /* CONFIG_PROC_FS */ 2842