xref: /linux/net/ipv4/fib_trie.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86 
87 #define MAX_STAT_DEPTH 32
88 
89 #define KEYLENGTH	(8*sizeof(t_key))
90 #define KEY_MAX		((t_key)~0)
91 
92 typedef unsigned int t_key;
93 
94 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
95 #define IS_TNODE(n)	((n)->bits)
96 #define IS_LEAF(n)	(!(n)->bits)
97 
98 struct key_vector {
99 	t_key key;
100 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
101 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
102 	unsigned char slen;
103 	union {
104 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
105 		struct hlist_head leaf;
106 		/* This array is valid if (pos | bits) > 0 (TNODE) */
107 		struct key_vector __rcu *tnode[0];
108 	};
109 };
110 
111 struct tnode {
112 	struct rcu_head rcu;
113 	t_key empty_children;		/* KEYLENGTH bits needed */
114 	t_key full_children;		/* KEYLENGTH bits needed */
115 	struct key_vector __rcu *parent;
116 	struct key_vector kv[1];
117 #define tn_bits kv[0].bits
118 };
119 
120 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
121 #define LEAF_SIZE	TNODE_SIZE(1)
122 
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats {
125 	unsigned int gets;
126 	unsigned int backtrack;
127 	unsigned int semantic_match_passed;
128 	unsigned int semantic_match_miss;
129 	unsigned int null_node_hit;
130 	unsigned int resize_node_skipped;
131 };
132 #endif
133 
134 struct trie_stat {
135 	unsigned int totdepth;
136 	unsigned int maxdepth;
137 	unsigned int tnodes;
138 	unsigned int leaves;
139 	unsigned int nullpointers;
140 	unsigned int prefixes;
141 	unsigned int nodesizes[MAX_STAT_DEPTH];
142 };
143 
144 struct trie {
145 	struct key_vector kv[1];
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 	struct trie_use_stats __percpu *stats;
148 #endif
149 };
150 
151 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
152 static size_t tnode_free_size;
153 
154 /*
155  * synchronize_rcu after call_rcu for that many pages; it should be especially
156  * useful before resizing the root node with PREEMPT_NONE configs; the value was
157  * obtained experimentally, aiming to avoid visible slowdown.
158  */
159 static const int sync_pages = 128;
160 
161 static struct kmem_cache *fn_alias_kmem __read_mostly;
162 static struct kmem_cache *trie_leaf_kmem __read_mostly;
163 
164 static inline struct tnode *tn_info(struct key_vector *kv)
165 {
166 	return container_of(kv, struct tnode, kv[0]);
167 }
168 
169 /* caller must hold RTNL */
170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
172 
173 /* caller must hold RCU read lock or RTNL */
174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
176 
177 /* wrapper for rcu_assign_pointer */
178 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
179 {
180 	if (n)
181 		rcu_assign_pointer(tn_info(n)->parent, tp);
182 }
183 
184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
185 
186 /* This provides us with the number of children in this node, in the case of a
187  * leaf this will return 0 meaning none of the children are accessible.
188  */
189 static inline unsigned long child_length(const struct key_vector *tn)
190 {
191 	return (1ul << tn->bits) & ~(1ul);
192 }
193 
194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
195 
196 static inline unsigned long get_index(t_key key, struct key_vector *kv)
197 {
198 	unsigned long index = key ^ kv->key;
199 
200 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
201 		return 0;
202 
203 	return index >> kv->pos;
204 }
205 
206 /* To understand this stuff, an understanding of keys and all their bits is
207  * necessary. Every node in the trie has a key associated with it, but not
208  * all of the bits in that key are significant.
209  *
210  * Consider a node 'n' and its parent 'tp'.
211  *
212  * If n is a leaf, every bit in its key is significant. Its presence is
213  * necessitated by path compression, since during a tree traversal (when
214  * searching for a leaf - unless we are doing an insertion) we will completely
215  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
216  * a potentially successful search, that we have indeed been walking the
217  * correct key path.
218  *
219  * Note that we can never "miss" the correct key in the tree if present by
220  * following the wrong path. Path compression ensures that segments of the key
221  * that are the same for all keys with a given prefix are skipped, but the
222  * skipped part *is* identical for each node in the subtrie below the skipped
223  * bit! trie_insert() in this implementation takes care of that.
224  *
225  * if n is an internal node - a 'tnode' here, the various parts of its key
226  * have many different meanings.
227  *
228  * Example:
229  * _________________________________________________________________
230  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
231  * -----------------------------------------------------------------
232  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
233  *
234  * _________________________________________________________________
235  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
236  * -----------------------------------------------------------------
237  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
238  *
239  * tp->pos = 22
240  * tp->bits = 3
241  * n->pos = 13
242  * n->bits = 4
243  *
244  * First, let's just ignore the bits that come before the parent tp, that is
245  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
246  * point we do not use them for anything.
247  *
248  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
249  * index into the parent's child array. That is, they will be used to find
250  * 'n' among tp's children.
251  *
252  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
253  * for the node n.
254  *
255  * All the bits we have seen so far are significant to the node n. The rest
256  * of the bits are really not needed or indeed known in n->key.
257  *
258  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
259  * n's child array, and will of course be different for each child.
260  *
261  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
262  * at this point.
263  */
264 
265 static const int halve_threshold = 25;
266 static const int inflate_threshold = 50;
267 static const int halve_threshold_root = 15;
268 static const int inflate_threshold_root = 30;
269 
270 static void __alias_free_mem(struct rcu_head *head)
271 {
272 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
273 	kmem_cache_free(fn_alias_kmem, fa);
274 }
275 
276 static inline void alias_free_mem_rcu(struct fib_alias *fa)
277 {
278 	call_rcu(&fa->rcu, __alias_free_mem);
279 }
280 
281 #define TNODE_KMALLOC_MAX \
282 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 #define TNODE_VMALLOC_MAX \
284 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
285 
286 static void __node_free_rcu(struct rcu_head *head)
287 {
288 	struct tnode *n = container_of(head, struct tnode, rcu);
289 
290 	if (!n->tn_bits)
291 		kmem_cache_free(trie_leaf_kmem, n);
292 	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
293 		kfree(n);
294 	else
295 		vfree(n);
296 }
297 
298 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
299 
300 static struct tnode *tnode_alloc(int bits)
301 {
302 	size_t size;
303 
304 	/* verify bits is within bounds */
305 	if (bits > TNODE_VMALLOC_MAX)
306 		return NULL;
307 
308 	/* determine size and verify it is non-zero and didn't overflow */
309 	size = TNODE_SIZE(1ul << bits);
310 
311 	if (size <= PAGE_SIZE)
312 		return kzalloc(size, GFP_KERNEL);
313 	else
314 		return vzalloc(size);
315 }
316 
317 static inline void empty_child_inc(struct key_vector *n)
318 {
319 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
320 }
321 
322 static inline void empty_child_dec(struct key_vector *n)
323 {
324 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
325 }
326 
327 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
328 {
329 	struct key_vector *l;
330 	struct tnode *kv;
331 
332 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
333 	if (!kv)
334 		return NULL;
335 
336 	/* initialize key vector */
337 	l = kv->kv;
338 	l->key = key;
339 	l->pos = 0;
340 	l->bits = 0;
341 	l->slen = fa->fa_slen;
342 
343 	/* link leaf to fib alias */
344 	INIT_HLIST_HEAD(&l->leaf);
345 	hlist_add_head(&fa->fa_list, &l->leaf);
346 
347 	return l;
348 }
349 
350 static struct key_vector *tnode_new(t_key key, int pos, int bits)
351 {
352 	unsigned int shift = pos + bits;
353 	struct key_vector *tn;
354 	struct tnode *tnode;
355 
356 	/* verify bits and pos their msb bits clear and values are valid */
357 	BUG_ON(!bits || (shift > KEYLENGTH));
358 
359 	tnode = tnode_alloc(bits);
360 	if (!tnode)
361 		return NULL;
362 
363 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
364 		 sizeof(struct key_vector *) << bits);
365 
366 	if (bits == KEYLENGTH)
367 		tnode->full_children = 1;
368 	else
369 		tnode->empty_children = 1ul << bits;
370 
371 	tn = tnode->kv;
372 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
373 	tn->pos = pos;
374 	tn->bits = bits;
375 	tn->slen = pos;
376 
377 	return tn;
378 }
379 
380 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
381  * and no bits are skipped. See discussion in dyntree paper p. 6
382  */
383 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
384 {
385 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
386 }
387 
388 /* Add a child at position i overwriting the old value.
389  * Update the value of full_children and empty_children.
390  */
391 static void put_child(struct key_vector *tn, unsigned long i,
392 		      struct key_vector *n)
393 {
394 	struct key_vector *chi = get_child(tn, i);
395 	int isfull, wasfull;
396 
397 	BUG_ON(i >= child_length(tn));
398 
399 	/* update emptyChildren, overflow into fullChildren */
400 	if (!n && chi)
401 		empty_child_inc(tn);
402 	if (n && !chi)
403 		empty_child_dec(tn);
404 
405 	/* update fullChildren */
406 	wasfull = tnode_full(tn, chi);
407 	isfull = tnode_full(tn, n);
408 
409 	if (wasfull && !isfull)
410 		tn_info(tn)->full_children--;
411 	else if (!wasfull && isfull)
412 		tn_info(tn)->full_children++;
413 
414 	if (n && (tn->slen < n->slen))
415 		tn->slen = n->slen;
416 
417 	rcu_assign_pointer(tn->tnode[i], n);
418 }
419 
420 static void update_children(struct key_vector *tn)
421 {
422 	unsigned long i;
423 
424 	/* update all of the child parent pointers */
425 	for (i = child_length(tn); i;) {
426 		struct key_vector *inode = get_child(tn, --i);
427 
428 		if (!inode)
429 			continue;
430 
431 		/* Either update the children of a tnode that
432 		 * already belongs to us or update the child
433 		 * to point to ourselves.
434 		 */
435 		if (node_parent(inode) == tn)
436 			update_children(inode);
437 		else
438 			node_set_parent(inode, tn);
439 	}
440 }
441 
442 static inline void put_child_root(struct key_vector *tp, t_key key,
443 				  struct key_vector *n)
444 {
445 	if (IS_TRIE(tp))
446 		rcu_assign_pointer(tp->tnode[0], n);
447 	else
448 		put_child(tp, get_index(key, tp), n);
449 }
450 
451 static inline void tnode_free_init(struct key_vector *tn)
452 {
453 	tn_info(tn)->rcu.next = NULL;
454 }
455 
456 static inline void tnode_free_append(struct key_vector *tn,
457 				     struct key_vector *n)
458 {
459 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
460 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
461 }
462 
463 static void tnode_free(struct key_vector *tn)
464 {
465 	struct callback_head *head = &tn_info(tn)->rcu;
466 
467 	while (head) {
468 		head = head->next;
469 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
470 		node_free(tn);
471 
472 		tn = container_of(head, struct tnode, rcu)->kv;
473 	}
474 
475 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
476 		tnode_free_size = 0;
477 		synchronize_rcu();
478 	}
479 }
480 
481 static struct key_vector *replace(struct trie *t,
482 				  struct key_vector *oldtnode,
483 				  struct key_vector *tn)
484 {
485 	struct key_vector *tp = node_parent(oldtnode);
486 	unsigned long i;
487 
488 	/* setup the parent pointer out of and back into this node */
489 	NODE_INIT_PARENT(tn, tp);
490 	put_child_root(tp, tn->key, tn);
491 
492 	/* update all of the child parent pointers */
493 	update_children(tn);
494 
495 	/* all pointers should be clean so we are done */
496 	tnode_free(oldtnode);
497 
498 	/* resize children now that oldtnode is freed */
499 	for (i = child_length(tn); i;) {
500 		struct key_vector *inode = get_child(tn, --i);
501 
502 		/* resize child node */
503 		if (tnode_full(tn, inode))
504 			tn = resize(t, inode);
505 	}
506 
507 	return tp;
508 }
509 
510 static struct key_vector *inflate(struct trie *t,
511 				  struct key_vector *oldtnode)
512 {
513 	struct key_vector *tn;
514 	unsigned long i;
515 	t_key m;
516 
517 	pr_debug("In inflate\n");
518 
519 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
520 	if (!tn)
521 		goto notnode;
522 
523 	/* prepare oldtnode to be freed */
524 	tnode_free_init(oldtnode);
525 
526 	/* Assemble all of the pointers in our cluster, in this case that
527 	 * represents all of the pointers out of our allocated nodes that
528 	 * point to existing tnodes and the links between our allocated
529 	 * nodes.
530 	 */
531 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
532 		struct key_vector *inode = get_child(oldtnode, --i);
533 		struct key_vector *node0, *node1;
534 		unsigned long j, k;
535 
536 		/* An empty child */
537 		if (!inode)
538 			continue;
539 
540 		/* A leaf or an internal node with skipped bits */
541 		if (!tnode_full(oldtnode, inode)) {
542 			put_child(tn, get_index(inode->key, tn), inode);
543 			continue;
544 		}
545 
546 		/* drop the node in the old tnode free list */
547 		tnode_free_append(oldtnode, inode);
548 
549 		/* An internal node with two children */
550 		if (inode->bits == 1) {
551 			put_child(tn, 2 * i + 1, get_child(inode, 1));
552 			put_child(tn, 2 * i, get_child(inode, 0));
553 			continue;
554 		}
555 
556 		/* We will replace this node 'inode' with two new
557 		 * ones, 'node0' and 'node1', each with half of the
558 		 * original children. The two new nodes will have
559 		 * a position one bit further down the key and this
560 		 * means that the "significant" part of their keys
561 		 * (see the discussion near the top of this file)
562 		 * will differ by one bit, which will be "0" in
563 		 * node0's key and "1" in node1's key. Since we are
564 		 * moving the key position by one step, the bit that
565 		 * we are moving away from - the bit at position
566 		 * (tn->pos) - is the one that will differ between
567 		 * node0 and node1. So... we synthesize that bit in the
568 		 * two new keys.
569 		 */
570 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
571 		if (!node1)
572 			goto nomem;
573 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
574 
575 		tnode_free_append(tn, node1);
576 		if (!node0)
577 			goto nomem;
578 		tnode_free_append(tn, node0);
579 
580 		/* populate child pointers in new nodes */
581 		for (k = child_length(inode), j = k / 2; j;) {
582 			put_child(node1, --j, get_child(inode, --k));
583 			put_child(node0, j, get_child(inode, j));
584 			put_child(node1, --j, get_child(inode, --k));
585 			put_child(node0, j, get_child(inode, j));
586 		}
587 
588 		/* link new nodes to parent */
589 		NODE_INIT_PARENT(node1, tn);
590 		NODE_INIT_PARENT(node0, tn);
591 
592 		/* link parent to nodes */
593 		put_child(tn, 2 * i + 1, node1);
594 		put_child(tn, 2 * i, node0);
595 	}
596 
597 	/* setup the parent pointers into and out of this node */
598 	return replace(t, oldtnode, tn);
599 nomem:
600 	/* all pointers should be clean so we are done */
601 	tnode_free(tn);
602 notnode:
603 	return NULL;
604 }
605 
606 static struct key_vector *halve(struct trie *t,
607 				struct key_vector *oldtnode)
608 {
609 	struct key_vector *tn;
610 	unsigned long i;
611 
612 	pr_debug("In halve\n");
613 
614 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
615 	if (!tn)
616 		goto notnode;
617 
618 	/* prepare oldtnode to be freed */
619 	tnode_free_init(oldtnode);
620 
621 	/* Assemble all of the pointers in our cluster, in this case that
622 	 * represents all of the pointers out of our allocated nodes that
623 	 * point to existing tnodes and the links between our allocated
624 	 * nodes.
625 	 */
626 	for (i = child_length(oldtnode); i;) {
627 		struct key_vector *node1 = get_child(oldtnode, --i);
628 		struct key_vector *node0 = get_child(oldtnode, --i);
629 		struct key_vector *inode;
630 
631 		/* At least one of the children is empty */
632 		if (!node1 || !node0) {
633 			put_child(tn, i / 2, node1 ? : node0);
634 			continue;
635 		}
636 
637 		/* Two nonempty children */
638 		inode = tnode_new(node0->key, oldtnode->pos, 1);
639 		if (!inode)
640 			goto nomem;
641 		tnode_free_append(tn, inode);
642 
643 		/* initialize pointers out of node */
644 		put_child(inode, 1, node1);
645 		put_child(inode, 0, node0);
646 		NODE_INIT_PARENT(inode, tn);
647 
648 		/* link parent to node */
649 		put_child(tn, i / 2, inode);
650 	}
651 
652 	/* setup the parent pointers into and out of this node */
653 	return replace(t, oldtnode, tn);
654 nomem:
655 	/* all pointers should be clean so we are done */
656 	tnode_free(tn);
657 notnode:
658 	return NULL;
659 }
660 
661 static struct key_vector *collapse(struct trie *t,
662 				   struct key_vector *oldtnode)
663 {
664 	struct key_vector *n, *tp;
665 	unsigned long i;
666 
667 	/* scan the tnode looking for that one child that might still exist */
668 	for (n = NULL, i = child_length(oldtnode); !n && i;)
669 		n = get_child(oldtnode, --i);
670 
671 	/* compress one level */
672 	tp = node_parent(oldtnode);
673 	put_child_root(tp, oldtnode->key, n);
674 	node_set_parent(n, tp);
675 
676 	/* drop dead node */
677 	node_free(oldtnode);
678 
679 	return tp;
680 }
681 
682 static unsigned char update_suffix(struct key_vector *tn)
683 {
684 	unsigned char slen = tn->pos;
685 	unsigned long stride, i;
686 
687 	/* search though the list of children looking for nodes that might
688 	 * have a suffix greater than the one we currently have.  This is
689 	 * why we start with a stride of 2 since a stride of 1 would
690 	 * represent the nodes with suffix length equal to tn->pos
691 	 */
692 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
693 		struct key_vector *n = get_child(tn, i);
694 
695 		if (!n || (n->slen <= slen))
696 			continue;
697 
698 		/* update stride and slen based on new value */
699 		stride <<= (n->slen - slen);
700 		slen = n->slen;
701 		i &= ~(stride - 1);
702 
703 		/* if slen covers all but the last bit we can stop here
704 		 * there will be nothing longer than that since only node
705 		 * 0 and 1 << (bits - 1) could have that as their suffix
706 		 * length.
707 		 */
708 		if ((slen + 1) >= (tn->pos + tn->bits))
709 			break;
710 	}
711 
712 	tn->slen = slen;
713 
714 	return slen;
715 }
716 
717 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
718  * the Helsinki University of Technology and Matti Tikkanen of Nokia
719  * Telecommunications, page 6:
720  * "A node is doubled if the ratio of non-empty children to all
721  * children in the *doubled* node is at least 'high'."
722  *
723  * 'high' in this instance is the variable 'inflate_threshold'. It
724  * is expressed as a percentage, so we multiply it with
725  * child_length() and instead of multiplying by 2 (since the
726  * child array will be doubled by inflate()) and multiplying
727  * the left-hand side by 100 (to handle the percentage thing) we
728  * multiply the left-hand side by 50.
729  *
730  * The left-hand side may look a bit weird: child_length(tn)
731  * - tn->empty_children is of course the number of non-null children
732  * in the current node. tn->full_children is the number of "full"
733  * children, that is non-null tnodes with a skip value of 0.
734  * All of those will be doubled in the resulting inflated tnode, so
735  * we just count them one extra time here.
736  *
737  * A clearer way to write this would be:
738  *
739  * to_be_doubled = tn->full_children;
740  * not_to_be_doubled = child_length(tn) - tn->empty_children -
741  *     tn->full_children;
742  *
743  * new_child_length = child_length(tn) * 2;
744  *
745  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
746  *      new_child_length;
747  * if (new_fill_factor >= inflate_threshold)
748  *
749  * ...and so on, tho it would mess up the while () loop.
750  *
751  * anyway,
752  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
753  *      inflate_threshold
754  *
755  * avoid a division:
756  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
757  *      inflate_threshold * new_child_length
758  *
759  * expand not_to_be_doubled and to_be_doubled, and shorten:
760  * 100 * (child_length(tn) - tn->empty_children +
761  *    tn->full_children) >= inflate_threshold * new_child_length
762  *
763  * expand new_child_length:
764  * 100 * (child_length(tn) - tn->empty_children +
765  *    tn->full_children) >=
766  *      inflate_threshold * child_length(tn) * 2
767  *
768  * shorten again:
769  * 50 * (tn->full_children + child_length(tn) -
770  *    tn->empty_children) >= inflate_threshold *
771  *    child_length(tn)
772  *
773  */
774 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
775 {
776 	unsigned long used = child_length(tn);
777 	unsigned long threshold = used;
778 
779 	/* Keep root node larger */
780 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
781 	used -= tn_info(tn)->empty_children;
782 	used += tn_info(tn)->full_children;
783 
784 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
785 
786 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
787 }
788 
789 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
790 {
791 	unsigned long used = child_length(tn);
792 	unsigned long threshold = used;
793 
794 	/* Keep root node larger */
795 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
796 	used -= tn_info(tn)->empty_children;
797 
798 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
799 
800 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
801 }
802 
803 static inline bool should_collapse(struct key_vector *tn)
804 {
805 	unsigned long used = child_length(tn);
806 
807 	used -= tn_info(tn)->empty_children;
808 
809 	/* account for bits == KEYLENGTH case */
810 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
811 		used -= KEY_MAX;
812 
813 	/* One child or none, time to drop us from the trie */
814 	return used < 2;
815 }
816 
817 #define MAX_WORK 10
818 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
819 {
820 #ifdef CONFIG_IP_FIB_TRIE_STATS
821 	struct trie_use_stats __percpu *stats = t->stats;
822 #endif
823 	struct key_vector *tp = node_parent(tn);
824 	unsigned long cindex = get_index(tn->key, tp);
825 	int max_work = MAX_WORK;
826 
827 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
828 		 tn, inflate_threshold, halve_threshold);
829 
830 	/* track the tnode via the pointer from the parent instead of
831 	 * doing it ourselves.  This way we can let RCU fully do its
832 	 * thing without us interfering
833 	 */
834 	BUG_ON(tn != get_child(tp, cindex));
835 
836 	/* Double as long as the resulting node has a number of
837 	 * nonempty nodes that are above the threshold.
838 	 */
839 	while (should_inflate(tp, tn) && max_work) {
840 		tp = inflate(t, tn);
841 		if (!tp) {
842 #ifdef CONFIG_IP_FIB_TRIE_STATS
843 			this_cpu_inc(stats->resize_node_skipped);
844 #endif
845 			break;
846 		}
847 
848 		max_work--;
849 		tn = get_child(tp, cindex);
850 	}
851 
852 	/* update parent in case inflate failed */
853 	tp = node_parent(tn);
854 
855 	/* Return if at least one inflate is run */
856 	if (max_work != MAX_WORK)
857 		return tp;
858 
859 	/* Halve as long as the number of empty children in this
860 	 * node is above threshold.
861 	 */
862 	while (should_halve(tp, tn) && max_work) {
863 		tp = halve(t, tn);
864 		if (!tp) {
865 #ifdef CONFIG_IP_FIB_TRIE_STATS
866 			this_cpu_inc(stats->resize_node_skipped);
867 #endif
868 			break;
869 		}
870 
871 		max_work--;
872 		tn = get_child(tp, cindex);
873 	}
874 
875 	/* Only one child remains */
876 	if (should_collapse(tn))
877 		return collapse(t, tn);
878 
879 	/* update parent in case halve failed */
880 	tp = node_parent(tn);
881 
882 	/* Return if at least one deflate was run */
883 	if (max_work != MAX_WORK)
884 		return tp;
885 
886 	/* push the suffix length to the parent node */
887 	if (tn->slen > tn->pos) {
888 		unsigned char slen = update_suffix(tn);
889 
890 		if (slen > tp->slen)
891 			tp->slen = slen;
892 	}
893 
894 	return tp;
895 }
896 
897 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
898 {
899 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
900 		if (update_suffix(tp) > l->slen)
901 			break;
902 		tp = node_parent(tp);
903 	}
904 }
905 
906 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
907 {
908 	/* if this is a new leaf then tn will be NULL and we can sort
909 	 * out parent suffix lengths as a part of trie_rebalance
910 	 */
911 	while (tn->slen < l->slen) {
912 		tn->slen = l->slen;
913 		tn = node_parent(tn);
914 	}
915 }
916 
917 /* rcu_read_lock needs to be hold by caller from readside */
918 static struct key_vector *fib_find_node(struct trie *t,
919 					struct key_vector **tp, u32 key)
920 {
921 	struct key_vector *pn, *n = t->kv;
922 	unsigned long index = 0;
923 
924 	do {
925 		pn = n;
926 		n = get_child_rcu(n, index);
927 
928 		if (!n)
929 			break;
930 
931 		index = get_cindex(key, n);
932 
933 		/* This bit of code is a bit tricky but it combines multiple
934 		 * checks into a single check.  The prefix consists of the
935 		 * prefix plus zeros for the bits in the cindex. The index
936 		 * is the difference between the key and this value.  From
937 		 * this we can actually derive several pieces of data.
938 		 *   if (index >= (1ul << bits))
939 		 *     we have a mismatch in skip bits and failed
940 		 *   else
941 		 *     we know the value is cindex
942 		 *
943 		 * This check is safe even if bits == KEYLENGTH due to the
944 		 * fact that we can only allocate a node with 32 bits if a
945 		 * long is greater than 32 bits.
946 		 */
947 		if (index >= (1ul << n->bits)) {
948 			n = NULL;
949 			break;
950 		}
951 
952 		/* keep searching until we find a perfect match leaf or NULL */
953 	} while (IS_TNODE(n));
954 
955 	*tp = pn;
956 
957 	return n;
958 }
959 
960 /* Return the first fib alias matching TOS with
961  * priority less than or equal to PRIO.
962  */
963 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
964 					u8 tos, u32 prio, u32 tb_id)
965 {
966 	struct fib_alias *fa;
967 
968 	if (!fah)
969 		return NULL;
970 
971 	hlist_for_each_entry(fa, fah, fa_list) {
972 		if (fa->fa_slen < slen)
973 			continue;
974 		if (fa->fa_slen != slen)
975 			break;
976 		if (fa->tb_id > tb_id)
977 			continue;
978 		if (fa->tb_id != tb_id)
979 			break;
980 		if (fa->fa_tos > tos)
981 			continue;
982 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
983 			return fa;
984 	}
985 
986 	return NULL;
987 }
988 
989 static void trie_rebalance(struct trie *t, struct key_vector *tn)
990 {
991 	while (!IS_TRIE(tn))
992 		tn = resize(t, tn);
993 }
994 
995 static int fib_insert_node(struct trie *t, struct key_vector *tp,
996 			   struct fib_alias *new, t_key key)
997 {
998 	struct key_vector *n, *l;
999 
1000 	l = leaf_new(key, new);
1001 	if (!l)
1002 		goto noleaf;
1003 
1004 	/* retrieve child from parent node */
1005 	n = get_child(tp, get_index(key, tp));
1006 
1007 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1008 	 *
1009 	 *  Add a new tnode here
1010 	 *  first tnode need some special handling
1011 	 *  leaves us in position for handling as case 3
1012 	 */
1013 	if (n) {
1014 		struct key_vector *tn;
1015 
1016 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1017 		if (!tn)
1018 			goto notnode;
1019 
1020 		/* initialize routes out of node */
1021 		NODE_INIT_PARENT(tn, tp);
1022 		put_child(tn, get_index(key, tn) ^ 1, n);
1023 
1024 		/* start adding routes into the node */
1025 		put_child_root(tp, key, tn);
1026 		node_set_parent(n, tn);
1027 
1028 		/* parent now has a NULL spot where the leaf can go */
1029 		tp = tn;
1030 	}
1031 
1032 	/* Case 3: n is NULL, and will just insert a new leaf */
1033 	NODE_INIT_PARENT(l, tp);
1034 	put_child_root(tp, key, l);
1035 	trie_rebalance(t, tp);
1036 
1037 	return 0;
1038 notnode:
1039 	node_free(l);
1040 noleaf:
1041 	return -ENOMEM;
1042 }
1043 
1044 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1045 			    struct key_vector *l, struct fib_alias *new,
1046 			    struct fib_alias *fa, t_key key)
1047 {
1048 	if (!l)
1049 		return fib_insert_node(t, tp, new, key);
1050 
1051 	if (fa) {
1052 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1053 	} else {
1054 		struct fib_alias *last;
1055 
1056 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1057 			if (new->fa_slen < last->fa_slen)
1058 				break;
1059 			if ((new->fa_slen == last->fa_slen) &&
1060 			    (new->tb_id > last->tb_id))
1061 				break;
1062 			fa = last;
1063 		}
1064 
1065 		if (fa)
1066 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1067 		else
1068 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1069 	}
1070 
1071 	/* if we added to the tail node then we need to update slen */
1072 	if (l->slen < new->fa_slen) {
1073 		l->slen = new->fa_slen;
1074 		leaf_push_suffix(tp, l);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /* Caller must hold RTNL. */
1081 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1082 {
1083 	struct trie *t = (struct trie *)tb->tb_data;
1084 	struct fib_alias *fa, *new_fa;
1085 	struct key_vector *l, *tp;
1086 	unsigned int nlflags = 0;
1087 	struct fib_info *fi;
1088 	u8 plen = cfg->fc_dst_len;
1089 	u8 slen = KEYLENGTH - plen;
1090 	u8 tos = cfg->fc_tos;
1091 	u32 key;
1092 	int err;
1093 
1094 	if (plen > KEYLENGTH)
1095 		return -EINVAL;
1096 
1097 	key = ntohl(cfg->fc_dst);
1098 
1099 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1100 
1101 	if ((plen < KEYLENGTH) && (key << plen))
1102 		return -EINVAL;
1103 
1104 	fi = fib_create_info(cfg);
1105 	if (IS_ERR(fi)) {
1106 		err = PTR_ERR(fi);
1107 		goto err;
1108 	}
1109 
1110 	l = fib_find_node(t, &tp, key);
1111 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1112 				tb->tb_id) : NULL;
1113 
1114 	/* Now fa, if non-NULL, points to the first fib alias
1115 	 * with the same keys [prefix,tos,priority], if such key already
1116 	 * exists or to the node before which we will insert new one.
1117 	 *
1118 	 * If fa is NULL, we will need to allocate a new one and
1119 	 * insert to the tail of the section matching the suffix length
1120 	 * of the new alias.
1121 	 */
1122 
1123 	if (fa && fa->fa_tos == tos &&
1124 	    fa->fa_info->fib_priority == fi->fib_priority) {
1125 		struct fib_alias *fa_first, *fa_match;
1126 
1127 		err = -EEXIST;
1128 		if (cfg->fc_nlflags & NLM_F_EXCL)
1129 			goto out;
1130 
1131 		/* We have 2 goals:
1132 		 * 1. Find exact match for type, scope, fib_info to avoid
1133 		 * duplicate routes
1134 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1135 		 */
1136 		fa_match = NULL;
1137 		fa_first = fa;
1138 		hlist_for_each_entry_from(fa, fa_list) {
1139 			if ((fa->fa_slen != slen) ||
1140 			    (fa->tb_id != tb->tb_id) ||
1141 			    (fa->fa_tos != tos))
1142 				break;
1143 			if (fa->fa_info->fib_priority != fi->fib_priority)
1144 				break;
1145 			if (fa->fa_type == cfg->fc_type &&
1146 			    fa->fa_info == fi) {
1147 				fa_match = fa;
1148 				break;
1149 			}
1150 		}
1151 
1152 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1153 			struct fib_info *fi_drop;
1154 			u8 state;
1155 
1156 			fa = fa_first;
1157 			if (fa_match) {
1158 				if (fa == fa_match)
1159 					err = 0;
1160 				goto out;
1161 			}
1162 			err = -ENOBUFS;
1163 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1164 			if (!new_fa)
1165 				goto out;
1166 
1167 			fi_drop = fa->fa_info;
1168 			new_fa->fa_tos = fa->fa_tos;
1169 			new_fa->fa_info = fi;
1170 			new_fa->fa_type = cfg->fc_type;
1171 			state = fa->fa_state;
1172 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1173 			new_fa->fa_slen = fa->fa_slen;
1174 			new_fa->tb_id = tb->tb_id;
1175 			new_fa->fa_default = -1;
1176 
1177 			err = switchdev_fib_ipv4_add(key, plen, fi,
1178 						     new_fa->fa_tos,
1179 						     cfg->fc_type,
1180 						     cfg->fc_nlflags,
1181 						     tb->tb_id);
1182 			if (err) {
1183 				switchdev_fib_ipv4_abort(fi);
1184 				kmem_cache_free(fn_alias_kmem, new_fa);
1185 				goto out;
1186 			}
1187 
1188 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1189 
1190 			alias_free_mem_rcu(fa);
1191 
1192 			fib_release_info(fi_drop);
1193 			if (state & FA_S_ACCESSED)
1194 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1195 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1196 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1197 
1198 			goto succeeded;
1199 		}
1200 		/* Error if we find a perfect match which
1201 		 * uses the same scope, type, and nexthop
1202 		 * information.
1203 		 */
1204 		if (fa_match)
1205 			goto out;
1206 
1207 		if (cfg->fc_nlflags & NLM_F_APPEND)
1208 			nlflags = NLM_F_APPEND;
1209 		else
1210 			fa = fa_first;
1211 	}
1212 	err = -ENOENT;
1213 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1214 		goto out;
1215 
1216 	err = -ENOBUFS;
1217 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1218 	if (!new_fa)
1219 		goto out;
1220 
1221 	new_fa->fa_info = fi;
1222 	new_fa->fa_tos = tos;
1223 	new_fa->fa_type = cfg->fc_type;
1224 	new_fa->fa_state = 0;
1225 	new_fa->fa_slen = slen;
1226 	new_fa->tb_id = tb->tb_id;
1227 	new_fa->fa_default = -1;
1228 
1229 	/* (Optionally) offload fib entry to switch hardware. */
1230 	err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1231 				     cfg->fc_nlflags, tb->tb_id);
1232 	if (err) {
1233 		switchdev_fib_ipv4_abort(fi);
1234 		goto out_free_new_fa;
1235 	}
1236 
1237 	/* Insert new entry to the list. */
1238 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1239 	if (err)
1240 		goto out_sw_fib_del;
1241 
1242 	if (!plen)
1243 		tb->tb_num_default++;
1244 
1245 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1246 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1247 		  &cfg->fc_nlinfo, nlflags);
1248 succeeded:
1249 	return 0;
1250 
1251 out_sw_fib_del:
1252 	switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1253 out_free_new_fa:
1254 	kmem_cache_free(fn_alias_kmem, new_fa);
1255 out:
1256 	fib_release_info(fi);
1257 err:
1258 	return err;
1259 }
1260 
1261 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1262 {
1263 	t_key prefix = n->key;
1264 
1265 	return (key ^ prefix) & (prefix | -prefix);
1266 }
1267 
1268 /* should be called with rcu_read_lock */
1269 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1270 		     struct fib_result *res, int fib_flags)
1271 {
1272 	struct trie *t = (struct trie *) tb->tb_data;
1273 #ifdef CONFIG_IP_FIB_TRIE_STATS
1274 	struct trie_use_stats __percpu *stats = t->stats;
1275 #endif
1276 	const t_key key = ntohl(flp->daddr);
1277 	struct key_vector *n, *pn;
1278 	struct fib_alias *fa;
1279 	unsigned long index;
1280 	t_key cindex;
1281 
1282 	trace_fib_table_lookup(tb->tb_id, flp);
1283 
1284 	pn = t->kv;
1285 	cindex = 0;
1286 
1287 	n = get_child_rcu(pn, cindex);
1288 	if (!n)
1289 		return -EAGAIN;
1290 
1291 #ifdef CONFIG_IP_FIB_TRIE_STATS
1292 	this_cpu_inc(stats->gets);
1293 #endif
1294 
1295 	/* Step 1: Travel to the longest prefix match in the trie */
1296 	for (;;) {
1297 		index = get_cindex(key, n);
1298 
1299 		/* This bit of code is a bit tricky but it combines multiple
1300 		 * checks into a single check.  The prefix consists of the
1301 		 * prefix plus zeros for the "bits" in the prefix. The index
1302 		 * is the difference between the key and this value.  From
1303 		 * this we can actually derive several pieces of data.
1304 		 *   if (index >= (1ul << bits))
1305 		 *     we have a mismatch in skip bits and failed
1306 		 *   else
1307 		 *     we know the value is cindex
1308 		 *
1309 		 * This check is safe even if bits == KEYLENGTH due to the
1310 		 * fact that we can only allocate a node with 32 bits if a
1311 		 * long is greater than 32 bits.
1312 		 */
1313 		if (index >= (1ul << n->bits))
1314 			break;
1315 
1316 		/* we have found a leaf. Prefixes have already been compared */
1317 		if (IS_LEAF(n))
1318 			goto found;
1319 
1320 		/* only record pn and cindex if we are going to be chopping
1321 		 * bits later.  Otherwise we are just wasting cycles.
1322 		 */
1323 		if (n->slen > n->pos) {
1324 			pn = n;
1325 			cindex = index;
1326 		}
1327 
1328 		n = get_child_rcu(n, index);
1329 		if (unlikely(!n))
1330 			goto backtrace;
1331 	}
1332 
1333 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1334 	for (;;) {
1335 		/* record the pointer where our next node pointer is stored */
1336 		struct key_vector __rcu **cptr = n->tnode;
1337 
1338 		/* This test verifies that none of the bits that differ
1339 		 * between the key and the prefix exist in the region of
1340 		 * the lsb and higher in the prefix.
1341 		 */
1342 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1343 			goto backtrace;
1344 
1345 		/* exit out and process leaf */
1346 		if (unlikely(IS_LEAF(n)))
1347 			break;
1348 
1349 		/* Don't bother recording parent info.  Since we are in
1350 		 * prefix match mode we will have to come back to wherever
1351 		 * we started this traversal anyway
1352 		 */
1353 
1354 		while ((n = rcu_dereference(*cptr)) == NULL) {
1355 backtrace:
1356 #ifdef CONFIG_IP_FIB_TRIE_STATS
1357 			if (!n)
1358 				this_cpu_inc(stats->null_node_hit);
1359 #endif
1360 			/* If we are at cindex 0 there are no more bits for
1361 			 * us to strip at this level so we must ascend back
1362 			 * up one level to see if there are any more bits to
1363 			 * be stripped there.
1364 			 */
1365 			while (!cindex) {
1366 				t_key pkey = pn->key;
1367 
1368 				/* If we don't have a parent then there is
1369 				 * nothing for us to do as we do not have any
1370 				 * further nodes to parse.
1371 				 */
1372 				if (IS_TRIE(pn))
1373 					return -EAGAIN;
1374 #ifdef CONFIG_IP_FIB_TRIE_STATS
1375 				this_cpu_inc(stats->backtrack);
1376 #endif
1377 				/* Get Child's index */
1378 				pn = node_parent_rcu(pn);
1379 				cindex = get_index(pkey, pn);
1380 			}
1381 
1382 			/* strip the least significant bit from the cindex */
1383 			cindex &= cindex - 1;
1384 
1385 			/* grab pointer for next child node */
1386 			cptr = &pn->tnode[cindex];
1387 		}
1388 	}
1389 
1390 found:
1391 	/* this line carries forward the xor from earlier in the function */
1392 	index = key ^ n->key;
1393 
1394 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1395 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1396 		struct fib_info *fi = fa->fa_info;
1397 		int nhsel, err;
1398 
1399 		if ((index >= (1ul << fa->fa_slen)) &&
1400 		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1401 			continue;
1402 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1403 			continue;
1404 		if (fi->fib_dead)
1405 			continue;
1406 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1407 			continue;
1408 		fib_alias_accessed(fa);
1409 		err = fib_props[fa->fa_type].error;
1410 		if (unlikely(err < 0)) {
1411 #ifdef CONFIG_IP_FIB_TRIE_STATS
1412 			this_cpu_inc(stats->semantic_match_passed);
1413 #endif
1414 			return err;
1415 		}
1416 		if (fi->fib_flags & RTNH_F_DEAD)
1417 			continue;
1418 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1419 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1420 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1421 
1422 			if (nh->nh_flags & RTNH_F_DEAD)
1423 				continue;
1424 			if (in_dev &&
1425 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1426 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1427 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1428 				continue;
1429 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1430 				if (flp->flowi4_oif &&
1431 				    flp->flowi4_oif != nh->nh_oif)
1432 					continue;
1433 			}
1434 
1435 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1436 				atomic_inc(&fi->fib_clntref);
1437 
1438 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1439 			res->nh_sel = nhsel;
1440 			res->type = fa->fa_type;
1441 			res->scope = fi->fib_scope;
1442 			res->fi = fi;
1443 			res->table = tb;
1444 			res->fa_head = &n->leaf;
1445 #ifdef CONFIG_IP_FIB_TRIE_STATS
1446 			this_cpu_inc(stats->semantic_match_passed);
1447 #endif
1448 			trace_fib_table_lookup_nh(nh);
1449 
1450 			return err;
1451 		}
1452 	}
1453 #ifdef CONFIG_IP_FIB_TRIE_STATS
1454 	this_cpu_inc(stats->semantic_match_miss);
1455 #endif
1456 	goto backtrace;
1457 }
1458 EXPORT_SYMBOL_GPL(fib_table_lookup);
1459 
1460 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1461 			     struct key_vector *l, struct fib_alias *old)
1462 {
1463 	/* record the location of the previous list_info entry */
1464 	struct hlist_node **pprev = old->fa_list.pprev;
1465 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1466 
1467 	/* remove the fib_alias from the list */
1468 	hlist_del_rcu(&old->fa_list);
1469 
1470 	/* if we emptied the list this leaf will be freed and we can sort
1471 	 * out parent suffix lengths as a part of trie_rebalance
1472 	 */
1473 	if (hlist_empty(&l->leaf)) {
1474 		put_child_root(tp, l->key, NULL);
1475 		node_free(l);
1476 		trie_rebalance(t, tp);
1477 		return;
1478 	}
1479 
1480 	/* only access fa if it is pointing at the last valid hlist_node */
1481 	if (*pprev)
1482 		return;
1483 
1484 	/* update the trie with the latest suffix length */
1485 	l->slen = fa->fa_slen;
1486 	leaf_pull_suffix(tp, l);
1487 }
1488 
1489 /* Caller must hold RTNL. */
1490 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1491 {
1492 	struct trie *t = (struct trie *) tb->tb_data;
1493 	struct fib_alias *fa, *fa_to_delete;
1494 	struct key_vector *l, *tp;
1495 	u8 plen = cfg->fc_dst_len;
1496 	u8 slen = KEYLENGTH - plen;
1497 	u8 tos = cfg->fc_tos;
1498 	u32 key;
1499 
1500 	if (plen > KEYLENGTH)
1501 		return -EINVAL;
1502 
1503 	key = ntohl(cfg->fc_dst);
1504 
1505 	if ((plen < KEYLENGTH) && (key << plen))
1506 		return -EINVAL;
1507 
1508 	l = fib_find_node(t, &tp, key);
1509 	if (!l)
1510 		return -ESRCH;
1511 
1512 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1513 	if (!fa)
1514 		return -ESRCH;
1515 
1516 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1517 
1518 	fa_to_delete = NULL;
1519 	hlist_for_each_entry_from(fa, fa_list) {
1520 		struct fib_info *fi = fa->fa_info;
1521 
1522 		if ((fa->fa_slen != slen) ||
1523 		    (fa->tb_id != tb->tb_id) ||
1524 		    (fa->fa_tos != tos))
1525 			break;
1526 
1527 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1528 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1529 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1530 		    (!cfg->fc_prefsrc ||
1531 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1532 		    (!cfg->fc_protocol ||
1533 		     fi->fib_protocol == cfg->fc_protocol) &&
1534 		    fib_nh_match(cfg, fi) == 0) {
1535 			fa_to_delete = fa;
1536 			break;
1537 		}
1538 	}
1539 
1540 	if (!fa_to_delete)
1541 		return -ESRCH;
1542 
1543 	switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1544 			       cfg->fc_type, tb->tb_id);
1545 
1546 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1547 		  &cfg->fc_nlinfo, 0);
1548 
1549 	if (!plen)
1550 		tb->tb_num_default--;
1551 
1552 	fib_remove_alias(t, tp, l, fa_to_delete);
1553 
1554 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1555 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1556 
1557 	fib_release_info(fa_to_delete->fa_info);
1558 	alias_free_mem_rcu(fa_to_delete);
1559 	return 0;
1560 }
1561 
1562 /* Scan for the next leaf starting at the provided key value */
1563 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1564 {
1565 	struct key_vector *pn, *n = *tn;
1566 	unsigned long cindex;
1567 
1568 	/* this loop is meant to try and find the key in the trie */
1569 	do {
1570 		/* record parent and next child index */
1571 		pn = n;
1572 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1573 
1574 		if (cindex >> pn->bits)
1575 			break;
1576 
1577 		/* descend into the next child */
1578 		n = get_child_rcu(pn, cindex++);
1579 		if (!n)
1580 			break;
1581 
1582 		/* guarantee forward progress on the keys */
1583 		if (IS_LEAF(n) && (n->key >= key))
1584 			goto found;
1585 	} while (IS_TNODE(n));
1586 
1587 	/* this loop will search for the next leaf with a greater key */
1588 	while (!IS_TRIE(pn)) {
1589 		/* if we exhausted the parent node we will need to climb */
1590 		if (cindex >= (1ul << pn->bits)) {
1591 			t_key pkey = pn->key;
1592 
1593 			pn = node_parent_rcu(pn);
1594 			cindex = get_index(pkey, pn) + 1;
1595 			continue;
1596 		}
1597 
1598 		/* grab the next available node */
1599 		n = get_child_rcu(pn, cindex++);
1600 		if (!n)
1601 			continue;
1602 
1603 		/* no need to compare keys since we bumped the index */
1604 		if (IS_LEAF(n))
1605 			goto found;
1606 
1607 		/* Rescan start scanning in new node */
1608 		pn = n;
1609 		cindex = 0;
1610 	}
1611 
1612 	*tn = pn;
1613 	return NULL; /* Root of trie */
1614 found:
1615 	/* if we are at the limit for keys just return NULL for the tnode */
1616 	*tn = pn;
1617 	return n;
1618 }
1619 
1620 static void fib_trie_free(struct fib_table *tb)
1621 {
1622 	struct trie *t = (struct trie *)tb->tb_data;
1623 	struct key_vector *pn = t->kv;
1624 	unsigned long cindex = 1;
1625 	struct hlist_node *tmp;
1626 	struct fib_alias *fa;
1627 
1628 	/* walk trie in reverse order and free everything */
1629 	for (;;) {
1630 		struct key_vector *n;
1631 
1632 		if (!(cindex--)) {
1633 			t_key pkey = pn->key;
1634 
1635 			if (IS_TRIE(pn))
1636 				break;
1637 
1638 			n = pn;
1639 			pn = node_parent(pn);
1640 
1641 			/* drop emptied tnode */
1642 			put_child_root(pn, n->key, NULL);
1643 			node_free(n);
1644 
1645 			cindex = get_index(pkey, pn);
1646 
1647 			continue;
1648 		}
1649 
1650 		/* grab the next available node */
1651 		n = get_child(pn, cindex);
1652 		if (!n)
1653 			continue;
1654 
1655 		if (IS_TNODE(n)) {
1656 			/* record pn and cindex for leaf walking */
1657 			pn = n;
1658 			cindex = 1ul << n->bits;
1659 
1660 			continue;
1661 		}
1662 
1663 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1664 			hlist_del_rcu(&fa->fa_list);
1665 			alias_free_mem_rcu(fa);
1666 		}
1667 
1668 		put_child_root(pn, n->key, NULL);
1669 		node_free(n);
1670 	}
1671 
1672 #ifdef CONFIG_IP_FIB_TRIE_STATS
1673 	free_percpu(t->stats);
1674 #endif
1675 	kfree(tb);
1676 }
1677 
1678 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1679 {
1680 	struct trie *ot = (struct trie *)oldtb->tb_data;
1681 	struct key_vector *l, *tp = ot->kv;
1682 	struct fib_table *local_tb;
1683 	struct fib_alias *fa;
1684 	struct trie *lt;
1685 	t_key key = 0;
1686 
1687 	if (oldtb->tb_data == oldtb->__data)
1688 		return oldtb;
1689 
1690 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1691 	if (!local_tb)
1692 		return NULL;
1693 
1694 	lt = (struct trie *)local_tb->tb_data;
1695 
1696 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1697 		struct key_vector *local_l = NULL, *local_tp;
1698 
1699 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1700 			struct fib_alias *new_fa;
1701 
1702 			if (local_tb->tb_id != fa->tb_id)
1703 				continue;
1704 
1705 			/* clone fa for new local table */
1706 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1707 			if (!new_fa)
1708 				goto out;
1709 
1710 			memcpy(new_fa, fa, sizeof(*fa));
1711 
1712 			/* insert clone into table */
1713 			if (!local_l)
1714 				local_l = fib_find_node(lt, &local_tp, l->key);
1715 
1716 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1717 					     NULL, l->key))
1718 				goto out;
1719 		}
1720 
1721 		/* stop loop if key wrapped back to 0 */
1722 		key = l->key + 1;
1723 		if (key < l->key)
1724 			break;
1725 	}
1726 
1727 	return local_tb;
1728 out:
1729 	fib_trie_free(local_tb);
1730 
1731 	return NULL;
1732 }
1733 
1734 /* Caller must hold RTNL */
1735 void fib_table_flush_external(struct fib_table *tb)
1736 {
1737 	struct trie *t = (struct trie *)tb->tb_data;
1738 	struct key_vector *pn = t->kv;
1739 	unsigned long cindex = 1;
1740 	struct hlist_node *tmp;
1741 	struct fib_alias *fa;
1742 
1743 	/* walk trie in reverse order */
1744 	for (;;) {
1745 		unsigned char slen = 0;
1746 		struct key_vector *n;
1747 
1748 		if (!(cindex--)) {
1749 			t_key pkey = pn->key;
1750 
1751 			/* cannot resize the trie vector */
1752 			if (IS_TRIE(pn))
1753 				break;
1754 
1755 			/* resize completed node */
1756 			pn = resize(t, pn);
1757 			cindex = get_index(pkey, pn);
1758 
1759 			continue;
1760 		}
1761 
1762 		/* grab the next available node */
1763 		n = get_child(pn, cindex);
1764 		if (!n)
1765 			continue;
1766 
1767 		if (IS_TNODE(n)) {
1768 			/* record pn and cindex for leaf walking */
1769 			pn = n;
1770 			cindex = 1ul << n->bits;
1771 
1772 			continue;
1773 		}
1774 
1775 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1776 			struct fib_info *fi = fa->fa_info;
1777 
1778 			/* if alias was cloned to local then we just
1779 			 * need to remove the local copy from main
1780 			 */
1781 			if (tb->tb_id != fa->tb_id) {
1782 				hlist_del_rcu(&fa->fa_list);
1783 				alias_free_mem_rcu(fa);
1784 				continue;
1785 			}
1786 
1787 			/* record local slen */
1788 			slen = fa->fa_slen;
1789 
1790 			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1791 				continue;
1792 
1793 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1794 					       fi, fa->fa_tos, fa->fa_type,
1795 					       tb->tb_id);
1796 		}
1797 
1798 		/* update leaf slen */
1799 		n->slen = slen;
1800 
1801 		if (hlist_empty(&n->leaf)) {
1802 			put_child_root(pn, n->key, NULL);
1803 			node_free(n);
1804 		}
1805 	}
1806 }
1807 
1808 /* Caller must hold RTNL. */
1809 int fib_table_flush(struct fib_table *tb)
1810 {
1811 	struct trie *t = (struct trie *)tb->tb_data;
1812 	struct key_vector *pn = t->kv;
1813 	unsigned long cindex = 1;
1814 	struct hlist_node *tmp;
1815 	struct fib_alias *fa;
1816 	int found = 0;
1817 
1818 	/* walk trie in reverse order */
1819 	for (;;) {
1820 		unsigned char slen = 0;
1821 		struct key_vector *n;
1822 
1823 		if (!(cindex--)) {
1824 			t_key pkey = pn->key;
1825 
1826 			/* cannot resize the trie vector */
1827 			if (IS_TRIE(pn))
1828 				break;
1829 
1830 			/* resize completed node */
1831 			pn = resize(t, pn);
1832 			cindex = get_index(pkey, pn);
1833 
1834 			continue;
1835 		}
1836 
1837 		/* grab the next available node */
1838 		n = get_child(pn, cindex);
1839 		if (!n)
1840 			continue;
1841 
1842 		if (IS_TNODE(n)) {
1843 			/* record pn and cindex for leaf walking */
1844 			pn = n;
1845 			cindex = 1ul << n->bits;
1846 
1847 			continue;
1848 		}
1849 
1850 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1851 			struct fib_info *fi = fa->fa_info;
1852 
1853 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1854 				slen = fa->fa_slen;
1855 				continue;
1856 			}
1857 
1858 			switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1859 					       fi, fa->fa_tos, fa->fa_type,
1860 					       tb->tb_id);
1861 			hlist_del_rcu(&fa->fa_list);
1862 			fib_release_info(fa->fa_info);
1863 			alias_free_mem_rcu(fa);
1864 			found++;
1865 		}
1866 
1867 		/* update leaf slen */
1868 		n->slen = slen;
1869 
1870 		if (hlist_empty(&n->leaf)) {
1871 			put_child_root(pn, n->key, NULL);
1872 			node_free(n);
1873 		}
1874 	}
1875 
1876 	pr_debug("trie_flush found=%d\n", found);
1877 	return found;
1878 }
1879 
1880 static void __trie_free_rcu(struct rcu_head *head)
1881 {
1882 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1883 #ifdef CONFIG_IP_FIB_TRIE_STATS
1884 	struct trie *t = (struct trie *)tb->tb_data;
1885 
1886 	if (tb->tb_data == tb->__data)
1887 		free_percpu(t->stats);
1888 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1889 	kfree(tb);
1890 }
1891 
1892 void fib_free_table(struct fib_table *tb)
1893 {
1894 	call_rcu(&tb->rcu, __trie_free_rcu);
1895 }
1896 
1897 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1898 			     struct sk_buff *skb, struct netlink_callback *cb)
1899 {
1900 	__be32 xkey = htonl(l->key);
1901 	struct fib_alias *fa;
1902 	int i, s_i;
1903 
1904 	s_i = cb->args[4];
1905 	i = 0;
1906 
1907 	/* rcu_read_lock is hold by caller */
1908 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1909 		if (i < s_i) {
1910 			i++;
1911 			continue;
1912 		}
1913 
1914 		if (tb->tb_id != fa->tb_id) {
1915 			i++;
1916 			continue;
1917 		}
1918 
1919 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1920 				  cb->nlh->nlmsg_seq,
1921 				  RTM_NEWROUTE,
1922 				  tb->tb_id,
1923 				  fa->fa_type,
1924 				  xkey,
1925 				  KEYLENGTH - fa->fa_slen,
1926 				  fa->fa_tos,
1927 				  fa->fa_info, NLM_F_MULTI) < 0) {
1928 			cb->args[4] = i;
1929 			return -1;
1930 		}
1931 		i++;
1932 	}
1933 
1934 	cb->args[4] = i;
1935 	return skb->len;
1936 }
1937 
1938 /* rcu_read_lock needs to be hold by caller from readside */
1939 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1940 		   struct netlink_callback *cb)
1941 {
1942 	struct trie *t = (struct trie *)tb->tb_data;
1943 	struct key_vector *l, *tp = t->kv;
1944 	/* Dump starting at last key.
1945 	 * Note: 0.0.0.0/0 (ie default) is first key.
1946 	 */
1947 	int count = cb->args[2];
1948 	t_key key = cb->args[3];
1949 
1950 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1951 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1952 			cb->args[3] = key;
1953 			cb->args[2] = count;
1954 			return -1;
1955 		}
1956 
1957 		++count;
1958 		key = l->key + 1;
1959 
1960 		memset(&cb->args[4], 0,
1961 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1962 
1963 		/* stop loop if key wrapped back to 0 */
1964 		if (key < l->key)
1965 			break;
1966 	}
1967 
1968 	cb->args[3] = key;
1969 	cb->args[2] = count;
1970 
1971 	return skb->len;
1972 }
1973 
1974 void __init fib_trie_init(void)
1975 {
1976 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1977 					  sizeof(struct fib_alias),
1978 					  0, SLAB_PANIC, NULL);
1979 
1980 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1981 					   LEAF_SIZE,
1982 					   0, SLAB_PANIC, NULL);
1983 }
1984 
1985 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1986 {
1987 	struct fib_table *tb;
1988 	struct trie *t;
1989 	size_t sz = sizeof(*tb);
1990 
1991 	if (!alias)
1992 		sz += sizeof(struct trie);
1993 
1994 	tb = kzalloc(sz, GFP_KERNEL);
1995 	if (!tb)
1996 		return NULL;
1997 
1998 	tb->tb_id = id;
1999 	tb->tb_num_default = 0;
2000 	tb->tb_data = (alias ? alias->__data : tb->__data);
2001 
2002 	if (alias)
2003 		return tb;
2004 
2005 	t = (struct trie *) tb->tb_data;
2006 	t->kv[0].pos = KEYLENGTH;
2007 	t->kv[0].slen = KEYLENGTH;
2008 #ifdef CONFIG_IP_FIB_TRIE_STATS
2009 	t->stats = alloc_percpu(struct trie_use_stats);
2010 	if (!t->stats) {
2011 		kfree(tb);
2012 		tb = NULL;
2013 	}
2014 #endif
2015 
2016 	return tb;
2017 }
2018 
2019 #ifdef CONFIG_PROC_FS
2020 /* Depth first Trie walk iterator */
2021 struct fib_trie_iter {
2022 	struct seq_net_private p;
2023 	struct fib_table *tb;
2024 	struct key_vector *tnode;
2025 	unsigned int index;
2026 	unsigned int depth;
2027 };
2028 
2029 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2030 {
2031 	unsigned long cindex = iter->index;
2032 	struct key_vector *pn = iter->tnode;
2033 	t_key pkey;
2034 
2035 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2036 		 iter->tnode, iter->index, iter->depth);
2037 
2038 	while (!IS_TRIE(pn)) {
2039 		while (cindex < child_length(pn)) {
2040 			struct key_vector *n = get_child_rcu(pn, cindex++);
2041 
2042 			if (!n)
2043 				continue;
2044 
2045 			if (IS_LEAF(n)) {
2046 				iter->tnode = pn;
2047 				iter->index = cindex;
2048 			} else {
2049 				/* push down one level */
2050 				iter->tnode = n;
2051 				iter->index = 0;
2052 				++iter->depth;
2053 			}
2054 
2055 			return n;
2056 		}
2057 
2058 		/* Current node exhausted, pop back up */
2059 		pkey = pn->key;
2060 		pn = node_parent_rcu(pn);
2061 		cindex = get_index(pkey, pn) + 1;
2062 		--iter->depth;
2063 	}
2064 
2065 	/* record root node so further searches know we are done */
2066 	iter->tnode = pn;
2067 	iter->index = 0;
2068 
2069 	return NULL;
2070 }
2071 
2072 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2073 					     struct trie *t)
2074 {
2075 	struct key_vector *n, *pn;
2076 
2077 	if (!t)
2078 		return NULL;
2079 
2080 	pn = t->kv;
2081 	n = rcu_dereference(pn->tnode[0]);
2082 	if (!n)
2083 		return NULL;
2084 
2085 	if (IS_TNODE(n)) {
2086 		iter->tnode = n;
2087 		iter->index = 0;
2088 		iter->depth = 1;
2089 	} else {
2090 		iter->tnode = pn;
2091 		iter->index = 0;
2092 		iter->depth = 0;
2093 	}
2094 
2095 	return n;
2096 }
2097 
2098 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2099 {
2100 	struct key_vector *n;
2101 	struct fib_trie_iter iter;
2102 
2103 	memset(s, 0, sizeof(*s));
2104 
2105 	rcu_read_lock();
2106 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2107 		if (IS_LEAF(n)) {
2108 			struct fib_alias *fa;
2109 
2110 			s->leaves++;
2111 			s->totdepth += iter.depth;
2112 			if (iter.depth > s->maxdepth)
2113 				s->maxdepth = iter.depth;
2114 
2115 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2116 				++s->prefixes;
2117 		} else {
2118 			s->tnodes++;
2119 			if (n->bits < MAX_STAT_DEPTH)
2120 				s->nodesizes[n->bits]++;
2121 			s->nullpointers += tn_info(n)->empty_children;
2122 		}
2123 	}
2124 	rcu_read_unlock();
2125 }
2126 
2127 /*
2128  *	This outputs /proc/net/fib_triestats
2129  */
2130 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2131 {
2132 	unsigned int i, max, pointers, bytes, avdepth;
2133 
2134 	if (stat->leaves)
2135 		avdepth = stat->totdepth*100 / stat->leaves;
2136 	else
2137 		avdepth = 0;
2138 
2139 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2140 		   avdepth / 100, avdepth % 100);
2141 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2142 
2143 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2144 	bytes = LEAF_SIZE * stat->leaves;
2145 
2146 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2147 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2148 
2149 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2150 	bytes += TNODE_SIZE(0) * stat->tnodes;
2151 
2152 	max = MAX_STAT_DEPTH;
2153 	while (max > 0 && stat->nodesizes[max-1] == 0)
2154 		max--;
2155 
2156 	pointers = 0;
2157 	for (i = 1; i < max; i++)
2158 		if (stat->nodesizes[i] != 0) {
2159 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2160 			pointers += (1<<i) * stat->nodesizes[i];
2161 		}
2162 	seq_putc(seq, '\n');
2163 	seq_printf(seq, "\tPointers: %u\n", pointers);
2164 
2165 	bytes += sizeof(struct key_vector *) * pointers;
2166 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2167 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2168 }
2169 
2170 #ifdef CONFIG_IP_FIB_TRIE_STATS
2171 static void trie_show_usage(struct seq_file *seq,
2172 			    const struct trie_use_stats __percpu *stats)
2173 {
2174 	struct trie_use_stats s = { 0 };
2175 	int cpu;
2176 
2177 	/* loop through all of the CPUs and gather up the stats */
2178 	for_each_possible_cpu(cpu) {
2179 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2180 
2181 		s.gets += pcpu->gets;
2182 		s.backtrack += pcpu->backtrack;
2183 		s.semantic_match_passed += pcpu->semantic_match_passed;
2184 		s.semantic_match_miss += pcpu->semantic_match_miss;
2185 		s.null_node_hit += pcpu->null_node_hit;
2186 		s.resize_node_skipped += pcpu->resize_node_skipped;
2187 	}
2188 
2189 	seq_printf(seq, "\nCounters:\n---------\n");
2190 	seq_printf(seq, "gets = %u\n", s.gets);
2191 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2192 	seq_printf(seq, "semantic match passed = %u\n",
2193 		   s.semantic_match_passed);
2194 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2195 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2196 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2197 }
2198 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2199 
2200 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2201 {
2202 	if (tb->tb_id == RT_TABLE_LOCAL)
2203 		seq_puts(seq, "Local:\n");
2204 	else if (tb->tb_id == RT_TABLE_MAIN)
2205 		seq_puts(seq, "Main:\n");
2206 	else
2207 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2208 }
2209 
2210 
2211 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2212 {
2213 	struct net *net = (struct net *)seq->private;
2214 	unsigned int h;
2215 
2216 	seq_printf(seq,
2217 		   "Basic info: size of leaf:"
2218 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2219 		   LEAF_SIZE, TNODE_SIZE(0));
2220 
2221 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2222 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2223 		struct fib_table *tb;
2224 
2225 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2226 			struct trie *t = (struct trie *) tb->tb_data;
2227 			struct trie_stat stat;
2228 
2229 			if (!t)
2230 				continue;
2231 
2232 			fib_table_print(seq, tb);
2233 
2234 			trie_collect_stats(t, &stat);
2235 			trie_show_stats(seq, &stat);
2236 #ifdef CONFIG_IP_FIB_TRIE_STATS
2237 			trie_show_usage(seq, t->stats);
2238 #endif
2239 		}
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2246 {
2247 	return single_open_net(inode, file, fib_triestat_seq_show);
2248 }
2249 
2250 static const struct file_operations fib_triestat_fops = {
2251 	.owner	= THIS_MODULE,
2252 	.open	= fib_triestat_seq_open,
2253 	.read	= seq_read,
2254 	.llseek	= seq_lseek,
2255 	.release = single_release_net,
2256 };
2257 
2258 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2259 {
2260 	struct fib_trie_iter *iter = seq->private;
2261 	struct net *net = seq_file_net(seq);
2262 	loff_t idx = 0;
2263 	unsigned int h;
2264 
2265 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2266 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2267 		struct fib_table *tb;
2268 
2269 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2270 			struct key_vector *n;
2271 
2272 			for (n = fib_trie_get_first(iter,
2273 						    (struct trie *) tb->tb_data);
2274 			     n; n = fib_trie_get_next(iter))
2275 				if (pos == idx++) {
2276 					iter->tb = tb;
2277 					return n;
2278 				}
2279 		}
2280 	}
2281 
2282 	return NULL;
2283 }
2284 
2285 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2286 	__acquires(RCU)
2287 {
2288 	rcu_read_lock();
2289 	return fib_trie_get_idx(seq, *pos);
2290 }
2291 
2292 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2293 {
2294 	struct fib_trie_iter *iter = seq->private;
2295 	struct net *net = seq_file_net(seq);
2296 	struct fib_table *tb = iter->tb;
2297 	struct hlist_node *tb_node;
2298 	unsigned int h;
2299 	struct key_vector *n;
2300 
2301 	++*pos;
2302 	/* next node in same table */
2303 	n = fib_trie_get_next(iter);
2304 	if (n)
2305 		return n;
2306 
2307 	/* walk rest of this hash chain */
2308 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2309 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2310 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2311 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2312 		if (n)
2313 			goto found;
2314 	}
2315 
2316 	/* new hash chain */
2317 	while (++h < FIB_TABLE_HASHSZ) {
2318 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2319 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2320 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2321 			if (n)
2322 				goto found;
2323 		}
2324 	}
2325 	return NULL;
2326 
2327 found:
2328 	iter->tb = tb;
2329 	return n;
2330 }
2331 
2332 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2333 	__releases(RCU)
2334 {
2335 	rcu_read_unlock();
2336 }
2337 
2338 static void seq_indent(struct seq_file *seq, int n)
2339 {
2340 	while (n-- > 0)
2341 		seq_puts(seq, "   ");
2342 }
2343 
2344 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2345 {
2346 	switch (s) {
2347 	case RT_SCOPE_UNIVERSE: return "universe";
2348 	case RT_SCOPE_SITE:	return "site";
2349 	case RT_SCOPE_LINK:	return "link";
2350 	case RT_SCOPE_HOST:	return "host";
2351 	case RT_SCOPE_NOWHERE:	return "nowhere";
2352 	default:
2353 		snprintf(buf, len, "scope=%d", s);
2354 		return buf;
2355 	}
2356 }
2357 
2358 static const char *const rtn_type_names[__RTN_MAX] = {
2359 	[RTN_UNSPEC] = "UNSPEC",
2360 	[RTN_UNICAST] = "UNICAST",
2361 	[RTN_LOCAL] = "LOCAL",
2362 	[RTN_BROADCAST] = "BROADCAST",
2363 	[RTN_ANYCAST] = "ANYCAST",
2364 	[RTN_MULTICAST] = "MULTICAST",
2365 	[RTN_BLACKHOLE] = "BLACKHOLE",
2366 	[RTN_UNREACHABLE] = "UNREACHABLE",
2367 	[RTN_PROHIBIT] = "PROHIBIT",
2368 	[RTN_THROW] = "THROW",
2369 	[RTN_NAT] = "NAT",
2370 	[RTN_XRESOLVE] = "XRESOLVE",
2371 };
2372 
2373 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2374 {
2375 	if (t < __RTN_MAX && rtn_type_names[t])
2376 		return rtn_type_names[t];
2377 	snprintf(buf, len, "type %u", t);
2378 	return buf;
2379 }
2380 
2381 /* Pretty print the trie */
2382 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2383 {
2384 	const struct fib_trie_iter *iter = seq->private;
2385 	struct key_vector *n = v;
2386 
2387 	if (IS_TRIE(node_parent_rcu(n)))
2388 		fib_table_print(seq, iter->tb);
2389 
2390 	if (IS_TNODE(n)) {
2391 		__be32 prf = htonl(n->key);
2392 
2393 		seq_indent(seq, iter->depth-1);
2394 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2395 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2396 			   tn_info(n)->full_children,
2397 			   tn_info(n)->empty_children);
2398 	} else {
2399 		__be32 val = htonl(n->key);
2400 		struct fib_alias *fa;
2401 
2402 		seq_indent(seq, iter->depth);
2403 		seq_printf(seq, "  |-- %pI4\n", &val);
2404 
2405 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2406 			char buf1[32], buf2[32];
2407 
2408 			seq_indent(seq, iter->depth + 1);
2409 			seq_printf(seq, "  /%zu %s %s",
2410 				   KEYLENGTH - fa->fa_slen,
2411 				   rtn_scope(buf1, sizeof(buf1),
2412 					     fa->fa_info->fib_scope),
2413 				   rtn_type(buf2, sizeof(buf2),
2414 					    fa->fa_type));
2415 			if (fa->fa_tos)
2416 				seq_printf(seq, " tos=%d", fa->fa_tos);
2417 			seq_putc(seq, '\n');
2418 		}
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 static const struct seq_operations fib_trie_seq_ops = {
2425 	.start  = fib_trie_seq_start,
2426 	.next   = fib_trie_seq_next,
2427 	.stop   = fib_trie_seq_stop,
2428 	.show   = fib_trie_seq_show,
2429 };
2430 
2431 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2432 {
2433 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2434 			    sizeof(struct fib_trie_iter));
2435 }
2436 
2437 static const struct file_operations fib_trie_fops = {
2438 	.owner  = THIS_MODULE,
2439 	.open   = fib_trie_seq_open,
2440 	.read   = seq_read,
2441 	.llseek = seq_lseek,
2442 	.release = seq_release_net,
2443 };
2444 
2445 struct fib_route_iter {
2446 	struct seq_net_private p;
2447 	struct fib_table *main_tb;
2448 	struct key_vector *tnode;
2449 	loff_t	pos;
2450 	t_key	key;
2451 };
2452 
2453 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2454 					    loff_t pos)
2455 {
2456 	struct fib_table *tb = iter->main_tb;
2457 	struct key_vector *l, **tp = &iter->tnode;
2458 	struct trie *t;
2459 	t_key key;
2460 
2461 	/* use cache location of next-to-find key */
2462 	if (iter->pos > 0 && pos >= iter->pos) {
2463 		pos -= iter->pos;
2464 		key = iter->key;
2465 	} else {
2466 		t = (struct trie *)tb->tb_data;
2467 		iter->tnode = t->kv;
2468 		iter->pos = 0;
2469 		key = 0;
2470 	}
2471 
2472 	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2473 		key = l->key + 1;
2474 		iter->pos++;
2475 
2476 		if (--pos <= 0)
2477 			break;
2478 
2479 		l = NULL;
2480 
2481 		/* handle unlikely case of a key wrap */
2482 		if (!key)
2483 			break;
2484 	}
2485 
2486 	if (l)
2487 		iter->key = key;	/* remember it */
2488 	else
2489 		iter->pos = 0;		/* forget it */
2490 
2491 	return l;
2492 }
2493 
2494 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2495 	__acquires(RCU)
2496 {
2497 	struct fib_route_iter *iter = seq->private;
2498 	struct fib_table *tb;
2499 	struct trie *t;
2500 
2501 	rcu_read_lock();
2502 
2503 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2504 	if (!tb)
2505 		return NULL;
2506 
2507 	iter->main_tb = tb;
2508 
2509 	if (*pos != 0)
2510 		return fib_route_get_idx(iter, *pos);
2511 
2512 	t = (struct trie *)tb->tb_data;
2513 	iter->tnode = t->kv;
2514 	iter->pos = 0;
2515 	iter->key = 0;
2516 
2517 	return SEQ_START_TOKEN;
2518 }
2519 
2520 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2521 {
2522 	struct fib_route_iter *iter = seq->private;
2523 	struct key_vector *l = NULL;
2524 	t_key key = iter->key;
2525 
2526 	++*pos;
2527 
2528 	/* only allow key of 0 for start of sequence */
2529 	if ((v == SEQ_START_TOKEN) || key)
2530 		l = leaf_walk_rcu(&iter->tnode, key);
2531 
2532 	if (l) {
2533 		iter->key = l->key + 1;
2534 		iter->pos++;
2535 	} else {
2536 		iter->pos = 0;
2537 	}
2538 
2539 	return l;
2540 }
2541 
2542 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2543 	__releases(RCU)
2544 {
2545 	rcu_read_unlock();
2546 }
2547 
2548 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2549 {
2550 	unsigned int flags = 0;
2551 
2552 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2553 		flags = RTF_REJECT;
2554 	if (fi && fi->fib_nh->nh_gw)
2555 		flags |= RTF_GATEWAY;
2556 	if (mask == htonl(0xFFFFFFFF))
2557 		flags |= RTF_HOST;
2558 	flags |= RTF_UP;
2559 	return flags;
2560 }
2561 
2562 /*
2563  *	This outputs /proc/net/route.
2564  *	The format of the file is not supposed to be changed
2565  *	and needs to be same as fib_hash output to avoid breaking
2566  *	legacy utilities
2567  */
2568 static int fib_route_seq_show(struct seq_file *seq, void *v)
2569 {
2570 	struct fib_route_iter *iter = seq->private;
2571 	struct fib_table *tb = iter->main_tb;
2572 	struct fib_alias *fa;
2573 	struct key_vector *l = v;
2574 	__be32 prefix;
2575 
2576 	if (v == SEQ_START_TOKEN) {
2577 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2578 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2579 			   "\tWindow\tIRTT");
2580 		return 0;
2581 	}
2582 
2583 	prefix = htonl(l->key);
2584 
2585 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2586 		const struct fib_info *fi = fa->fa_info;
2587 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2588 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2589 
2590 		if ((fa->fa_type == RTN_BROADCAST) ||
2591 		    (fa->fa_type == RTN_MULTICAST))
2592 			continue;
2593 
2594 		if (fa->tb_id != tb->tb_id)
2595 			continue;
2596 
2597 		seq_setwidth(seq, 127);
2598 
2599 		if (fi)
2600 			seq_printf(seq,
2601 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2602 				   "%d\t%08X\t%d\t%u\t%u",
2603 				   fi->fib_dev ? fi->fib_dev->name : "*",
2604 				   prefix,
2605 				   fi->fib_nh->nh_gw, flags, 0, 0,
2606 				   fi->fib_priority,
2607 				   mask,
2608 				   (fi->fib_advmss ?
2609 				    fi->fib_advmss + 40 : 0),
2610 				   fi->fib_window,
2611 				   fi->fib_rtt >> 3);
2612 		else
2613 			seq_printf(seq,
2614 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2615 				   "%d\t%08X\t%d\t%u\t%u",
2616 				   prefix, 0, flags, 0, 0, 0,
2617 				   mask, 0, 0, 0);
2618 
2619 		seq_pad(seq, '\n');
2620 	}
2621 
2622 	return 0;
2623 }
2624 
2625 static const struct seq_operations fib_route_seq_ops = {
2626 	.start  = fib_route_seq_start,
2627 	.next   = fib_route_seq_next,
2628 	.stop   = fib_route_seq_stop,
2629 	.show   = fib_route_seq_show,
2630 };
2631 
2632 static int fib_route_seq_open(struct inode *inode, struct file *file)
2633 {
2634 	return seq_open_net(inode, file, &fib_route_seq_ops,
2635 			    sizeof(struct fib_route_iter));
2636 }
2637 
2638 static const struct file_operations fib_route_fops = {
2639 	.owner  = THIS_MODULE,
2640 	.open   = fib_route_seq_open,
2641 	.read   = seq_read,
2642 	.llseek = seq_lseek,
2643 	.release = seq_release_net,
2644 };
2645 
2646 int __net_init fib_proc_init(struct net *net)
2647 {
2648 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2649 		goto out1;
2650 
2651 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2652 			 &fib_triestat_fops))
2653 		goto out2;
2654 
2655 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2656 		goto out3;
2657 
2658 	return 0;
2659 
2660 out3:
2661 	remove_proc_entry("fib_triestat", net->proc_net);
2662 out2:
2663 	remove_proc_entry("fib_trie", net->proc_net);
2664 out1:
2665 	return -ENOMEM;
2666 }
2667 
2668 void __net_exit fib_proc_exit(struct net *net)
2669 {
2670 	remove_proc_entry("fib_trie", net->proc_net);
2671 	remove_proc_entry("fib_triestat", net->proc_net);
2672 	remove_proc_entry("route", net->proc_net);
2673 }
2674 
2675 #endif /* CONFIG_PROC_FS */
2676