1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include <net/switchdev.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 #define MAX_STAT_DEPTH 32 88 89 #define KEYLENGTH (8*sizeof(t_key)) 90 #define KEY_MAX ((t_key)~0) 91 92 typedef unsigned int t_key; 93 94 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 95 #define IS_TNODE(n) ((n)->bits) 96 #define IS_LEAF(n) (!(n)->bits) 97 98 struct key_vector { 99 t_key key; 100 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 101 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 102 unsigned char slen; 103 union { 104 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 105 struct hlist_head leaf; 106 /* This array is valid if (pos | bits) > 0 (TNODE) */ 107 struct key_vector __rcu *tnode[0]; 108 }; 109 }; 110 111 struct tnode { 112 struct rcu_head rcu; 113 t_key empty_children; /* KEYLENGTH bits needed */ 114 t_key full_children; /* KEYLENGTH bits needed */ 115 struct key_vector __rcu *parent; 116 struct key_vector kv[1]; 117 #define tn_bits kv[0].bits 118 }; 119 120 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 121 #define LEAF_SIZE TNODE_SIZE(1) 122 123 #ifdef CONFIG_IP_FIB_TRIE_STATS 124 struct trie_use_stats { 125 unsigned int gets; 126 unsigned int backtrack; 127 unsigned int semantic_match_passed; 128 unsigned int semantic_match_miss; 129 unsigned int null_node_hit; 130 unsigned int resize_node_skipped; 131 }; 132 #endif 133 134 struct trie_stat { 135 unsigned int totdepth; 136 unsigned int maxdepth; 137 unsigned int tnodes; 138 unsigned int leaves; 139 unsigned int nullpointers; 140 unsigned int prefixes; 141 unsigned int nodesizes[MAX_STAT_DEPTH]; 142 }; 143 144 struct trie { 145 struct key_vector kv[1]; 146 #ifdef CONFIG_IP_FIB_TRIE_STATS 147 struct trie_use_stats __percpu *stats; 148 #endif 149 }; 150 151 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 152 static size_t tnode_free_size; 153 154 /* 155 * synchronize_rcu after call_rcu for that many pages; it should be especially 156 * useful before resizing the root node with PREEMPT_NONE configs; the value was 157 * obtained experimentally, aiming to avoid visible slowdown. 158 */ 159 static const int sync_pages = 128; 160 161 static struct kmem_cache *fn_alias_kmem __read_mostly; 162 static struct kmem_cache *trie_leaf_kmem __read_mostly; 163 164 static inline struct tnode *tn_info(struct key_vector *kv) 165 { 166 return container_of(kv, struct tnode, kv[0]); 167 } 168 169 /* caller must hold RTNL */ 170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 172 173 /* caller must hold RCU read lock or RTNL */ 174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 176 177 /* wrapper for rcu_assign_pointer */ 178 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 179 { 180 if (n) 181 rcu_assign_pointer(tn_info(n)->parent, tp); 182 } 183 184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 185 186 /* This provides us with the number of children in this node, in the case of a 187 * leaf this will return 0 meaning none of the children are accessible. 188 */ 189 static inline unsigned long child_length(const struct key_vector *tn) 190 { 191 return (1ul << tn->bits) & ~(1ul); 192 } 193 194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 195 196 static inline unsigned long get_index(t_key key, struct key_vector *kv) 197 { 198 unsigned long index = key ^ kv->key; 199 200 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 201 return 0; 202 203 return index >> kv->pos; 204 } 205 206 /* To understand this stuff, an understanding of keys and all their bits is 207 * necessary. Every node in the trie has a key associated with it, but not 208 * all of the bits in that key are significant. 209 * 210 * Consider a node 'n' and its parent 'tp'. 211 * 212 * If n is a leaf, every bit in its key is significant. Its presence is 213 * necessitated by path compression, since during a tree traversal (when 214 * searching for a leaf - unless we are doing an insertion) we will completely 215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 216 * a potentially successful search, that we have indeed been walking the 217 * correct key path. 218 * 219 * Note that we can never "miss" the correct key in the tree if present by 220 * following the wrong path. Path compression ensures that segments of the key 221 * that are the same for all keys with a given prefix are skipped, but the 222 * skipped part *is* identical for each node in the subtrie below the skipped 223 * bit! trie_insert() in this implementation takes care of that. 224 * 225 * if n is an internal node - a 'tnode' here, the various parts of its key 226 * have many different meanings. 227 * 228 * Example: 229 * _________________________________________________________________ 230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 231 * ----------------------------------------------------------------- 232 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 233 * 234 * _________________________________________________________________ 235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 236 * ----------------------------------------------------------------- 237 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 238 * 239 * tp->pos = 22 240 * tp->bits = 3 241 * n->pos = 13 242 * n->bits = 4 243 * 244 * First, let's just ignore the bits that come before the parent tp, that is 245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 246 * point we do not use them for anything. 247 * 248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 249 * index into the parent's child array. That is, they will be used to find 250 * 'n' among tp's children. 251 * 252 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits 253 * for the node n. 254 * 255 * All the bits we have seen so far are significant to the node n. The rest 256 * of the bits are really not needed or indeed known in n->key. 257 * 258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 259 * n's child array, and will of course be different for each child. 260 * 261 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown 262 * at this point. 263 */ 264 265 static const int halve_threshold = 25; 266 static const int inflate_threshold = 50; 267 static const int halve_threshold_root = 15; 268 static const int inflate_threshold_root = 30; 269 270 static void __alias_free_mem(struct rcu_head *head) 271 { 272 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 273 kmem_cache_free(fn_alias_kmem, fa); 274 } 275 276 static inline void alias_free_mem_rcu(struct fib_alias *fa) 277 { 278 call_rcu(&fa->rcu, __alias_free_mem); 279 } 280 281 #define TNODE_KMALLOC_MAX \ 282 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 283 #define TNODE_VMALLOC_MAX \ 284 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 285 286 static void __node_free_rcu(struct rcu_head *head) 287 { 288 struct tnode *n = container_of(head, struct tnode, rcu); 289 290 if (!n->tn_bits) 291 kmem_cache_free(trie_leaf_kmem, n); 292 else if (n->tn_bits <= TNODE_KMALLOC_MAX) 293 kfree(n); 294 else 295 vfree(n); 296 } 297 298 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 299 300 static struct tnode *tnode_alloc(int bits) 301 { 302 size_t size; 303 304 /* verify bits is within bounds */ 305 if (bits > TNODE_VMALLOC_MAX) 306 return NULL; 307 308 /* determine size and verify it is non-zero and didn't overflow */ 309 size = TNODE_SIZE(1ul << bits); 310 311 if (size <= PAGE_SIZE) 312 return kzalloc(size, GFP_KERNEL); 313 else 314 return vzalloc(size); 315 } 316 317 static inline void empty_child_inc(struct key_vector *n) 318 { 319 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 320 } 321 322 static inline void empty_child_dec(struct key_vector *n) 323 { 324 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 325 } 326 327 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 328 { 329 struct key_vector *l; 330 struct tnode *kv; 331 332 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 333 if (!kv) 334 return NULL; 335 336 /* initialize key vector */ 337 l = kv->kv; 338 l->key = key; 339 l->pos = 0; 340 l->bits = 0; 341 l->slen = fa->fa_slen; 342 343 /* link leaf to fib alias */ 344 INIT_HLIST_HEAD(&l->leaf); 345 hlist_add_head(&fa->fa_list, &l->leaf); 346 347 return l; 348 } 349 350 static struct key_vector *tnode_new(t_key key, int pos, int bits) 351 { 352 unsigned int shift = pos + bits; 353 struct key_vector *tn; 354 struct tnode *tnode; 355 356 /* verify bits and pos their msb bits clear and values are valid */ 357 BUG_ON(!bits || (shift > KEYLENGTH)); 358 359 tnode = tnode_alloc(bits); 360 if (!tnode) 361 return NULL; 362 363 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 364 sizeof(struct key_vector *) << bits); 365 366 if (bits == KEYLENGTH) 367 tnode->full_children = 1; 368 else 369 tnode->empty_children = 1ul << bits; 370 371 tn = tnode->kv; 372 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 373 tn->pos = pos; 374 tn->bits = bits; 375 tn->slen = pos; 376 377 return tn; 378 } 379 380 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 381 * and no bits are skipped. See discussion in dyntree paper p. 6 382 */ 383 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 384 { 385 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 386 } 387 388 /* Add a child at position i overwriting the old value. 389 * Update the value of full_children and empty_children. 390 */ 391 static void put_child(struct key_vector *tn, unsigned long i, 392 struct key_vector *n) 393 { 394 struct key_vector *chi = get_child(tn, i); 395 int isfull, wasfull; 396 397 BUG_ON(i >= child_length(tn)); 398 399 /* update emptyChildren, overflow into fullChildren */ 400 if (!n && chi) 401 empty_child_inc(tn); 402 if (n && !chi) 403 empty_child_dec(tn); 404 405 /* update fullChildren */ 406 wasfull = tnode_full(tn, chi); 407 isfull = tnode_full(tn, n); 408 409 if (wasfull && !isfull) 410 tn_info(tn)->full_children--; 411 else if (!wasfull && isfull) 412 tn_info(tn)->full_children++; 413 414 if (n && (tn->slen < n->slen)) 415 tn->slen = n->slen; 416 417 rcu_assign_pointer(tn->tnode[i], n); 418 } 419 420 static void update_children(struct key_vector *tn) 421 { 422 unsigned long i; 423 424 /* update all of the child parent pointers */ 425 for (i = child_length(tn); i;) { 426 struct key_vector *inode = get_child(tn, --i); 427 428 if (!inode) 429 continue; 430 431 /* Either update the children of a tnode that 432 * already belongs to us or update the child 433 * to point to ourselves. 434 */ 435 if (node_parent(inode) == tn) 436 update_children(inode); 437 else 438 node_set_parent(inode, tn); 439 } 440 } 441 442 static inline void put_child_root(struct key_vector *tp, t_key key, 443 struct key_vector *n) 444 { 445 if (IS_TRIE(tp)) 446 rcu_assign_pointer(tp->tnode[0], n); 447 else 448 put_child(tp, get_index(key, tp), n); 449 } 450 451 static inline void tnode_free_init(struct key_vector *tn) 452 { 453 tn_info(tn)->rcu.next = NULL; 454 } 455 456 static inline void tnode_free_append(struct key_vector *tn, 457 struct key_vector *n) 458 { 459 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 460 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 461 } 462 463 static void tnode_free(struct key_vector *tn) 464 { 465 struct callback_head *head = &tn_info(tn)->rcu; 466 467 while (head) { 468 head = head->next; 469 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 470 node_free(tn); 471 472 tn = container_of(head, struct tnode, rcu)->kv; 473 } 474 475 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 476 tnode_free_size = 0; 477 synchronize_rcu(); 478 } 479 } 480 481 static struct key_vector *replace(struct trie *t, 482 struct key_vector *oldtnode, 483 struct key_vector *tn) 484 { 485 struct key_vector *tp = node_parent(oldtnode); 486 unsigned long i; 487 488 /* setup the parent pointer out of and back into this node */ 489 NODE_INIT_PARENT(tn, tp); 490 put_child_root(tp, tn->key, tn); 491 492 /* update all of the child parent pointers */ 493 update_children(tn); 494 495 /* all pointers should be clean so we are done */ 496 tnode_free(oldtnode); 497 498 /* resize children now that oldtnode is freed */ 499 for (i = child_length(tn); i;) { 500 struct key_vector *inode = get_child(tn, --i); 501 502 /* resize child node */ 503 if (tnode_full(tn, inode)) 504 tn = resize(t, inode); 505 } 506 507 return tp; 508 } 509 510 static struct key_vector *inflate(struct trie *t, 511 struct key_vector *oldtnode) 512 { 513 struct key_vector *tn; 514 unsigned long i; 515 t_key m; 516 517 pr_debug("In inflate\n"); 518 519 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 520 if (!tn) 521 goto notnode; 522 523 /* prepare oldtnode to be freed */ 524 tnode_free_init(oldtnode); 525 526 /* Assemble all of the pointers in our cluster, in this case that 527 * represents all of the pointers out of our allocated nodes that 528 * point to existing tnodes and the links between our allocated 529 * nodes. 530 */ 531 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 532 struct key_vector *inode = get_child(oldtnode, --i); 533 struct key_vector *node0, *node1; 534 unsigned long j, k; 535 536 /* An empty child */ 537 if (!inode) 538 continue; 539 540 /* A leaf or an internal node with skipped bits */ 541 if (!tnode_full(oldtnode, inode)) { 542 put_child(tn, get_index(inode->key, tn), inode); 543 continue; 544 } 545 546 /* drop the node in the old tnode free list */ 547 tnode_free_append(oldtnode, inode); 548 549 /* An internal node with two children */ 550 if (inode->bits == 1) { 551 put_child(tn, 2 * i + 1, get_child(inode, 1)); 552 put_child(tn, 2 * i, get_child(inode, 0)); 553 continue; 554 } 555 556 /* We will replace this node 'inode' with two new 557 * ones, 'node0' and 'node1', each with half of the 558 * original children. The two new nodes will have 559 * a position one bit further down the key and this 560 * means that the "significant" part of their keys 561 * (see the discussion near the top of this file) 562 * will differ by one bit, which will be "0" in 563 * node0's key and "1" in node1's key. Since we are 564 * moving the key position by one step, the bit that 565 * we are moving away from - the bit at position 566 * (tn->pos) - is the one that will differ between 567 * node0 and node1. So... we synthesize that bit in the 568 * two new keys. 569 */ 570 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 571 if (!node1) 572 goto nomem; 573 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 574 575 tnode_free_append(tn, node1); 576 if (!node0) 577 goto nomem; 578 tnode_free_append(tn, node0); 579 580 /* populate child pointers in new nodes */ 581 for (k = child_length(inode), j = k / 2; j;) { 582 put_child(node1, --j, get_child(inode, --k)); 583 put_child(node0, j, get_child(inode, j)); 584 put_child(node1, --j, get_child(inode, --k)); 585 put_child(node0, j, get_child(inode, j)); 586 } 587 588 /* link new nodes to parent */ 589 NODE_INIT_PARENT(node1, tn); 590 NODE_INIT_PARENT(node0, tn); 591 592 /* link parent to nodes */ 593 put_child(tn, 2 * i + 1, node1); 594 put_child(tn, 2 * i, node0); 595 } 596 597 /* setup the parent pointers into and out of this node */ 598 return replace(t, oldtnode, tn); 599 nomem: 600 /* all pointers should be clean so we are done */ 601 tnode_free(tn); 602 notnode: 603 return NULL; 604 } 605 606 static struct key_vector *halve(struct trie *t, 607 struct key_vector *oldtnode) 608 { 609 struct key_vector *tn; 610 unsigned long i; 611 612 pr_debug("In halve\n"); 613 614 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 615 if (!tn) 616 goto notnode; 617 618 /* prepare oldtnode to be freed */ 619 tnode_free_init(oldtnode); 620 621 /* Assemble all of the pointers in our cluster, in this case that 622 * represents all of the pointers out of our allocated nodes that 623 * point to existing tnodes and the links between our allocated 624 * nodes. 625 */ 626 for (i = child_length(oldtnode); i;) { 627 struct key_vector *node1 = get_child(oldtnode, --i); 628 struct key_vector *node0 = get_child(oldtnode, --i); 629 struct key_vector *inode; 630 631 /* At least one of the children is empty */ 632 if (!node1 || !node0) { 633 put_child(tn, i / 2, node1 ? : node0); 634 continue; 635 } 636 637 /* Two nonempty children */ 638 inode = tnode_new(node0->key, oldtnode->pos, 1); 639 if (!inode) 640 goto nomem; 641 tnode_free_append(tn, inode); 642 643 /* initialize pointers out of node */ 644 put_child(inode, 1, node1); 645 put_child(inode, 0, node0); 646 NODE_INIT_PARENT(inode, tn); 647 648 /* link parent to node */ 649 put_child(tn, i / 2, inode); 650 } 651 652 /* setup the parent pointers into and out of this node */ 653 return replace(t, oldtnode, tn); 654 nomem: 655 /* all pointers should be clean so we are done */ 656 tnode_free(tn); 657 notnode: 658 return NULL; 659 } 660 661 static struct key_vector *collapse(struct trie *t, 662 struct key_vector *oldtnode) 663 { 664 struct key_vector *n, *tp; 665 unsigned long i; 666 667 /* scan the tnode looking for that one child that might still exist */ 668 for (n = NULL, i = child_length(oldtnode); !n && i;) 669 n = get_child(oldtnode, --i); 670 671 /* compress one level */ 672 tp = node_parent(oldtnode); 673 put_child_root(tp, oldtnode->key, n); 674 node_set_parent(n, tp); 675 676 /* drop dead node */ 677 node_free(oldtnode); 678 679 return tp; 680 } 681 682 static unsigned char update_suffix(struct key_vector *tn) 683 { 684 unsigned char slen = tn->pos; 685 unsigned long stride, i; 686 687 /* search though the list of children looking for nodes that might 688 * have a suffix greater than the one we currently have. This is 689 * why we start with a stride of 2 since a stride of 1 would 690 * represent the nodes with suffix length equal to tn->pos 691 */ 692 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 693 struct key_vector *n = get_child(tn, i); 694 695 if (!n || (n->slen <= slen)) 696 continue; 697 698 /* update stride and slen based on new value */ 699 stride <<= (n->slen - slen); 700 slen = n->slen; 701 i &= ~(stride - 1); 702 703 /* if slen covers all but the last bit we can stop here 704 * there will be nothing longer than that since only node 705 * 0 and 1 << (bits - 1) could have that as their suffix 706 * length. 707 */ 708 if ((slen + 1) >= (tn->pos + tn->bits)) 709 break; 710 } 711 712 tn->slen = slen; 713 714 return slen; 715 } 716 717 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 718 * the Helsinki University of Technology and Matti Tikkanen of Nokia 719 * Telecommunications, page 6: 720 * "A node is doubled if the ratio of non-empty children to all 721 * children in the *doubled* node is at least 'high'." 722 * 723 * 'high' in this instance is the variable 'inflate_threshold'. It 724 * is expressed as a percentage, so we multiply it with 725 * child_length() and instead of multiplying by 2 (since the 726 * child array will be doubled by inflate()) and multiplying 727 * the left-hand side by 100 (to handle the percentage thing) we 728 * multiply the left-hand side by 50. 729 * 730 * The left-hand side may look a bit weird: child_length(tn) 731 * - tn->empty_children is of course the number of non-null children 732 * in the current node. tn->full_children is the number of "full" 733 * children, that is non-null tnodes with a skip value of 0. 734 * All of those will be doubled in the resulting inflated tnode, so 735 * we just count them one extra time here. 736 * 737 * A clearer way to write this would be: 738 * 739 * to_be_doubled = tn->full_children; 740 * not_to_be_doubled = child_length(tn) - tn->empty_children - 741 * tn->full_children; 742 * 743 * new_child_length = child_length(tn) * 2; 744 * 745 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 746 * new_child_length; 747 * if (new_fill_factor >= inflate_threshold) 748 * 749 * ...and so on, tho it would mess up the while () loop. 750 * 751 * anyway, 752 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 753 * inflate_threshold 754 * 755 * avoid a division: 756 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 757 * inflate_threshold * new_child_length 758 * 759 * expand not_to_be_doubled and to_be_doubled, and shorten: 760 * 100 * (child_length(tn) - tn->empty_children + 761 * tn->full_children) >= inflate_threshold * new_child_length 762 * 763 * expand new_child_length: 764 * 100 * (child_length(tn) - tn->empty_children + 765 * tn->full_children) >= 766 * inflate_threshold * child_length(tn) * 2 767 * 768 * shorten again: 769 * 50 * (tn->full_children + child_length(tn) - 770 * tn->empty_children) >= inflate_threshold * 771 * child_length(tn) 772 * 773 */ 774 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 775 { 776 unsigned long used = child_length(tn); 777 unsigned long threshold = used; 778 779 /* Keep root node larger */ 780 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 781 used -= tn_info(tn)->empty_children; 782 used += tn_info(tn)->full_children; 783 784 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 785 786 return (used > 1) && tn->pos && ((50 * used) >= threshold); 787 } 788 789 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 790 { 791 unsigned long used = child_length(tn); 792 unsigned long threshold = used; 793 794 /* Keep root node larger */ 795 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 796 used -= tn_info(tn)->empty_children; 797 798 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 799 800 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 801 } 802 803 static inline bool should_collapse(struct key_vector *tn) 804 { 805 unsigned long used = child_length(tn); 806 807 used -= tn_info(tn)->empty_children; 808 809 /* account for bits == KEYLENGTH case */ 810 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 811 used -= KEY_MAX; 812 813 /* One child or none, time to drop us from the trie */ 814 return used < 2; 815 } 816 817 #define MAX_WORK 10 818 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 819 { 820 #ifdef CONFIG_IP_FIB_TRIE_STATS 821 struct trie_use_stats __percpu *stats = t->stats; 822 #endif 823 struct key_vector *tp = node_parent(tn); 824 unsigned long cindex = get_index(tn->key, tp); 825 int max_work = MAX_WORK; 826 827 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 828 tn, inflate_threshold, halve_threshold); 829 830 /* track the tnode via the pointer from the parent instead of 831 * doing it ourselves. This way we can let RCU fully do its 832 * thing without us interfering 833 */ 834 BUG_ON(tn != get_child(tp, cindex)); 835 836 /* Double as long as the resulting node has a number of 837 * nonempty nodes that are above the threshold. 838 */ 839 while (should_inflate(tp, tn) && max_work) { 840 tp = inflate(t, tn); 841 if (!tp) { 842 #ifdef CONFIG_IP_FIB_TRIE_STATS 843 this_cpu_inc(stats->resize_node_skipped); 844 #endif 845 break; 846 } 847 848 max_work--; 849 tn = get_child(tp, cindex); 850 } 851 852 /* update parent in case inflate failed */ 853 tp = node_parent(tn); 854 855 /* Return if at least one inflate is run */ 856 if (max_work != MAX_WORK) 857 return tp; 858 859 /* Halve as long as the number of empty children in this 860 * node is above threshold. 861 */ 862 while (should_halve(tp, tn) && max_work) { 863 tp = halve(t, tn); 864 if (!tp) { 865 #ifdef CONFIG_IP_FIB_TRIE_STATS 866 this_cpu_inc(stats->resize_node_skipped); 867 #endif 868 break; 869 } 870 871 max_work--; 872 tn = get_child(tp, cindex); 873 } 874 875 /* Only one child remains */ 876 if (should_collapse(tn)) 877 return collapse(t, tn); 878 879 /* update parent in case halve failed */ 880 tp = node_parent(tn); 881 882 /* Return if at least one deflate was run */ 883 if (max_work != MAX_WORK) 884 return tp; 885 886 /* push the suffix length to the parent node */ 887 if (tn->slen > tn->pos) { 888 unsigned char slen = update_suffix(tn); 889 890 if (slen > tp->slen) 891 tp->slen = slen; 892 } 893 894 return tp; 895 } 896 897 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l) 898 { 899 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) { 900 if (update_suffix(tp) > l->slen) 901 break; 902 tp = node_parent(tp); 903 } 904 } 905 906 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l) 907 { 908 /* if this is a new leaf then tn will be NULL and we can sort 909 * out parent suffix lengths as a part of trie_rebalance 910 */ 911 while (tn->slen < l->slen) { 912 tn->slen = l->slen; 913 tn = node_parent(tn); 914 } 915 } 916 917 /* rcu_read_lock needs to be hold by caller from readside */ 918 static struct key_vector *fib_find_node(struct trie *t, 919 struct key_vector **tp, u32 key) 920 { 921 struct key_vector *pn, *n = t->kv; 922 unsigned long index = 0; 923 924 do { 925 pn = n; 926 n = get_child_rcu(n, index); 927 928 if (!n) 929 break; 930 931 index = get_cindex(key, n); 932 933 /* This bit of code is a bit tricky but it combines multiple 934 * checks into a single check. The prefix consists of the 935 * prefix plus zeros for the bits in the cindex. The index 936 * is the difference between the key and this value. From 937 * this we can actually derive several pieces of data. 938 * if (index >= (1ul << bits)) 939 * we have a mismatch in skip bits and failed 940 * else 941 * we know the value is cindex 942 * 943 * This check is safe even if bits == KEYLENGTH due to the 944 * fact that we can only allocate a node with 32 bits if a 945 * long is greater than 32 bits. 946 */ 947 if (index >= (1ul << n->bits)) { 948 n = NULL; 949 break; 950 } 951 952 /* keep searching until we find a perfect match leaf or NULL */ 953 } while (IS_TNODE(n)); 954 955 *tp = pn; 956 957 return n; 958 } 959 960 /* Return the first fib alias matching TOS with 961 * priority less than or equal to PRIO. 962 */ 963 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 964 u8 tos, u32 prio, u32 tb_id) 965 { 966 struct fib_alias *fa; 967 968 if (!fah) 969 return NULL; 970 971 hlist_for_each_entry(fa, fah, fa_list) { 972 if (fa->fa_slen < slen) 973 continue; 974 if (fa->fa_slen != slen) 975 break; 976 if (fa->tb_id > tb_id) 977 continue; 978 if (fa->tb_id != tb_id) 979 break; 980 if (fa->fa_tos > tos) 981 continue; 982 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 983 return fa; 984 } 985 986 return NULL; 987 } 988 989 static void trie_rebalance(struct trie *t, struct key_vector *tn) 990 { 991 while (!IS_TRIE(tn)) 992 tn = resize(t, tn); 993 } 994 995 static int fib_insert_node(struct trie *t, struct key_vector *tp, 996 struct fib_alias *new, t_key key) 997 { 998 struct key_vector *n, *l; 999 1000 l = leaf_new(key, new); 1001 if (!l) 1002 goto noleaf; 1003 1004 /* retrieve child from parent node */ 1005 n = get_child(tp, get_index(key, tp)); 1006 1007 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1008 * 1009 * Add a new tnode here 1010 * first tnode need some special handling 1011 * leaves us in position for handling as case 3 1012 */ 1013 if (n) { 1014 struct key_vector *tn; 1015 1016 tn = tnode_new(key, __fls(key ^ n->key), 1); 1017 if (!tn) 1018 goto notnode; 1019 1020 /* initialize routes out of node */ 1021 NODE_INIT_PARENT(tn, tp); 1022 put_child(tn, get_index(key, tn) ^ 1, n); 1023 1024 /* start adding routes into the node */ 1025 put_child_root(tp, key, tn); 1026 node_set_parent(n, tn); 1027 1028 /* parent now has a NULL spot where the leaf can go */ 1029 tp = tn; 1030 } 1031 1032 /* Case 3: n is NULL, and will just insert a new leaf */ 1033 NODE_INIT_PARENT(l, tp); 1034 put_child_root(tp, key, l); 1035 trie_rebalance(t, tp); 1036 1037 return 0; 1038 notnode: 1039 node_free(l); 1040 noleaf: 1041 return -ENOMEM; 1042 } 1043 1044 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1045 struct key_vector *l, struct fib_alias *new, 1046 struct fib_alias *fa, t_key key) 1047 { 1048 if (!l) 1049 return fib_insert_node(t, tp, new, key); 1050 1051 if (fa) { 1052 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1053 } else { 1054 struct fib_alias *last; 1055 1056 hlist_for_each_entry(last, &l->leaf, fa_list) { 1057 if (new->fa_slen < last->fa_slen) 1058 break; 1059 if ((new->fa_slen == last->fa_slen) && 1060 (new->tb_id > last->tb_id)) 1061 break; 1062 fa = last; 1063 } 1064 1065 if (fa) 1066 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1067 else 1068 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1069 } 1070 1071 /* if we added to the tail node then we need to update slen */ 1072 if (l->slen < new->fa_slen) { 1073 l->slen = new->fa_slen; 1074 leaf_push_suffix(tp, l); 1075 } 1076 1077 return 0; 1078 } 1079 1080 /* Caller must hold RTNL. */ 1081 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1082 { 1083 struct trie *t = (struct trie *)tb->tb_data; 1084 struct fib_alias *fa, *new_fa; 1085 struct key_vector *l, *tp; 1086 unsigned int nlflags = 0; 1087 struct fib_info *fi; 1088 u8 plen = cfg->fc_dst_len; 1089 u8 slen = KEYLENGTH - plen; 1090 u8 tos = cfg->fc_tos; 1091 u32 key; 1092 int err; 1093 1094 if (plen > KEYLENGTH) 1095 return -EINVAL; 1096 1097 key = ntohl(cfg->fc_dst); 1098 1099 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1100 1101 if ((plen < KEYLENGTH) && (key << plen)) 1102 return -EINVAL; 1103 1104 fi = fib_create_info(cfg); 1105 if (IS_ERR(fi)) { 1106 err = PTR_ERR(fi); 1107 goto err; 1108 } 1109 1110 l = fib_find_node(t, &tp, key); 1111 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1112 tb->tb_id) : NULL; 1113 1114 /* Now fa, if non-NULL, points to the first fib alias 1115 * with the same keys [prefix,tos,priority], if such key already 1116 * exists or to the node before which we will insert new one. 1117 * 1118 * If fa is NULL, we will need to allocate a new one and 1119 * insert to the tail of the section matching the suffix length 1120 * of the new alias. 1121 */ 1122 1123 if (fa && fa->fa_tos == tos && 1124 fa->fa_info->fib_priority == fi->fib_priority) { 1125 struct fib_alias *fa_first, *fa_match; 1126 1127 err = -EEXIST; 1128 if (cfg->fc_nlflags & NLM_F_EXCL) 1129 goto out; 1130 1131 /* We have 2 goals: 1132 * 1. Find exact match for type, scope, fib_info to avoid 1133 * duplicate routes 1134 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1135 */ 1136 fa_match = NULL; 1137 fa_first = fa; 1138 hlist_for_each_entry_from(fa, fa_list) { 1139 if ((fa->fa_slen != slen) || 1140 (fa->tb_id != tb->tb_id) || 1141 (fa->fa_tos != tos)) 1142 break; 1143 if (fa->fa_info->fib_priority != fi->fib_priority) 1144 break; 1145 if (fa->fa_type == cfg->fc_type && 1146 fa->fa_info == fi) { 1147 fa_match = fa; 1148 break; 1149 } 1150 } 1151 1152 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1153 struct fib_info *fi_drop; 1154 u8 state; 1155 1156 fa = fa_first; 1157 if (fa_match) { 1158 if (fa == fa_match) 1159 err = 0; 1160 goto out; 1161 } 1162 err = -ENOBUFS; 1163 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1164 if (!new_fa) 1165 goto out; 1166 1167 fi_drop = fa->fa_info; 1168 new_fa->fa_tos = fa->fa_tos; 1169 new_fa->fa_info = fi; 1170 new_fa->fa_type = cfg->fc_type; 1171 state = fa->fa_state; 1172 new_fa->fa_state = state & ~FA_S_ACCESSED; 1173 new_fa->fa_slen = fa->fa_slen; 1174 new_fa->tb_id = tb->tb_id; 1175 new_fa->fa_default = -1; 1176 1177 err = switchdev_fib_ipv4_add(key, plen, fi, 1178 new_fa->fa_tos, 1179 cfg->fc_type, 1180 cfg->fc_nlflags, 1181 tb->tb_id); 1182 if (err) { 1183 switchdev_fib_ipv4_abort(fi); 1184 kmem_cache_free(fn_alias_kmem, new_fa); 1185 goto out; 1186 } 1187 1188 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1189 1190 alias_free_mem_rcu(fa); 1191 1192 fib_release_info(fi_drop); 1193 if (state & FA_S_ACCESSED) 1194 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1195 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1196 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1197 1198 goto succeeded; 1199 } 1200 /* Error if we find a perfect match which 1201 * uses the same scope, type, and nexthop 1202 * information. 1203 */ 1204 if (fa_match) 1205 goto out; 1206 1207 if (cfg->fc_nlflags & NLM_F_APPEND) 1208 nlflags = NLM_F_APPEND; 1209 else 1210 fa = fa_first; 1211 } 1212 err = -ENOENT; 1213 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1214 goto out; 1215 1216 err = -ENOBUFS; 1217 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1218 if (!new_fa) 1219 goto out; 1220 1221 new_fa->fa_info = fi; 1222 new_fa->fa_tos = tos; 1223 new_fa->fa_type = cfg->fc_type; 1224 new_fa->fa_state = 0; 1225 new_fa->fa_slen = slen; 1226 new_fa->tb_id = tb->tb_id; 1227 new_fa->fa_default = -1; 1228 1229 /* (Optionally) offload fib entry to switch hardware. */ 1230 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type, 1231 cfg->fc_nlflags, tb->tb_id); 1232 if (err) { 1233 switchdev_fib_ipv4_abort(fi); 1234 goto out_free_new_fa; 1235 } 1236 1237 /* Insert new entry to the list. */ 1238 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1239 if (err) 1240 goto out_sw_fib_del; 1241 1242 if (!plen) 1243 tb->tb_num_default++; 1244 1245 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1246 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1247 &cfg->fc_nlinfo, nlflags); 1248 succeeded: 1249 return 0; 1250 1251 out_sw_fib_del: 1252 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id); 1253 out_free_new_fa: 1254 kmem_cache_free(fn_alias_kmem, new_fa); 1255 out: 1256 fib_release_info(fi); 1257 err: 1258 return err; 1259 } 1260 1261 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1262 { 1263 t_key prefix = n->key; 1264 1265 return (key ^ prefix) & (prefix | -prefix); 1266 } 1267 1268 /* should be called with rcu_read_lock */ 1269 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1270 struct fib_result *res, int fib_flags) 1271 { 1272 struct trie *t = (struct trie *) tb->tb_data; 1273 #ifdef CONFIG_IP_FIB_TRIE_STATS 1274 struct trie_use_stats __percpu *stats = t->stats; 1275 #endif 1276 const t_key key = ntohl(flp->daddr); 1277 struct key_vector *n, *pn; 1278 struct fib_alias *fa; 1279 unsigned long index; 1280 t_key cindex; 1281 1282 trace_fib_table_lookup(tb->tb_id, flp); 1283 1284 pn = t->kv; 1285 cindex = 0; 1286 1287 n = get_child_rcu(pn, cindex); 1288 if (!n) 1289 return -EAGAIN; 1290 1291 #ifdef CONFIG_IP_FIB_TRIE_STATS 1292 this_cpu_inc(stats->gets); 1293 #endif 1294 1295 /* Step 1: Travel to the longest prefix match in the trie */ 1296 for (;;) { 1297 index = get_cindex(key, n); 1298 1299 /* This bit of code is a bit tricky but it combines multiple 1300 * checks into a single check. The prefix consists of the 1301 * prefix plus zeros for the "bits" in the prefix. The index 1302 * is the difference between the key and this value. From 1303 * this we can actually derive several pieces of data. 1304 * if (index >= (1ul << bits)) 1305 * we have a mismatch in skip bits and failed 1306 * else 1307 * we know the value is cindex 1308 * 1309 * This check is safe even if bits == KEYLENGTH due to the 1310 * fact that we can only allocate a node with 32 bits if a 1311 * long is greater than 32 bits. 1312 */ 1313 if (index >= (1ul << n->bits)) 1314 break; 1315 1316 /* we have found a leaf. Prefixes have already been compared */ 1317 if (IS_LEAF(n)) 1318 goto found; 1319 1320 /* only record pn and cindex if we are going to be chopping 1321 * bits later. Otherwise we are just wasting cycles. 1322 */ 1323 if (n->slen > n->pos) { 1324 pn = n; 1325 cindex = index; 1326 } 1327 1328 n = get_child_rcu(n, index); 1329 if (unlikely(!n)) 1330 goto backtrace; 1331 } 1332 1333 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1334 for (;;) { 1335 /* record the pointer where our next node pointer is stored */ 1336 struct key_vector __rcu **cptr = n->tnode; 1337 1338 /* This test verifies that none of the bits that differ 1339 * between the key and the prefix exist in the region of 1340 * the lsb and higher in the prefix. 1341 */ 1342 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1343 goto backtrace; 1344 1345 /* exit out and process leaf */ 1346 if (unlikely(IS_LEAF(n))) 1347 break; 1348 1349 /* Don't bother recording parent info. Since we are in 1350 * prefix match mode we will have to come back to wherever 1351 * we started this traversal anyway 1352 */ 1353 1354 while ((n = rcu_dereference(*cptr)) == NULL) { 1355 backtrace: 1356 #ifdef CONFIG_IP_FIB_TRIE_STATS 1357 if (!n) 1358 this_cpu_inc(stats->null_node_hit); 1359 #endif 1360 /* If we are at cindex 0 there are no more bits for 1361 * us to strip at this level so we must ascend back 1362 * up one level to see if there are any more bits to 1363 * be stripped there. 1364 */ 1365 while (!cindex) { 1366 t_key pkey = pn->key; 1367 1368 /* If we don't have a parent then there is 1369 * nothing for us to do as we do not have any 1370 * further nodes to parse. 1371 */ 1372 if (IS_TRIE(pn)) 1373 return -EAGAIN; 1374 #ifdef CONFIG_IP_FIB_TRIE_STATS 1375 this_cpu_inc(stats->backtrack); 1376 #endif 1377 /* Get Child's index */ 1378 pn = node_parent_rcu(pn); 1379 cindex = get_index(pkey, pn); 1380 } 1381 1382 /* strip the least significant bit from the cindex */ 1383 cindex &= cindex - 1; 1384 1385 /* grab pointer for next child node */ 1386 cptr = &pn->tnode[cindex]; 1387 } 1388 } 1389 1390 found: 1391 /* this line carries forward the xor from earlier in the function */ 1392 index = key ^ n->key; 1393 1394 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1395 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1396 struct fib_info *fi = fa->fa_info; 1397 int nhsel, err; 1398 1399 if ((index >= (1ul << fa->fa_slen)) && 1400 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH))) 1401 continue; 1402 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1403 continue; 1404 if (fi->fib_dead) 1405 continue; 1406 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1407 continue; 1408 fib_alias_accessed(fa); 1409 err = fib_props[fa->fa_type].error; 1410 if (unlikely(err < 0)) { 1411 #ifdef CONFIG_IP_FIB_TRIE_STATS 1412 this_cpu_inc(stats->semantic_match_passed); 1413 #endif 1414 return err; 1415 } 1416 if (fi->fib_flags & RTNH_F_DEAD) 1417 continue; 1418 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1419 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1420 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1421 1422 if (nh->nh_flags & RTNH_F_DEAD) 1423 continue; 1424 if (in_dev && 1425 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1426 nh->nh_flags & RTNH_F_LINKDOWN && 1427 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1428 continue; 1429 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1430 if (flp->flowi4_oif && 1431 flp->flowi4_oif != nh->nh_oif) 1432 continue; 1433 } 1434 1435 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1436 atomic_inc(&fi->fib_clntref); 1437 1438 res->prefixlen = KEYLENGTH - fa->fa_slen; 1439 res->nh_sel = nhsel; 1440 res->type = fa->fa_type; 1441 res->scope = fi->fib_scope; 1442 res->fi = fi; 1443 res->table = tb; 1444 res->fa_head = &n->leaf; 1445 #ifdef CONFIG_IP_FIB_TRIE_STATS 1446 this_cpu_inc(stats->semantic_match_passed); 1447 #endif 1448 trace_fib_table_lookup_nh(nh); 1449 1450 return err; 1451 } 1452 } 1453 #ifdef CONFIG_IP_FIB_TRIE_STATS 1454 this_cpu_inc(stats->semantic_match_miss); 1455 #endif 1456 goto backtrace; 1457 } 1458 EXPORT_SYMBOL_GPL(fib_table_lookup); 1459 1460 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1461 struct key_vector *l, struct fib_alias *old) 1462 { 1463 /* record the location of the previous list_info entry */ 1464 struct hlist_node **pprev = old->fa_list.pprev; 1465 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1466 1467 /* remove the fib_alias from the list */ 1468 hlist_del_rcu(&old->fa_list); 1469 1470 /* if we emptied the list this leaf will be freed and we can sort 1471 * out parent suffix lengths as a part of trie_rebalance 1472 */ 1473 if (hlist_empty(&l->leaf)) { 1474 put_child_root(tp, l->key, NULL); 1475 node_free(l); 1476 trie_rebalance(t, tp); 1477 return; 1478 } 1479 1480 /* only access fa if it is pointing at the last valid hlist_node */ 1481 if (*pprev) 1482 return; 1483 1484 /* update the trie with the latest suffix length */ 1485 l->slen = fa->fa_slen; 1486 leaf_pull_suffix(tp, l); 1487 } 1488 1489 /* Caller must hold RTNL. */ 1490 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1491 { 1492 struct trie *t = (struct trie *) tb->tb_data; 1493 struct fib_alias *fa, *fa_to_delete; 1494 struct key_vector *l, *tp; 1495 u8 plen = cfg->fc_dst_len; 1496 u8 slen = KEYLENGTH - plen; 1497 u8 tos = cfg->fc_tos; 1498 u32 key; 1499 1500 if (plen > KEYLENGTH) 1501 return -EINVAL; 1502 1503 key = ntohl(cfg->fc_dst); 1504 1505 if ((plen < KEYLENGTH) && (key << plen)) 1506 return -EINVAL; 1507 1508 l = fib_find_node(t, &tp, key); 1509 if (!l) 1510 return -ESRCH; 1511 1512 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1513 if (!fa) 1514 return -ESRCH; 1515 1516 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1517 1518 fa_to_delete = NULL; 1519 hlist_for_each_entry_from(fa, fa_list) { 1520 struct fib_info *fi = fa->fa_info; 1521 1522 if ((fa->fa_slen != slen) || 1523 (fa->tb_id != tb->tb_id) || 1524 (fa->fa_tos != tos)) 1525 break; 1526 1527 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1528 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1529 fa->fa_info->fib_scope == cfg->fc_scope) && 1530 (!cfg->fc_prefsrc || 1531 fi->fib_prefsrc == cfg->fc_prefsrc) && 1532 (!cfg->fc_protocol || 1533 fi->fib_protocol == cfg->fc_protocol) && 1534 fib_nh_match(cfg, fi) == 0) { 1535 fa_to_delete = fa; 1536 break; 1537 } 1538 } 1539 1540 if (!fa_to_delete) 1541 return -ESRCH; 1542 1543 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos, 1544 cfg->fc_type, tb->tb_id); 1545 1546 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1547 &cfg->fc_nlinfo, 0); 1548 1549 if (!plen) 1550 tb->tb_num_default--; 1551 1552 fib_remove_alias(t, tp, l, fa_to_delete); 1553 1554 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1555 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1556 1557 fib_release_info(fa_to_delete->fa_info); 1558 alias_free_mem_rcu(fa_to_delete); 1559 return 0; 1560 } 1561 1562 /* Scan for the next leaf starting at the provided key value */ 1563 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1564 { 1565 struct key_vector *pn, *n = *tn; 1566 unsigned long cindex; 1567 1568 /* this loop is meant to try and find the key in the trie */ 1569 do { 1570 /* record parent and next child index */ 1571 pn = n; 1572 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1573 1574 if (cindex >> pn->bits) 1575 break; 1576 1577 /* descend into the next child */ 1578 n = get_child_rcu(pn, cindex++); 1579 if (!n) 1580 break; 1581 1582 /* guarantee forward progress on the keys */ 1583 if (IS_LEAF(n) && (n->key >= key)) 1584 goto found; 1585 } while (IS_TNODE(n)); 1586 1587 /* this loop will search for the next leaf with a greater key */ 1588 while (!IS_TRIE(pn)) { 1589 /* if we exhausted the parent node we will need to climb */ 1590 if (cindex >= (1ul << pn->bits)) { 1591 t_key pkey = pn->key; 1592 1593 pn = node_parent_rcu(pn); 1594 cindex = get_index(pkey, pn) + 1; 1595 continue; 1596 } 1597 1598 /* grab the next available node */ 1599 n = get_child_rcu(pn, cindex++); 1600 if (!n) 1601 continue; 1602 1603 /* no need to compare keys since we bumped the index */ 1604 if (IS_LEAF(n)) 1605 goto found; 1606 1607 /* Rescan start scanning in new node */ 1608 pn = n; 1609 cindex = 0; 1610 } 1611 1612 *tn = pn; 1613 return NULL; /* Root of trie */ 1614 found: 1615 /* if we are at the limit for keys just return NULL for the tnode */ 1616 *tn = pn; 1617 return n; 1618 } 1619 1620 static void fib_trie_free(struct fib_table *tb) 1621 { 1622 struct trie *t = (struct trie *)tb->tb_data; 1623 struct key_vector *pn = t->kv; 1624 unsigned long cindex = 1; 1625 struct hlist_node *tmp; 1626 struct fib_alias *fa; 1627 1628 /* walk trie in reverse order and free everything */ 1629 for (;;) { 1630 struct key_vector *n; 1631 1632 if (!(cindex--)) { 1633 t_key pkey = pn->key; 1634 1635 if (IS_TRIE(pn)) 1636 break; 1637 1638 n = pn; 1639 pn = node_parent(pn); 1640 1641 /* drop emptied tnode */ 1642 put_child_root(pn, n->key, NULL); 1643 node_free(n); 1644 1645 cindex = get_index(pkey, pn); 1646 1647 continue; 1648 } 1649 1650 /* grab the next available node */ 1651 n = get_child(pn, cindex); 1652 if (!n) 1653 continue; 1654 1655 if (IS_TNODE(n)) { 1656 /* record pn and cindex for leaf walking */ 1657 pn = n; 1658 cindex = 1ul << n->bits; 1659 1660 continue; 1661 } 1662 1663 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1664 hlist_del_rcu(&fa->fa_list); 1665 alias_free_mem_rcu(fa); 1666 } 1667 1668 put_child_root(pn, n->key, NULL); 1669 node_free(n); 1670 } 1671 1672 #ifdef CONFIG_IP_FIB_TRIE_STATS 1673 free_percpu(t->stats); 1674 #endif 1675 kfree(tb); 1676 } 1677 1678 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1679 { 1680 struct trie *ot = (struct trie *)oldtb->tb_data; 1681 struct key_vector *l, *tp = ot->kv; 1682 struct fib_table *local_tb; 1683 struct fib_alias *fa; 1684 struct trie *lt; 1685 t_key key = 0; 1686 1687 if (oldtb->tb_data == oldtb->__data) 1688 return oldtb; 1689 1690 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1691 if (!local_tb) 1692 return NULL; 1693 1694 lt = (struct trie *)local_tb->tb_data; 1695 1696 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1697 struct key_vector *local_l = NULL, *local_tp; 1698 1699 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1700 struct fib_alias *new_fa; 1701 1702 if (local_tb->tb_id != fa->tb_id) 1703 continue; 1704 1705 /* clone fa for new local table */ 1706 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1707 if (!new_fa) 1708 goto out; 1709 1710 memcpy(new_fa, fa, sizeof(*fa)); 1711 1712 /* insert clone into table */ 1713 if (!local_l) 1714 local_l = fib_find_node(lt, &local_tp, l->key); 1715 1716 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1717 NULL, l->key)) 1718 goto out; 1719 } 1720 1721 /* stop loop if key wrapped back to 0 */ 1722 key = l->key + 1; 1723 if (key < l->key) 1724 break; 1725 } 1726 1727 return local_tb; 1728 out: 1729 fib_trie_free(local_tb); 1730 1731 return NULL; 1732 } 1733 1734 /* Caller must hold RTNL */ 1735 void fib_table_flush_external(struct fib_table *tb) 1736 { 1737 struct trie *t = (struct trie *)tb->tb_data; 1738 struct key_vector *pn = t->kv; 1739 unsigned long cindex = 1; 1740 struct hlist_node *tmp; 1741 struct fib_alias *fa; 1742 1743 /* walk trie in reverse order */ 1744 for (;;) { 1745 unsigned char slen = 0; 1746 struct key_vector *n; 1747 1748 if (!(cindex--)) { 1749 t_key pkey = pn->key; 1750 1751 /* cannot resize the trie vector */ 1752 if (IS_TRIE(pn)) 1753 break; 1754 1755 /* resize completed node */ 1756 pn = resize(t, pn); 1757 cindex = get_index(pkey, pn); 1758 1759 continue; 1760 } 1761 1762 /* grab the next available node */ 1763 n = get_child(pn, cindex); 1764 if (!n) 1765 continue; 1766 1767 if (IS_TNODE(n)) { 1768 /* record pn and cindex for leaf walking */ 1769 pn = n; 1770 cindex = 1ul << n->bits; 1771 1772 continue; 1773 } 1774 1775 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1776 struct fib_info *fi = fa->fa_info; 1777 1778 /* if alias was cloned to local then we just 1779 * need to remove the local copy from main 1780 */ 1781 if (tb->tb_id != fa->tb_id) { 1782 hlist_del_rcu(&fa->fa_list); 1783 alias_free_mem_rcu(fa); 1784 continue; 1785 } 1786 1787 /* record local slen */ 1788 slen = fa->fa_slen; 1789 1790 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD)) 1791 continue; 1792 1793 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, 1794 fi, fa->fa_tos, fa->fa_type, 1795 tb->tb_id); 1796 } 1797 1798 /* update leaf slen */ 1799 n->slen = slen; 1800 1801 if (hlist_empty(&n->leaf)) { 1802 put_child_root(pn, n->key, NULL); 1803 node_free(n); 1804 } 1805 } 1806 } 1807 1808 /* Caller must hold RTNL. */ 1809 int fib_table_flush(struct fib_table *tb) 1810 { 1811 struct trie *t = (struct trie *)tb->tb_data; 1812 struct key_vector *pn = t->kv; 1813 unsigned long cindex = 1; 1814 struct hlist_node *tmp; 1815 struct fib_alias *fa; 1816 int found = 0; 1817 1818 /* walk trie in reverse order */ 1819 for (;;) { 1820 unsigned char slen = 0; 1821 struct key_vector *n; 1822 1823 if (!(cindex--)) { 1824 t_key pkey = pn->key; 1825 1826 /* cannot resize the trie vector */ 1827 if (IS_TRIE(pn)) 1828 break; 1829 1830 /* resize completed node */ 1831 pn = resize(t, pn); 1832 cindex = get_index(pkey, pn); 1833 1834 continue; 1835 } 1836 1837 /* grab the next available node */ 1838 n = get_child(pn, cindex); 1839 if (!n) 1840 continue; 1841 1842 if (IS_TNODE(n)) { 1843 /* record pn and cindex for leaf walking */ 1844 pn = n; 1845 cindex = 1ul << n->bits; 1846 1847 continue; 1848 } 1849 1850 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1851 struct fib_info *fi = fa->fa_info; 1852 1853 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) { 1854 slen = fa->fa_slen; 1855 continue; 1856 } 1857 1858 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, 1859 fi, fa->fa_tos, fa->fa_type, 1860 tb->tb_id); 1861 hlist_del_rcu(&fa->fa_list); 1862 fib_release_info(fa->fa_info); 1863 alias_free_mem_rcu(fa); 1864 found++; 1865 } 1866 1867 /* update leaf slen */ 1868 n->slen = slen; 1869 1870 if (hlist_empty(&n->leaf)) { 1871 put_child_root(pn, n->key, NULL); 1872 node_free(n); 1873 } 1874 } 1875 1876 pr_debug("trie_flush found=%d\n", found); 1877 return found; 1878 } 1879 1880 static void __trie_free_rcu(struct rcu_head *head) 1881 { 1882 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1883 #ifdef CONFIG_IP_FIB_TRIE_STATS 1884 struct trie *t = (struct trie *)tb->tb_data; 1885 1886 if (tb->tb_data == tb->__data) 1887 free_percpu(t->stats); 1888 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1889 kfree(tb); 1890 } 1891 1892 void fib_free_table(struct fib_table *tb) 1893 { 1894 call_rcu(&tb->rcu, __trie_free_rcu); 1895 } 1896 1897 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1898 struct sk_buff *skb, struct netlink_callback *cb) 1899 { 1900 __be32 xkey = htonl(l->key); 1901 struct fib_alias *fa; 1902 int i, s_i; 1903 1904 s_i = cb->args[4]; 1905 i = 0; 1906 1907 /* rcu_read_lock is hold by caller */ 1908 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1909 if (i < s_i) { 1910 i++; 1911 continue; 1912 } 1913 1914 if (tb->tb_id != fa->tb_id) { 1915 i++; 1916 continue; 1917 } 1918 1919 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1920 cb->nlh->nlmsg_seq, 1921 RTM_NEWROUTE, 1922 tb->tb_id, 1923 fa->fa_type, 1924 xkey, 1925 KEYLENGTH - fa->fa_slen, 1926 fa->fa_tos, 1927 fa->fa_info, NLM_F_MULTI) < 0) { 1928 cb->args[4] = i; 1929 return -1; 1930 } 1931 i++; 1932 } 1933 1934 cb->args[4] = i; 1935 return skb->len; 1936 } 1937 1938 /* rcu_read_lock needs to be hold by caller from readside */ 1939 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1940 struct netlink_callback *cb) 1941 { 1942 struct trie *t = (struct trie *)tb->tb_data; 1943 struct key_vector *l, *tp = t->kv; 1944 /* Dump starting at last key. 1945 * Note: 0.0.0.0/0 (ie default) is first key. 1946 */ 1947 int count = cb->args[2]; 1948 t_key key = cb->args[3]; 1949 1950 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1951 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1952 cb->args[3] = key; 1953 cb->args[2] = count; 1954 return -1; 1955 } 1956 1957 ++count; 1958 key = l->key + 1; 1959 1960 memset(&cb->args[4], 0, 1961 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1962 1963 /* stop loop if key wrapped back to 0 */ 1964 if (key < l->key) 1965 break; 1966 } 1967 1968 cb->args[3] = key; 1969 cb->args[2] = count; 1970 1971 return skb->len; 1972 } 1973 1974 void __init fib_trie_init(void) 1975 { 1976 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1977 sizeof(struct fib_alias), 1978 0, SLAB_PANIC, NULL); 1979 1980 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1981 LEAF_SIZE, 1982 0, SLAB_PANIC, NULL); 1983 } 1984 1985 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 1986 { 1987 struct fib_table *tb; 1988 struct trie *t; 1989 size_t sz = sizeof(*tb); 1990 1991 if (!alias) 1992 sz += sizeof(struct trie); 1993 1994 tb = kzalloc(sz, GFP_KERNEL); 1995 if (!tb) 1996 return NULL; 1997 1998 tb->tb_id = id; 1999 tb->tb_num_default = 0; 2000 tb->tb_data = (alias ? alias->__data : tb->__data); 2001 2002 if (alias) 2003 return tb; 2004 2005 t = (struct trie *) tb->tb_data; 2006 t->kv[0].pos = KEYLENGTH; 2007 t->kv[0].slen = KEYLENGTH; 2008 #ifdef CONFIG_IP_FIB_TRIE_STATS 2009 t->stats = alloc_percpu(struct trie_use_stats); 2010 if (!t->stats) { 2011 kfree(tb); 2012 tb = NULL; 2013 } 2014 #endif 2015 2016 return tb; 2017 } 2018 2019 #ifdef CONFIG_PROC_FS 2020 /* Depth first Trie walk iterator */ 2021 struct fib_trie_iter { 2022 struct seq_net_private p; 2023 struct fib_table *tb; 2024 struct key_vector *tnode; 2025 unsigned int index; 2026 unsigned int depth; 2027 }; 2028 2029 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2030 { 2031 unsigned long cindex = iter->index; 2032 struct key_vector *pn = iter->tnode; 2033 t_key pkey; 2034 2035 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2036 iter->tnode, iter->index, iter->depth); 2037 2038 while (!IS_TRIE(pn)) { 2039 while (cindex < child_length(pn)) { 2040 struct key_vector *n = get_child_rcu(pn, cindex++); 2041 2042 if (!n) 2043 continue; 2044 2045 if (IS_LEAF(n)) { 2046 iter->tnode = pn; 2047 iter->index = cindex; 2048 } else { 2049 /* push down one level */ 2050 iter->tnode = n; 2051 iter->index = 0; 2052 ++iter->depth; 2053 } 2054 2055 return n; 2056 } 2057 2058 /* Current node exhausted, pop back up */ 2059 pkey = pn->key; 2060 pn = node_parent_rcu(pn); 2061 cindex = get_index(pkey, pn) + 1; 2062 --iter->depth; 2063 } 2064 2065 /* record root node so further searches know we are done */ 2066 iter->tnode = pn; 2067 iter->index = 0; 2068 2069 return NULL; 2070 } 2071 2072 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2073 struct trie *t) 2074 { 2075 struct key_vector *n, *pn; 2076 2077 if (!t) 2078 return NULL; 2079 2080 pn = t->kv; 2081 n = rcu_dereference(pn->tnode[0]); 2082 if (!n) 2083 return NULL; 2084 2085 if (IS_TNODE(n)) { 2086 iter->tnode = n; 2087 iter->index = 0; 2088 iter->depth = 1; 2089 } else { 2090 iter->tnode = pn; 2091 iter->index = 0; 2092 iter->depth = 0; 2093 } 2094 2095 return n; 2096 } 2097 2098 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2099 { 2100 struct key_vector *n; 2101 struct fib_trie_iter iter; 2102 2103 memset(s, 0, sizeof(*s)); 2104 2105 rcu_read_lock(); 2106 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2107 if (IS_LEAF(n)) { 2108 struct fib_alias *fa; 2109 2110 s->leaves++; 2111 s->totdepth += iter.depth; 2112 if (iter.depth > s->maxdepth) 2113 s->maxdepth = iter.depth; 2114 2115 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2116 ++s->prefixes; 2117 } else { 2118 s->tnodes++; 2119 if (n->bits < MAX_STAT_DEPTH) 2120 s->nodesizes[n->bits]++; 2121 s->nullpointers += tn_info(n)->empty_children; 2122 } 2123 } 2124 rcu_read_unlock(); 2125 } 2126 2127 /* 2128 * This outputs /proc/net/fib_triestats 2129 */ 2130 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2131 { 2132 unsigned int i, max, pointers, bytes, avdepth; 2133 2134 if (stat->leaves) 2135 avdepth = stat->totdepth*100 / stat->leaves; 2136 else 2137 avdepth = 0; 2138 2139 seq_printf(seq, "\tAver depth: %u.%02d\n", 2140 avdepth / 100, avdepth % 100); 2141 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2142 2143 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2144 bytes = LEAF_SIZE * stat->leaves; 2145 2146 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2147 bytes += sizeof(struct fib_alias) * stat->prefixes; 2148 2149 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2150 bytes += TNODE_SIZE(0) * stat->tnodes; 2151 2152 max = MAX_STAT_DEPTH; 2153 while (max > 0 && stat->nodesizes[max-1] == 0) 2154 max--; 2155 2156 pointers = 0; 2157 for (i = 1; i < max; i++) 2158 if (stat->nodesizes[i] != 0) { 2159 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2160 pointers += (1<<i) * stat->nodesizes[i]; 2161 } 2162 seq_putc(seq, '\n'); 2163 seq_printf(seq, "\tPointers: %u\n", pointers); 2164 2165 bytes += sizeof(struct key_vector *) * pointers; 2166 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2167 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2168 } 2169 2170 #ifdef CONFIG_IP_FIB_TRIE_STATS 2171 static void trie_show_usage(struct seq_file *seq, 2172 const struct trie_use_stats __percpu *stats) 2173 { 2174 struct trie_use_stats s = { 0 }; 2175 int cpu; 2176 2177 /* loop through all of the CPUs and gather up the stats */ 2178 for_each_possible_cpu(cpu) { 2179 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2180 2181 s.gets += pcpu->gets; 2182 s.backtrack += pcpu->backtrack; 2183 s.semantic_match_passed += pcpu->semantic_match_passed; 2184 s.semantic_match_miss += pcpu->semantic_match_miss; 2185 s.null_node_hit += pcpu->null_node_hit; 2186 s.resize_node_skipped += pcpu->resize_node_skipped; 2187 } 2188 2189 seq_printf(seq, "\nCounters:\n---------\n"); 2190 seq_printf(seq, "gets = %u\n", s.gets); 2191 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2192 seq_printf(seq, "semantic match passed = %u\n", 2193 s.semantic_match_passed); 2194 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2195 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2196 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2197 } 2198 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2199 2200 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2201 { 2202 if (tb->tb_id == RT_TABLE_LOCAL) 2203 seq_puts(seq, "Local:\n"); 2204 else if (tb->tb_id == RT_TABLE_MAIN) 2205 seq_puts(seq, "Main:\n"); 2206 else 2207 seq_printf(seq, "Id %d:\n", tb->tb_id); 2208 } 2209 2210 2211 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2212 { 2213 struct net *net = (struct net *)seq->private; 2214 unsigned int h; 2215 2216 seq_printf(seq, 2217 "Basic info: size of leaf:" 2218 " %Zd bytes, size of tnode: %Zd bytes.\n", 2219 LEAF_SIZE, TNODE_SIZE(0)); 2220 2221 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2222 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2223 struct fib_table *tb; 2224 2225 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2226 struct trie *t = (struct trie *) tb->tb_data; 2227 struct trie_stat stat; 2228 2229 if (!t) 2230 continue; 2231 2232 fib_table_print(seq, tb); 2233 2234 trie_collect_stats(t, &stat); 2235 trie_show_stats(seq, &stat); 2236 #ifdef CONFIG_IP_FIB_TRIE_STATS 2237 trie_show_usage(seq, t->stats); 2238 #endif 2239 } 2240 } 2241 2242 return 0; 2243 } 2244 2245 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2246 { 2247 return single_open_net(inode, file, fib_triestat_seq_show); 2248 } 2249 2250 static const struct file_operations fib_triestat_fops = { 2251 .owner = THIS_MODULE, 2252 .open = fib_triestat_seq_open, 2253 .read = seq_read, 2254 .llseek = seq_lseek, 2255 .release = single_release_net, 2256 }; 2257 2258 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2259 { 2260 struct fib_trie_iter *iter = seq->private; 2261 struct net *net = seq_file_net(seq); 2262 loff_t idx = 0; 2263 unsigned int h; 2264 2265 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2266 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2267 struct fib_table *tb; 2268 2269 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2270 struct key_vector *n; 2271 2272 for (n = fib_trie_get_first(iter, 2273 (struct trie *) tb->tb_data); 2274 n; n = fib_trie_get_next(iter)) 2275 if (pos == idx++) { 2276 iter->tb = tb; 2277 return n; 2278 } 2279 } 2280 } 2281 2282 return NULL; 2283 } 2284 2285 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2286 __acquires(RCU) 2287 { 2288 rcu_read_lock(); 2289 return fib_trie_get_idx(seq, *pos); 2290 } 2291 2292 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2293 { 2294 struct fib_trie_iter *iter = seq->private; 2295 struct net *net = seq_file_net(seq); 2296 struct fib_table *tb = iter->tb; 2297 struct hlist_node *tb_node; 2298 unsigned int h; 2299 struct key_vector *n; 2300 2301 ++*pos; 2302 /* next node in same table */ 2303 n = fib_trie_get_next(iter); 2304 if (n) 2305 return n; 2306 2307 /* walk rest of this hash chain */ 2308 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2309 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2310 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2311 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2312 if (n) 2313 goto found; 2314 } 2315 2316 /* new hash chain */ 2317 while (++h < FIB_TABLE_HASHSZ) { 2318 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2319 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2320 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2321 if (n) 2322 goto found; 2323 } 2324 } 2325 return NULL; 2326 2327 found: 2328 iter->tb = tb; 2329 return n; 2330 } 2331 2332 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2333 __releases(RCU) 2334 { 2335 rcu_read_unlock(); 2336 } 2337 2338 static void seq_indent(struct seq_file *seq, int n) 2339 { 2340 while (n-- > 0) 2341 seq_puts(seq, " "); 2342 } 2343 2344 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2345 { 2346 switch (s) { 2347 case RT_SCOPE_UNIVERSE: return "universe"; 2348 case RT_SCOPE_SITE: return "site"; 2349 case RT_SCOPE_LINK: return "link"; 2350 case RT_SCOPE_HOST: return "host"; 2351 case RT_SCOPE_NOWHERE: return "nowhere"; 2352 default: 2353 snprintf(buf, len, "scope=%d", s); 2354 return buf; 2355 } 2356 } 2357 2358 static const char *const rtn_type_names[__RTN_MAX] = { 2359 [RTN_UNSPEC] = "UNSPEC", 2360 [RTN_UNICAST] = "UNICAST", 2361 [RTN_LOCAL] = "LOCAL", 2362 [RTN_BROADCAST] = "BROADCAST", 2363 [RTN_ANYCAST] = "ANYCAST", 2364 [RTN_MULTICAST] = "MULTICAST", 2365 [RTN_BLACKHOLE] = "BLACKHOLE", 2366 [RTN_UNREACHABLE] = "UNREACHABLE", 2367 [RTN_PROHIBIT] = "PROHIBIT", 2368 [RTN_THROW] = "THROW", 2369 [RTN_NAT] = "NAT", 2370 [RTN_XRESOLVE] = "XRESOLVE", 2371 }; 2372 2373 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2374 { 2375 if (t < __RTN_MAX && rtn_type_names[t]) 2376 return rtn_type_names[t]; 2377 snprintf(buf, len, "type %u", t); 2378 return buf; 2379 } 2380 2381 /* Pretty print the trie */ 2382 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2383 { 2384 const struct fib_trie_iter *iter = seq->private; 2385 struct key_vector *n = v; 2386 2387 if (IS_TRIE(node_parent_rcu(n))) 2388 fib_table_print(seq, iter->tb); 2389 2390 if (IS_TNODE(n)) { 2391 __be32 prf = htonl(n->key); 2392 2393 seq_indent(seq, iter->depth-1); 2394 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2395 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2396 tn_info(n)->full_children, 2397 tn_info(n)->empty_children); 2398 } else { 2399 __be32 val = htonl(n->key); 2400 struct fib_alias *fa; 2401 2402 seq_indent(seq, iter->depth); 2403 seq_printf(seq, " |-- %pI4\n", &val); 2404 2405 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2406 char buf1[32], buf2[32]; 2407 2408 seq_indent(seq, iter->depth + 1); 2409 seq_printf(seq, " /%zu %s %s", 2410 KEYLENGTH - fa->fa_slen, 2411 rtn_scope(buf1, sizeof(buf1), 2412 fa->fa_info->fib_scope), 2413 rtn_type(buf2, sizeof(buf2), 2414 fa->fa_type)); 2415 if (fa->fa_tos) 2416 seq_printf(seq, " tos=%d", fa->fa_tos); 2417 seq_putc(seq, '\n'); 2418 } 2419 } 2420 2421 return 0; 2422 } 2423 2424 static const struct seq_operations fib_trie_seq_ops = { 2425 .start = fib_trie_seq_start, 2426 .next = fib_trie_seq_next, 2427 .stop = fib_trie_seq_stop, 2428 .show = fib_trie_seq_show, 2429 }; 2430 2431 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2432 { 2433 return seq_open_net(inode, file, &fib_trie_seq_ops, 2434 sizeof(struct fib_trie_iter)); 2435 } 2436 2437 static const struct file_operations fib_trie_fops = { 2438 .owner = THIS_MODULE, 2439 .open = fib_trie_seq_open, 2440 .read = seq_read, 2441 .llseek = seq_lseek, 2442 .release = seq_release_net, 2443 }; 2444 2445 struct fib_route_iter { 2446 struct seq_net_private p; 2447 struct fib_table *main_tb; 2448 struct key_vector *tnode; 2449 loff_t pos; 2450 t_key key; 2451 }; 2452 2453 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2454 loff_t pos) 2455 { 2456 struct fib_table *tb = iter->main_tb; 2457 struct key_vector *l, **tp = &iter->tnode; 2458 struct trie *t; 2459 t_key key; 2460 2461 /* use cache location of next-to-find key */ 2462 if (iter->pos > 0 && pos >= iter->pos) { 2463 pos -= iter->pos; 2464 key = iter->key; 2465 } else { 2466 t = (struct trie *)tb->tb_data; 2467 iter->tnode = t->kv; 2468 iter->pos = 0; 2469 key = 0; 2470 } 2471 2472 while ((l = leaf_walk_rcu(tp, key)) != NULL) { 2473 key = l->key + 1; 2474 iter->pos++; 2475 2476 if (--pos <= 0) 2477 break; 2478 2479 l = NULL; 2480 2481 /* handle unlikely case of a key wrap */ 2482 if (!key) 2483 break; 2484 } 2485 2486 if (l) 2487 iter->key = key; /* remember it */ 2488 else 2489 iter->pos = 0; /* forget it */ 2490 2491 return l; 2492 } 2493 2494 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2495 __acquires(RCU) 2496 { 2497 struct fib_route_iter *iter = seq->private; 2498 struct fib_table *tb; 2499 struct trie *t; 2500 2501 rcu_read_lock(); 2502 2503 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2504 if (!tb) 2505 return NULL; 2506 2507 iter->main_tb = tb; 2508 2509 if (*pos != 0) 2510 return fib_route_get_idx(iter, *pos); 2511 2512 t = (struct trie *)tb->tb_data; 2513 iter->tnode = t->kv; 2514 iter->pos = 0; 2515 iter->key = 0; 2516 2517 return SEQ_START_TOKEN; 2518 } 2519 2520 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2521 { 2522 struct fib_route_iter *iter = seq->private; 2523 struct key_vector *l = NULL; 2524 t_key key = iter->key; 2525 2526 ++*pos; 2527 2528 /* only allow key of 0 for start of sequence */ 2529 if ((v == SEQ_START_TOKEN) || key) 2530 l = leaf_walk_rcu(&iter->tnode, key); 2531 2532 if (l) { 2533 iter->key = l->key + 1; 2534 iter->pos++; 2535 } else { 2536 iter->pos = 0; 2537 } 2538 2539 return l; 2540 } 2541 2542 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2543 __releases(RCU) 2544 { 2545 rcu_read_unlock(); 2546 } 2547 2548 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2549 { 2550 unsigned int flags = 0; 2551 2552 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2553 flags = RTF_REJECT; 2554 if (fi && fi->fib_nh->nh_gw) 2555 flags |= RTF_GATEWAY; 2556 if (mask == htonl(0xFFFFFFFF)) 2557 flags |= RTF_HOST; 2558 flags |= RTF_UP; 2559 return flags; 2560 } 2561 2562 /* 2563 * This outputs /proc/net/route. 2564 * The format of the file is not supposed to be changed 2565 * and needs to be same as fib_hash output to avoid breaking 2566 * legacy utilities 2567 */ 2568 static int fib_route_seq_show(struct seq_file *seq, void *v) 2569 { 2570 struct fib_route_iter *iter = seq->private; 2571 struct fib_table *tb = iter->main_tb; 2572 struct fib_alias *fa; 2573 struct key_vector *l = v; 2574 __be32 prefix; 2575 2576 if (v == SEQ_START_TOKEN) { 2577 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2578 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2579 "\tWindow\tIRTT"); 2580 return 0; 2581 } 2582 2583 prefix = htonl(l->key); 2584 2585 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2586 const struct fib_info *fi = fa->fa_info; 2587 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2588 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2589 2590 if ((fa->fa_type == RTN_BROADCAST) || 2591 (fa->fa_type == RTN_MULTICAST)) 2592 continue; 2593 2594 if (fa->tb_id != tb->tb_id) 2595 continue; 2596 2597 seq_setwidth(seq, 127); 2598 2599 if (fi) 2600 seq_printf(seq, 2601 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2602 "%d\t%08X\t%d\t%u\t%u", 2603 fi->fib_dev ? fi->fib_dev->name : "*", 2604 prefix, 2605 fi->fib_nh->nh_gw, flags, 0, 0, 2606 fi->fib_priority, 2607 mask, 2608 (fi->fib_advmss ? 2609 fi->fib_advmss + 40 : 0), 2610 fi->fib_window, 2611 fi->fib_rtt >> 3); 2612 else 2613 seq_printf(seq, 2614 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2615 "%d\t%08X\t%d\t%u\t%u", 2616 prefix, 0, flags, 0, 0, 0, 2617 mask, 0, 0, 0); 2618 2619 seq_pad(seq, '\n'); 2620 } 2621 2622 return 0; 2623 } 2624 2625 static const struct seq_operations fib_route_seq_ops = { 2626 .start = fib_route_seq_start, 2627 .next = fib_route_seq_next, 2628 .stop = fib_route_seq_stop, 2629 .show = fib_route_seq_show, 2630 }; 2631 2632 static int fib_route_seq_open(struct inode *inode, struct file *file) 2633 { 2634 return seq_open_net(inode, file, &fib_route_seq_ops, 2635 sizeof(struct fib_route_iter)); 2636 } 2637 2638 static const struct file_operations fib_route_fops = { 2639 .owner = THIS_MODULE, 2640 .open = fib_route_seq_open, 2641 .read = seq_read, 2642 .llseek = seq_lseek, 2643 .release = seq_release_net, 2644 }; 2645 2646 int __net_init fib_proc_init(struct net *net) 2647 { 2648 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2649 goto out1; 2650 2651 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2652 &fib_triestat_fops)) 2653 goto out2; 2654 2655 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2656 goto out3; 2657 2658 return 0; 2659 2660 out3: 2661 remove_proc_entry("fib_triestat", net->proc_net); 2662 out2: 2663 remove_proc_entry("fib_trie", net->proc_net); 2664 out1: 2665 return -ENOMEM; 2666 } 2667 2668 void __net_exit fib_proc_exit(struct net *net) 2669 { 2670 remove_proc_entry("fib_trie", net->proc_net); 2671 remove_proc_entry("fib_triestat", net->proc_net); 2672 remove_proc_entry("route", net->proc_net); 2673 } 2674 2675 #endif /* CONFIG_PROC_FS */ 2676