xref: /linux/net/ipv4/fib_trie.c (revision 9a736fcb096b43b68af8329eb12abc8256dceaba)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86 
87 static BLOCKING_NOTIFIER_HEAD(fib_chain);
88 
89 int register_fib_notifier(struct notifier_block *nb)
90 {
91 	return blocking_notifier_chain_register(&fib_chain, nb);
92 }
93 EXPORT_SYMBOL(register_fib_notifier);
94 
95 int unregister_fib_notifier(struct notifier_block *nb)
96 {
97 	return blocking_notifier_chain_unregister(&fib_chain, nb);
98 }
99 EXPORT_SYMBOL(unregister_fib_notifier);
100 
101 int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
102 		       struct fib_notifier_info *info)
103 {
104 	info->net = net;
105 	return blocking_notifier_call_chain(&fib_chain, event_type, info);
106 }
107 
108 static int call_fib_entry_notifiers(struct net *net,
109 				    enum fib_event_type event_type, u32 dst,
110 				    int dst_len, struct fib_info *fi,
111 				    u8 tos, u8 type, u32 tb_id, u32 nlflags)
112 {
113 	struct fib_entry_notifier_info info = {
114 		.dst = dst,
115 		.dst_len = dst_len,
116 		.fi = fi,
117 		.tos = tos,
118 		.type = type,
119 		.tb_id = tb_id,
120 		.nlflags = nlflags,
121 	};
122 	return call_fib_notifiers(net, event_type, &info.info);
123 }
124 
125 #define MAX_STAT_DEPTH 32
126 
127 #define KEYLENGTH	(8*sizeof(t_key))
128 #define KEY_MAX		((t_key)~0)
129 
130 typedef unsigned int t_key;
131 
132 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
133 #define IS_TNODE(n)	((n)->bits)
134 #define IS_LEAF(n)	(!(n)->bits)
135 
136 struct key_vector {
137 	t_key key;
138 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
139 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
140 	unsigned char slen;
141 	union {
142 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
143 		struct hlist_head leaf;
144 		/* This array is valid if (pos | bits) > 0 (TNODE) */
145 		struct key_vector __rcu *tnode[0];
146 	};
147 };
148 
149 struct tnode {
150 	struct rcu_head rcu;
151 	t_key empty_children;		/* KEYLENGTH bits needed */
152 	t_key full_children;		/* KEYLENGTH bits needed */
153 	struct key_vector __rcu *parent;
154 	struct key_vector kv[1];
155 #define tn_bits kv[0].bits
156 };
157 
158 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
159 #define LEAF_SIZE	TNODE_SIZE(1)
160 
161 #ifdef CONFIG_IP_FIB_TRIE_STATS
162 struct trie_use_stats {
163 	unsigned int gets;
164 	unsigned int backtrack;
165 	unsigned int semantic_match_passed;
166 	unsigned int semantic_match_miss;
167 	unsigned int null_node_hit;
168 	unsigned int resize_node_skipped;
169 };
170 #endif
171 
172 struct trie_stat {
173 	unsigned int totdepth;
174 	unsigned int maxdepth;
175 	unsigned int tnodes;
176 	unsigned int leaves;
177 	unsigned int nullpointers;
178 	unsigned int prefixes;
179 	unsigned int nodesizes[MAX_STAT_DEPTH];
180 };
181 
182 struct trie {
183 	struct key_vector kv[1];
184 #ifdef CONFIG_IP_FIB_TRIE_STATS
185 	struct trie_use_stats __percpu *stats;
186 #endif
187 };
188 
189 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
190 static size_t tnode_free_size;
191 
192 /*
193  * synchronize_rcu after call_rcu for that many pages; it should be especially
194  * useful before resizing the root node with PREEMPT_NONE configs; the value was
195  * obtained experimentally, aiming to avoid visible slowdown.
196  */
197 static const int sync_pages = 128;
198 
199 static struct kmem_cache *fn_alias_kmem __read_mostly;
200 static struct kmem_cache *trie_leaf_kmem __read_mostly;
201 
202 static inline struct tnode *tn_info(struct key_vector *kv)
203 {
204 	return container_of(kv, struct tnode, kv[0]);
205 }
206 
207 /* caller must hold RTNL */
208 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
209 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
210 
211 /* caller must hold RCU read lock or RTNL */
212 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
213 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
214 
215 /* wrapper for rcu_assign_pointer */
216 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
217 {
218 	if (n)
219 		rcu_assign_pointer(tn_info(n)->parent, tp);
220 }
221 
222 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
223 
224 /* This provides us with the number of children in this node, in the case of a
225  * leaf this will return 0 meaning none of the children are accessible.
226  */
227 static inline unsigned long child_length(const struct key_vector *tn)
228 {
229 	return (1ul << tn->bits) & ~(1ul);
230 }
231 
232 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
233 
234 static inline unsigned long get_index(t_key key, struct key_vector *kv)
235 {
236 	unsigned long index = key ^ kv->key;
237 
238 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
239 		return 0;
240 
241 	return index >> kv->pos;
242 }
243 
244 /* To understand this stuff, an understanding of keys and all their bits is
245  * necessary. Every node in the trie has a key associated with it, but not
246  * all of the bits in that key are significant.
247  *
248  * Consider a node 'n' and its parent 'tp'.
249  *
250  * If n is a leaf, every bit in its key is significant. Its presence is
251  * necessitated by path compression, since during a tree traversal (when
252  * searching for a leaf - unless we are doing an insertion) we will completely
253  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
254  * a potentially successful search, that we have indeed been walking the
255  * correct key path.
256  *
257  * Note that we can never "miss" the correct key in the tree if present by
258  * following the wrong path. Path compression ensures that segments of the key
259  * that are the same for all keys with a given prefix are skipped, but the
260  * skipped part *is* identical for each node in the subtrie below the skipped
261  * bit! trie_insert() in this implementation takes care of that.
262  *
263  * if n is an internal node - a 'tnode' here, the various parts of its key
264  * have many different meanings.
265  *
266  * Example:
267  * _________________________________________________________________
268  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
269  * -----------------------------------------------------------------
270  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
271  *
272  * _________________________________________________________________
273  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
274  * -----------------------------------------------------------------
275  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
276  *
277  * tp->pos = 22
278  * tp->bits = 3
279  * n->pos = 13
280  * n->bits = 4
281  *
282  * First, let's just ignore the bits that come before the parent tp, that is
283  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
284  * point we do not use them for anything.
285  *
286  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
287  * index into the parent's child array. That is, they will be used to find
288  * 'n' among tp's children.
289  *
290  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
291  * for the node n.
292  *
293  * All the bits we have seen so far are significant to the node n. The rest
294  * of the bits are really not needed or indeed known in n->key.
295  *
296  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
297  * n's child array, and will of course be different for each child.
298  *
299  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
300  * at this point.
301  */
302 
303 static const int halve_threshold = 25;
304 static const int inflate_threshold = 50;
305 static const int halve_threshold_root = 15;
306 static const int inflate_threshold_root = 30;
307 
308 static void __alias_free_mem(struct rcu_head *head)
309 {
310 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
311 	kmem_cache_free(fn_alias_kmem, fa);
312 }
313 
314 static inline void alias_free_mem_rcu(struct fib_alias *fa)
315 {
316 	call_rcu(&fa->rcu, __alias_free_mem);
317 }
318 
319 #define TNODE_KMALLOC_MAX \
320 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
321 #define TNODE_VMALLOC_MAX \
322 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
323 
324 static void __node_free_rcu(struct rcu_head *head)
325 {
326 	struct tnode *n = container_of(head, struct tnode, rcu);
327 
328 	if (!n->tn_bits)
329 		kmem_cache_free(trie_leaf_kmem, n);
330 	else
331 		kvfree(n);
332 }
333 
334 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
335 
336 static struct tnode *tnode_alloc(int bits)
337 {
338 	size_t size;
339 
340 	/* verify bits is within bounds */
341 	if (bits > TNODE_VMALLOC_MAX)
342 		return NULL;
343 
344 	/* determine size and verify it is non-zero and didn't overflow */
345 	size = TNODE_SIZE(1ul << bits);
346 
347 	if (size <= PAGE_SIZE)
348 		return kzalloc(size, GFP_KERNEL);
349 	else
350 		return vzalloc(size);
351 }
352 
353 static inline void empty_child_inc(struct key_vector *n)
354 {
355 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
356 }
357 
358 static inline void empty_child_dec(struct key_vector *n)
359 {
360 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
361 }
362 
363 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
364 {
365 	struct key_vector *l;
366 	struct tnode *kv;
367 
368 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
369 	if (!kv)
370 		return NULL;
371 
372 	/* initialize key vector */
373 	l = kv->kv;
374 	l->key = key;
375 	l->pos = 0;
376 	l->bits = 0;
377 	l->slen = fa->fa_slen;
378 
379 	/* link leaf to fib alias */
380 	INIT_HLIST_HEAD(&l->leaf);
381 	hlist_add_head(&fa->fa_list, &l->leaf);
382 
383 	return l;
384 }
385 
386 static struct key_vector *tnode_new(t_key key, int pos, int bits)
387 {
388 	unsigned int shift = pos + bits;
389 	struct key_vector *tn;
390 	struct tnode *tnode;
391 
392 	/* verify bits and pos their msb bits clear and values are valid */
393 	BUG_ON(!bits || (shift > KEYLENGTH));
394 
395 	tnode = tnode_alloc(bits);
396 	if (!tnode)
397 		return NULL;
398 
399 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
400 		 sizeof(struct key_vector *) << bits);
401 
402 	if (bits == KEYLENGTH)
403 		tnode->full_children = 1;
404 	else
405 		tnode->empty_children = 1ul << bits;
406 
407 	tn = tnode->kv;
408 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
409 	tn->pos = pos;
410 	tn->bits = bits;
411 	tn->slen = pos;
412 
413 	return tn;
414 }
415 
416 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
417  * and no bits are skipped. See discussion in dyntree paper p. 6
418  */
419 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
420 {
421 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
422 }
423 
424 /* Add a child at position i overwriting the old value.
425  * Update the value of full_children and empty_children.
426  */
427 static void put_child(struct key_vector *tn, unsigned long i,
428 		      struct key_vector *n)
429 {
430 	struct key_vector *chi = get_child(tn, i);
431 	int isfull, wasfull;
432 
433 	BUG_ON(i >= child_length(tn));
434 
435 	/* update emptyChildren, overflow into fullChildren */
436 	if (!n && chi)
437 		empty_child_inc(tn);
438 	if (n && !chi)
439 		empty_child_dec(tn);
440 
441 	/* update fullChildren */
442 	wasfull = tnode_full(tn, chi);
443 	isfull = tnode_full(tn, n);
444 
445 	if (wasfull && !isfull)
446 		tn_info(tn)->full_children--;
447 	else if (!wasfull && isfull)
448 		tn_info(tn)->full_children++;
449 
450 	if (n && (tn->slen < n->slen))
451 		tn->slen = n->slen;
452 
453 	rcu_assign_pointer(tn->tnode[i], n);
454 }
455 
456 static void update_children(struct key_vector *tn)
457 {
458 	unsigned long i;
459 
460 	/* update all of the child parent pointers */
461 	for (i = child_length(tn); i;) {
462 		struct key_vector *inode = get_child(tn, --i);
463 
464 		if (!inode)
465 			continue;
466 
467 		/* Either update the children of a tnode that
468 		 * already belongs to us or update the child
469 		 * to point to ourselves.
470 		 */
471 		if (node_parent(inode) == tn)
472 			update_children(inode);
473 		else
474 			node_set_parent(inode, tn);
475 	}
476 }
477 
478 static inline void put_child_root(struct key_vector *tp, t_key key,
479 				  struct key_vector *n)
480 {
481 	if (IS_TRIE(tp))
482 		rcu_assign_pointer(tp->tnode[0], n);
483 	else
484 		put_child(tp, get_index(key, tp), n);
485 }
486 
487 static inline void tnode_free_init(struct key_vector *tn)
488 {
489 	tn_info(tn)->rcu.next = NULL;
490 }
491 
492 static inline void tnode_free_append(struct key_vector *tn,
493 				     struct key_vector *n)
494 {
495 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
496 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
497 }
498 
499 static void tnode_free(struct key_vector *tn)
500 {
501 	struct callback_head *head = &tn_info(tn)->rcu;
502 
503 	while (head) {
504 		head = head->next;
505 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
506 		node_free(tn);
507 
508 		tn = container_of(head, struct tnode, rcu)->kv;
509 	}
510 
511 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
512 		tnode_free_size = 0;
513 		synchronize_rcu();
514 	}
515 }
516 
517 static struct key_vector *replace(struct trie *t,
518 				  struct key_vector *oldtnode,
519 				  struct key_vector *tn)
520 {
521 	struct key_vector *tp = node_parent(oldtnode);
522 	unsigned long i;
523 
524 	/* setup the parent pointer out of and back into this node */
525 	NODE_INIT_PARENT(tn, tp);
526 	put_child_root(tp, tn->key, tn);
527 
528 	/* update all of the child parent pointers */
529 	update_children(tn);
530 
531 	/* all pointers should be clean so we are done */
532 	tnode_free(oldtnode);
533 
534 	/* resize children now that oldtnode is freed */
535 	for (i = child_length(tn); i;) {
536 		struct key_vector *inode = get_child(tn, --i);
537 
538 		/* resize child node */
539 		if (tnode_full(tn, inode))
540 			tn = resize(t, inode);
541 	}
542 
543 	return tp;
544 }
545 
546 static struct key_vector *inflate(struct trie *t,
547 				  struct key_vector *oldtnode)
548 {
549 	struct key_vector *tn;
550 	unsigned long i;
551 	t_key m;
552 
553 	pr_debug("In inflate\n");
554 
555 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
556 	if (!tn)
557 		goto notnode;
558 
559 	/* prepare oldtnode to be freed */
560 	tnode_free_init(oldtnode);
561 
562 	/* Assemble all of the pointers in our cluster, in this case that
563 	 * represents all of the pointers out of our allocated nodes that
564 	 * point to existing tnodes and the links between our allocated
565 	 * nodes.
566 	 */
567 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
568 		struct key_vector *inode = get_child(oldtnode, --i);
569 		struct key_vector *node0, *node1;
570 		unsigned long j, k;
571 
572 		/* An empty child */
573 		if (!inode)
574 			continue;
575 
576 		/* A leaf or an internal node with skipped bits */
577 		if (!tnode_full(oldtnode, inode)) {
578 			put_child(tn, get_index(inode->key, tn), inode);
579 			continue;
580 		}
581 
582 		/* drop the node in the old tnode free list */
583 		tnode_free_append(oldtnode, inode);
584 
585 		/* An internal node with two children */
586 		if (inode->bits == 1) {
587 			put_child(tn, 2 * i + 1, get_child(inode, 1));
588 			put_child(tn, 2 * i, get_child(inode, 0));
589 			continue;
590 		}
591 
592 		/* We will replace this node 'inode' with two new
593 		 * ones, 'node0' and 'node1', each with half of the
594 		 * original children. The two new nodes will have
595 		 * a position one bit further down the key and this
596 		 * means that the "significant" part of their keys
597 		 * (see the discussion near the top of this file)
598 		 * will differ by one bit, which will be "0" in
599 		 * node0's key and "1" in node1's key. Since we are
600 		 * moving the key position by one step, the bit that
601 		 * we are moving away from - the bit at position
602 		 * (tn->pos) - is the one that will differ between
603 		 * node0 and node1. So... we synthesize that bit in the
604 		 * two new keys.
605 		 */
606 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
607 		if (!node1)
608 			goto nomem;
609 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
610 
611 		tnode_free_append(tn, node1);
612 		if (!node0)
613 			goto nomem;
614 		tnode_free_append(tn, node0);
615 
616 		/* populate child pointers in new nodes */
617 		for (k = child_length(inode), j = k / 2; j;) {
618 			put_child(node1, --j, get_child(inode, --k));
619 			put_child(node0, j, get_child(inode, j));
620 			put_child(node1, --j, get_child(inode, --k));
621 			put_child(node0, j, get_child(inode, j));
622 		}
623 
624 		/* link new nodes to parent */
625 		NODE_INIT_PARENT(node1, tn);
626 		NODE_INIT_PARENT(node0, tn);
627 
628 		/* link parent to nodes */
629 		put_child(tn, 2 * i + 1, node1);
630 		put_child(tn, 2 * i, node0);
631 	}
632 
633 	/* setup the parent pointers into and out of this node */
634 	return replace(t, oldtnode, tn);
635 nomem:
636 	/* all pointers should be clean so we are done */
637 	tnode_free(tn);
638 notnode:
639 	return NULL;
640 }
641 
642 static struct key_vector *halve(struct trie *t,
643 				struct key_vector *oldtnode)
644 {
645 	struct key_vector *tn;
646 	unsigned long i;
647 
648 	pr_debug("In halve\n");
649 
650 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
651 	if (!tn)
652 		goto notnode;
653 
654 	/* prepare oldtnode to be freed */
655 	tnode_free_init(oldtnode);
656 
657 	/* Assemble all of the pointers in our cluster, in this case that
658 	 * represents all of the pointers out of our allocated nodes that
659 	 * point to existing tnodes and the links between our allocated
660 	 * nodes.
661 	 */
662 	for (i = child_length(oldtnode); i;) {
663 		struct key_vector *node1 = get_child(oldtnode, --i);
664 		struct key_vector *node0 = get_child(oldtnode, --i);
665 		struct key_vector *inode;
666 
667 		/* At least one of the children is empty */
668 		if (!node1 || !node0) {
669 			put_child(tn, i / 2, node1 ? : node0);
670 			continue;
671 		}
672 
673 		/* Two nonempty children */
674 		inode = tnode_new(node0->key, oldtnode->pos, 1);
675 		if (!inode)
676 			goto nomem;
677 		tnode_free_append(tn, inode);
678 
679 		/* initialize pointers out of node */
680 		put_child(inode, 1, node1);
681 		put_child(inode, 0, node0);
682 		NODE_INIT_PARENT(inode, tn);
683 
684 		/* link parent to node */
685 		put_child(tn, i / 2, inode);
686 	}
687 
688 	/* setup the parent pointers into and out of this node */
689 	return replace(t, oldtnode, tn);
690 nomem:
691 	/* all pointers should be clean so we are done */
692 	tnode_free(tn);
693 notnode:
694 	return NULL;
695 }
696 
697 static struct key_vector *collapse(struct trie *t,
698 				   struct key_vector *oldtnode)
699 {
700 	struct key_vector *n, *tp;
701 	unsigned long i;
702 
703 	/* scan the tnode looking for that one child that might still exist */
704 	for (n = NULL, i = child_length(oldtnode); !n && i;)
705 		n = get_child(oldtnode, --i);
706 
707 	/* compress one level */
708 	tp = node_parent(oldtnode);
709 	put_child_root(tp, oldtnode->key, n);
710 	node_set_parent(n, tp);
711 
712 	/* drop dead node */
713 	node_free(oldtnode);
714 
715 	return tp;
716 }
717 
718 static unsigned char update_suffix(struct key_vector *tn)
719 {
720 	unsigned char slen = tn->pos;
721 	unsigned long stride, i;
722 	unsigned char slen_max;
723 
724 	/* only vector 0 can have a suffix length greater than or equal to
725 	 * tn->pos + tn->bits, the second highest node will have a suffix
726 	 * length at most of tn->pos + tn->bits - 1
727 	 */
728 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
729 
730 	/* search though the list of children looking for nodes that might
731 	 * have a suffix greater than the one we currently have.  This is
732 	 * why we start with a stride of 2 since a stride of 1 would
733 	 * represent the nodes with suffix length equal to tn->pos
734 	 */
735 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
736 		struct key_vector *n = get_child(tn, i);
737 
738 		if (!n || (n->slen <= slen))
739 			continue;
740 
741 		/* update stride and slen based on new value */
742 		stride <<= (n->slen - slen);
743 		slen = n->slen;
744 		i &= ~(stride - 1);
745 
746 		/* stop searching if we have hit the maximum possible value */
747 		if (slen >= slen_max)
748 			break;
749 	}
750 
751 	tn->slen = slen;
752 
753 	return slen;
754 }
755 
756 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
757  * the Helsinki University of Technology and Matti Tikkanen of Nokia
758  * Telecommunications, page 6:
759  * "A node is doubled if the ratio of non-empty children to all
760  * children in the *doubled* node is at least 'high'."
761  *
762  * 'high' in this instance is the variable 'inflate_threshold'. It
763  * is expressed as a percentage, so we multiply it with
764  * child_length() and instead of multiplying by 2 (since the
765  * child array will be doubled by inflate()) and multiplying
766  * the left-hand side by 100 (to handle the percentage thing) we
767  * multiply the left-hand side by 50.
768  *
769  * The left-hand side may look a bit weird: child_length(tn)
770  * - tn->empty_children is of course the number of non-null children
771  * in the current node. tn->full_children is the number of "full"
772  * children, that is non-null tnodes with a skip value of 0.
773  * All of those will be doubled in the resulting inflated tnode, so
774  * we just count them one extra time here.
775  *
776  * A clearer way to write this would be:
777  *
778  * to_be_doubled = tn->full_children;
779  * not_to_be_doubled = child_length(tn) - tn->empty_children -
780  *     tn->full_children;
781  *
782  * new_child_length = child_length(tn) * 2;
783  *
784  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
785  *      new_child_length;
786  * if (new_fill_factor >= inflate_threshold)
787  *
788  * ...and so on, tho it would mess up the while () loop.
789  *
790  * anyway,
791  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
792  *      inflate_threshold
793  *
794  * avoid a division:
795  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
796  *      inflate_threshold * new_child_length
797  *
798  * expand not_to_be_doubled and to_be_doubled, and shorten:
799  * 100 * (child_length(tn) - tn->empty_children +
800  *    tn->full_children) >= inflate_threshold * new_child_length
801  *
802  * expand new_child_length:
803  * 100 * (child_length(tn) - tn->empty_children +
804  *    tn->full_children) >=
805  *      inflate_threshold * child_length(tn) * 2
806  *
807  * shorten again:
808  * 50 * (tn->full_children + child_length(tn) -
809  *    tn->empty_children) >= inflate_threshold *
810  *    child_length(tn)
811  *
812  */
813 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
814 {
815 	unsigned long used = child_length(tn);
816 	unsigned long threshold = used;
817 
818 	/* Keep root node larger */
819 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
820 	used -= tn_info(tn)->empty_children;
821 	used += tn_info(tn)->full_children;
822 
823 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
824 
825 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
826 }
827 
828 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
829 {
830 	unsigned long used = child_length(tn);
831 	unsigned long threshold = used;
832 
833 	/* Keep root node larger */
834 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
835 	used -= tn_info(tn)->empty_children;
836 
837 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
838 
839 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
840 }
841 
842 static inline bool should_collapse(struct key_vector *tn)
843 {
844 	unsigned long used = child_length(tn);
845 
846 	used -= tn_info(tn)->empty_children;
847 
848 	/* account for bits == KEYLENGTH case */
849 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
850 		used -= KEY_MAX;
851 
852 	/* One child or none, time to drop us from the trie */
853 	return used < 2;
854 }
855 
856 #define MAX_WORK 10
857 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
858 {
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 	struct trie_use_stats __percpu *stats = t->stats;
861 #endif
862 	struct key_vector *tp = node_parent(tn);
863 	unsigned long cindex = get_index(tn->key, tp);
864 	int max_work = MAX_WORK;
865 
866 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
867 		 tn, inflate_threshold, halve_threshold);
868 
869 	/* track the tnode via the pointer from the parent instead of
870 	 * doing it ourselves.  This way we can let RCU fully do its
871 	 * thing without us interfering
872 	 */
873 	BUG_ON(tn != get_child(tp, cindex));
874 
875 	/* Double as long as the resulting node has a number of
876 	 * nonempty nodes that are above the threshold.
877 	 */
878 	while (should_inflate(tp, tn) && max_work) {
879 		tp = inflate(t, tn);
880 		if (!tp) {
881 #ifdef CONFIG_IP_FIB_TRIE_STATS
882 			this_cpu_inc(stats->resize_node_skipped);
883 #endif
884 			break;
885 		}
886 
887 		max_work--;
888 		tn = get_child(tp, cindex);
889 	}
890 
891 	/* update parent in case inflate failed */
892 	tp = node_parent(tn);
893 
894 	/* Return if at least one inflate is run */
895 	if (max_work != MAX_WORK)
896 		return tp;
897 
898 	/* Halve as long as the number of empty children in this
899 	 * node is above threshold.
900 	 */
901 	while (should_halve(tp, tn) && max_work) {
902 		tp = halve(t, tn);
903 		if (!tp) {
904 #ifdef CONFIG_IP_FIB_TRIE_STATS
905 			this_cpu_inc(stats->resize_node_skipped);
906 #endif
907 			break;
908 		}
909 
910 		max_work--;
911 		tn = get_child(tp, cindex);
912 	}
913 
914 	/* Only one child remains */
915 	if (should_collapse(tn))
916 		return collapse(t, tn);
917 
918 	/* update parent in case halve failed */
919 	return node_parent(tn);
920 }
921 
922 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
923 {
924 	unsigned char node_slen = tn->slen;
925 
926 	while ((node_slen > tn->pos) && (node_slen > slen)) {
927 		slen = update_suffix(tn);
928 		if (node_slen == slen)
929 			break;
930 
931 		tn = node_parent(tn);
932 		node_slen = tn->slen;
933 	}
934 }
935 
936 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
937 {
938 	while (tn->slen < slen) {
939 		tn->slen = slen;
940 		tn = node_parent(tn);
941 	}
942 }
943 
944 /* rcu_read_lock needs to be hold by caller from readside */
945 static struct key_vector *fib_find_node(struct trie *t,
946 					struct key_vector **tp, u32 key)
947 {
948 	struct key_vector *pn, *n = t->kv;
949 	unsigned long index = 0;
950 
951 	do {
952 		pn = n;
953 		n = get_child_rcu(n, index);
954 
955 		if (!n)
956 			break;
957 
958 		index = get_cindex(key, n);
959 
960 		/* This bit of code is a bit tricky but it combines multiple
961 		 * checks into a single check.  The prefix consists of the
962 		 * prefix plus zeros for the bits in the cindex. The index
963 		 * is the difference between the key and this value.  From
964 		 * this we can actually derive several pieces of data.
965 		 *   if (index >= (1ul << bits))
966 		 *     we have a mismatch in skip bits and failed
967 		 *   else
968 		 *     we know the value is cindex
969 		 *
970 		 * This check is safe even if bits == KEYLENGTH due to the
971 		 * fact that we can only allocate a node with 32 bits if a
972 		 * long is greater than 32 bits.
973 		 */
974 		if (index >= (1ul << n->bits)) {
975 			n = NULL;
976 			break;
977 		}
978 
979 		/* keep searching until we find a perfect match leaf or NULL */
980 	} while (IS_TNODE(n));
981 
982 	*tp = pn;
983 
984 	return n;
985 }
986 
987 /* Return the first fib alias matching TOS with
988  * priority less than or equal to PRIO.
989  */
990 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
991 					u8 tos, u32 prio, u32 tb_id)
992 {
993 	struct fib_alias *fa;
994 
995 	if (!fah)
996 		return NULL;
997 
998 	hlist_for_each_entry(fa, fah, fa_list) {
999 		if (fa->fa_slen < slen)
1000 			continue;
1001 		if (fa->fa_slen != slen)
1002 			break;
1003 		if (fa->tb_id > tb_id)
1004 			continue;
1005 		if (fa->tb_id != tb_id)
1006 			break;
1007 		if (fa->fa_tos > tos)
1008 			continue;
1009 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1010 			return fa;
1011 	}
1012 
1013 	return NULL;
1014 }
1015 
1016 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1017 {
1018 	while (!IS_TRIE(tn))
1019 		tn = resize(t, tn);
1020 }
1021 
1022 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1023 			   struct fib_alias *new, t_key key)
1024 {
1025 	struct key_vector *n, *l;
1026 
1027 	l = leaf_new(key, new);
1028 	if (!l)
1029 		goto noleaf;
1030 
1031 	/* retrieve child from parent node */
1032 	n = get_child(tp, get_index(key, tp));
1033 
1034 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1035 	 *
1036 	 *  Add a new tnode here
1037 	 *  first tnode need some special handling
1038 	 *  leaves us in position for handling as case 3
1039 	 */
1040 	if (n) {
1041 		struct key_vector *tn;
1042 
1043 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1044 		if (!tn)
1045 			goto notnode;
1046 
1047 		/* initialize routes out of node */
1048 		NODE_INIT_PARENT(tn, tp);
1049 		put_child(tn, get_index(key, tn) ^ 1, n);
1050 
1051 		/* start adding routes into the node */
1052 		put_child_root(tp, key, tn);
1053 		node_set_parent(n, tn);
1054 
1055 		/* parent now has a NULL spot where the leaf can go */
1056 		tp = tn;
1057 	}
1058 
1059 	/* Case 3: n is NULL, and will just insert a new leaf */
1060 	node_push_suffix(tp, new->fa_slen);
1061 	NODE_INIT_PARENT(l, tp);
1062 	put_child_root(tp, key, l);
1063 	trie_rebalance(t, tp);
1064 
1065 	return 0;
1066 notnode:
1067 	node_free(l);
1068 noleaf:
1069 	return -ENOMEM;
1070 }
1071 
1072 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1073 			    struct key_vector *l, struct fib_alias *new,
1074 			    struct fib_alias *fa, t_key key)
1075 {
1076 	if (!l)
1077 		return fib_insert_node(t, tp, new, key);
1078 
1079 	if (fa) {
1080 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1081 	} else {
1082 		struct fib_alias *last;
1083 
1084 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1085 			if (new->fa_slen < last->fa_slen)
1086 				break;
1087 			if ((new->fa_slen == last->fa_slen) &&
1088 			    (new->tb_id > last->tb_id))
1089 				break;
1090 			fa = last;
1091 		}
1092 
1093 		if (fa)
1094 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1095 		else
1096 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1097 	}
1098 
1099 	/* if we added to the tail node then we need to update slen */
1100 	if (l->slen < new->fa_slen) {
1101 		l->slen = new->fa_slen;
1102 		node_push_suffix(tp, new->fa_slen);
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /* Caller must hold RTNL. */
1109 int fib_table_insert(struct net *net, struct fib_table *tb,
1110 		     struct fib_config *cfg)
1111 {
1112 	struct trie *t = (struct trie *)tb->tb_data;
1113 	struct fib_alias *fa, *new_fa;
1114 	struct key_vector *l, *tp;
1115 	u16 nlflags = NLM_F_EXCL;
1116 	struct fib_info *fi;
1117 	u8 plen = cfg->fc_dst_len;
1118 	u8 slen = KEYLENGTH - plen;
1119 	u8 tos = cfg->fc_tos;
1120 	u32 key;
1121 	int err;
1122 
1123 	if (plen > KEYLENGTH)
1124 		return -EINVAL;
1125 
1126 	key = ntohl(cfg->fc_dst);
1127 
1128 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1129 
1130 	if ((plen < KEYLENGTH) && (key << plen))
1131 		return -EINVAL;
1132 
1133 	fi = fib_create_info(cfg);
1134 	if (IS_ERR(fi)) {
1135 		err = PTR_ERR(fi);
1136 		goto err;
1137 	}
1138 
1139 	l = fib_find_node(t, &tp, key);
1140 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1141 				tb->tb_id) : NULL;
1142 
1143 	/* Now fa, if non-NULL, points to the first fib alias
1144 	 * with the same keys [prefix,tos,priority], if such key already
1145 	 * exists or to the node before which we will insert new one.
1146 	 *
1147 	 * If fa is NULL, we will need to allocate a new one and
1148 	 * insert to the tail of the section matching the suffix length
1149 	 * of the new alias.
1150 	 */
1151 
1152 	if (fa && fa->fa_tos == tos &&
1153 	    fa->fa_info->fib_priority == fi->fib_priority) {
1154 		struct fib_alias *fa_first, *fa_match;
1155 
1156 		err = -EEXIST;
1157 		if (cfg->fc_nlflags & NLM_F_EXCL)
1158 			goto out;
1159 
1160 		nlflags &= ~NLM_F_EXCL;
1161 
1162 		/* We have 2 goals:
1163 		 * 1. Find exact match for type, scope, fib_info to avoid
1164 		 * duplicate routes
1165 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1166 		 */
1167 		fa_match = NULL;
1168 		fa_first = fa;
1169 		hlist_for_each_entry_from(fa, fa_list) {
1170 			if ((fa->fa_slen != slen) ||
1171 			    (fa->tb_id != tb->tb_id) ||
1172 			    (fa->fa_tos != tos))
1173 				break;
1174 			if (fa->fa_info->fib_priority != fi->fib_priority)
1175 				break;
1176 			if (fa->fa_type == cfg->fc_type &&
1177 			    fa->fa_info == fi) {
1178 				fa_match = fa;
1179 				break;
1180 			}
1181 		}
1182 
1183 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1184 			struct fib_info *fi_drop;
1185 			u8 state;
1186 
1187 			nlflags |= NLM_F_REPLACE;
1188 			fa = fa_first;
1189 			if (fa_match) {
1190 				if (fa == fa_match)
1191 					err = 0;
1192 				goto out;
1193 			}
1194 			err = -ENOBUFS;
1195 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1196 			if (!new_fa)
1197 				goto out;
1198 
1199 			fi_drop = fa->fa_info;
1200 			new_fa->fa_tos = fa->fa_tos;
1201 			new_fa->fa_info = fi;
1202 			new_fa->fa_type = cfg->fc_type;
1203 			state = fa->fa_state;
1204 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1205 			new_fa->fa_slen = fa->fa_slen;
1206 			new_fa->tb_id = tb->tb_id;
1207 			new_fa->fa_default = -1;
1208 
1209 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1210 
1211 			alias_free_mem_rcu(fa);
1212 
1213 			fib_release_info(fi_drop);
1214 			if (state & FA_S_ACCESSED)
1215 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1216 
1217 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1218 						 key, plen, fi,
1219 						 new_fa->fa_tos, cfg->fc_type,
1220 						 tb->tb_id, cfg->fc_nlflags);
1221 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1222 				tb->tb_id, &cfg->fc_nlinfo, nlflags);
1223 
1224 			goto succeeded;
1225 		}
1226 		/* Error if we find a perfect match which
1227 		 * uses the same scope, type, and nexthop
1228 		 * information.
1229 		 */
1230 		if (fa_match)
1231 			goto out;
1232 
1233 		if (cfg->fc_nlflags & NLM_F_APPEND)
1234 			nlflags |= NLM_F_APPEND;
1235 		else
1236 			fa = fa_first;
1237 	}
1238 	err = -ENOENT;
1239 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1240 		goto out;
1241 
1242 	nlflags |= NLM_F_CREATE;
1243 	err = -ENOBUFS;
1244 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1245 	if (!new_fa)
1246 		goto out;
1247 
1248 	new_fa->fa_info = fi;
1249 	new_fa->fa_tos = tos;
1250 	new_fa->fa_type = cfg->fc_type;
1251 	new_fa->fa_state = 0;
1252 	new_fa->fa_slen = slen;
1253 	new_fa->tb_id = tb->tb_id;
1254 	new_fa->fa_default = -1;
1255 
1256 	/* Insert new entry to the list. */
1257 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1258 	if (err)
1259 		goto out_free_new_fa;
1260 
1261 	if (!plen)
1262 		tb->tb_num_default++;
1263 
1264 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1265 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1266 				 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
1267 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1268 		  &cfg->fc_nlinfo, nlflags);
1269 succeeded:
1270 	return 0;
1271 
1272 out_free_new_fa:
1273 	kmem_cache_free(fn_alias_kmem, new_fa);
1274 out:
1275 	fib_release_info(fi);
1276 err:
1277 	return err;
1278 }
1279 
1280 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1281 {
1282 	t_key prefix = n->key;
1283 
1284 	return (key ^ prefix) & (prefix | -prefix);
1285 }
1286 
1287 /* should be called with rcu_read_lock */
1288 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1289 		     struct fib_result *res, int fib_flags)
1290 {
1291 	struct trie *t = (struct trie *) tb->tb_data;
1292 #ifdef CONFIG_IP_FIB_TRIE_STATS
1293 	struct trie_use_stats __percpu *stats = t->stats;
1294 #endif
1295 	const t_key key = ntohl(flp->daddr);
1296 	struct key_vector *n, *pn;
1297 	struct fib_alias *fa;
1298 	unsigned long index;
1299 	t_key cindex;
1300 
1301 	trace_fib_table_lookup(tb->tb_id, flp);
1302 
1303 	pn = t->kv;
1304 	cindex = 0;
1305 
1306 	n = get_child_rcu(pn, cindex);
1307 	if (!n)
1308 		return -EAGAIN;
1309 
1310 #ifdef CONFIG_IP_FIB_TRIE_STATS
1311 	this_cpu_inc(stats->gets);
1312 #endif
1313 
1314 	/* Step 1: Travel to the longest prefix match in the trie */
1315 	for (;;) {
1316 		index = get_cindex(key, n);
1317 
1318 		/* This bit of code is a bit tricky but it combines multiple
1319 		 * checks into a single check.  The prefix consists of the
1320 		 * prefix plus zeros for the "bits" in the prefix. The index
1321 		 * is the difference between the key and this value.  From
1322 		 * this we can actually derive several pieces of data.
1323 		 *   if (index >= (1ul << bits))
1324 		 *     we have a mismatch in skip bits and failed
1325 		 *   else
1326 		 *     we know the value is cindex
1327 		 *
1328 		 * This check is safe even if bits == KEYLENGTH due to the
1329 		 * fact that we can only allocate a node with 32 bits if a
1330 		 * long is greater than 32 bits.
1331 		 */
1332 		if (index >= (1ul << n->bits))
1333 			break;
1334 
1335 		/* we have found a leaf. Prefixes have already been compared */
1336 		if (IS_LEAF(n))
1337 			goto found;
1338 
1339 		/* only record pn and cindex if we are going to be chopping
1340 		 * bits later.  Otherwise we are just wasting cycles.
1341 		 */
1342 		if (n->slen > n->pos) {
1343 			pn = n;
1344 			cindex = index;
1345 		}
1346 
1347 		n = get_child_rcu(n, index);
1348 		if (unlikely(!n))
1349 			goto backtrace;
1350 	}
1351 
1352 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1353 	for (;;) {
1354 		/* record the pointer where our next node pointer is stored */
1355 		struct key_vector __rcu **cptr = n->tnode;
1356 
1357 		/* This test verifies that none of the bits that differ
1358 		 * between the key and the prefix exist in the region of
1359 		 * the lsb and higher in the prefix.
1360 		 */
1361 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1362 			goto backtrace;
1363 
1364 		/* exit out and process leaf */
1365 		if (unlikely(IS_LEAF(n)))
1366 			break;
1367 
1368 		/* Don't bother recording parent info.  Since we are in
1369 		 * prefix match mode we will have to come back to wherever
1370 		 * we started this traversal anyway
1371 		 */
1372 
1373 		while ((n = rcu_dereference(*cptr)) == NULL) {
1374 backtrace:
1375 #ifdef CONFIG_IP_FIB_TRIE_STATS
1376 			if (!n)
1377 				this_cpu_inc(stats->null_node_hit);
1378 #endif
1379 			/* If we are at cindex 0 there are no more bits for
1380 			 * us to strip at this level so we must ascend back
1381 			 * up one level to see if there are any more bits to
1382 			 * be stripped there.
1383 			 */
1384 			while (!cindex) {
1385 				t_key pkey = pn->key;
1386 
1387 				/* If we don't have a parent then there is
1388 				 * nothing for us to do as we do not have any
1389 				 * further nodes to parse.
1390 				 */
1391 				if (IS_TRIE(pn))
1392 					return -EAGAIN;
1393 #ifdef CONFIG_IP_FIB_TRIE_STATS
1394 				this_cpu_inc(stats->backtrack);
1395 #endif
1396 				/* Get Child's index */
1397 				pn = node_parent_rcu(pn);
1398 				cindex = get_index(pkey, pn);
1399 			}
1400 
1401 			/* strip the least significant bit from the cindex */
1402 			cindex &= cindex - 1;
1403 
1404 			/* grab pointer for next child node */
1405 			cptr = &pn->tnode[cindex];
1406 		}
1407 	}
1408 
1409 found:
1410 	/* this line carries forward the xor from earlier in the function */
1411 	index = key ^ n->key;
1412 
1413 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1414 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1415 		struct fib_info *fi = fa->fa_info;
1416 		int nhsel, err;
1417 
1418 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1419 			if (index >= (1ul << fa->fa_slen))
1420 				continue;
1421 		}
1422 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1423 			continue;
1424 		if (fi->fib_dead)
1425 			continue;
1426 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1427 			continue;
1428 		fib_alias_accessed(fa);
1429 		err = fib_props[fa->fa_type].error;
1430 		if (unlikely(err < 0)) {
1431 #ifdef CONFIG_IP_FIB_TRIE_STATS
1432 			this_cpu_inc(stats->semantic_match_passed);
1433 #endif
1434 			return err;
1435 		}
1436 		if (fi->fib_flags & RTNH_F_DEAD)
1437 			continue;
1438 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1439 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1440 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1441 
1442 			if (nh->nh_flags & RTNH_F_DEAD)
1443 				continue;
1444 			if (in_dev &&
1445 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1446 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1447 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1448 				continue;
1449 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1450 				if (flp->flowi4_oif &&
1451 				    flp->flowi4_oif != nh->nh_oif)
1452 					continue;
1453 			}
1454 
1455 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1456 				atomic_inc(&fi->fib_clntref);
1457 
1458 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1459 			res->nh_sel = nhsel;
1460 			res->type = fa->fa_type;
1461 			res->scope = fi->fib_scope;
1462 			res->fi = fi;
1463 			res->table = tb;
1464 			res->fa_head = &n->leaf;
1465 #ifdef CONFIG_IP_FIB_TRIE_STATS
1466 			this_cpu_inc(stats->semantic_match_passed);
1467 #endif
1468 			trace_fib_table_lookup_nh(nh);
1469 
1470 			return err;
1471 		}
1472 	}
1473 #ifdef CONFIG_IP_FIB_TRIE_STATS
1474 	this_cpu_inc(stats->semantic_match_miss);
1475 #endif
1476 	goto backtrace;
1477 }
1478 EXPORT_SYMBOL_GPL(fib_table_lookup);
1479 
1480 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1481 			     struct key_vector *l, struct fib_alias *old)
1482 {
1483 	/* record the location of the previous list_info entry */
1484 	struct hlist_node **pprev = old->fa_list.pprev;
1485 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1486 
1487 	/* remove the fib_alias from the list */
1488 	hlist_del_rcu(&old->fa_list);
1489 
1490 	/* if we emptied the list this leaf will be freed and we can sort
1491 	 * out parent suffix lengths as a part of trie_rebalance
1492 	 */
1493 	if (hlist_empty(&l->leaf)) {
1494 		if (tp->slen == l->slen)
1495 			node_pull_suffix(tp, tp->pos);
1496 		put_child_root(tp, l->key, NULL);
1497 		node_free(l);
1498 		trie_rebalance(t, tp);
1499 		return;
1500 	}
1501 
1502 	/* only access fa if it is pointing at the last valid hlist_node */
1503 	if (*pprev)
1504 		return;
1505 
1506 	/* update the trie with the latest suffix length */
1507 	l->slen = fa->fa_slen;
1508 	node_pull_suffix(tp, fa->fa_slen);
1509 }
1510 
1511 /* Caller must hold RTNL. */
1512 int fib_table_delete(struct net *net, struct fib_table *tb,
1513 		     struct fib_config *cfg)
1514 {
1515 	struct trie *t = (struct trie *) tb->tb_data;
1516 	struct fib_alias *fa, *fa_to_delete;
1517 	struct key_vector *l, *tp;
1518 	u8 plen = cfg->fc_dst_len;
1519 	u8 slen = KEYLENGTH - plen;
1520 	u8 tos = cfg->fc_tos;
1521 	u32 key;
1522 
1523 	if (plen > KEYLENGTH)
1524 		return -EINVAL;
1525 
1526 	key = ntohl(cfg->fc_dst);
1527 
1528 	if ((plen < KEYLENGTH) && (key << plen))
1529 		return -EINVAL;
1530 
1531 	l = fib_find_node(t, &tp, key);
1532 	if (!l)
1533 		return -ESRCH;
1534 
1535 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1536 	if (!fa)
1537 		return -ESRCH;
1538 
1539 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1540 
1541 	fa_to_delete = NULL;
1542 	hlist_for_each_entry_from(fa, fa_list) {
1543 		struct fib_info *fi = fa->fa_info;
1544 
1545 		if ((fa->fa_slen != slen) ||
1546 		    (fa->tb_id != tb->tb_id) ||
1547 		    (fa->fa_tos != tos))
1548 			break;
1549 
1550 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1551 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1552 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1553 		    (!cfg->fc_prefsrc ||
1554 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1555 		    (!cfg->fc_protocol ||
1556 		     fi->fib_protocol == cfg->fc_protocol) &&
1557 		    fib_nh_match(cfg, fi) == 0) {
1558 			fa_to_delete = fa;
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (!fa_to_delete)
1564 		return -ESRCH;
1565 
1566 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1567 				 fa_to_delete->fa_info, tos, cfg->fc_type,
1568 				 tb->tb_id, 0);
1569 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1570 		  &cfg->fc_nlinfo, 0);
1571 
1572 	if (!plen)
1573 		tb->tb_num_default--;
1574 
1575 	fib_remove_alias(t, tp, l, fa_to_delete);
1576 
1577 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1578 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1579 
1580 	fib_release_info(fa_to_delete->fa_info);
1581 	alias_free_mem_rcu(fa_to_delete);
1582 	return 0;
1583 }
1584 
1585 /* Scan for the next leaf starting at the provided key value */
1586 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1587 {
1588 	struct key_vector *pn, *n = *tn;
1589 	unsigned long cindex;
1590 
1591 	/* this loop is meant to try and find the key in the trie */
1592 	do {
1593 		/* record parent and next child index */
1594 		pn = n;
1595 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1596 
1597 		if (cindex >> pn->bits)
1598 			break;
1599 
1600 		/* descend into the next child */
1601 		n = get_child_rcu(pn, cindex++);
1602 		if (!n)
1603 			break;
1604 
1605 		/* guarantee forward progress on the keys */
1606 		if (IS_LEAF(n) && (n->key >= key))
1607 			goto found;
1608 	} while (IS_TNODE(n));
1609 
1610 	/* this loop will search for the next leaf with a greater key */
1611 	while (!IS_TRIE(pn)) {
1612 		/* if we exhausted the parent node we will need to climb */
1613 		if (cindex >= (1ul << pn->bits)) {
1614 			t_key pkey = pn->key;
1615 
1616 			pn = node_parent_rcu(pn);
1617 			cindex = get_index(pkey, pn) + 1;
1618 			continue;
1619 		}
1620 
1621 		/* grab the next available node */
1622 		n = get_child_rcu(pn, cindex++);
1623 		if (!n)
1624 			continue;
1625 
1626 		/* no need to compare keys since we bumped the index */
1627 		if (IS_LEAF(n))
1628 			goto found;
1629 
1630 		/* Rescan start scanning in new node */
1631 		pn = n;
1632 		cindex = 0;
1633 	}
1634 
1635 	*tn = pn;
1636 	return NULL; /* Root of trie */
1637 found:
1638 	/* if we are at the limit for keys just return NULL for the tnode */
1639 	*tn = pn;
1640 	return n;
1641 }
1642 
1643 static void fib_trie_free(struct fib_table *tb)
1644 {
1645 	struct trie *t = (struct trie *)tb->tb_data;
1646 	struct key_vector *pn = t->kv;
1647 	unsigned long cindex = 1;
1648 	struct hlist_node *tmp;
1649 	struct fib_alias *fa;
1650 
1651 	/* walk trie in reverse order and free everything */
1652 	for (;;) {
1653 		struct key_vector *n;
1654 
1655 		if (!(cindex--)) {
1656 			t_key pkey = pn->key;
1657 
1658 			if (IS_TRIE(pn))
1659 				break;
1660 
1661 			n = pn;
1662 			pn = node_parent(pn);
1663 
1664 			/* drop emptied tnode */
1665 			put_child_root(pn, n->key, NULL);
1666 			node_free(n);
1667 
1668 			cindex = get_index(pkey, pn);
1669 
1670 			continue;
1671 		}
1672 
1673 		/* grab the next available node */
1674 		n = get_child(pn, cindex);
1675 		if (!n)
1676 			continue;
1677 
1678 		if (IS_TNODE(n)) {
1679 			/* record pn and cindex for leaf walking */
1680 			pn = n;
1681 			cindex = 1ul << n->bits;
1682 
1683 			continue;
1684 		}
1685 
1686 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1687 			hlist_del_rcu(&fa->fa_list);
1688 			alias_free_mem_rcu(fa);
1689 		}
1690 
1691 		put_child_root(pn, n->key, NULL);
1692 		node_free(n);
1693 	}
1694 
1695 #ifdef CONFIG_IP_FIB_TRIE_STATS
1696 	free_percpu(t->stats);
1697 #endif
1698 	kfree(tb);
1699 }
1700 
1701 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1702 {
1703 	struct trie *ot = (struct trie *)oldtb->tb_data;
1704 	struct key_vector *l, *tp = ot->kv;
1705 	struct fib_table *local_tb;
1706 	struct fib_alias *fa;
1707 	struct trie *lt;
1708 	t_key key = 0;
1709 
1710 	if (oldtb->tb_data == oldtb->__data)
1711 		return oldtb;
1712 
1713 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1714 	if (!local_tb)
1715 		return NULL;
1716 
1717 	lt = (struct trie *)local_tb->tb_data;
1718 
1719 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1720 		struct key_vector *local_l = NULL, *local_tp;
1721 
1722 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1723 			struct fib_alias *new_fa;
1724 
1725 			if (local_tb->tb_id != fa->tb_id)
1726 				continue;
1727 
1728 			/* clone fa for new local table */
1729 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1730 			if (!new_fa)
1731 				goto out;
1732 
1733 			memcpy(new_fa, fa, sizeof(*fa));
1734 
1735 			/* insert clone into table */
1736 			if (!local_l)
1737 				local_l = fib_find_node(lt, &local_tp, l->key);
1738 
1739 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1740 					     NULL, l->key)) {
1741 				kmem_cache_free(fn_alias_kmem, new_fa);
1742 				goto out;
1743 			}
1744 		}
1745 
1746 		/* stop loop if key wrapped back to 0 */
1747 		key = l->key + 1;
1748 		if (key < l->key)
1749 			break;
1750 	}
1751 
1752 	return local_tb;
1753 out:
1754 	fib_trie_free(local_tb);
1755 
1756 	return NULL;
1757 }
1758 
1759 /* Caller must hold RTNL */
1760 void fib_table_flush_external(struct fib_table *tb)
1761 {
1762 	struct trie *t = (struct trie *)tb->tb_data;
1763 	struct key_vector *pn = t->kv;
1764 	unsigned long cindex = 1;
1765 	struct hlist_node *tmp;
1766 	struct fib_alias *fa;
1767 
1768 	/* walk trie in reverse order */
1769 	for (;;) {
1770 		unsigned char slen = 0;
1771 		struct key_vector *n;
1772 
1773 		if (!(cindex--)) {
1774 			t_key pkey = pn->key;
1775 
1776 			/* cannot resize the trie vector */
1777 			if (IS_TRIE(pn))
1778 				break;
1779 
1780 			/* update the suffix to address pulled leaves */
1781 			if (pn->slen > pn->pos)
1782 				update_suffix(pn);
1783 
1784 			/* resize completed node */
1785 			pn = resize(t, pn);
1786 			cindex = get_index(pkey, pn);
1787 
1788 			continue;
1789 		}
1790 
1791 		/* grab the next available node */
1792 		n = get_child(pn, cindex);
1793 		if (!n)
1794 			continue;
1795 
1796 		if (IS_TNODE(n)) {
1797 			/* record pn and cindex for leaf walking */
1798 			pn = n;
1799 			cindex = 1ul << n->bits;
1800 
1801 			continue;
1802 		}
1803 
1804 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1805 			/* if alias was cloned to local then we just
1806 			 * need to remove the local copy from main
1807 			 */
1808 			if (tb->tb_id != fa->tb_id) {
1809 				hlist_del_rcu(&fa->fa_list);
1810 				alias_free_mem_rcu(fa);
1811 				continue;
1812 			}
1813 
1814 			/* record local slen */
1815 			slen = fa->fa_slen;
1816 		}
1817 
1818 		/* update leaf slen */
1819 		n->slen = slen;
1820 
1821 		if (hlist_empty(&n->leaf)) {
1822 			put_child_root(pn, n->key, NULL);
1823 			node_free(n);
1824 		}
1825 	}
1826 }
1827 
1828 /* Caller must hold RTNL. */
1829 int fib_table_flush(struct net *net, struct fib_table *tb)
1830 {
1831 	struct trie *t = (struct trie *)tb->tb_data;
1832 	struct key_vector *pn = t->kv;
1833 	unsigned long cindex = 1;
1834 	struct hlist_node *tmp;
1835 	struct fib_alias *fa;
1836 	int found = 0;
1837 
1838 	/* walk trie in reverse order */
1839 	for (;;) {
1840 		unsigned char slen = 0;
1841 		struct key_vector *n;
1842 
1843 		if (!(cindex--)) {
1844 			t_key pkey = pn->key;
1845 
1846 			/* cannot resize the trie vector */
1847 			if (IS_TRIE(pn))
1848 				break;
1849 
1850 			/* update the suffix to address pulled leaves */
1851 			if (pn->slen > pn->pos)
1852 				update_suffix(pn);
1853 
1854 			/* resize completed node */
1855 			pn = resize(t, pn);
1856 			cindex = get_index(pkey, pn);
1857 
1858 			continue;
1859 		}
1860 
1861 		/* grab the next available node */
1862 		n = get_child(pn, cindex);
1863 		if (!n)
1864 			continue;
1865 
1866 		if (IS_TNODE(n)) {
1867 			/* record pn and cindex for leaf walking */
1868 			pn = n;
1869 			cindex = 1ul << n->bits;
1870 
1871 			continue;
1872 		}
1873 
1874 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1875 			struct fib_info *fi = fa->fa_info;
1876 
1877 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1878 				slen = fa->fa_slen;
1879 				continue;
1880 			}
1881 
1882 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1883 						 n->key,
1884 						 KEYLENGTH - fa->fa_slen,
1885 						 fi, fa->fa_tos, fa->fa_type,
1886 						 tb->tb_id, 0);
1887 			hlist_del_rcu(&fa->fa_list);
1888 			fib_release_info(fa->fa_info);
1889 			alias_free_mem_rcu(fa);
1890 			found++;
1891 		}
1892 
1893 		/* update leaf slen */
1894 		n->slen = slen;
1895 
1896 		if (hlist_empty(&n->leaf)) {
1897 			put_child_root(pn, n->key, NULL);
1898 			node_free(n);
1899 		}
1900 	}
1901 
1902 	pr_debug("trie_flush found=%d\n", found);
1903 	return found;
1904 }
1905 
1906 static void __trie_free_rcu(struct rcu_head *head)
1907 {
1908 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1909 #ifdef CONFIG_IP_FIB_TRIE_STATS
1910 	struct trie *t = (struct trie *)tb->tb_data;
1911 
1912 	if (tb->tb_data == tb->__data)
1913 		free_percpu(t->stats);
1914 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1915 	kfree(tb);
1916 }
1917 
1918 void fib_free_table(struct fib_table *tb)
1919 {
1920 	call_rcu(&tb->rcu, __trie_free_rcu);
1921 }
1922 
1923 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1924 			     struct sk_buff *skb, struct netlink_callback *cb)
1925 {
1926 	__be32 xkey = htonl(l->key);
1927 	struct fib_alias *fa;
1928 	int i, s_i;
1929 
1930 	s_i = cb->args[4];
1931 	i = 0;
1932 
1933 	/* rcu_read_lock is hold by caller */
1934 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1935 		if (i < s_i) {
1936 			i++;
1937 			continue;
1938 		}
1939 
1940 		if (tb->tb_id != fa->tb_id) {
1941 			i++;
1942 			continue;
1943 		}
1944 
1945 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1946 				  cb->nlh->nlmsg_seq,
1947 				  RTM_NEWROUTE,
1948 				  tb->tb_id,
1949 				  fa->fa_type,
1950 				  xkey,
1951 				  KEYLENGTH - fa->fa_slen,
1952 				  fa->fa_tos,
1953 				  fa->fa_info, NLM_F_MULTI) < 0) {
1954 			cb->args[4] = i;
1955 			return -1;
1956 		}
1957 		i++;
1958 	}
1959 
1960 	cb->args[4] = i;
1961 	return skb->len;
1962 }
1963 
1964 /* rcu_read_lock needs to be hold by caller from readside */
1965 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1966 		   struct netlink_callback *cb)
1967 {
1968 	struct trie *t = (struct trie *)tb->tb_data;
1969 	struct key_vector *l, *tp = t->kv;
1970 	/* Dump starting at last key.
1971 	 * Note: 0.0.0.0/0 (ie default) is first key.
1972 	 */
1973 	int count = cb->args[2];
1974 	t_key key = cb->args[3];
1975 
1976 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1977 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1978 			cb->args[3] = key;
1979 			cb->args[2] = count;
1980 			return -1;
1981 		}
1982 
1983 		++count;
1984 		key = l->key + 1;
1985 
1986 		memset(&cb->args[4], 0,
1987 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1988 
1989 		/* stop loop if key wrapped back to 0 */
1990 		if (key < l->key)
1991 			break;
1992 	}
1993 
1994 	cb->args[3] = key;
1995 	cb->args[2] = count;
1996 
1997 	return skb->len;
1998 }
1999 
2000 void __init fib_trie_init(void)
2001 {
2002 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2003 					  sizeof(struct fib_alias),
2004 					  0, SLAB_PANIC, NULL);
2005 
2006 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2007 					   LEAF_SIZE,
2008 					   0, SLAB_PANIC, NULL);
2009 }
2010 
2011 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2012 {
2013 	struct fib_table *tb;
2014 	struct trie *t;
2015 	size_t sz = sizeof(*tb);
2016 
2017 	if (!alias)
2018 		sz += sizeof(struct trie);
2019 
2020 	tb = kzalloc(sz, GFP_KERNEL);
2021 	if (!tb)
2022 		return NULL;
2023 
2024 	tb->tb_id = id;
2025 	tb->tb_num_default = 0;
2026 	tb->tb_data = (alias ? alias->__data : tb->__data);
2027 
2028 	if (alias)
2029 		return tb;
2030 
2031 	t = (struct trie *) tb->tb_data;
2032 	t->kv[0].pos = KEYLENGTH;
2033 	t->kv[0].slen = KEYLENGTH;
2034 #ifdef CONFIG_IP_FIB_TRIE_STATS
2035 	t->stats = alloc_percpu(struct trie_use_stats);
2036 	if (!t->stats) {
2037 		kfree(tb);
2038 		tb = NULL;
2039 	}
2040 #endif
2041 
2042 	return tb;
2043 }
2044 
2045 #ifdef CONFIG_PROC_FS
2046 /* Depth first Trie walk iterator */
2047 struct fib_trie_iter {
2048 	struct seq_net_private p;
2049 	struct fib_table *tb;
2050 	struct key_vector *tnode;
2051 	unsigned int index;
2052 	unsigned int depth;
2053 };
2054 
2055 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2056 {
2057 	unsigned long cindex = iter->index;
2058 	struct key_vector *pn = iter->tnode;
2059 	t_key pkey;
2060 
2061 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2062 		 iter->tnode, iter->index, iter->depth);
2063 
2064 	while (!IS_TRIE(pn)) {
2065 		while (cindex < child_length(pn)) {
2066 			struct key_vector *n = get_child_rcu(pn, cindex++);
2067 
2068 			if (!n)
2069 				continue;
2070 
2071 			if (IS_LEAF(n)) {
2072 				iter->tnode = pn;
2073 				iter->index = cindex;
2074 			} else {
2075 				/* push down one level */
2076 				iter->tnode = n;
2077 				iter->index = 0;
2078 				++iter->depth;
2079 			}
2080 
2081 			return n;
2082 		}
2083 
2084 		/* Current node exhausted, pop back up */
2085 		pkey = pn->key;
2086 		pn = node_parent_rcu(pn);
2087 		cindex = get_index(pkey, pn) + 1;
2088 		--iter->depth;
2089 	}
2090 
2091 	/* record root node so further searches know we are done */
2092 	iter->tnode = pn;
2093 	iter->index = 0;
2094 
2095 	return NULL;
2096 }
2097 
2098 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2099 					     struct trie *t)
2100 {
2101 	struct key_vector *n, *pn;
2102 
2103 	if (!t)
2104 		return NULL;
2105 
2106 	pn = t->kv;
2107 	n = rcu_dereference(pn->tnode[0]);
2108 	if (!n)
2109 		return NULL;
2110 
2111 	if (IS_TNODE(n)) {
2112 		iter->tnode = n;
2113 		iter->index = 0;
2114 		iter->depth = 1;
2115 	} else {
2116 		iter->tnode = pn;
2117 		iter->index = 0;
2118 		iter->depth = 0;
2119 	}
2120 
2121 	return n;
2122 }
2123 
2124 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2125 {
2126 	struct key_vector *n;
2127 	struct fib_trie_iter iter;
2128 
2129 	memset(s, 0, sizeof(*s));
2130 
2131 	rcu_read_lock();
2132 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2133 		if (IS_LEAF(n)) {
2134 			struct fib_alias *fa;
2135 
2136 			s->leaves++;
2137 			s->totdepth += iter.depth;
2138 			if (iter.depth > s->maxdepth)
2139 				s->maxdepth = iter.depth;
2140 
2141 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2142 				++s->prefixes;
2143 		} else {
2144 			s->tnodes++;
2145 			if (n->bits < MAX_STAT_DEPTH)
2146 				s->nodesizes[n->bits]++;
2147 			s->nullpointers += tn_info(n)->empty_children;
2148 		}
2149 	}
2150 	rcu_read_unlock();
2151 }
2152 
2153 /*
2154  *	This outputs /proc/net/fib_triestats
2155  */
2156 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2157 {
2158 	unsigned int i, max, pointers, bytes, avdepth;
2159 
2160 	if (stat->leaves)
2161 		avdepth = stat->totdepth*100 / stat->leaves;
2162 	else
2163 		avdepth = 0;
2164 
2165 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2166 		   avdepth / 100, avdepth % 100);
2167 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2168 
2169 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2170 	bytes = LEAF_SIZE * stat->leaves;
2171 
2172 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2173 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2174 
2175 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2176 	bytes += TNODE_SIZE(0) * stat->tnodes;
2177 
2178 	max = MAX_STAT_DEPTH;
2179 	while (max > 0 && stat->nodesizes[max-1] == 0)
2180 		max--;
2181 
2182 	pointers = 0;
2183 	for (i = 1; i < max; i++)
2184 		if (stat->nodesizes[i] != 0) {
2185 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2186 			pointers += (1<<i) * stat->nodesizes[i];
2187 		}
2188 	seq_putc(seq, '\n');
2189 	seq_printf(seq, "\tPointers: %u\n", pointers);
2190 
2191 	bytes += sizeof(struct key_vector *) * pointers;
2192 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2193 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2194 }
2195 
2196 #ifdef CONFIG_IP_FIB_TRIE_STATS
2197 static void trie_show_usage(struct seq_file *seq,
2198 			    const struct trie_use_stats __percpu *stats)
2199 {
2200 	struct trie_use_stats s = { 0 };
2201 	int cpu;
2202 
2203 	/* loop through all of the CPUs and gather up the stats */
2204 	for_each_possible_cpu(cpu) {
2205 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2206 
2207 		s.gets += pcpu->gets;
2208 		s.backtrack += pcpu->backtrack;
2209 		s.semantic_match_passed += pcpu->semantic_match_passed;
2210 		s.semantic_match_miss += pcpu->semantic_match_miss;
2211 		s.null_node_hit += pcpu->null_node_hit;
2212 		s.resize_node_skipped += pcpu->resize_node_skipped;
2213 	}
2214 
2215 	seq_printf(seq, "\nCounters:\n---------\n");
2216 	seq_printf(seq, "gets = %u\n", s.gets);
2217 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2218 	seq_printf(seq, "semantic match passed = %u\n",
2219 		   s.semantic_match_passed);
2220 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2221 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2222 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2223 }
2224 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2225 
2226 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2227 {
2228 	if (tb->tb_id == RT_TABLE_LOCAL)
2229 		seq_puts(seq, "Local:\n");
2230 	else if (tb->tb_id == RT_TABLE_MAIN)
2231 		seq_puts(seq, "Main:\n");
2232 	else
2233 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2234 }
2235 
2236 
2237 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2238 {
2239 	struct net *net = (struct net *)seq->private;
2240 	unsigned int h;
2241 
2242 	seq_printf(seq,
2243 		   "Basic info: size of leaf:"
2244 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2245 		   LEAF_SIZE, TNODE_SIZE(0));
2246 
2247 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2248 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2249 		struct fib_table *tb;
2250 
2251 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2252 			struct trie *t = (struct trie *) tb->tb_data;
2253 			struct trie_stat stat;
2254 
2255 			if (!t)
2256 				continue;
2257 
2258 			fib_table_print(seq, tb);
2259 
2260 			trie_collect_stats(t, &stat);
2261 			trie_show_stats(seq, &stat);
2262 #ifdef CONFIG_IP_FIB_TRIE_STATS
2263 			trie_show_usage(seq, t->stats);
2264 #endif
2265 		}
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2272 {
2273 	return single_open_net(inode, file, fib_triestat_seq_show);
2274 }
2275 
2276 static const struct file_operations fib_triestat_fops = {
2277 	.owner	= THIS_MODULE,
2278 	.open	= fib_triestat_seq_open,
2279 	.read	= seq_read,
2280 	.llseek	= seq_lseek,
2281 	.release = single_release_net,
2282 };
2283 
2284 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2285 {
2286 	struct fib_trie_iter *iter = seq->private;
2287 	struct net *net = seq_file_net(seq);
2288 	loff_t idx = 0;
2289 	unsigned int h;
2290 
2291 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2292 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2293 		struct fib_table *tb;
2294 
2295 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2296 			struct key_vector *n;
2297 
2298 			for (n = fib_trie_get_first(iter,
2299 						    (struct trie *) tb->tb_data);
2300 			     n; n = fib_trie_get_next(iter))
2301 				if (pos == idx++) {
2302 					iter->tb = tb;
2303 					return n;
2304 				}
2305 		}
2306 	}
2307 
2308 	return NULL;
2309 }
2310 
2311 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2312 	__acquires(RCU)
2313 {
2314 	rcu_read_lock();
2315 	return fib_trie_get_idx(seq, *pos);
2316 }
2317 
2318 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2319 {
2320 	struct fib_trie_iter *iter = seq->private;
2321 	struct net *net = seq_file_net(seq);
2322 	struct fib_table *tb = iter->tb;
2323 	struct hlist_node *tb_node;
2324 	unsigned int h;
2325 	struct key_vector *n;
2326 
2327 	++*pos;
2328 	/* next node in same table */
2329 	n = fib_trie_get_next(iter);
2330 	if (n)
2331 		return n;
2332 
2333 	/* walk rest of this hash chain */
2334 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2335 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2336 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2337 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2338 		if (n)
2339 			goto found;
2340 	}
2341 
2342 	/* new hash chain */
2343 	while (++h < FIB_TABLE_HASHSZ) {
2344 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2345 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2346 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2347 			if (n)
2348 				goto found;
2349 		}
2350 	}
2351 	return NULL;
2352 
2353 found:
2354 	iter->tb = tb;
2355 	return n;
2356 }
2357 
2358 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2359 	__releases(RCU)
2360 {
2361 	rcu_read_unlock();
2362 }
2363 
2364 static void seq_indent(struct seq_file *seq, int n)
2365 {
2366 	while (n-- > 0)
2367 		seq_puts(seq, "   ");
2368 }
2369 
2370 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2371 {
2372 	switch (s) {
2373 	case RT_SCOPE_UNIVERSE: return "universe";
2374 	case RT_SCOPE_SITE:	return "site";
2375 	case RT_SCOPE_LINK:	return "link";
2376 	case RT_SCOPE_HOST:	return "host";
2377 	case RT_SCOPE_NOWHERE:	return "nowhere";
2378 	default:
2379 		snprintf(buf, len, "scope=%d", s);
2380 		return buf;
2381 	}
2382 }
2383 
2384 static const char *const rtn_type_names[__RTN_MAX] = {
2385 	[RTN_UNSPEC] = "UNSPEC",
2386 	[RTN_UNICAST] = "UNICAST",
2387 	[RTN_LOCAL] = "LOCAL",
2388 	[RTN_BROADCAST] = "BROADCAST",
2389 	[RTN_ANYCAST] = "ANYCAST",
2390 	[RTN_MULTICAST] = "MULTICAST",
2391 	[RTN_BLACKHOLE] = "BLACKHOLE",
2392 	[RTN_UNREACHABLE] = "UNREACHABLE",
2393 	[RTN_PROHIBIT] = "PROHIBIT",
2394 	[RTN_THROW] = "THROW",
2395 	[RTN_NAT] = "NAT",
2396 	[RTN_XRESOLVE] = "XRESOLVE",
2397 };
2398 
2399 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2400 {
2401 	if (t < __RTN_MAX && rtn_type_names[t])
2402 		return rtn_type_names[t];
2403 	snprintf(buf, len, "type %u", t);
2404 	return buf;
2405 }
2406 
2407 /* Pretty print the trie */
2408 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2409 {
2410 	const struct fib_trie_iter *iter = seq->private;
2411 	struct key_vector *n = v;
2412 
2413 	if (IS_TRIE(node_parent_rcu(n)))
2414 		fib_table_print(seq, iter->tb);
2415 
2416 	if (IS_TNODE(n)) {
2417 		__be32 prf = htonl(n->key);
2418 
2419 		seq_indent(seq, iter->depth-1);
2420 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2421 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2422 			   tn_info(n)->full_children,
2423 			   tn_info(n)->empty_children);
2424 	} else {
2425 		__be32 val = htonl(n->key);
2426 		struct fib_alias *fa;
2427 
2428 		seq_indent(seq, iter->depth);
2429 		seq_printf(seq, "  |-- %pI4\n", &val);
2430 
2431 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2432 			char buf1[32], buf2[32];
2433 
2434 			seq_indent(seq, iter->depth + 1);
2435 			seq_printf(seq, "  /%zu %s %s",
2436 				   KEYLENGTH - fa->fa_slen,
2437 				   rtn_scope(buf1, sizeof(buf1),
2438 					     fa->fa_info->fib_scope),
2439 				   rtn_type(buf2, sizeof(buf2),
2440 					    fa->fa_type));
2441 			if (fa->fa_tos)
2442 				seq_printf(seq, " tos=%d", fa->fa_tos);
2443 			seq_putc(seq, '\n');
2444 		}
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 static const struct seq_operations fib_trie_seq_ops = {
2451 	.start  = fib_trie_seq_start,
2452 	.next   = fib_trie_seq_next,
2453 	.stop   = fib_trie_seq_stop,
2454 	.show   = fib_trie_seq_show,
2455 };
2456 
2457 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2458 {
2459 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2460 			    sizeof(struct fib_trie_iter));
2461 }
2462 
2463 static const struct file_operations fib_trie_fops = {
2464 	.owner  = THIS_MODULE,
2465 	.open   = fib_trie_seq_open,
2466 	.read   = seq_read,
2467 	.llseek = seq_lseek,
2468 	.release = seq_release_net,
2469 };
2470 
2471 struct fib_route_iter {
2472 	struct seq_net_private p;
2473 	struct fib_table *main_tb;
2474 	struct key_vector *tnode;
2475 	loff_t	pos;
2476 	t_key	key;
2477 };
2478 
2479 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2480 					    loff_t pos)
2481 {
2482 	struct key_vector *l, **tp = &iter->tnode;
2483 	t_key key;
2484 
2485 	/* use cached location of previously found key */
2486 	if (iter->pos > 0 && pos >= iter->pos) {
2487 		key = iter->key;
2488 	} else {
2489 		iter->pos = 1;
2490 		key = 0;
2491 	}
2492 
2493 	pos -= iter->pos;
2494 
2495 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2496 		key = l->key + 1;
2497 		iter->pos++;
2498 		l = NULL;
2499 
2500 		/* handle unlikely case of a key wrap */
2501 		if (!key)
2502 			break;
2503 	}
2504 
2505 	if (l)
2506 		iter->key = l->key;	/* remember it */
2507 	else
2508 		iter->pos = 0;		/* forget it */
2509 
2510 	return l;
2511 }
2512 
2513 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2514 	__acquires(RCU)
2515 {
2516 	struct fib_route_iter *iter = seq->private;
2517 	struct fib_table *tb;
2518 	struct trie *t;
2519 
2520 	rcu_read_lock();
2521 
2522 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2523 	if (!tb)
2524 		return NULL;
2525 
2526 	iter->main_tb = tb;
2527 	t = (struct trie *)tb->tb_data;
2528 	iter->tnode = t->kv;
2529 
2530 	if (*pos != 0)
2531 		return fib_route_get_idx(iter, *pos);
2532 
2533 	iter->pos = 0;
2534 	iter->key = KEY_MAX;
2535 
2536 	return SEQ_START_TOKEN;
2537 }
2538 
2539 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2540 {
2541 	struct fib_route_iter *iter = seq->private;
2542 	struct key_vector *l = NULL;
2543 	t_key key = iter->key + 1;
2544 
2545 	++*pos;
2546 
2547 	/* only allow key of 0 for start of sequence */
2548 	if ((v == SEQ_START_TOKEN) || key)
2549 		l = leaf_walk_rcu(&iter->tnode, key);
2550 
2551 	if (l) {
2552 		iter->key = l->key;
2553 		iter->pos++;
2554 	} else {
2555 		iter->pos = 0;
2556 	}
2557 
2558 	return l;
2559 }
2560 
2561 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2562 	__releases(RCU)
2563 {
2564 	rcu_read_unlock();
2565 }
2566 
2567 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2568 {
2569 	unsigned int flags = 0;
2570 
2571 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2572 		flags = RTF_REJECT;
2573 	if (fi && fi->fib_nh->nh_gw)
2574 		flags |= RTF_GATEWAY;
2575 	if (mask == htonl(0xFFFFFFFF))
2576 		flags |= RTF_HOST;
2577 	flags |= RTF_UP;
2578 	return flags;
2579 }
2580 
2581 /*
2582  *	This outputs /proc/net/route.
2583  *	The format of the file is not supposed to be changed
2584  *	and needs to be same as fib_hash output to avoid breaking
2585  *	legacy utilities
2586  */
2587 static int fib_route_seq_show(struct seq_file *seq, void *v)
2588 {
2589 	struct fib_route_iter *iter = seq->private;
2590 	struct fib_table *tb = iter->main_tb;
2591 	struct fib_alias *fa;
2592 	struct key_vector *l = v;
2593 	__be32 prefix;
2594 
2595 	if (v == SEQ_START_TOKEN) {
2596 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2597 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2598 			   "\tWindow\tIRTT");
2599 		return 0;
2600 	}
2601 
2602 	prefix = htonl(l->key);
2603 
2604 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2605 		const struct fib_info *fi = fa->fa_info;
2606 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2607 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2608 
2609 		if ((fa->fa_type == RTN_BROADCAST) ||
2610 		    (fa->fa_type == RTN_MULTICAST))
2611 			continue;
2612 
2613 		if (fa->tb_id != tb->tb_id)
2614 			continue;
2615 
2616 		seq_setwidth(seq, 127);
2617 
2618 		if (fi)
2619 			seq_printf(seq,
2620 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2621 				   "%d\t%08X\t%d\t%u\t%u",
2622 				   fi->fib_dev ? fi->fib_dev->name : "*",
2623 				   prefix,
2624 				   fi->fib_nh->nh_gw, flags, 0, 0,
2625 				   fi->fib_priority,
2626 				   mask,
2627 				   (fi->fib_advmss ?
2628 				    fi->fib_advmss + 40 : 0),
2629 				   fi->fib_window,
2630 				   fi->fib_rtt >> 3);
2631 		else
2632 			seq_printf(seq,
2633 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2634 				   "%d\t%08X\t%d\t%u\t%u",
2635 				   prefix, 0, flags, 0, 0, 0,
2636 				   mask, 0, 0, 0);
2637 
2638 		seq_pad(seq, '\n');
2639 	}
2640 
2641 	return 0;
2642 }
2643 
2644 static const struct seq_operations fib_route_seq_ops = {
2645 	.start  = fib_route_seq_start,
2646 	.next   = fib_route_seq_next,
2647 	.stop   = fib_route_seq_stop,
2648 	.show   = fib_route_seq_show,
2649 };
2650 
2651 static int fib_route_seq_open(struct inode *inode, struct file *file)
2652 {
2653 	return seq_open_net(inode, file, &fib_route_seq_ops,
2654 			    sizeof(struct fib_route_iter));
2655 }
2656 
2657 static const struct file_operations fib_route_fops = {
2658 	.owner  = THIS_MODULE,
2659 	.open   = fib_route_seq_open,
2660 	.read   = seq_read,
2661 	.llseek = seq_lseek,
2662 	.release = seq_release_net,
2663 };
2664 
2665 int __net_init fib_proc_init(struct net *net)
2666 {
2667 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2668 		goto out1;
2669 
2670 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2671 			 &fib_triestat_fops))
2672 		goto out2;
2673 
2674 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2675 		goto out3;
2676 
2677 	return 0;
2678 
2679 out3:
2680 	remove_proc_entry("fib_triestat", net->proc_net);
2681 out2:
2682 	remove_proc_entry("fib_trie", net->proc_net);
2683 out1:
2684 	return -ENOMEM;
2685 }
2686 
2687 void __net_exit fib_proc_exit(struct net *net)
2688 {
2689 	remove_proc_entry("fib_trie", net->proc_net);
2690 	remove_proc_entry("fib_triestat", net->proc_net);
2691 	remove_proc_entry("route", net->proc_net);
2692 }
2693 
2694 #endif /* CONFIG_PROC_FS */
2695