1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 static BLOCKING_NOTIFIER_HEAD(fib_chain); 88 89 int register_fib_notifier(struct notifier_block *nb) 90 { 91 return blocking_notifier_chain_register(&fib_chain, nb); 92 } 93 EXPORT_SYMBOL(register_fib_notifier); 94 95 int unregister_fib_notifier(struct notifier_block *nb) 96 { 97 return blocking_notifier_chain_unregister(&fib_chain, nb); 98 } 99 EXPORT_SYMBOL(unregister_fib_notifier); 100 101 int call_fib_notifiers(struct net *net, enum fib_event_type event_type, 102 struct fib_notifier_info *info) 103 { 104 info->net = net; 105 return blocking_notifier_call_chain(&fib_chain, event_type, info); 106 } 107 108 static int call_fib_entry_notifiers(struct net *net, 109 enum fib_event_type event_type, u32 dst, 110 int dst_len, struct fib_info *fi, 111 u8 tos, u8 type, u32 tb_id, u32 nlflags) 112 { 113 struct fib_entry_notifier_info info = { 114 .dst = dst, 115 .dst_len = dst_len, 116 .fi = fi, 117 .tos = tos, 118 .type = type, 119 .tb_id = tb_id, 120 .nlflags = nlflags, 121 }; 122 return call_fib_notifiers(net, event_type, &info.info); 123 } 124 125 #define MAX_STAT_DEPTH 32 126 127 #define KEYLENGTH (8*sizeof(t_key)) 128 #define KEY_MAX ((t_key)~0) 129 130 typedef unsigned int t_key; 131 132 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 133 #define IS_TNODE(n) ((n)->bits) 134 #define IS_LEAF(n) (!(n)->bits) 135 136 struct key_vector { 137 t_key key; 138 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 139 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 140 unsigned char slen; 141 union { 142 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 143 struct hlist_head leaf; 144 /* This array is valid if (pos | bits) > 0 (TNODE) */ 145 struct key_vector __rcu *tnode[0]; 146 }; 147 }; 148 149 struct tnode { 150 struct rcu_head rcu; 151 t_key empty_children; /* KEYLENGTH bits needed */ 152 t_key full_children; /* KEYLENGTH bits needed */ 153 struct key_vector __rcu *parent; 154 struct key_vector kv[1]; 155 #define tn_bits kv[0].bits 156 }; 157 158 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 159 #define LEAF_SIZE TNODE_SIZE(1) 160 161 #ifdef CONFIG_IP_FIB_TRIE_STATS 162 struct trie_use_stats { 163 unsigned int gets; 164 unsigned int backtrack; 165 unsigned int semantic_match_passed; 166 unsigned int semantic_match_miss; 167 unsigned int null_node_hit; 168 unsigned int resize_node_skipped; 169 }; 170 #endif 171 172 struct trie_stat { 173 unsigned int totdepth; 174 unsigned int maxdepth; 175 unsigned int tnodes; 176 unsigned int leaves; 177 unsigned int nullpointers; 178 unsigned int prefixes; 179 unsigned int nodesizes[MAX_STAT_DEPTH]; 180 }; 181 182 struct trie { 183 struct key_vector kv[1]; 184 #ifdef CONFIG_IP_FIB_TRIE_STATS 185 struct trie_use_stats __percpu *stats; 186 #endif 187 }; 188 189 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 190 static size_t tnode_free_size; 191 192 /* 193 * synchronize_rcu after call_rcu for that many pages; it should be especially 194 * useful before resizing the root node with PREEMPT_NONE configs; the value was 195 * obtained experimentally, aiming to avoid visible slowdown. 196 */ 197 static const int sync_pages = 128; 198 199 static struct kmem_cache *fn_alias_kmem __read_mostly; 200 static struct kmem_cache *trie_leaf_kmem __read_mostly; 201 202 static inline struct tnode *tn_info(struct key_vector *kv) 203 { 204 return container_of(kv, struct tnode, kv[0]); 205 } 206 207 /* caller must hold RTNL */ 208 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 209 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 210 211 /* caller must hold RCU read lock or RTNL */ 212 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 213 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 214 215 /* wrapper for rcu_assign_pointer */ 216 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 217 { 218 if (n) 219 rcu_assign_pointer(tn_info(n)->parent, tp); 220 } 221 222 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 223 224 /* This provides us with the number of children in this node, in the case of a 225 * leaf this will return 0 meaning none of the children are accessible. 226 */ 227 static inline unsigned long child_length(const struct key_vector *tn) 228 { 229 return (1ul << tn->bits) & ~(1ul); 230 } 231 232 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 233 234 static inline unsigned long get_index(t_key key, struct key_vector *kv) 235 { 236 unsigned long index = key ^ kv->key; 237 238 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 239 return 0; 240 241 return index >> kv->pos; 242 } 243 244 /* To understand this stuff, an understanding of keys and all their bits is 245 * necessary. Every node in the trie has a key associated with it, but not 246 * all of the bits in that key are significant. 247 * 248 * Consider a node 'n' and its parent 'tp'. 249 * 250 * If n is a leaf, every bit in its key is significant. Its presence is 251 * necessitated by path compression, since during a tree traversal (when 252 * searching for a leaf - unless we are doing an insertion) we will completely 253 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 254 * a potentially successful search, that we have indeed been walking the 255 * correct key path. 256 * 257 * Note that we can never "miss" the correct key in the tree if present by 258 * following the wrong path. Path compression ensures that segments of the key 259 * that are the same for all keys with a given prefix are skipped, but the 260 * skipped part *is* identical for each node in the subtrie below the skipped 261 * bit! trie_insert() in this implementation takes care of that. 262 * 263 * if n is an internal node - a 'tnode' here, the various parts of its key 264 * have many different meanings. 265 * 266 * Example: 267 * _________________________________________________________________ 268 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 269 * ----------------------------------------------------------------- 270 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 271 * 272 * _________________________________________________________________ 273 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 274 * ----------------------------------------------------------------- 275 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 276 * 277 * tp->pos = 22 278 * tp->bits = 3 279 * n->pos = 13 280 * n->bits = 4 281 * 282 * First, let's just ignore the bits that come before the parent tp, that is 283 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 284 * point we do not use them for anything. 285 * 286 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 287 * index into the parent's child array. That is, they will be used to find 288 * 'n' among tp's children. 289 * 290 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 291 * for the node n. 292 * 293 * All the bits we have seen so far are significant to the node n. The rest 294 * of the bits are really not needed or indeed known in n->key. 295 * 296 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 297 * n's child array, and will of course be different for each child. 298 * 299 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 300 * at this point. 301 */ 302 303 static const int halve_threshold = 25; 304 static const int inflate_threshold = 50; 305 static const int halve_threshold_root = 15; 306 static const int inflate_threshold_root = 30; 307 308 static void __alias_free_mem(struct rcu_head *head) 309 { 310 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 311 kmem_cache_free(fn_alias_kmem, fa); 312 } 313 314 static inline void alias_free_mem_rcu(struct fib_alias *fa) 315 { 316 call_rcu(&fa->rcu, __alias_free_mem); 317 } 318 319 #define TNODE_KMALLOC_MAX \ 320 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 321 #define TNODE_VMALLOC_MAX \ 322 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 323 324 static void __node_free_rcu(struct rcu_head *head) 325 { 326 struct tnode *n = container_of(head, struct tnode, rcu); 327 328 if (!n->tn_bits) 329 kmem_cache_free(trie_leaf_kmem, n); 330 else 331 kvfree(n); 332 } 333 334 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 335 336 static struct tnode *tnode_alloc(int bits) 337 { 338 size_t size; 339 340 /* verify bits is within bounds */ 341 if (bits > TNODE_VMALLOC_MAX) 342 return NULL; 343 344 /* determine size and verify it is non-zero and didn't overflow */ 345 size = TNODE_SIZE(1ul << bits); 346 347 if (size <= PAGE_SIZE) 348 return kzalloc(size, GFP_KERNEL); 349 else 350 return vzalloc(size); 351 } 352 353 static inline void empty_child_inc(struct key_vector *n) 354 { 355 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 356 } 357 358 static inline void empty_child_dec(struct key_vector *n) 359 { 360 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 361 } 362 363 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 364 { 365 struct key_vector *l; 366 struct tnode *kv; 367 368 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 369 if (!kv) 370 return NULL; 371 372 /* initialize key vector */ 373 l = kv->kv; 374 l->key = key; 375 l->pos = 0; 376 l->bits = 0; 377 l->slen = fa->fa_slen; 378 379 /* link leaf to fib alias */ 380 INIT_HLIST_HEAD(&l->leaf); 381 hlist_add_head(&fa->fa_list, &l->leaf); 382 383 return l; 384 } 385 386 static struct key_vector *tnode_new(t_key key, int pos, int bits) 387 { 388 unsigned int shift = pos + bits; 389 struct key_vector *tn; 390 struct tnode *tnode; 391 392 /* verify bits and pos their msb bits clear and values are valid */ 393 BUG_ON(!bits || (shift > KEYLENGTH)); 394 395 tnode = tnode_alloc(bits); 396 if (!tnode) 397 return NULL; 398 399 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 400 sizeof(struct key_vector *) << bits); 401 402 if (bits == KEYLENGTH) 403 tnode->full_children = 1; 404 else 405 tnode->empty_children = 1ul << bits; 406 407 tn = tnode->kv; 408 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 409 tn->pos = pos; 410 tn->bits = bits; 411 tn->slen = pos; 412 413 return tn; 414 } 415 416 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 417 * and no bits are skipped. See discussion in dyntree paper p. 6 418 */ 419 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 420 { 421 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 422 } 423 424 /* Add a child at position i overwriting the old value. 425 * Update the value of full_children and empty_children. 426 */ 427 static void put_child(struct key_vector *tn, unsigned long i, 428 struct key_vector *n) 429 { 430 struct key_vector *chi = get_child(tn, i); 431 int isfull, wasfull; 432 433 BUG_ON(i >= child_length(tn)); 434 435 /* update emptyChildren, overflow into fullChildren */ 436 if (!n && chi) 437 empty_child_inc(tn); 438 if (n && !chi) 439 empty_child_dec(tn); 440 441 /* update fullChildren */ 442 wasfull = tnode_full(tn, chi); 443 isfull = tnode_full(tn, n); 444 445 if (wasfull && !isfull) 446 tn_info(tn)->full_children--; 447 else if (!wasfull && isfull) 448 tn_info(tn)->full_children++; 449 450 if (n && (tn->slen < n->slen)) 451 tn->slen = n->slen; 452 453 rcu_assign_pointer(tn->tnode[i], n); 454 } 455 456 static void update_children(struct key_vector *tn) 457 { 458 unsigned long i; 459 460 /* update all of the child parent pointers */ 461 for (i = child_length(tn); i;) { 462 struct key_vector *inode = get_child(tn, --i); 463 464 if (!inode) 465 continue; 466 467 /* Either update the children of a tnode that 468 * already belongs to us or update the child 469 * to point to ourselves. 470 */ 471 if (node_parent(inode) == tn) 472 update_children(inode); 473 else 474 node_set_parent(inode, tn); 475 } 476 } 477 478 static inline void put_child_root(struct key_vector *tp, t_key key, 479 struct key_vector *n) 480 { 481 if (IS_TRIE(tp)) 482 rcu_assign_pointer(tp->tnode[0], n); 483 else 484 put_child(tp, get_index(key, tp), n); 485 } 486 487 static inline void tnode_free_init(struct key_vector *tn) 488 { 489 tn_info(tn)->rcu.next = NULL; 490 } 491 492 static inline void tnode_free_append(struct key_vector *tn, 493 struct key_vector *n) 494 { 495 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 496 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 497 } 498 499 static void tnode_free(struct key_vector *tn) 500 { 501 struct callback_head *head = &tn_info(tn)->rcu; 502 503 while (head) { 504 head = head->next; 505 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 506 node_free(tn); 507 508 tn = container_of(head, struct tnode, rcu)->kv; 509 } 510 511 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 512 tnode_free_size = 0; 513 synchronize_rcu(); 514 } 515 } 516 517 static struct key_vector *replace(struct trie *t, 518 struct key_vector *oldtnode, 519 struct key_vector *tn) 520 { 521 struct key_vector *tp = node_parent(oldtnode); 522 unsigned long i; 523 524 /* setup the parent pointer out of and back into this node */ 525 NODE_INIT_PARENT(tn, tp); 526 put_child_root(tp, tn->key, tn); 527 528 /* update all of the child parent pointers */ 529 update_children(tn); 530 531 /* all pointers should be clean so we are done */ 532 tnode_free(oldtnode); 533 534 /* resize children now that oldtnode is freed */ 535 for (i = child_length(tn); i;) { 536 struct key_vector *inode = get_child(tn, --i); 537 538 /* resize child node */ 539 if (tnode_full(tn, inode)) 540 tn = resize(t, inode); 541 } 542 543 return tp; 544 } 545 546 static struct key_vector *inflate(struct trie *t, 547 struct key_vector *oldtnode) 548 { 549 struct key_vector *tn; 550 unsigned long i; 551 t_key m; 552 553 pr_debug("In inflate\n"); 554 555 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 556 if (!tn) 557 goto notnode; 558 559 /* prepare oldtnode to be freed */ 560 tnode_free_init(oldtnode); 561 562 /* Assemble all of the pointers in our cluster, in this case that 563 * represents all of the pointers out of our allocated nodes that 564 * point to existing tnodes and the links between our allocated 565 * nodes. 566 */ 567 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 568 struct key_vector *inode = get_child(oldtnode, --i); 569 struct key_vector *node0, *node1; 570 unsigned long j, k; 571 572 /* An empty child */ 573 if (!inode) 574 continue; 575 576 /* A leaf or an internal node with skipped bits */ 577 if (!tnode_full(oldtnode, inode)) { 578 put_child(tn, get_index(inode->key, tn), inode); 579 continue; 580 } 581 582 /* drop the node in the old tnode free list */ 583 tnode_free_append(oldtnode, inode); 584 585 /* An internal node with two children */ 586 if (inode->bits == 1) { 587 put_child(tn, 2 * i + 1, get_child(inode, 1)); 588 put_child(tn, 2 * i, get_child(inode, 0)); 589 continue; 590 } 591 592 /* We will replace this node 'inode' with two new 593 * ones, 'node0' and 'node1', each with half of the 594 * original children. The two new nodes will have 595 * a position one bit further down the key and this 596 * means that the "significant" part of their keys 597 * (see the discussion near the top of this file) 598 * will differ by one bit, which will be "0" in 599 * node0's key and "1" in node1's key. Since we are 600 * moving the key position by one step, the bit that 601 * we are moving away from - the bit at position 602 * (tn->pos) - is the one that will differ between 603 * node0 and node1. So... we synthesize that bit in the 604 * two new keys. 605 */ 606 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 607 if (!node1) 608 goto nomem; 609 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 610 611 tnode_free_append(tn, node1); 612 if (!node0) 613 goto nomem; 614 tnode_free_append(tn, node0); 615 616 /* populate child pointers in new nodes */ 617 for (k = child_length(inode), j = k / 2; j;) { 618 put_child(node1, --j, get_child(inode, --k)); 619 put_child(node0, j, get_child(inode, j)); 620 put_child(node1, --j, get_child(inode, --k)); 621 put_child(node0, j, get_child(inode, j)); 622 } 623 624 /* link new nodes to parent */ 625 NODE_INIT_PARENT(node1, tn); 626 NODE_INIT_PARENT(node0, tn); 627 628 /* link parent to nodes */ 629 put_child(tn, 2 * i + 1, node1); 630 put_child(tn, 2 * i, node0); 631 } 632 633 /* setup the parent pointers into and out of this node */ 634 return replace(t, oldtnode, tn); 635 nomem: 636 /* all pointers should be clean so we are done */ 637 tnode_free(tn); 638 notnode: 639 return NULL; 640 } 641 642 static struct key_vector *halve(struct trie *t, 643 struct key_vector *oldtnode) 644 { 645 struct key_vector *tn; 646 unsigned long i; 647 648 pr_debug("In halve\n"); 649 650 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 651 if (!tn) 652 goto notnode; 653 654 /* prepare oldtnode to be freed */ 655 tnode_free_init(oldtnode); 656 657 /* Assemble all of the pointers in our cluster, in this case that 658 * represents all of the pointers out of our allocated nodes that 659 * point to existing tnodes and the links between our allocated 660 * nodes. 661 */ 662 for (i = child_length(oldtnode); i;) { 663 struct key_vector *node1 = get_child(oldtnode, --i); 664 struct key_vector *node0 = get_child(oldtnode, --i); 665 struct key_vector *inode; 666 667 /* At least one of the children is empty */ 668 if (!node1 || !node0) { 669 put_child(tn, i / 2, node1 ? : node0); 670 continue; 671 } 672 673 /* Two nonempty children */ 674 inode = tnode_new(node0->key, oldtnode->pos, 1); 675 if (!inode) 676 goto nomem; 677 tnode_free_append(tn, inode); 678 679 /* initialize pointers out of node */ 680 put_child(inode, 1, node1); 681 put_child(inode, 0, node0); 682 NODE_INIT_PARENT(inode, tn); 683 684 /* link parent to node */ 685 put_child(tn, i / 2, inode); 686 } 687 688 /* setup the parent pointers into and out of this node */ 689 return replace(t, oldtnode, tn); 690 nomem: 691 /* all pointers should be clean so we are done */ 692 tnode_free(tn); 693 notnode: 694 return NULL; 695 } 696 697 static struct key_vector *collapse(struct trie *t, 698 struct key_vector *oldtnode) 699 { 700 struct key_vector *n, *tp; 701 unsigned long i; 702 703 /* scan the tnode looking for that one child that might still exist */ 704 for (n = NULL, i = child_length(oldtnode); !n && i;) 705 n = get_child(oldtnode, --i); 706 707 /* compress one level */ 708 tp = node_parent(oldtnode); 709 put_child_root(tp, oldtnode->key, n); 710 node_set_parent(n, tp); 711 712 /* drop dead node */ 713 node_free(oldtnode); 714 715 return tp; 716 } 717 718 static unsigned char update_suffix(struct key_vector *tn) 719 { 720 unsigned char slen = tn->pos; 721 unsigned long stride, i; 722 unsigned char slen_max; 723 724 /* only vector 0 can have a suffix length greater than or equal to 725 * tn->pos + tn->bits, the second highest node will have a suffix 726 * length at most of tn->pos + tn->bits - 1 727 */ 728 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 729 730 /* search though the list of children looking for nodes that might 731 * have a suffix greater than the one we currently have. This is 732 * why we start with a stride of 2 since a stride of 1 would 733 * represent the nodes with suffix length equal to tn->pos 734 */ 735 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 736 struct key_vector *n = get_child(tn, i); 737 738 if (!n || (n->slen <= slen)) 739 continue; 740 741 /* update stride and slen based on new value */ 742 stride <<= (n->slen - slen); 743 slen = n->slen; 744 i &= ~(stride - 1); 745 746 /* stop searching if we have hit the maximum possible value */ 747 if (slen >= slen_max) 748 break; 749 } 750 751 tn->slen = slen; 752 753 return slen; 754 } 755 756 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 757 * the Helsinki University of Technology and Matti Tikkanen of Nokia 758 * Telecommunications, page 6: 759 * "A node is doubled if the ratio of non-empty children to all 760 * children in the *doubled* node is at least 'high'." 761 * 762 * 'high' in this instance is the variable 'inflate_threshold'. It 763 * is expressed as a percentage, so we multiply it with 764 * child_length() and instead of multiplying by 2 (since the 765 * child array will be doubled by inflate()) and multiplying 766 * the left-hand side by 100 (to handle the percentage thing) we 767 * multiply the left-hand side by 50. 768 * 769 * The left-hand side may look a bit weird: child_length(tn) 770 * - tn->empty_children is of course the number of non-null children 771 * in the current node. tn->full_children is the number of "full" 772 * children, that is non-null tnodes with a skip value of 0. 773 * All of those will be doubled in the resulting inflated tnode, so 774 * we just count them one extra time here. 775 * 776 * A clearer way to write this would be: 777 * 778 * to_be_doubled = tn->full_children; 779 * not_to_be_doubled = child_length(tn) - tn->empty_children - 780 * tn->full_children; 781 * 782 * new_child_length = child_length(tn) * 2; 783 * 784 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 785 * new_child_length; 786 * if (new_fill_factor >= inflate_threshold) 787 * 788 * ...and so on, tho it would mess up the while () loop. 789 * 790 * anyway, 791 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 792 * inflate_threshold 793 * 794 * avoid a division: 795 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 796 * inflate_threshold * new_child_length 797 * 798 * expand not_to_be_doubled and to_be_doubled, and shorten: 799 * 100 * (child_length(tn) - tn->empty_children + 800 * tn->full_children) >= inflate_threshold * new_child_length 801 * 802 * expand new_child_length: 803 * 100 * (child_length(tn) - tn->empty_children + 804 * tn->full_children) >= 805 * inflate_threshold * child_length(tn) * 2 806 * 807 * shorten again: 808 * 50 * (tn->full_children + child_length(tn) - 809 * tn->empty_children) >= inflate_threshold * 810 * child_length(tn) 811 * 812 */ 813 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 814 { 815 unsigned long used = child_length(tn); 816 unsigned long threshold = used; 817 818 /* Keep root node larger */ 819 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 820 used -= tn_info(tn)->empty_children; 821 used += tn_info(tn)->full_children; 822 823 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 824 825 return (used > 1) && tn->pos && ((50 * used) >= threshold); 826 } 827 828 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 829 { 830 unsigned long used = child_length(tn); 831 unsigned long threshold = used; 832 833 /* Keep root node larger */ 834 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 835 used -= tn_info(tn)->empty_children; 836 837 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 838 839 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 840 } 841 842 static inline bool should_collapse(struct key_vector *tn) 843 { 844 unsigned long used = child_length(tn); 845 846 used -= tn_info(tn)->empty_children; 847 848 /* account for bits == KEYLENGTH case */ 849 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 850 used -= KEY_MAX; 851 852 /* One child or none, time to drop us from the trie */ 853 return used < 2; 854 } 855 856 #define MAX_WORK 10 857 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 858 { 859 #ifdef CONFIG_IP_FIB_TRIE_STATS 860 struct trie_use_stats __percpu *stats = t->stats; 861 #endif 862 struct key_vector *tp = node_parent(tn); 863 unsigned long cindex = get_index(tn->key, tp); 864 int max_work = MAX_WORK; 865 866 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 867 tn, inflate_threshold, halve_threshold); 868 869 /* track the tnode via the pointer from the parent instead of 870 * doing it ourselves. This way we can let RCU fully do its 871 * thing without us interfering 872 */ 873 BUG_ON(tn != get_child(tp, cindex)); 874 875 /* Double as long as the resulting node has a number of 876 * nonempty nodes that are above the threshold. 877 */ 878 while (should_inflate(tp, tn) && max_work) { 879 tp = inflate(t, tn); 880 if (!tp) { 881 #ifdef CONFIG_IP_FIB_TRIE_STATS 882 this_cpu_inc(stats->resize_node_skipped); 883 #endif 884 break; 885 } 886 887 max_work--; 888 tn = get_child(tp, cindex); 889 } 890 891 /* update parent in case inflate failed */ 892 tp = node_parent(tn); 893 894 /* Return if at least one inflate is run */ 895 if (max_work != MAX_WORK) 896 return tp; 897 898 /* Halve as long as the number of empty children in this 899 * node is above threshold. 900 */ 901 while (should_halve(tp, tn) && max_work) { 902 tp = halve(t, tn); 903 if (!tp) { 904 #ifdef CONFIG_IP_FIB_TRIE_STATS 905 this_cpu_inc(stats->resize_node_skipped); 906 #endif 907 break; 908 } 909 910 max_work--; 911 tn = get_child(tp, cindex); 912 } 913 914 /* Only one child remains */ 915 if (should_collapse(tn)) 916 return collapse(t, tn); 917 918 /* update parent in case halve failed */ 919 return node_parent(tn); 920 } 921 922 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 923 { 924 unsigned char node_slen = tn->slen; 925 926 while ((node_slen > tn->pos) && (node_slen > slen)) { 927 slen = update_suffix(tn); 928 if (node_slen == slen) 929 break; 930 931 tn = node_parent(tn); 932 node_slen = tn->slen; 933 } 934 } 935 936 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 937 { 938 while (tn->slen < slen) { 939 tn->slen = slen; 940 tn = node_parent(tn); 941 } 942 } 943 944 /* rcu_read_lock needs to be hold by caller from readside */ 945 static struct key_vector *fib_find_node(struct trie *t, 946 struct key_vector **tp, u32 key) 947 { 948 struct key_vector *pn, *n = t->kv; 949 unsigned long index = 0; 950 951 do { 952 pn = n; 953 n = get_child_rcu(n, index); 954 955 if (!n) 956 break; 957 958 index = get_cindex(key, n); 959 960 /* This bit of code is a bit tricky but it combines multiple 961 * checks into a single check. The prefix consists of the 962 * prefix plus zeros for the bits in the cindex. The index 963 * is the difference between the key and this value. From 964 * this we can actually derive several pieces of data. 965 * if (index >= (1ul << bits)) 966 * we have a mismatch in skip bits and failed 967 * else 968 * we know the value is cindex 969 * 970 * This check is safe even if bits == KEYLENGTH due to the 971 * fact that we can only allocate a node with 32 bits if a 972 * long is greater than 32 bits. 973 */ 974 if (index >= (1ul << n->bits)) { 975 n = NULL; 976 break; 977 } 978 979 /* keep searching until we find a perfect match leaf or NULL */ 980 } while (IS_TNODE(n)); 981 982 *tp = pn; 983 984 return n; 985 } 986 987 /* Return the first fib alias matching TOS with 988 * priority less than or equal to PRIO. 989 */ 990 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 991 u8 tos, u32 prio, u32 tb_id) 992 { 993 struct fib_alias *fa; 994 995 if (!fah) 996 return NULL; 997 998 hlist_for_each_entry(fa, fah, fa_list) { 999 if (fa->fa_slen < slen) 1000 continue; 1001 if (fa->fa_slen != slen) 1002 break; 1003 if (fa->tb_id > tb_id) 1004 continue; 1005 if (fa->tb_id != tb_id) 1006 break; 1007 if (fa->fa_tos > tos) 1008 continue; 1009 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1010 return fa; 1011 } 1012 1013 return NULL; 1014 } 1015 1016 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1017 { 1018 while (!IS_TRIE(tn)) 1019 tn = resize(t, tn); 1020 } 1021 1022 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1023 struct fib_alias *new, t_key key) 1024 { 1025 struct key_vector *n, *l; 1026 1027 l = leaf_new(key, new); 1028 if (!l) 1029 goto noleaf; 1030 1031 /* retrieve child from parent node */ 1032 n = get_child(tp, get_index(key, tp)); 1033 1034 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1035 * 1036 * Add a new tnode here 1037 * first tnode need some special handling 1038 * leaves us in position for handling as case 3 1039 */ 1040 if (n) { 1041 struct key_vector *tn; 1042 1043 tn = tnode_new(key, __fls(key ^ n->key), 1); 1044 if (!tn) 1045 goto notnode; 1046 1047 /* initialize routes out of node */ 1048 NODE_INIT_PARENT(tn, tp); 1049 put_child(tn, get_index(key, tn) ^ 1, n); 1050 1051 /* start adding routes into the node */ 1052 put_child_root(tp, key, tn); 1053 node_set_parent(n, tn); 1054 1055 /* parent now has a NULL spot where the leaf can go */ 1056 tp = tn; 1057 } 1058 1059 /* Case 3: n is NULL, and will just insert a new leaf */ 1060 node_push_suffix(tp, new->fa_slen); 1061 NODE_INIT_PARENT(l, tp); 1062 put_child_root(tp, key, l); 1063 trie_rebalance(t, tp); 1064 1065 return 0; 1066 notnode: 1067 node_free(l); 1068 noleaf: 1069 return -ENOMEM; 1070 } 1071 1072 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1073 struct key_vector *l, struct fib_alias *new, 1074 struct fib_alias *fa, t_key key) 1075 { 1076 if (!l) 1077 return fib_insert_node(t, tp, new, key); 1078 1079 if (fa) { 1080 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1081 } else { 1082 struct fib_alias *last; 1083 1084 hlist_for_each_entry(last, &l->leaf, fa_list) { 1085 if (new->fa_slen < last->fa_slen) 1086 break; 1087 if ((new->fa_slen == last->fa_slen) && 1088 (new->tb_id > last->tb_id)) 1089 break; 1090 fa = last; 1091 } 1092 1093 if (fa) 1094 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1095 else 1096 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1097 } 1098 1099 /* if we added to the tail node then we need to update slen */ 1100 if (l->slen < new->fa_slen) { 1101 l->slen = new->fa_slen; 1102 node_push_suffix(tp, new->fa_slen); 1103 } 1104 1105 return 0; 1106 } 1107 1108 /* Caller must hold RTNL. */ 1109 int fib_table_insert(struct net *net, struct fib_table *tb, 1110 struct fib_config *cfg) 1111 { 1112 struct trie *t = (struct trie *)tb->tb_data; 1113 struct fib_alias *fa, *new_fa; 1114 struct key_vector *l, *tp; 1115 u16 nlflags = NLM_F_EXCL; 1116 struct fib_info *fi; 1117 u8 plen = cfg->fc_dst_len; 1118 u8 slen = KEYLENGTH - plen; 1119 u8 tos = cfg->fc_tos; 1120 u32 key; 1121 int err; 1122 1123 if (plen > KEYLENGTH) 1124 return -EINVAL; 1125 1126 key = ntohl(cfg->fc_dst); 1127 1128 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1129 1130 if ((plen < KEYLENGTH) && (key << plen)) 1131 return -EINVAL; 1132 1133 fi = fib_create_info(cfg); 1134 if (IS_ERR(fi)) { 1135 err = PTR_ERR(fi); 1136 goto err; 1137 } 1138 1139 l = fib_find_node(t, &tp, key); 1140 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1141 tb->tb_id) : NULL; 1142 1143 /* Now fa, if non-NULL, points to the first fib alias 1144 * with the same keys [prefix,tos,priority], if such key already 1145 * exists or to the node before which we will insert new one. 1146 * 1147 * If fa is NULL, we will need to allocate a new one and 1148 * insert to the tail of the section matching the suffix length 1149 * of the new alias. 1150 */ 1151 1152 if (fa && fa->fa_tos == tos && 1153 fa->fa_info->fib_priority == fi->fib_priority) { 1154 struct fib_alias *fa_first, *fa_match; 1155 1156 err = -EEXIST; 1157 if (cfg->fc_nlflags & NLM_F_EXCL) 1158 goto out; 1159 1160 nlflags &= ~NLM_F_EXCL; 1161 1162 /* We have 2 goals: 1163 * 1. Find exact match for type, scope, fib_info to avoid 1164 * duplicate routes 1165 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1166 */ 1167 fa_match = NULL; 1168 fa_first = fa; 1169 hlist_for_each_entry_from(fa, fa_list) { 1170 if ((fa->fa_slen != slen) || 1171 (fa->tb_id != tb->tb_id) || 1172 (fa->fa_tos != tos)) 1173 break; 1174 if (fa->fa_info->fib_priority != fi->fib_priority) 1175 break; 1176 if (fa->fa_type == cfg->fc_type && 1177 fa->fa_info == fi) { 1178 fa_match = fa; 1179 break; 1180 } 1181 } 1182 1183 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1184 struct fib_info *fi_drop; 1185 u8 state; 1186 1187 nlflags |= NLM_F_REPLACE; 1188 fa = fa_first; 1189 if (fa_match) { 1190 if (fa == fa_match) 1191 err = 0; 1192 goto out; 1193 } 1194 err = -ENOBUFS; 1195 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1196 if (!new_fa) 1197 goto out; 1198 1199 fi_drop = fa->fa_info; 1200 new_fa->fa_tos = fa->fa_tos; 1201 new_fa->fa_info = fi; 1202 new_fa->fa_type = cfg->fc_type; 1203 state = fa->fa_state; 1204 new_fa->fa_state = state & ~FA_S_ACCESSED; 1205 new_fa->fa_slen = fa->fa_slen; 1206 new_fa->tb_id = tb->tb_id; 1207 new_fa->fa_default = -1; 1208 1209 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1210 1211 alias_free_mem_rcu(fa); 1212 1213 fib_release_info(fi_drop); 1214 if (state & FA_S_ACCESSED) 1215 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1216 1217 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, 1218 key, plen, fi, 1219 new_fa->fa_tos, cfg->fc_type, 1220 tb->tb_id, cfg->fc_nlflags); 1221 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1222 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1223 1224 goto succeeded; 1225 } 1226 /* Error if we find a perfect match which 1227 * uses the same scope, type, and nexthop 1228 * information. 1229 */ 1230 if (fa_match) 1231 goto out; 1232 1233 if (cfg->fc_nlflags & NLM_F_APPEND) 1234 nlflags |= NLM_F_APPEND; 1235 else 1236 fa = fa_first; 1237 } 1238 err = -ENOENT; 1239 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1240 goto out; 1241 1242 nlflags |= NLM_F_CREATE; 1243 err = -ENOBUFS; 1244 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1245 if (!new_fa) 1246 goto out; 1247 1248 new_fa->fa_info = fi; 1249 new_fa->fa_tos = tos; 1250 new_fa->fa_type = cfg->fc_type; 1251 new_fa->fa_state = 0; 1252 new_fa->fa_slen = slen; 1253 new_fa->tb_id = tb->tb_id; 1254 new_fa->fa_default = -1; 1255 1256 /* Insert new entry to the list. */ 1257 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1258 if (err) 1259 goto out_free_new_fa; 1260 1261 if (!plen) 1262 tb->tb_num_default++; 1263 1264 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1265 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos, 1266 cfg->fc_type, tb->tb_id, cfg->fc_nlflags); 1267 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1268 &cfg->fc_nlinfo, nlflags); 1269 succeeded: 1270 return 0; 1271 1272 out_free_new_fa: 1273 kmem_cache_free(fn_alias_kmem, new_fa); 1274 out: 1275 fib_release_info(fi); 1276 err: 1277 return err; 1278 } 1279 1280 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1281 { 1282 t_key prefix = n->key; 1283 1284 return (key ^ prefix) & (prefix | -prefix); 1285 } 1286 1287 /* should be called with rcu_read_lock */ 1288 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1289 struct fib_result *res, int fib_flags) 1290 { 1291 struct trie *t = (struct trie *) tb->tb_data; 1292 #ifdef CONFIG_IP_FIB_TRIE_STATS 1293 struct trie_use_stats __percpu *stats = t->stats; 1294 #endif 1295 const t_key key = ntohl(flp->daddr); 1296 struct key_vector *n, *pn; 1297 struct fib_alias *fa; 1298 unsigned long index; 1299 t_key cindex; 1300 1301 trace_fib_table_lookup(tb->tb_id, flp); 1302 1303 pn = t->kv; 1304 cindex = 0; 1305 1306 n = get_child_rcu(pn, cindex); 1307 if (!n) 1308 return -EAGAIN; 1309 1310 #ifdef CONFIG_IP_FIB_TRIE_STATS 1311 this_cpu_inc(stats->gets); 1312 #endif 1313 1314 /* Step 1: Travel to the longest prefix match in the trie */ 1315 for (;;) { 1316 index = get_cindex(key, n); 1317 1318 /* This bit of code is a bit tricky but it combines multiple 1319 * checks into a single check. The prefix consists of the 1320 * prefix plus zeros for the "bits" in the prefix. The index 1321 * is the difference between the key and this value. From 1322 * this we can actually derive several pieces of data. 1323 * if (index >= (1ul << bits)) 1324 * we have a mismatch in skip bits and failed 1325 * else 1326 * we know the value is cindex 1327 * 1328 * This check is safe even if bits == KEYLENGTH due to the 1329 * fact that we can only allocate a node with 32 bits if a 1330 * long is greater than 32 bits. 1331 */ 1332 if (index >= (1ul << n->bits)) 1333 break; 1334 1335 /* we have found a leaf. Prefixes have already been compared */ 1336 if (IS_LEAF(n)) 1337 goto found; 1338 1339 /* only record pn and cindex if we are going to be chopping 1340 * bits later. Otherwise we are just wasting cycles. 1341 */ 1342 if (n->slen > n->pos) { 1343 pn = n; 1344 cindex = index; 1345 } 1346 1347 n = get_child_rcu(n, index); 1348 if (unlikely(!n)) 1349 goto backtrace; 1350 } 1351 1352 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1353 for (;;) { 1354 /* record the pointer where our next node pointer is stored */ 1355 struct key_vector __rcu **cptr = n->tnode; 1356 1357 /* This test verifies that none of the bits that differ 1358 * between the key and the prefix exist in the region of 1359 * the lsb and higher in the prefix. 1360 */ 1361 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1362 goto backtrace; 1363 1364 /* exit out and process leaf */ 1365 if (unlikely(IS_LEAF(n))) 1366 break; 1367 1368 /* Don't bother recording parent info. Since we are in 1369 * prefix match mode we will have to come back to wherever 1370 * we started this traversal anyway 1371 */ 1372 1373 while ((n = rcu_dereference(*cptr)) == NULL) { 1374 backtrace: 1375 #ifdef CONFIG_IP_FIB_TRIE_STATS 1376 if (!n) 1377 this_cpu_inc(stats->null_node_hit); 1378 #endif 1379 /* If we are at cindex 0 there are no more bits for 1380 * us to strip at this level so we must ascend back 1381 * up one level to see if there are any more bits to 1382 * be stripped there. 1383 */ 1384 while (!cindex) { 1385 t_key pkey = pn->key; 1386 1387 /* If we don't have a parent then there is 1388 * nothing for us to do as we do not have any 1389 * further nodes to parse. 1390 */ 1391 if (IS_TRIE(pn)) 1392 return -EAGAIN; 1393 #ifdef CONFIG_IP_FIB_TRIE_STATS 1394 this_cpu_inc(stats->backtrack); 1395 #endif 1396 /* Get Child's index */ 1397 pn = node_parent_rcu(pn); 1398 cindex = get_index(pkey, pn); 1399 } 1400 1401 /* strip the least significant bit from the cindex */ 1402 cindex &= cindex - 1; 1403 1404 /* grab pointer for next child node */ 1405 cptr = &pn->tnode[cindex]; 1406 } 1407 } 1408 1409 found: 1410 /* this line carries forward the xor from earlier in the function */ 1411 index = key ^ n->key; 1412 1413 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1414 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1415 struct fib_info *fi = fa->fa_info; 1416 int nhsel, err; 1417 1418 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1419 if (index >= (1ul << fa->fa_slen)) 1420 continue; 1421 } 1422 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1423 continue; 1424 if (fi->fib_dead) 1425 continue; 1426 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1427 continue; 1428 fib_alias_accessed(fa); 1429 err = fib_props[fa->fa_type].error; 1430 if (unlikely(err < 0)) { 1431 #ifdef CONFIG_IP_FIB_TRIE_STATS 1432 this_cpu_inc(stats->semantic_match_passed); 1433 #endif 1434 return err; 1435 } 1436 if (fi->fib_flags & RTNH_F_DEAD) 1437 continue; 1438 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1439 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1440 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1441 1442 if (nh->nh_flags & RTNH_F_DEAD) 1443 continue; 1444 if (in_dev && 1445 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1446 nh->nh_flags & RTNH_F_LINKDOWN && 1447 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1448 continue; 1449 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1450 if (flp->flowi4_oif && 1451 flp->flowi4_oif != nh->nh_oif) 1452 continue; 1453 } 1454 1455 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1456 atomic_inc(&fi->fib_clntref); 1457 1458 res->prefixlen = KEYLENGTH - fa->fa_slen; 1459 res->nh_sel = nhsel; 1460 res->type = fa->fa_type; 1461 res->scope = fi->fib_scope; 1462 res->fi = fi; 1463 res->table = tb; 1464 res->fa_head = &n->leaf; 1465 #ifdef CONFIG_IP_FIB_TRIE_STATS 1466 this_cpu_inc(stats->semantic_match_passed); 1467 #endif 1468 trace_fib_table_lookup_nh(nh); 1469 1470 return err; 1471 } 1472 } 1473 #ifdef CONFIG_IP_FIB_TRIE_STATS 1474 this_cpu_inc(stats->semantic_match_miss); 1475 #endif 1476 goto backtrace; 1477 } 1478 EXPORT_SYMBOL_GPL(fib_table_lookup); 1479 1480 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1481 struct key_vector *l, struct fib_alias *old) 1482 { 1483 /* record the location of the previous list_info entry */ 1484 struct hlist_node **pprev = old->fa_list.pprev; 1485 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1486 1487 /* remove the fib_alias from the list */ 1488 hlist_del_rcu(&old->fa_list); 1489 1490 /* if we emptied the list this leaf will be freed and we can sort 1491 * out parent suffix lengths as a part of trie_rebalance 1492 */ 1493 if (hlist_empty(&l->leaf)) { 1494 if (tp->slen == l->slen) 1495 node_pull_suffix(tp, tp->pos); 1496 put_child_root(tp, l->key, NULL); 1497 node_free(l); 1498 trie_rebalance(t, tp); 1499 return; 1500 } 1501 1502 /* only access fa if it is pointing at the last valid hlist_node */ 1503 if (*pprev) 1504 return; 1505 1506 /* update the trie with the latest suffix length */ 1507 l->slen = fa->fa_slen; 1508 node_pull_suffix(tp, fa->fa_slen); 1509 } 1510 1511 /* Caller must hold RTNL. */ 1512 int fib_table_delete(struct net *net, struct fib_table *tb, 1513 struct fib_config *cfg) 1514 { 1515 struct trie *t = (struct trie *) tb->tb_data; 1516 struct fib_alias *fa, *fa_to_delete; 1517 struct key_vector *l, *tp; 1518 u8 plen = cfg->fc_dst_len; 1519 u8 slen = KEYLENGTH - plen; 1520 u8 tos = cfg->fc_tos; 1521 u32 key; 1522 1523 if (plen > KEYLENGTH) 1524 return -EINVAL; 1525 1526 key = ntohl(cfg->fc_dst); 1527 1528 if ((plen < KEYLENGTH) && (key << plen)) 1529 return -EINVAL; 1530 1531 l = fib_find_node(t, &tp, key); 1532 if (!l) 1533 return -ESRCH; 1534 1535 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1536 if (!fa) 1537 return -ESRCH; 1538 1539 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1540 1541 fa_to_delete = NULL; 1542 hlist_for_each_entry_from(fa, fa_list) { 1543 struct fib_info *fi = fa->fa_info; 1544 1545 if ((fa->fa_slen != slen) || 1546 (fa->tb_id != tb->tb_id) || 1547 (fa->fa_tos != tos)) 1548 break; 1549 1550 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1551 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1552 fa->fa_info->fib_scope == cfg->fc_scope) && 1553 (!cfg->fc_prefsrc || 1554 fi->fib_prefsrc == cfg->fc_prefsrc) && 1555 (!cfg->fc_protocol || 1556 fi->fib_protocol == cfg->fc_protocol) && 1557 fib_nh_match(cfg, fi) == 0) { 1558 fa_to_delete = fa; 1559 break; 1560 } 1561 } 1562 1563 if (!fa_to_delete) 1564 return -ESRCH; 1565 1566 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1567 fa_to_delete->fa_info, tos, cfg->fc_type, 1568 tb->tb_id, 0); 1569 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1570 &cfg->fc_nlinfo, 0); 1571 1572 if (!plen) 1573 tb->tb_num_default--; 1574 1575 fib_remove_alias(t, tp, l, fa_to_delete); 1576 1577 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1578 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1579 1580 fib_release_info(fa_to_delete->fa_info); 1581 alias_free_mem_rcu(fa_to_delete); 1582 return 0; 1583 } 1584 1585 /* Scan for the next leaf starting at the provided key value */ 1586 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1587 { 1588 struct key_vector *pn, *n = *tn; 1589 unsigned long cindex; 1590 1591 /* this loop is meant to try and find the key in the trie */ 1592 do { 1593 /* record parent and next child index */ 1594 pn = n; 1595 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1596 1597 if (cindex >> pn->bits) 1598 break; 1599 1600 /* descend into the next child */ 1601 n = get_child_rcu(pn, cindex++); 1602 if (!n) 1603 break; 1604 1605 /* guarantee forward progress on the keys */ 1606 if (IS_LEAF(n) && (n->key >= key)) 1607 goto found; 1608 } while (IS_TNODE(n)); 1609 1610 /* this loop will search for the next leaf with a greater key */ 1611 while (!IS_TRIE(pn)) { 1612 /* if we exhausted the parent node we will need to climb */ 1613 if (cindex >= (1ul << pn->bits)) { 1614 t_key pkey = pn->key; 1615 1616 pn = node_parent_rcu(pn); 1617 cindex = get_index(pkey, pn) + 1; 1618 continue; 1619 } 1620 1621 /* grab the next available node */ 1622 n = get_child_rcu(pn, cindex++); 1623 if (!n) 1624 continue; 1625 1626 /* no need to compare keys since we bumped the index */ 1627 if (IS_LEAF(n)) 1628 goto found; 1629 1630 /* Rescan start scanning in new node */ 1631 pn = n; 1632 cindex = 0; 1633 } 1634 1635 *tn = pn; 1636 return NULL; /* Root of trie */ 1637 found: 1638 /* if we are at the limit for keys just return NULL for the tnode */ 1639 *tn = pn; 1640 return n; 1641 } 1642 1643 static void fib_trie_free(struct fib_table *tb) 1644 { 1645 struct trie *t = (struct trie *)tb->tb_data; 1646 struct key_vector *pn = t->kv; 1647 unsigned long cindex = 1; 1648 struct hlist_node *tmp; 1649 struct fib_alias *fa; 1650 1651 /* walk trie in reverse order and free everything */ 1652 for (;;) { 1653 struct key_vector *n; 1654 1655 if (!(cindex--)) { 1656 t_key pkey = pn->key; 1657 1658 if (IS_TRIE(pn)) 1659 break; 1660 1661 n = pn; 1662 pn = node_parent(pn); 1663 1664 /* drop emptied tnode */ 1665 put_child_root(pn, n->key, NULL); 1666 node_free(n); 1667 1668 cindex = get_index(pkey, pn); 1669 1670 continue; 1671 } 1672 1673 /* grab the next available node */ 1674 n = get_child(pn, cindex); 1675 if (!n) 1676 continue; 1677 1678 if (IS_TNODE(n)) { 1679 /* record pn and cindex for leaf walking */ 1680 pn = n; 1681 cindex = 1ul << n->bits; 1682 1683 continue; 1684 } 1685 1686 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1687 hlist_del_rcu(&fa->fa_list); 1688 alias_free_mem_rcu(fa); 1689 } 1690 1691 put_child_root(pn, n->key, NULL); 1692 node_free(n); 1693 } 1694 1695 #ifdef CONFIG_IP_FIB_TRIE_STATS 1696 free_percpu(t->stats); 1697 #endif 1698 kfree(tb); 1699 } 1700 1701 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1702 { 1703 struct trie *ot = (struct trie *)oldtb->tb_data; 1704 struct key_vector *l, *tp = ot->kv; 1705 struct fib_table *local_tb; 1706 struct fib_alias *fa; 1707 struct trie *lt; 1708 t_key key = 0; 1709 1710 if (oldtb->tb_data == oldtb->__data) 1711 return oldtb; 1712 1713 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1714 if (!local_tb) 1715 return NULL; 1716 1717 lt = (struct trie *)local_tb->tb_data; 1718 1719 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1720 struct key_vector *local_l = NULL, *local_tp; 1721 1722 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1723 struct fib_alias *new_fa; 1724 1725 if (local_tb->tb_id != fa->tb_id) 1726 continue; 1727 1728 /* clone fa for new local table */ 1729 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1730 if (!new_fa) 1731 goto out; 1732 1733 memcpy(new_fa, fa, sizeof(*fa)); 1734 1735 /* insert clone into table */ 1736 if (!local_l) 1737 local_l = fib_find_node(lt, &local_tp, l->key); 1738 1739 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1740 NULL, l->key)) { 1741 kmem_cache_free(fn_alias_kmem, new_fa); 1742 goto out; 1743 } 1744 } 1745 1746 /* stop loop if key wrapped back to 0 */ 1747 key = l->key + 1; 1748 if (key < l->key) 1749 break; 1750 } 1751 1752 return local_tb; 1753 out: 1754 fib_trie_free(local_tb); 1755 1756 return NULL; 1757 } 1758 1759 /* Caller must hold RTNL */ 1760 void fib_table_flush_external(struct fib_table *tb) 1761 { 1762 struct trie *t = (struct trie *)tb->tb_data; 1763 struct key_vector *pn = t->kv; 1764 unsigned long cindex = 1; 1765 struct hlist_node *tmp; 1766 struct fib_alias *fa; 1767 1768 /* walk trie in reverse order */ 1769 for (;;) { 1770 unsigned char slen = 0; 1771 struct key_vector *n; 1772 1773 if (!(cindex--)) { 1774 t_key pkey = pn->key; 1775 1776 /* cannot resize the trie vector */ 1777 if (IS_TRIE(pn)) 1778 break; 1779 1780 /* update the suffix to address pulled leaves */ 1781 if (pn->slen > pn->pos) 1782 update_suffix(pn); 1783 1784 /* resize completed node */ 1785 pn = resize(t, pn); 1786 cindex = get_index(pkey, pn); 1787 1788 continue; 1789 } 1790 1791 /* grab the next available node */ 1792 n = get_child(pn, cindex); 1793 if (!n) 1794 continue; 1795 1796 if (IS_TNODE(n)) { 1797 /* record pn and cindex for leaf walking */ 1798 pn = n; 1799 cindex = 1ul << n->bits; 1800 1801 continue; 1802 } 1803 1804 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1805 /* if alias was cloned to local then we just 1806 * need to remove the local copy from main 1807 */ 1808 if (tb->tb_id != fa->tb_id) { 1809 hlist_del_rcu(&fa->fa_list); 1810 alias_free_mem_rcu(fa); 1811 continue; 1812 } 1813 1814 /* record local slen */ 1815 slen = fa->fa_slen; 1816 } 1817 1818 /* update leaf slen */ 1819 n->slen = slen; 1820 1821 if (hlist_empty(&n->leaf)) { 1822 put_child_root(pn, n->key, NULL); 1823 node_free(n); 1824 } 1825 } 1826 } 1827 1828 /* Caller must hold RTNL. */ 1829 int fib_table_flush(struct net *net, struct fib_table *tb) 1830 { 1831 struct trie *t = (struct trie *)tb->tb_data; 1832 struct key_vector *pn = t->kv; 1833 unsigned long cindex = 1; 1834 struct hlist_node *tmp; 1835 struct fib_alias *fa; 1836 int found = 0; 1837 1838 /* walk trie in reverse order */ 1839 for (;;) { 1840 unsigned char slen = 0; 1841 struct key_vector *n; 1842 1843 if (!(cindex--)) { 1844 t_key pkey = pn->key; 1845 1846 /* cannot resize the trie vector */ 1847 if (IS_TRIE(pn)) 1848 break; 1849 1850 /* update the suffix to address pulled leaves */ 1851 if (pn->slen > pn->pos) 1852 update_suffix(pn); 1853 1854 /* resize completed node */ 1855 pn = resize(t, pn); 1856 cindex = get_index(pkey, pn); 1857 1858 continue; 1859 } 1860 1861 /* grab the next available node */ 1862 n = get_child(pn, cindex); 1863 if (!n) 1864 continue; 1865 1866 if (IS_TNODE(n)) { 1867 /* record pn and cindex for leaf walking */ 1868 pn = n; 1869 cindex = 1ul << n->bits; 1870 1871 continue; 1872 } 1873 1874 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1875 struct fib_info *fi = fa->fa_info; 1876 1877 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) { 1878 slen = fa->fa_slen; 1879 continue; 1880 } 1881 1882 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1883 n->key, 1884 KEYLENGTH - fa->fa_slen, 1885 fi, fa->fa_tos, fa->fa_type, 1886 tb->tb_id, 0); 1887 hlist_del_rcu(&fa->fa_list); 1888 fib_release_info(fa->fa_info); 1889 alias_free_mem_rcu(fa); 1890 found++; 1891 } 1892 1893 /* update leaf slen */ 1894 n->slen = slen; 1895 1896 if (hlist_empty(&n->leaf)) { 1897 put_child_root(pn, n->key, NULL); 1898 node_free(n); 1899 } 1900 } 1901 1902 pr_debug("trie_flush found=%d\n", found); 1903 return found; 1904 } 1905 1906 static void __trie_free_rcu(struct rcu_head *head) 1907 { 1908 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1909 #ifdef CONFIG_IP_FIB_TRIE_STATS 1910 struct trie *t = (struct trie *)tb->tb_data; 1911 1912 if (tb->tb_data == tb->__data) 1913 free_percpu(t->stats); 1914 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1915 kfree(tb); 1916 } 1917 1918 void fib_free_table(struct fib_table *tb) 1919 { 1920 call_rcu(&tb->rcu, __trie_free_rcu); 1921 } 1922 1923 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1924 struct sk_buff *skb, struct netlink_callback *cb) 1925 { 1926 __be32 xkey = htonl(l->key); 1927 struct fib_alias *fa; 1928 int i, s_i; 1929 1930 s_i = cb->args[4]; 1931 i = 0; 1932 1933 /* rcu_read_lock is hold by caller */ 1934 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1935 if (i < s_i) { 1936 i++; 1937 continue; 1938 } 1939 1940 if (tb->tb_id != fa->tb_id) { 1941 i++; 1942 continue; 1943 } 1944 1945 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1946 cb->nlh->nlmsg_seq, 1947 RTM_NEWROUTE, 1948 tb->tb_id, 1949 fa->fa_type, 1950 xkey, 1951 KEYLENGTH - fa->fa_slen, 1952 fa->fa_tos, 1953 fa->fa_info, NLM_F_MULTI) < 0) { 1954 cb->args[4] = i; 1955 return -1; 1956 } 1957 i++; 1958 } 1959 1960 cb->args[4] = i; 1961 return skb->len; 1962 } 1963 1964 /* rcu_read_lock needs to be hold by caller from readside */ 1965 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1966 struct netlink_callback *cb) 1967 { 1968 struct trie *t = (struct trie *)tb->tb_data; 1969 struct key_vector *l, *tp = t->kv; 1970 /* Dump starting at last key. 1971 * Note: 0.0.0.0/0 (ie default) is first key. 1972 */ 1973 int count = cb->args[2]; 1974 t_key key = cb->args[3]; 1975 1976 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1977 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1978 cb->args[3] = key; 1979 cb->args[2] = count; 1980 return -1; 1981 } 1982 1983 ++count; 1984 key = l->key + 1; 1985 1986 memset(&cb->args[4], 0, 1987 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1988 1989 /* stop loop if key wrapped back to 0 */ 1990 if (key < l->key) 1991 break; 1992 } 1993 1994 cb->args[3] = key; 1995 cb->args[2] = count; 1996 1997 return skb->len; 1998 } 1999 2000 void __init fib_trie_init(void) 2001 { 2002 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2003 sizeof(struct fib_alias), 2004 0, SLAB_PANIC, NULL); 2005 2006 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2007 LEAF_SIZE, 2008 0, SLAB_PANIC, NULL); 2009 } 2010 2011 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2012 { 2013 struct fib_table *tb; 2014 struct trie *t; 2015 size_t sz = sizeof(*tb); 2016 2017 if (!alias) 2018 sz += sizeof(struct trie); 2019 2020 tb = kzalloc(sz, GFP_KERNEL); 2021 if (!tb) 2022 return NULL; 2023 2024 tb->tb_id = id; 2025 tb->tb_num_default = 0; 2026 tb->tb_data = (alias ? alias->__data : tb->__data); 2027 2028 if (alias) 2029 return tb; 2030 2031 t = (struct trie *) tb->tb_data; 2032 t->kv[0].pos = KEYLENGTH; 2033 t->kv[0].slen = KEYLENGTH; 2034 #ifdef CONFIG_IP_FIB_TRIE_STATS 2035 t->stats = alloc_percpu(struct trie_use_stats); 2036 if (!t->stats) { 2037 kfree(tb); 2038 tb = NULL; 2039 } 2040 #endif 2041 2042 return tb; 2043 } 2044 2045 #ifdef CONFIG_PROC_FS 2046 /* Depth first Trie walk iterator */ 2047 struct fib_trie_iter { 2048 struct seq_net_private p; 2049 struct fib_table *tb; 2050 struct key_vector *tnode; 2051 unsigned int index; 2052 unsigned int depth; 2053 }; 2054 2055 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2056 { 2057 unsigned long cindex = iter->index; 2058 struct key_vector *pn = iter->tnode; 2059 t_key pkey; 2060 2061 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2062 iter->tnode, iter->index, iter->depth); 2063 2064 while (!IS_TRIE(pn)) { 2065 while (cindex < child_length(pn)) { 2066 struct key_vector *n = get_child_rcu(pn, cindex++); 2067 2068 if (!n) 2069 continue; 2070 2071 if (IS_LEAF(n)) { 2072 iter->tnode = pn; 2073 iter->index = cindex; 2074 } else { 2075 /* push down one level */ 2076 iter->tnode = n; 2077 iter->index = 0; 2078 ++iter->depth; 2079 } 2080 2081 return n; 2082 } 2083 2084 /* Current node exhausted, pop back up */ 2085 pkey = pn->key; 2086 pn = node_parent_rcu(pn); 2087 cindex = get_index(pkey, pn) + 1; 2088 --iter->depth; 2089 } 2090 2091 /* record root node so further searches know we are done */ 2092 iter->tnode = pn; 2093 iter->index = 0; 2094 2095 return NULL; 2096 } 2097 2098 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2099 struct trie *t) 2100 { 2101 struct key_vector *n, *pn; 2102 2103 if (!t) 2104 return NULL; 2105 2106 pn = t->kv; 2107 n = rcu_dereference(pn->tnode[0]); 2108 if (!n) 2109 return NULL; 2110 2111 if (IS_TNODE(n)) { 2112 iter->tnode = n; 2113 iter->index = 0; 2114 iter->depth = 1; 2115 } else { 2116 iter->tnode = pn; 2117 iter->index = 0; 2118 iter->depth = 0; 2119 } 2120 2121 return n; 2122 } 2123 2124 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2125 { 2126 struct key_vector *n; 2127 struct fib_trie_iter iter; 2128 2129 memset(s, 0, sizeof(*s)); 2130 2131 rcu_read_lock(); 2132 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2133 if (IS_LEAF(n)) { 2134 struct fib_alias *fa; 2135 2136 s->leaves++; 2137 s->totdepth += iter.depth; 2138 if (iter.depth > s->maxdepth) 2139 s->maxdepth = iter.depth; 2140 2141 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2142 ++s->prefixes; 2143 } else { 2144 s->tnodes++; 2145 if (n->bits < MAX_STAT_DEPTH) 2146 s->nodesizes[n->bits]++; 2147 s->nullpointers += tn_info(n)->empty_children; 2148 } 2149 } 2150 rcu_read_unlock(); 2151 } 2152 2153 /* 2154 * This outputs /proc/net/fib_triestats 2155 */ 2156 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2157 { 2158 unsigned int i, max, pointers, bytes, avdepth; 2159 2160 if (stat->leaves) 2161 avdepth = stat->totdepth*100 / stat->leaves; 2162 else 2163 avdepth = 0; 2164 2165 seq_printf(seq, "\tAver depth: %u.%02d\n", 2166 avdepth / 100, avdepth % 100); 2167 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2168 2169 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2170 bytes = LEAF_SIZE * stat->leaves; 2171 2172 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2173 bytes += sizeof(struct fib_alias) * stat->prefixes; 2174 2175 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2176 bytes += TNODE_SIZE(0) * stat->tnodes; 2177 2178 max = MAX_STAT_DEPTH; 2179 while (max > 0 && stat->nodesizes[max-1] == 0) 2180 max--; 2181 2182 pointers = 0; 2183 for (i = 1; i < max; i++) 2184 if (stat->nodesizes[i] != 0) { 2185 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2186 pointers += (1<<i) * stat->nodesizes[i]; 2187 } 2188 seq_putc(seq, '\n'); 2189 seq_printf(seq, "\tPointers: %u\n", pointers); 2190 2191 bytes += sizeof(struct key_vector *) * pointers; 2192 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2193 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2194 } 2195 2196 #ifdef CONFIG_IP_FIB_TRIE_STATS 2197 static void trie_show_usage(struct seq_file *seq, 2198 const struct trie_use_stats __percpu *stats) 2199 { 2200 struct trie_use_stats s = { 0 }; 2201 int cpu; 2202 2203 /* loop through all of the CPUs and gather up the stats */ 2204 for_each_possible_cpu(cpu) { 2205 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2206 2207 s.gets += pcpu->gets; 2208 s.backtrack += pcpu->backtrack; 2209 s.semantic_match_passed += pcpu->semantic_match_passed; 2210 s.semantic_match_miss += pcpu->semantic_match_miss; 2211 s.null_node_hit += pcpu->null_node_hit; 2212 s.resize_node_skipped += pcpu->resize_node_skipped; 2213 } 2214 2215 seq_printf(seq, "\nCounters:\n---------\n"); 2216 seq_printf(seq, "gets = %u\n", s.gets); 2217 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2218 seq_printf(seq, "semantic match passed = %u\n", 2219 s.semantic_match_passed); 2220 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2221 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2222 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2223 } 2224 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2225 2226 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2227 { 2228 if (tb->tb_id == RT_TABLE_LOCAL) 2229 seq_puts(seq, "Local:\n"); 2230 else if (tb->tb_id == RT_TABLE_MAIN) 2231 seq_puts(seq, "Main:\n"); 2232 else 2233 seq_printf(seq, "Id %d:\n", tb->tb_id); 2234 } 2235 2236 2237 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2238 { 2239 struct net *net = (struct net *)seq->private; 2240 unsigned int h; 2241 2242 seq_printf(seq, 2243 "Basic info: size of leaf:" 2244 " %Zd bytes, size of tnode: %Zd bytes.\n", 2245 LEAF_SIZE, TNODE_SIZE(0)); 2246 2247 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2248 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2249 struct fib_table *tb; 2250 2251 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2252 struct trie *t = (struct trie *) tb->tb_data; 2253 struct trie_stat stat; 2254 2255 if (!t) 2256 continue; 2257 2258 fib_table_print(seq, tb); 2259 2260 trie_collect_stats(t, &stat); 2261 trie_show_stats(seq, &stat); 2262 #ifdef CONFIG_IP_FIB_TRIE_STATS 2263 trie_show_usage(seq, t->stats); 2264 #endif 2265 } 2266 } 2267 2268 return 0; 2269 } 2270 2271 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2272 { 2273 return single_open_net(inode, file, fib_triestat_seq_show); 2274 } 2275 2276 static const struct file_operations fib_triestat_fops = { 2277 .owner = THIS_MODULE, 2278 .open = fib_triestat_seq_open, 2279 .read = seq_read, 2280 .llseek = seq_lseek, 2281 .release = single_release_net, 2282 }; 2283 2284 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2285 { 2286 struct fib_trie_iter *iter = seq->private; 2287 struct net *net = seq_file_net(seq); 2288 loff_t idx = 0; 2289 unsigned int h; 2290 2291 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2292 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2293 struct fib_table *tb; 2294 2295 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2296 struct key_vector *n; 2297 2298 for (n = fib_trie_get_first(iter, 2299 (struct trie *) tb->tb_data); 2300 n; n = fib_trie_get_next(iter)) 2301 if (pos == idx++) { 2302 iter->tb = tb; 2303 return n; 2304 } 2305 } 2306 } 2307 2308 return NULL; 2309 } 2310 2311 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2312 __acquires(RCU) 2313 { 2314 rcu_read_lock(); 2315 return fib_trie_get_idx(seq, *pos); 2316 } 2317 2318 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2319 { 2320 struct fib_trie_iter *iter = seq->private; 2321 struct net *net = seq_file_net(seq); 2322 struct fib_table *tb = iter->tb; 2323 struct hlist_node *tb_node; 2324 unsigned int h; 2325 struct key_vector *n; 2326 2327 ++*pos; 2328 /* next node in same table */ 2329 n = fib_trie_get_next(iter); 2330 if (n) 2331 return n; 2332 2333 /* walk rest of this hash chain */ 2334 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2335 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2336 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2337 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2338 if (n) 2339 goto found; 2340 } 2341 2342 /* new hash chain */ 2343 while (++h < FIB_TABLE_HASHSZ) { 2344 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2345 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2346 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2347 if (n) 2348 goto found; 2349 } 2350 } 2351 return NULL; 2352 2353 found: 2354 iter->tb = tb; 2355 return n; 2356 } 2357 2358 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2359 __releases(RCU) 2360 { 2361 rcu_read_unlock(); 2362 } 2363 2364 static void seq_indent(struct seq_file *seq, int n) 2365 { 2366 while (n-- > 0) 2367 seq_puts(seq, " "); 2368 } 2369 2370 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2371 { 2372 switch (s) { 2373 case RT_SCOPE_UNIVERSE: return "universe"; 2374 case RT_SCOPE_SITE: return "site"; 2375 case RT_SCOPE_LINK: return "link"; 2376 case RT_SCOPE_HOST: return "host"; 2377 case RT_SCOPE_NOWHERE: return "nowhere"; 2378 default: 2379 snprintf(buf, len, "scope=%d", s); 2380 return buf; 2381 } 2382 } 2383 2384 static const char *const rtn_type_names[__RTN_MAX] = { 2385 [RTN_UNSPEC] = "UNSPEC", 2386 [RTN_UNICAST] = "UNICAST", 2387 [RTN_LOCAL] = "LOCAL", 2388 [RTN_BROADCAST] = "BROADCAST", 2389 [RTN_ANYCAST] = "ANYCAST", 2390 [RTN_MULTICAST] = "MULTICAST", 2391 [RTN_BLACKHOLE] = "BLACKHOLE", 2392 [RTN_UNREACHABLE] = "UNREACHABLE", 2393 [RTN_PROHIBIT] = "PROHIBIT", 2394 [RTN_THROW] = "THROW", 2395 [RTN_NAT] = "NAT", 2396 [RTN_XRESOLVE] = "XRESOLVE", 2397 }; 2398 2399 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2400 { 2401 if (t < __RTN_MAX && rtn_type_names[t]) 2402 return rtn_type_names[t]; 2403 snprintf(buf, len, "type %u", t); 2404 return buf; 2405 } 2406 2407 /* Pretty print the trie */ 2408 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2409 { 2410 const struct fib_trie_iter *iter = seq->private; 2411 struct key_vector *n = v; 2412 2413 if (IS_TRIE(node_parent_rcu(n))) 2414 fib_table_print(seq, iter->tb); 2415 2416 if (IS_TNODE(n)) { 2417 __be32 prf = htonl(n->key); 2418 2419 seq_indent(seq, iter->depth-1); 2420 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2421 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2422 tn_info(n)->full_children, 2423 tn_info(n)->empty_children); 2424 } else { 2425 __be32 val = htonl(n->key); 2426 struct fib_alias *fa; 2427 2428 seq_indent(seq, iter->depth); 2429 seq_printf(seq, " |-- %pI4\n", &val); 2430 2431 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2432 char buf1[32], buf2[32]; 2433 2434 seq_indent(seq, iter->depth + 1); 2435 seq_printf(seq, " /%zu %s %s", 2436 KEYLENGTH - fa->fa_slen, 2437 rtn_scope(buf1, sizeof(buf1), 2438 fa->fa_info->fib_scope), 2439 rtn_type(buf2, sizeof(buf2), 2440 fa->fa_type)); 2441 if (fa->fa_tos) 2442 seq_printf(seq, " tos=%d", fa->fa_tos); 2443 seq_putc(seq, '\n'); 2444 } 2445 } 2446 2447 return 0; 2448 } 2449 2450 static const struct seq_operations fib_trie_seq_ops = { 2451 .start = fib_trie_seq_start, 2452 .next = fib_trie_seq_next, 2453 .stop = fib_trie_seq_stop, 2454 .show = fib_trie_seq_show, 2455 }; 2456 2457 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2458 { 2459 return seq_open_net(inode, file, &fib_trie_seq_ops, 2460 sizeof(struct fib_trie_iter)); 2461 } 2462 2463 static const struct file_operations fib_trie_fops = { 2464 .owner = THIS_MODULE, 2465 .open = fib_trie_seq_open, 2466 .read = seq_read, 2467 .llseek = seq_lseek, 2468 .release = seq_release_net, 2469 }; 2470 2471 struct fib_route_iter { 2472 struct seq_net_private p; 2473 struct fib_table *main_tb; 2474 struct key_vector *tnode; 2475 loff_t pos; 2476 t_key key; 2477 }; 2478 2479 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2480 loff_t pos) 2481 { 2482 struct key_vector *l, **tp = &iter->tnode; 2483 t_key key; 2484 2485 /* use cached location of previously found key */ 2486 if (iter->pos > 0 && pos >= iter->pos) { 2487 key = iter->key; 2488 } else { 2489 iter->pos = 1; 2490 key = 0; 2491 } 2492 2493 pos -= iter->pos; 2494 2495 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2496 key = l->key + 1; 2497 iter->pos++; 2498 l = NULL; 2499 2500 /* handle unlikely case of a key wrap */ 2501 if (!key) 2502 break; 2503 } 2504 2505 if (l) 2506 iter->key = l->key; /* remember it */ 2507 else 2508 iter->pos = 0; /* forget it */ 2509 2510 return l; 2511 } 2512 2513 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2514 __acquires(RCU) 2515 { 2516 struct fib_route_iter *iter = seq->private; 2517 struct fib_table *tb; 2518 struct trie *t; 2519 2520 rcu_read_lock(); 2521 2522 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2523 if (!tb) 2524 return NULL; 2525 2526 iter->main_tb = tb; 2527 t = (struct trie *)tb->tb_data; 2528 iter->tnode = t->kv; 2529 2530 if (*pos != 0) 2531 return fib_route_get_idx(iter, *pos); 2532 2533 iter->pos = 0; 2534 iter->key = KEY_MAX; 2535 2536 return SEQ_START_TOKEN; 2537 } 2538 2539 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2540 { 2541 struct fib_route_iter *iter = seq->private; 2542 struct key_vector *l = NULL; 2543 t_key key = iter->key + 1; 2544 2545 ++*pos; 2546 2547 /* only allow key of 0 for start of sequence */ 2548 if ((v == SEQ_START_TOKEN) || key) 2549 l = leaf_walk_rcu(&iter->tnode, key); 2550 2551 if (l) { 2552 iter->key = l->key; 2553 iter->pos++; 2554 } else { 2555 iter->pos = 0; 2556 } 2557 2558 return l; 2559 } 2560 2561 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2562 __releases(RCU) 2563 { 2564 rcu_read_unlock(); 2565 } 2566 2567 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2568 { 2569 unsigned int flags = 0; 2570 2571 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2572 flags = RTF_REJECT; 2573 if (fi && fi->fib_nh->nh_gw) 2574 flags |= RTF_GATEWAY; 2575 if (mask == htonl(0xFFFFFFFF)) 2576 flags |= RTF_HOST; 2577 flags |= RTF_UP; 2578 return flags; 2579 } 2580 2581 /* 2582 * This outputs /proc/net/route. 2583 * The format of the file is not supposed to be changed 2584 * and needs to be same as fib_hash output to avoid breaking 2585 * legacy utilities 2586 */ 2587 static int fib_route_seq_show(struct seq_file *seq, void *v) 2588 { 2589 struct fib_route_iter *iter = seq->private; 2590 struct fib_table *tb = iter->main_tb; 2591 struct fib_alias *fa; 2592 struct key_vector *l = v; 2593 __be32 prefix; 2594 2595 if (v == SEQ_START_TOKEN) { 2596 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2597 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2598 "\tWindow\tIRTT"); 2599 return 0; 2600 } 2601 2602 prefix = htonl(l->key); 2603 2604 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2605 const struct fib_info *fi = fa->fa_info; 2606 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2607 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2608 2609 if ((fa->fa_type == RTN_BROADCAST) || 2610 (fa->fa_type == RTN_MULTICAST)) 2611 continue; 2612 2613 if (fa->tb_id != tb->tb_id) 2614 continue; 2615 2616 seq_setwidth(seq, 127); 2617 2618 if (fi) 2619 seq_printf(seq, 2620 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2621 "%d\t%08X\t%d\t%u\t%u", 2622 fi->fib_dev ? fi->fib_dev->name : "*", 2623 prefix, 2624 fi->fib_nh->nh_gw, flags, 0, 0, 2625 fi->fib_priority, 2626 mask, 2627 (fi->fib_advmss ? 2628 fi->fib_advmss + 40 : 0), 2629 fi->fib_window, 2630 fi->fib_rtt >> 3); 2631 else 2632 seq_printf(seq, 2633 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2634 "%d\t%08X\t%d\t%u\t%u", 2635 prefix, 0, flags, 0, 0, 0, 2636 mask, 0, 0, 0); 2637 2638 seq_pad(seq, '\n'); 2639 } 2640 2641 return 0; 2642 } 2643 2644 static const struct seq_operations fib_route_seq_ops = { 2645 .start = fib_route_seq_start, 2646 .next = fib_route_seq_next, 2647 .stop = fib_route_seq_stop, 2648 .show = fib_route_seq_show, 2649 }; 2650 2651 static int fib_route_seq_open(struct inode *inode, struct file *file) 2652 { 2653 return seq_open_net(inode, file, &fib_route_seq_ops, 2654 sizeof(struct fib_route_iter)); 2655 } 2656 2657 static const struct file_operations fib_route_fops = { 2658 .owner = THIS_MODULE, 2659 .open = fib_route_seq_open, 2660 .read = seq_read, 2661 .llseek = seq_lseek, 2662 .release = seq_release_net, 2663 }; 2664 2665 int __net_init fib_proc_init(struct net *net) 2666 { 2667 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2668 goto out1; 2669 2670 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2671 &fib_triestat_fops)) 2672 goto out2; 2673 2674 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2675 goto out3; 2676 2677 return 0; 2678 2679 out3: 2680 remove_proc_entry("fib_triestat", net->proc_net); 2681 out2: 2682 remove_proc_entry("fib_trie", net->proc_net); 2683 out1: 2684 return -ENOMEM; 2685 } 2686 2687 void __net_exit fib_proc_exit(struct net *net) 2688 { 2689 remove_proc_entry("fib_trie", net->proc_net); 2690 remove_proc_entry("fib_triestat", net->proc_net); 2691 remove_proc_entry("route", net->proc_net); 2692 } 2693 2694 #endif /* CONFIG_PROC_FS */ 2695