xref: /linux/net/ipv4/fib_trie.c (revision 995231c820e3bd3633cb38bf4ea6f2541e1da331)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <net/fib_notifier.h>
85 #include <trace/events/fib.h>
86 #include "fib_lookup.h"
87 
88 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
89 				   enum fib_event_type event_type, u32 dst,
90 				   int dst_len, struct fib_alias *fa)
91 {
92 	struct fib_entry_notifier_info info = {
93 		.dst = dst,
94 		.dst_len = dst_len,
95 		.fi = fa->fa_info,
96 		.tos = fa->fa_tos,
97 		.type = fa->fa_type,
98 		.tb_id = fa->tb_id,
99 	};
100 	return call_fib4_notifier(nb, net, event_type, &info.info);
101 }
102 
103 static int call_fib_entry_notifiers(struct net *net,
104 				    enum fib_event_type event_type, u32 dst,
105 				    int dst_len, struct fib_alias *fa)
106 {
107 	struct fib_entry_notifier_info info = {
108 		.dst = dst,
109 		.dst_len = dst_len,
110 		.fi = fa->fa_info,
111 		.tos = fa->fa_tos,
112 		.type = fa->fa_type,
113 		.tb_id = fa->tb_id,
114 	};
115 	return call_fib4_notifiers(net, event_type, &info.info);
116 }
117 
118 #define MAX_STAT_DEPTH 32
119 
120 #define KEYLENGTH	(8*sizeof(t_key))
121 #define KEY_MAX		((t_key)~0)
122 
123 typedef unsigned int t_key;
124 
125 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
126 #define IS_TNODE(n)	((n)->bits)
127 #define IS_LEAF(n)	(!(n)->bits)
128 
129 struct key_vector {
130 	t_key key;
131 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
132 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
133 	unsigned char slen;
134 	union {
135 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
136 		struct hlist_head leaf;
137 		/* This array is valid if (pos | bits) > 0 (TNODE) */
138 		struct key_vector __rcu *tnode[0];
139 	};
140 };
141 
142 struct tnode {
143 	struct rcu_head rcu;
144 	t_key empty_children;		/* KEYLENGTH bits needed */
145 	t_key full_children;		/* KEYLENGTH bits needed */
146 	struct key_vector __rcu *parent;
147 	struct key_vector kv[1];
148 #define tn_bits kv[0].bits
149 };
150 
151 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
152 #define LEAF_SIZE	TNODE_SIZE(1)
153 
154 #ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats {
156 	unsigned int gets;
157 	unsigned int backtrack;
158 	unsigned int semantic_match_passed;
159 	unsigned int semantic_match_miss;
160 	unsigned int null_node_hit;
161 	unsigned int resize_node_skipped;
162 };
163 #endif
164 
165 struct trie_stat {
166 	unsigned int totdepth;
167 	unsigned int maxdepth;
168 	unsigned int tnodes;
169 	unsigned int leaves;
170 	unsigned int nullpointers;
171 	unsigned int prefixes;
172 	unsigned int nodesizes[MAX_STAT_DEPTH];
173 };
174 
175 struct trie {
176 	struct key_vector kv[1];
177 #ifdef CONFIG_IP_FIB_TRIE_STATS
178 	struct trie_use_stats __percpu *stats;
179 #endif
180 };
181 
182 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
183 static size_t tnode_free_size;
184 
185 /*
186  * synchronize_rcu after call_rcu for that many pages; it should be especially
187  * useful before resizing the root node with PREEMPT_NONE configs; the value was
188  * obtained experimentally, aiming to avoid visible slowdown.
189  */
190 static const int sync_pages = 128;
191 
192 static struct kmem_cache *fn_alias_kmem __read_mostly;
193 static struct kmem_cache *trie_leaf_kmem __read_mostly;
194 
195 static inline struct tnode *tn_info(struct key_vector *kv)
196 {
197 	return container_of(kv, struct tnode, kv[0]);
198 }
199 
200 /* caller must hold RTNL */
201 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
202 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
203 
204 /* caller must hold RCU read lock or RTNL */
205 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
206 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
207 
208 /* wrapper for rcu_assign_pointer */
209 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
210 {
211 	if (n)
212 		rcu_assign_pointer(tn_info(n)->parent, tp);
213 }
214 
215 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
216 
217 /* This provides us with the number of children in this node, in the case of a
218  * leaf this will return 0 meaning none of the children are accessible.
219  */
220 static inline unsigned long child_length(const struct key_vector *tn)
221 {
222 	return (1ul << tn->bits) & ~(1ul);
223 }
224 
225 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
226 
227 static inline unsigned long get_index(t_key key, struct key_vector *kv)
228 {
229 	unsigned long index = key ^ kv->key;
230 
231 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
232 		return 0;
233 
234 	return index >> kv->pos;
235 }
236 
237 /* To understand this stuff, an understanding of keys and all their bits is
238  * necessary. Every node in the trie has a key associated with it, but not
239  * all of the bits in that key are significant.
240  *
241  * Consider a node 'n' and its parent 'tp'.
242  *
243  * If n is a leaf, every bit in its key is significant. Its presence is
244  * necessitated by path compression, since during a tree traversal (when
245  * searching for a leaf - unless we are doing an insertion) we will completely
246  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
247  * a potentially successful search, that we have indeed been walking the
248  * correct key path.
249  *
250  * Note that we can never "miss" the correct key in the tree if present by
251  * following the wrong path. Path compression ensures that segments of the key
252  * that are the same for all keys with a given prefix are skipped, but the
253  * skipped part *is* identical for each node in the subtrie below the skipped
254  * bit! trie_insert() in this implementation takes care of that.
255  *
256  * if n is an internal node - a 'tnode' here, the various parts of its key
257  * have many different meanings.
258  *
259  * Example:
260  * _________________________________________________________________
261  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
262  * -----------------------------------------------------------------
263  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
264  *
265  * _________________________________________________________________
266  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
267  * -----------------------------------------------------------------
268  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
269  *
270  * tp->pos = 22
271  * tp->bits = 3
272  * n->pos = 13
273  * n->bits = 4
274  *
275  * First, let's just ignore the bits that come before the parent tp, that is
276  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
277  * point we do not use them for anything.
278  *
279  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
280  * index into the parent's child array. That is, they will be used to find
281  * 'n' among tp's children.
282  *
283  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
284  * for the node n.
285  *
286  * All the bits we have seen so far are significant to the node n. The rest
287  * of the bits are really not needed or indeed known in n->key.
288  *
289  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
290  * n's child array, and will of course be different for each child.
291  *
292  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
293  * at this point.
294  */
295 
296 static const int halve_threshold = 25;
297 static const int inflate_threshold = 50;
298 static const int halve_threshold_root = 15;
299 static const int inflate_threshold_root = 30;
300 
301 static void __alias_free_mem(struct rcu_head *head)
302 {
303 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
304 	kmem_cache_free(fn_alias_kmem, fa);
305 }
306 
307 static inline void alias_free_mem_rcu(struct fib_alias *fa)
308 {
309 	call_rcu(&fa->rcu, __alias_free_mem);
310 }
311 
312 #define TNODE_KMALLOC_MAX \
313 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
314 #define TNODE_VMALLOC_MAX \
315 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
316 
317 static void __node_free_rcu(struct rcu_head *head)
318 {
319 	struct tnode *n = container_of(head, struct tnode, rcu);
320 
321 	if (!n->tn_bits)
322 		kmem_cache_free(trie_leaf_kmem, n);
323 	else
324 		kvfree(n);
325 }
326 
327 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
328 
329 static struct tnode *tnode_alloc(int bits)
330 {
331 	size_t size;
332 
333 	/* verify bits is within bounds */
334 	if (bits > TNODE_VMALLOC_MAX)
335 		return NULL;
336 
337 	/* determine size and verify it is non-zero and didn't overflow */
338 	size = TNODE_SIZE(1ul << bits);
339 
340 	if (size <= PAGE_SIZE)
341 		return kzalloc(size, GFP_KERNEL);
342 	else
343 		return vzalloc(size);
344 }
345 
346 static inline void empty_child_inc(struct key_vector *n)
347 {
348 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
349 }
350 
351 static inline void empty_child_dec(struct key_vector *n)
352 {
353 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
354 }
355 
356 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
357 {
358 	struct key_vector *l;
359 	struct tnode *kv;
360 
361 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
362 	if (!kv)
363 		return NULL;
364 
365 	/* initialize key vector */
366 	l = kv->kv;
367 	l->key = key;
368 	l->pos = 0;
369 	l->bits = 0;
370 	l->slen = fa->fa_slen;
371 
372 	/* link leaf to fib alias */
373 	INIT_HLIST_HEAD(&l->leaf);
374 	hlist_add_head(&fa->fa_list, &l->leaf);
375 
376 	return l;
377 }
378 
379 static struct key_vector *tnode_new(t_key key, int pos, int bits)
380 {
381 	unsigned int shift = pos + bits;
382 	struct key_vector *tn;
383 	struct tnode *tnode;
384 
385 	/* verify bits and pos their msb bits clear and values are valid */
386 	BUG_ON(!bits || (shift > KEYLENGTH));
387 
388 	tnode = tnode_alloc(bits);
389 	if (!tnode)
390 		return NULL;
391 
392 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
393 		 sizeof(struct key_vector *) << bits);
394 
395 	if (bits == KEYLENGTH)
396 		tnode->full_children = 1;
397 	else
398 		tnode->empty_children = 1ul << bits;
399 
400 	tn = tnode->kv;
401 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
402 	tn->pos = pos;
403 	tn->bits = bits;
404 	tn->slen = pos;
405 
406 	return tn;
407 }
408 
409 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
410  * and no bits are skipped. See discussion in dyntree paper p. 6
411  */
412 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
413 {
414 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
415 }
416 
417 /* Add a child at position i overwriting the old value.
418  * Update the value of full_children and empty_children.
419  */
420 static void put_child(struct key_vector *tn, unsigned long i,
421 		      struct key_vector *n)
422 {
423 	struct key_vector *chi = get_child(tn, i);
424 	int isfull, wasfull;
425 
426 	BUG_ON(i >= child_length(tn));
427 
428 	/* update emptyChildren, overflow into fullChildren */
429 	if (!n && chi)
430 		empty_child_inc(tn);
431 	if (n && !chi)
432 		empty_child_dec(tn);
433 
434 	/* update fullChildren */
435 	wasfull = tnode_full(tn, chi);
436 	isfull = tnode_full(tn, n);
437 
438 	if (wasfull && !isfull)
439 		tn_info(tn)->full_children--;
440 	else if (!wasfull && isfull)
441 		tn_info(tn)->full_children++;
442 
443 	if (n && (tn->slen < n->slen))
444 		tn->slen = n->slen;
445 
446 	rcu_assign_pointer(tn->tnode[i], n);
447 }
448 
449 static void update_children(struct key_vector *tn)
450 {
451 	unsigned long i;
452 
453 	/* update all of the child parent pointers */
454 	for (i = child_length(tn); i;) {
455 		struct key_vector *inode = get_child(tn, --i);
456 
457 		if (!inode)
458 			continue;
459 
460 		/* Either update the children of a tnode that
461 		 * already belongs to us or update the child
462 		 * to point to ourselves.
463 		 */
464 		if (node_parent(inode) == tn)
465 			update_children(inode);
466 		else
467 			node_set_parent(inode, tn);
468 	}
469 }
470 
471 static inline void put_child_root(struct key_vector *tp, t_key key,
472 				  struct key_vector *n)
473 {
474 	if (IS_TRIE(tp))
475 		rcu_assign_pointer(tp->tnode[0], n);
476 	else
477 		put_child(tp, get_index(key, tp), n);
478 }
479 
480 static inline void tnode_free_init(struct key_vector *tn)
481 {
482 	tn_info(tn)->rcu.next = NULL;
483 }
484 
485 static inline void tnode_free_append(struct key_vector *tn,
486 				     struct key_vector *n)
487 {
488 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
489 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
490 }
491 
492 static void tnode_free(struct key_vector *tn)
493 {
494 	struct callback_head *head = &tn_info(tn)->rcu;
495 
496 	while (head) {
497 		head = head->next;
498 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
499 		node_free(tn);
500 
501 		tn = container_of(head, struct tnode, rcu)->kv;
502 	}
503 
504 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
505 		tnode_free_size = 0;
506 		synchronize_rcu();
507 	}
508 }
509 
510 static struct key_vector *replace(struct trie *t,
511 				  struct key_vector *oldtnode,
512 				  struct key_vector *tn)
513 {
514 	struct key_vector *tp = node_parent(oldtnode);
515 	unsigned long i;
516 
517 	/* setup the parent pointer out of and back into this node */
518 	NODE_INIT_PARENT(tn, tp);
519 	put_child_root(tp, tn->key, tn);
520 
521 	/* update all of the child parent pointers */
522 	update_children(tn);
523 
524 	/* all pointers should be clean so we are done */
525 	tnode_free(oldtnode);
526 
527 	/* resize children now that oldtnode is freed */
528 	for (i = child_length(tn); i;) {
529 		struct key_vector *inode = get_child(tn, --i);
530 
531 		/* resize child node */
532 		if (tnode_full(tn, inode))
533 			tn = resize(t, inode);
534 	}
535 
536 	return tp;
537 }
538 
539 static struct key_vector *inflate(struct trie *t,
540 				  struct key_vector *oldtnode)
541 {
542 	struct key_vector *tn;
543 	unsigned long i;
544 	t_key m;
545 
546 	pr_debug("In inflate\n");
547 
548 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
549 	if (!tn)
550 		goto notnode;
551 
552 	/* prepare oldtnode to be freed */
553 	tnode_free_init(oldtnode);
554 
555 	/* Assemble all of the pointers in our cluster, in this case that
556 	 * represents all of the pointers out of our allocated nodes that
557 	 * point to existing tnodes and the links between our allocated
558 	 * nodes.
559 	 */
560 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
561 		struct key_vector *inode = get_child(oldtnode, --i);
562 		struct key_vector *node0, *node1;
563 		unsigned long j, k;
564 
565 		/* An empty child */
566 		if (!inode)
567 			continue;
568 
569 		/* A leaf or an internal node with skipped bits */
570 		if (!tnode_full(oldtnode, inode)) {
571 			put_child(tn, get_index(inode->key, tn), inode);
572 			continue;
573 		}
574 
575 		/* drop the node in the old tnode free list */
576 		tnode_free_append(oldtnode, inode);
577 
578 		/* An internal node with two children */
579 		if (inode->bits == 1) {
580 			put_child(tn, 2 * i + 1, get_child(inode, 1));
581 			put_child(tn, 2 * i, get_child(inode, 0));
582 			continue;
583 		}
584 
585 		/* We will replace this node 'inode' with two new
586 		 * ones, 'node0' and 'node1', each with half of the
587 		 * original children. The two new nodes will have
588 		 * a position one bit further down the key and this
589 		 * means that the "significant" part of their keys
590 		 * (see the discussion near the top of this file)
591 		 * will differ by one bit, which will be "0" in
592 		 * node0's key and "1" in node1's key. Since we are
593 		 * moving the key position by one step, the bit that
594 		 * we are moving away from - the bit at position
595 		 * (tn->pos) - is the one that will differ between
596 		 * node0 and node1. So... we synthesize that bit in the
597 		 * two new keys.
598 		 */
599 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
600 		if (!node1)
601 			goto nomem;
602 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
603 
604 		tnode_free_append(tn, node1);
605 		if (!node0)
606 			goto nomem;
607 		tnode_free_append(tn, node0);
608 
609 		/* populate child pointers in new nodes */
610 		for (k = child_length(inode), j = k / 2; j;) {
611 			put_child(node1, --j, get_child(inode, --k));
612 			put_child(node0, j, get_child(inode, j));
613 			put_child(node1, --j, get_child(inode, --k));
614 			put_child(node0, j, get_child(inode, j));
615 		}
616 
617 		/* link new nodes to parent */
618 		NODE_INIT_PARENT(node1, tn);
619 		NODE_INIT_PARENT(node0, tn);
620 
621 		/* link parent to nodes */
622 		put_child(tn, 2 * i + 1, node1);
623 		put_child(tn, 2 * i, node0);
624 	}
625 
626 	/* setup the parent pointers into and out of this node */
627 	return replace(t, oldtnode, tn);
628 nomem:
629 	/* all pointers should be clean so we are done */
630 	tnode_free(tn);
631 notnode:
632 	return NULL;
633 }
634 
635 static struct key_vector *halve(struct trie *t,
636 				struct key_vector *oldtnode)
637 {
638 	struct key_vector *tn;
639 	unsigned long i;
640 
641 	pr_debug("In halve\n");
642 
643 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
644 	if (!tn)
645 		goto notnode;
646 
647 	/* prepare oldtnode to be freed */
648 	tnode_free_init(oldtnode);
649 
650 	/* Assemble all of the pointers in our cluster, in this case that
651 	 * represents all of the pointers out of our allocated nodes that
652 	 * point to existing tnodes and the links between our allocated
653 	 * nodes.
654 	 */
655 	for (i = child_length(oldtnode); i;) {
656 		struct key_vector *node1 = get_child(oldtnode, --i);
657 		struct key_vector *node0 = get_child(oldtnode, --i);
658 		struct key_vector *inode;
659 
660 		/* At least one of the children is empty */
661 		if (!node1 || !node0) {
662 			put_child(tn, i / 2, node1 ? : node0);
663 			continue;
664 		}
665 
666 		/* Two nonempty children */
667 		inode = tnode_new(node0->key, oldtnode->pos, 1);
668 		if (!inode)
669 			goto nomem;
670 		tnode_free_append(tn, inode);
671 
672 		/* initialize pointers out of node */
673 		put_child(inode, 1, node1);
674 		put_child(inode, 0, node0);
675 		NODE_INIT_PARENT(inode, tn);
676 
677 		/* link parent to node */
678 		put_child(tn, i / 2, inode);
679 	}
680 
681 	/* setup the parent pointers into and out of this node */
682 	return replace(t, oldtnode, tn);
683 nomem:
684 	/* all pointers should be clean so we are done */
685 	tnode_free(tn);
686 notnode:
687 	return NULL;
688 }
689 
690 static struct key_vector *collapse(struct trie *t,
691 				   struct key_vector *oldtnode)
692 {
693 	struct key_vector *n, *tp;
694 	unsigned long i;
695 
696 	/* scan the tnode looking for that one child that might still exist */
697 	for (n = NULL, i = child_length(oldtnode); !n && i;)
698 		n = get_child(oldtnode, --i);
699 
700 	/* compress one level */
701 	tp = node_parent(oldtnode);
702 	put_child_root(tp, oldtnode->key, n);
703 	node_set_parent(n, tp);
704 
705 	/* drop dead node */
706 	node_free(oldtnode);
707 
708 	return tp;
709 }
710 
711 static unsigned char update_suffix(struct key_vector *tn)
712 {
713 	unsigned char slen = tn->pos;
714 	unsigned long stride, i;
715 	unsigned char slen_max;
716 
717 	/* only vector 0 can have a suffix length greater than or equal to
718 	 * tn->pos + tn->bits, the second highest node will have a suffix
719 	 * length at most of tn->pos + tn->bits - 1
720 	 */
721 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
722 
723 	/* search though the list of children looking for nodes that might
724 	 * have a suffix greater than the one we currently have.  This is
725 	 * why we start with a stride of 2 since a stride of 1 would
726 	 * represent the nodes with suffix length equal to tn->pos
727 	 */
728 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
729 		struct key_vector *n = get_child(tn, i);
730 
731 		if (!n || (n->slen <= slen))
732 			continue;
733 
734 		/* update stride and slen based on new value */
735 		stride <<= (n->slen - slen);
736 		slen = n->slen;
737 		i &= ~(stride - 1);
738 
739 		/* stop searching if we have hit the maximum possible value */
740 		if (slen >= slen_max)
741 			break;
742 	}
743 
744 	tn->slen = slen;
745 
746 	return slen;
747 }
748 
749 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
750  * the Helsinki University of Technology and Matti Tikkanen of Nokia
751  * Telecommunications, page 6:
752  * "A node is doubled if the ratio of non-empty children to all
753  * children in the *doubled* node is at least 'high'."
754  *
755  * 'high' in this instance is the variable 'inflate_threshold'. It
756  * is expressed as a percentage, so we multiply it with
757  * child_length() and instead of multiplying by 2 (since the
758  * child array will be doubled by inflate()) and multiplying
759  * the left-hand side by 100 (to handle the percentage thing) we
760  * multiply the left-hand side by 50.
761  *
762  * The left-hand side may look a bit weird: child_length(tn)
763  * - tn->empty_children is of course the number of non-null children
764  * in the current node. tn->full_children is the number of "full"
765  * children, that is non-null tnodes with a skip value of 0.
766  * All of those will be doubled in the resulting inflated tnode, so
767  * we just count them one extra time here.
768  *
769  * A clearer way to write this would be:
770  *
771  * to_be_doubled = tn->full_children;
772  * not_to_be_doubled = child_length(tn) - tn->empty_children -
773  *     tn->full_children;
774  *
775  * new_child_length = child_length(tn) * 2;
776  *
777  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
778  *      new_child_length;
779  * if (new_fill_factor >= inflate_threshold)
780  *
781  * ...and so on, tho it would mess up the while () loop.
782  *
783  * anyway,
784  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
785  *      inflate_threshold
786  *
787  * avoid a division:
788  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
789  *      inflate_threshold * new_child_length
790  *
791  * expand not_to_be_doubled and to_be_doubled, and shorten:
792  * 100 * (child_length(tn) - tn->empty_children +
793  *    tn->full_children) >= inflate_threshold * new_child_length
794  *
795  * expand new_child_length:
796  * 100 * (child_length(tn) - tn->empty_children +
797  *    tn->full_children) >=
798  *      inflate_threshold * child_length(tn) * 2
799  *
800  * shorten again:
801  * 50 * (tn->full_children + child_length(tn) -
802  *    tn->empty_children) >= inflate_threshold *
803  *    child_length(tn)
804  *
805  */
806 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
807 {
808 	unsigned long used = child_length(tn);
809 	unsigned long threshold = used;
810 
811 	/* Keep root node larger */
812 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
813 	used -= tn_info(tn)->empty_children;
814 	used += tn_info(tn)->full_children;
815 
816 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
817 
818 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
819 }
820 
821 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
822 {
823 	unsigned long used = child_length(tn);
824 	unsigned long threshold = used;
825 
826 	/* Keep root node larger */
827 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
828 	used -= tn_info(tn)->empty_children;
829 
830 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
831 
832 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
833 }
834 
835 static inline bool should_collapse(struct key_vector *tn)
836 {
837 	unsigned long used = child_length(tn);
838 
839 	used -= tn_info(tn)->empty_children;
840 
841 	/* account for bits == KEYLENGTH case */
842 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
843 		used -= KEY_MAX;
844 
845 	/* One child or none, time to drop us from the trie */
846 	return used < 2;
847 }
848 
849 #define MAX_WORK 10
850 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
851 {
852 #ifdef CONFIG_IP_FIB_TRIE_STATS
853 	struct trie_use_stats __percpu *stats = t->stats;
854 #endif
855 	struct key_vector *tp = node_parent(tn);
856 	unsigned long cindex = get_index(tn->key, tp);
857 	int max_work = MAX_WORK;
858 
859 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
860 		 tn, inflate_threshold, halve_threshold);
861 
862 	/* track the tnode via the pointer from the parent instead of
863 	 * doing it ourselves.  This way we can let RCU fully do its
864 	 * thing without us interfering
865 	 */
866 	BUG_ON(tn != get_child(tp, cindex));
867 
868 	/* Double as long as the resulting node has a number of
869 	 * nonempty nodes that are above the threshold.
870 	 */
871 	while (should_inflate(tp, tn) && max_work) {
872 		tp = inflate(t, tn);
873 		if (!tp) {
874 #ifdef CONFIG_IP_FIB_TRIE_STATS
875 			this_cpu_inc(stats->resize_node_skipped);
876 #endif
877 			break;
878 		}
879 
880 		max_work--;
881 		tn = get_child(tp, cindex);
882 	}
883 
884 	/* update parent in case inflate failed */
885 	tp = node_parent(tn);
886 
887 	/* Return if at least one inflate is run */
888 	if (max_work != MAX_WORK)
889 		return tp;
890 
891 	/* Halve as long as the number of empty children in this
892 	 * node is above threshold.
893 	 */
894 	while (should_halve(tp, tn) && max_work) {
895 		tp = halve(t, tn);
896 		if (!tp) {
897 #ifdef CONFIG_IP_FIB_TRIE_STATS
898 			this_cpu_inc(stats->resize_node_skipped);
899 #endif
900 			break;
901 		}
902 
903 		max_work--;
904 		tn = get_child(tp, cindex);
905 	}
906 
907 	/* Only one child remains */
908 	if (should_collapse(tn))
909 		return collapse(t, tn);
910 
911 	/* update parent in case halve failed */
912 	return node_parent(tn);
913 }
914 
915 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
916 {
917 	unsigned char node_slen = tn->slen;
918 
919 	while ((node_slen > tn->pos) && (node_slen > slen)) {
920 		slen = update_suffix(tn);
921 		if (node_slen == slen)
922 			break;
923 
924 		tn = node_parent(tn);
925 		node_slen = tn->slen;
926 	}
927 }
928 
929 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
930 {
931 	while (tn->slen < slen) {
932 		tn->slen = slen;
933 		tn = node_parent(tn);
934 	}
935 }
936 
937 /* rcu_read_lock needs to be hold by caller from readside */
938 static struct key_vector *fib_find_node(struct trie *t,
939 					struct key_vector **tp, u32 key)
940 {
941 	struct key_vector *pn, *n = t->kv;
942 	unsigned long index = 0;
943 
944 	do {
945 		pn = n;
946 		n = get_child_rcu(n, index);
947 
948 		if (!n)
949 			break;
950 
951 		index = get_cindex(key, n);
952 
953 		/* This bit of code is a bit tricky but it combines multiple
954 		 * checks into a single check.  The prefix consists of the
955 		 * prefix plus zeros for the bits in the cindex. The index
956 		 * is the difference between the key and this value.  From
957 		 * this we can actually derive several pieces of data.
958 		 *   if (index >= (1ul << bits))
959 		 *     we have a mismatch in skip bits and failed
960 		 *   else
961 		 *     we know the value is cindex
962 		 *
963 		 * This check is safe even if bits == KEYLENGTH due to the
964 		 * fact that we can only allocate a node with 32 bits if a
965 		 * long is greater than 32 bits.
966 		 */
967 		if (index >= (1ul << n->bits)) {
968 			n = NULL;
969 			break;
970 		}
971 
972 		/* keep searching until we find a perfect match leaf or NULL */
973 	} while (IS_TNODE(n));
974 
975 	*tp = pn;
976 
977 	return n;
978 }
979 
980 /* Return the first fib alias matching TOS with
981  * priority less than or equal to PRIO.
982  */
983 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
984 					u8 tos, u32 prio, u32 tb_id)
985 {
986 	struct fib_alias *fa;
987 
988 	if (!fah)
989 		return NULL;
990 
991 	hlist_for_each_entry(fa, fah, fa_list) {
992 		if (fa->fa_slen < slen)
993 			continue;
994 		if (fa->fa_slen != slen)
995 			break;
996 		if (fa->tb_id > tb_id)
997 			continue;
998 		if (fa->tb_id != tb_id)
999 			break;
1000 		if (fa->fa_tos > tos)
1001 			continue;
1002 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1003 			return fa;
1004 	}
1005 
1006 	return NULL;
1007 }
1008 
1009 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1010 {
1011 	while (!IS_TRIE(tn))
1012 		tn = resize(t, tn);
1013 }
1014 
1015 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1016 			   struct fib_alias *new, t_key key)
1017 {
1018 	struct key_vector *n, *l;
1019 
1020 	l = leaf_new(key, new);
1021 	if (!l)
1022 		goto noleaf;
1023 
1024 	/* retrieve child from parent node */
1025 	n = get_child(tp, get_index(key, tp));
1026 
1027 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1028 	 *
1029 	 *  Add a new tnode here
1030 	 *  first tnode need some special handling
1031 	 *  leaves us in position for handling as case 3
1032 	 */
1033 	if (n) {
1034 		struct key_vector *tn;
1035 
1036 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1037 		if (!tn)
1038 			goto notnode;
1039 
1040 		/* initialize routes out of node */
1041 		NODE_INIT_PARENT(tn, tp);
1042 		put_child(tn, get_index(key, tn) ^ 1, n);
1043 
1044 		/* start adding routes into the node */
1045 		put_child_root(tp, key, tn);
1046 		node_set_parent(n, tn);
1047 
1048 		/* parent now has a NULL spot where the leaf can go */
1049 		tp = tn;
1050 	}
1051 
1052 	/* Case 3: n is NULL, and will just insert a new leaf */
1053 	node_push_suffix(tp, new->fa_slen);
1054 	NODE_INIT_PARENT(l, tp);
1055 	put_child_root(tp, key, l);
1056 	trie_rebalance(t, tp);
1057 
1058 	return 0;
1059 notnode:
1060 	node_free(l);
1061 noleaf:
1062 	return -ENOMEM;
1063 }
1064 
1065 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1066 			    struct key_vector *l, struct fib_alias *new,
1067 			    struct fib_alias *fa, t_key key)
1068 {
1069 	if (!l)
1070 		return fib_insert_node(t, tp, new, key);
1071 
1072 	if (fa) {
1073 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1074 	} else {
1075 		struct fib_alias *last;
1076 
1077 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1078 			if (new->fa_slen < last->fa_slen)
1079 				break;
1080 			if ((new->fa_slen == last->fa_slen) &&
1081 			    (new->tb_id > last->tb_id))
1082 				break;
1083 			fa = last;
1084 		}
1085 
1086 		if (fa)
1087 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1088 		else
1089 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1090 	}
1091 
1092 	/* if we added to the tail node then we need to update slen */
1093 	if (l->slen < new->fa_slen) {
1094 		l->slen = new->fa_slen;
1095 		node_push_suffix(tp, new->fa_slen);
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1102 {
1103 	if (plen > KEYLENGTH) {
1104 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1105 		return false;
1106 	}
1107 
1108 	if ((plen < KEYLENGTH) && (key << plen)) {
1109 		NL_SET_ERR_MSG(extack,
1110 			       "Invalid prefix for given prefix length");
1111 		return false;
1112 	}
1113 
1114 	return true;
1115 }
1116 
1117 /* Caller must hold RTNL. */
1118 int fib_table_insert(struct net *net, struct fib_table *tb,
1119 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1120 {
1121 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1122 	struct trie *t = (struct trie *)tb->tb_data;
1123 	struct fib_alias *fa, *new_fa;
1124 	struct key_vector *l, *tp;
1125 	u16 nlflags = NLM_F_EXCL;
1126 	struct fib_info *fi;
1127 	u8 plen = cfg->fc_dst_len;
1128 	u8 slen = KEYLENGTH - plen;
1129 	u8 tos = cfg->fc_tos;
1130 	u32 key;
1131 	int err;
1132 
1133 	key = ntohl(cfg->fc_dst);
1134 
1135 	if (!fib_valid_key_len(key, plen, extack))
1136 		return -EINVAL;
1137 
1138 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1139 
1140 	fi = fib_create_info(cfg, extack);
1141 	if (IS_ERR(fi)) {
1142 		err = PTR_ERR(fi);
1143 		goto err;
1144 	}
1145 
1146 	l = fib_find_node(t, &tp, key);
1147 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1148 				tb->tb_id) : NULL;
1149 
1150 	/* Now fa, if non-NULL, points to the first fib alias
1151 	 * with the same keys [prefix,tos,priority], if such key already
1152 	 * exists or to the node before which we will insert new one.
1153 	 *
1154 	 * If fa is NULL, we will need to allocate a new one and
1155 	 * insert to the tail of the section matching the suffix length
1156 	 * of the new alias.
1157 	 */
1158 
1159 	if (fa && fa->fa_tos == tos &&
1160 	    fa->fa_info->fib_priority == fi->fib_priority) {
1161 		struct fib_alias *fa_first, *fa_match;
1162 
1163 		err = -EEXIST;
1164 		if (cfg->fc_nlflags & NLM_F_EXCL)
1165 			goto out;
1166 
1167 		nlflags &= ~NLM_F_EXCL;
1168 
1169 		/* We have 2 goals:
1170 		 * 1. Find exact match for type, scope, fib_info to avoid
1171 		 * duplicate routes
1172 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1173 		 */
1174 		fa_match = NULL;
1175 		fa_first = fa;
1176 		hlist_for_each_entry_from(fa, fa_list) {
1177 			if ((fa->fa_slen != slen) ||
1178 			    (fa->tb_id != tb->tb_id) ||
1179 			    (fa->fa_tos != tos))
1180 				break;
1181 			if (fa->fa_info->fib_priority != fi->fib_priority)
1182 				break;
1183 			if (fa->fa_type == cfg->fc_type &&
1184 			    fa->fa_info == fi) {
1185 				fa_match = fa;
1186 				break;
1187 			}
1188 		}
1189 
1190 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1191 			struct fib_info *fi_drop;
1192 			u8 state;
1193 
1194 			nlflags |= NLM_F_REPLACE;
1195 			fa = fa_first;
1196 			if (fa_match) {
1197 				if (fa == fa_match)
1198 					err = 0;
1199 				goto out;
1200 			}
1201 			err = -ENOBUFS;
1202 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1203 			if (!new_fa)
1204 				goto out;
1205 
1206 			fi_drop = fa->fa_info;
1207 			new_fa->fa_tos = fa->fa_tos;
1208 			new_fa->fa_info = fi;
1209 			new_fa->fa_type = cfg->fc_type;
1210 			state = fa->fa_state;
1211 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1212 			new_fa->fa_slen = fa->fa_slen;
1213 			new_fa->tb_id = tb->tb_id;
1214 			new_fa->fa_default = -1;
1215 
1216 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1217 						 key, plen, new_fa);
1218 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1219 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1220 
1221 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1222 
1223 			alias_free_mem_rcu(fa);
1224 
1225 			fib_release_info(fi_drop);
1226 			if (state & FA_S_ACCESSED)
1227 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1228 
1229 			goto succeeded;
1230 		}
1231 		/* Error if we find a perfect match which
1232 		 * uses the same scope, type, and nexthop
1233 		 * information.
1234 		 */
1235 		if (fa_match)
1236 			goto out;
1237 
1238 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1239 			event = FIB_EVENT_ENTRY_APPEND;
1240 			nlflags |= NLM_F_APPEND;
1241 		} else {
1242 			fa = fa_first;
1243 		}
1244 	}
1245 	err = -ENOENT;
1246 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1247 		goto out;
1248 
1249 	nlflags |= NLM_F_CREATE;
1250 	err = -ENOBUFS;
1251 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252 	if (!new_fa)
1253 		goto out;
1254 
1255 	new_fa->fa_info = fi;
1256 	new_fa->fa_tos = tos;
1257 	new_fa->fa_type = cfg->fc_type;
1258 	new_fa->fa_state = 0;
1259 	new_fa->fa_slen = slen;
1260 	new_fa->tb_id = tb->tb_id;
1261 	new_fa->fa_default = -1;
1262 
1263 	/* Insert new entry to the list. */
1264 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1265 	if (err)
1266 		goto out_free_new_fa;
1267 
1268 	if (!plen)
1269 		tb->tb_num_default++;
1270 
1271 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1272 	call_fib_entry_notifiers(net, event, key, plen, new_fa);
1273 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1274 		  &cfg->fc_nlinfo, nlflags);
1275 succeeded:
1276 	return 0;
1277 
1278 out_free_new_fa:
1279 	kmem_cache_free(fn_alias_kmem, new_fa);
1280 out:
1281 	fib_release_info(fi);
1282 err:
1283 	return err;
1284 }
1285 
1286 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1287 {
1288 	t_key prefix = n->key;
1289 
1290 	return (key ^ prefix) & (prefix | -prefix);
1291 }
1292 
1293 /* should be called with rcu_read_lock */
1294 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1295 		     struct fib_result *res, int fib_flags)
1296 {
1297 	struct trie *t = (struct trie *) tb->tb_data;
1298 #ifdef CONFIG_IP_FIB_TRIE_STATS
1299 	struct trie_use_stats __percpu *stats = t->stats;
1300 #endif
1301 	const t_key key = ntohl(flp->daddr);
1302 	struct key_vector *n, *pn;
1303 	struct fib_alias *fa;
1304 	unsigned long index;
1305 	t_key cindex;
1306 
1307 	trace_fib_table_lookup(tb->tb_id, flp);
1308 
1309 	pn = t->kv;
1310 	cindex = 0;
1311 
1312 	n = get_child_rcu(pn, cindex);
1313 	if (!n)
1314 		return -EAGAIN;
1315 
1316 #ifdef CONFIG_IP_FIB_TRIE_STATS
1317 	this_cpu_inc(stats->gets);
1318 #endif
1319 
1320 	/* Step 1: Travel to the longest prefix match in the trie */
1321 	for (;;) {
1322 		index = get_cindex(key, n);
1323 
1324 		/* This bit of code is a bit tricky but it combines multiple
1325 		 * checks into a single check.  The prefix consists of the
1326 		 * prefix plus zeros for the "bits" in the prefix. The index
1327 		 * is the difference between the key and this value.  From
1328 		 * this we can actually derive several pieces of data.
1329 		 *   if (index >= (1ul << bits))
1330 		 *     we have a mismatch in skip bits and failed
1331 		 *   else
1332 		 *     we know the value is cindex
1333 		 *
1334 		 * This check is safe even if bits == KEYLENGTH due to the
1335 		 * fact that we can only allocate a node with 32 bits if a
1336 		 * long is greater than 32 bits.
1337 		 */
1338 		if (index >= (1ul << n->bits))
1339 			break;
1340 
1341 		/* we have found a leaf. Prefixes have already been compared */
1342 		if (IS_LEAF(n))
1343 			goto found;
1344 
1345 		/* only record pn and cindex if we are going to be chopping
1346 		 * bits later.  Otherwise we are just wasting cycles.
1347 		 */
1348 		if (n->slen > n->pos) {
1349 			pn = n;
1350 			cindex = index;
1351 		}
1352 
1353 		n = get_child_rcu(n, index);
1354 		if (unlikely(!n))
1355 			goto backtrace;
1356 	}
1357 
1358 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1359 	for (;;) {
1360 		/* record the pointer where our next node pointer is stored */
1361 		struct key_vector __rcu **cptr = n->tnode;
1362 
1363 		/* This test verifies that none of the bits that differ
1364 		 * between the key and the prefix exist in the region of
1365 		 * the lsb and higher in the prefix.
1366 		 */
1367 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1368 			goto backtrace;
1369 
1370 		/* exit out and process leaf */
1371 		if (unlikely(IS_LEAF(n)))
1372 			break;
1373 
1374 		/* Don't bother recording parent info.  Since we are in
1375 		 * prefix match mode we will have to come back to wherever
1376 		 * we started this traversal anyway
1377 		 */
1378 
1379 		while ((n = rcu_dereference(*cptr)) == NULL) {
1380 backtrace:
1381 #ifdef CONFIG_IP_FIB_TRIE_STATS
1382 			if (!n)
1383 				this_cpu_inc(stats->null_node_hit);
1384 #endif
1385 			/* If we are at cindex 0 there are no more bits for
1386 			 * us to strip at this level so we must ascend back
1387 			 * up one level to see if there are any more bits to
1388 			 * be stripped there.
1389 			 */
1390 			while (!cindex) {
1391 				t_key pkey = pn->key;
1392 
1393 				/* If we don't have a parent then there is
1394 				 * nothing for us to do as we do not have any
1395 				 * further nodes to parse.
1396 				 */
1397 				if (IS_TRIE(pn))
1398 					return -EAGAIN;
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 				this_cpu_inc(stats->backtrack);
1401 #endif
1402 				/* Get Child's index */
1403 				pn = node_parent_rcu(pn);
1404 				cindex = get_index(pkey, pn);
1405 			}
1406 
1407 			/* strip the least significant bit from the cindex */
1408 			cindex &= cindex - 1;
1409 
1410 			/* grab pointer for next child node */
1411 			cptr = &pn->tnode[cindex];
1412 		}
1413 	}
1414 
1415 found:
1416 	/* this line carries forward the xor from earlier in the function */
1417 	index = key ^ n->key;
1418 
1419 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1420 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1421 		struct fib_info *fi = fa->fa_info;
1422 		int nhsel, err;
1423 
1424 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1425 			if (index >= (1ul << fa->fa_slen))
1426 				continue;
1427 		}
1428 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1429 			continue;
1430 		if (fi->fib_dead)
1431 			continue;
1432 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1433 			continue;
1434 		fib_alias_accessed(fa);
1435 		err = fib_props[fa->fa_type].error;
1436 		if (unlikely(err < 0)) {
1437 #ifdef CONFIG_IP_FIB_TRIE_STATS
1438 			this_cpu_inc(stats->semantic_match_passed);
1439 #endif
1440 			return err;
1441 		}
1442 		if (fi->fib_flags & RTNH_F_DEAD)
1443 			continue;
1444 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1445 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1446 			struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1447 
1448 			if (nh->nh_flags & RTNH_F_DEAD)
1449 				continue;
1450 			if (in_dev &&
1451 			    IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1452 			    nh->nh_flags & RTNH_F_LINKDOWN &&
1453 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1454 				continue;
1455 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1456 				if (flp->flowi4_oif &&
1457 				    flp->flowi4_oif != nh->nh_oif)
1458 					continue;
1459 			}
1460 
1461 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1462 				refcount_inc(&fi->fib_clntref);
1463 
1464 			res->prefix = htonl(n->key);
1465 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1466 			res->nh_sel = nhsel;
1467 			res->type = fa->fa_type;
1468 			res->scope = fi->fib_scope;
1469 			res->fi = fi;
1470 			res->table = tb;
1471 			res->fa_head = &n->leaf;
1472 #ifdef CONFIG_IP_FIB_TRIE_STATS
1473 			this_cpu_inc(stats->semantic_match_passed);
1474 #endif
1475 			trace_fib_table_lookup_nh(nh);
1476 
1477 			return err;
1478 		}
1479 	}
1480 #ifdef CONFIG_IP_FIB_TRIE_STATS
1481 	this_cpu_inc(stats->semantic_match_miss);
1482 #endif
1483 	goto backtrace;
1484 }
1485 EXPORT_SYMBOL_GPL(fib_table_lookup);
1486 
1487 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1488 			     struct key_vector *l, struct fib_alias *old)
1489 {
1490 	/* record the location of the previous list_info entry */
1491 	struct hlist_node **pprev = old->fa_list.pprev;
1492 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1493 
1494 	/* remove the fib_alias from the list */
1495 	hlist_del_rcu(&old->fa_list);
1496 
1497 	/* if we emptied the list this leaf will be freed and we can sort
1498 	 * out parent suffix lengths as a part of trie_rebalance
1499 	 */
1500 	if (hlist_empty(&l->leaf)) {
1501 		if (tp->slen == l->slen)
1502 			node_pull_suffix(tp, tp->pos);
1503 		put_child_root(tp, l->key, NULL);
1504 		node_free(l);
1505 		trie_rebalance(t, tp);
1506 		return;
1507 	}
1508 
1509 	/* only access fa if it is pointing at the last valid hlist_node */
1510 	if (*pprev)
1511 		return;
1512 
1513 	/* update the trie with the latest suffix length */
1514 	l->slen = fa->fa_slen;
1515 	node_pull_suffix(tp, fa->fa_slen);
1516 }
1517 
1518 /* Caller must hold RTNL. */
1519 int fib_table_delete(struct net *net, struct fib_table *tb,
1520 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1521 {
1522 	struct trie *t = (struct trie *) tb->tb_data;
1523 	struct fib_alias *fa, *fa_to_delete;
1524 	struct key_vector *l, *tp;
1525 	u8 plen = cfg->fc_dst_len;
1526 	u8 slen = KEYLENGTH - plen;
1527 	u8 tos = cfg->fc_tos;
1528 	u32 key;
1529 
1530 	key = ntohl(cfg->fc_dst);
1531 
1532 	if (!fib_valid_key_len(key, plen, extack))
1533 		return -EINVAL;
1534 
1535 	l = fib_find_node(t, &tp, key);
1536 	if (!l)
1537 		return -ESRCH;
1538 
1539 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1540 	if (!fa)
1541 		return -ESRCH;
1542 
1543 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1544 
1545 	fa_to_delete = NULL;
1546 	hlist_for_each_entry_from(fa, fa_list) {
1547 		struct fib_info *fi = fa->fa_info;
1548 
1549 		if ((fa->fa_slen != slen) ||
1550 		    (fa->tb_id != tb->tb_id) ||
1551 		    (fa->fa_tos != tos))
1552 			break;
1553 
1554 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1555 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1556 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1557 		    (!cfg->fc_prefsrc ||
1558 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1559 		    (!cfg->fc_protocol ||
1560 		     fi->fib_protocol == cfg->fc_protocol) &&
1561 		    fib_nh_match(cfg, fi, extack) == 0 &&
1562 		    fib_metrics_match(cfg, fi)) {
1563 			fa_to_delete = fa;
1564 			break;
1565 		}
1566 	}
1567 
1568 	if (!fa_to_delete)
1569 		return -ESRCH;
1570 
1571 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1572 				 fa_to_delete);
1573 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1574 		  &cfg->fc_nlinfo, 0);
1575 
1576 	if (!plen)
1577 		tb->tb_num_default--;
1578 
1579 	fib_remove_alias(t, tp, l, fa_to_delete);
1580 
1581 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1582 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1583 
1584 	fib_release_info(fa_to_delete->fa_info);
1585 	alias_free_mem_rcu(fa_to_delete);
1586 	return 0;
1587 }
1588 
1589 /* Scan for the next leaf starting at the provided key value */
1590 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1591 {
1592 	struct key_vector *pn, *n = *tn;
1593 	unsigned long cindex;
1594 
1595 	/* this loop is meant to try and find the key in the trie */
1596 	do {
1597 		/* record parent and next child index */
1598 		pn = n;
1599 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1600 
1601 		if (cindex >> pn->bits)
1602 			break;
1603 
1604 		/* descend into the next child */
1605 		n = get_child_rcu(pn, cindex++);
1606 		if (!n)
1607 			break;
1608 
1609 		/* guarantee forward progress on the keys */
1610 		if (IS_LEAF(n) && (n->key >= key))
1611 			goto found;
1612 	} while (IS_TNODE(n));
1613 
1614 	/* this loop will search for the next leaf with a greater key */
1615 	while (!IS_TRIE(pn)) {
1616 		/* if we exhausted the parent node we will need to climb */
1617 		if (cindex >= (1ul << pn->bits)) {
1618 			t_key pkey = pn->key;
1619 
1620 			pn = node_parent_rcu(pn);
1621 			cindex = get_index(pkey, pn) + 1;
1622 			continue;
1623 		}
1624 
1625 		/* grab the next available node */
1626 		n = get_child_rcu(pn, cindex++);
1627 		if (!n)
1628 			continue;
1629 
1630 		/* no need to compare keys since we bumped the index */
1631 		if (IS_LEAF(n))
1632 			goto found;
1633 
1634 		/* Rescan start scanning in new node */
1635 		pn = n;
1636 		cindex = 0;
1637 	}
1638 
1639 	*tn = pn;
1640 	return NULL; /* Root of trie */
1641 found:
1642 	/* if we are at the limit for keys just return NULL for the tnode */
1643 	*tn = pn;
1644 	return n;
1645 }
1646 
1647 static void fib_trie_free(struct fib_table *tb)
1648 {
1649 	struct trie *t = (struct trie *)tb->tb_data;
1650 	struct key_vector *pn = t->kv;
1651 	unsigned long cindex = 1;
1652 	struct hlist_node *tmp;
1653 	struct fib_alias *fa;
1654 
1655 	/* walk trie in reverse order and free everything */
1656 	for (;;) {
1657 		struct key_vector *n;
1658 
1659 		if (!(cindex--)) {
1660 			t_key pkey = pn->key;
1661 
1662 			if (IS_TRIE(pn))
1663 				break;
1664 
1665 			n = pn;
1666 			pn = node_parent(pn);
1667 
1668 			/* drop emptied tnode */
1669 			put_child_root(pn, n->key, NULL);
1670 			node_free(n);
1671 
1672 			cindex = get_index(pkey, pn);
1673 
1674 			continue;
1675 		}
1676 
1677 		/* grab the next available node */
1678 		n = get_child(pn, cindex);
1679 		if (!n)
1680 			continue;
1681 
1682 		if (IS_TNODE(n)) {
1683 			/* record pn and cindex for leaf walking */
1684 			pn = n;
1685 			cindex = 1ul << n->bits;
1686 
1687 			continue;
1688 		}
1689 
1690 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1691 			hlist_del_rcu(&fa->fa_list);
1692 			alias_free_mem_rcu(fa);
1693 		}
1694 
1695 		put_child_root(pn, n->key, NULL);
1696 		node_free(n);
1697 	}
1698 
1699 #ifdef CONFIG_IP_FIB_TRIE_STATS
1700 	free_percpu(t->stats);
1701 #endif
1702 	kfree(tb);
1703 }
1704 
1705 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1706 {
1707 	struct trie *ot = (struct trie *)oldtb->tb_data;
1708 	struct key_vector *l, *tp = ot->kv;
1709 	struct fib_table *local_tb;
1710 	struct fib_alias *fa;
1711 	struct trie *lt;
1712 	t_key key = 0;
1713 
1714 	if (oldtb->tb_data == oldtb->__data)
1715 		return oldtb;
1716 
1717 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1718 	if (!local_tb)
1719 		return NULL;
1720 
1721 	lt = (struct trie *)local_tb->tb_data;
1722 
1723 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1724 		struct key_vector *local_l = NULL, *local_tp;
1725 
1726 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1727 			struct fib_alias *new_fa;
1728 
1729 			if (local_tb->tb_id != fa->tb_id)
1730 				continue;
1731 
1732 			/* clone fa for new local table */
1733 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1734 			if (!new_fa)
1735 				goto out;
1736 
1737 			memcpy(new_fa, fa, sizeof(*fa));
1738 
1739 			/* insert clone into table */
1740 			if (!local_l)
1741 				local_l = fib_find_node(lt, &local_tp, l->key);
1742 
1743 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1744 					     NULL, l->key)) {
1745 				kmem_cache_free(fn_alias_kmem, new_fa);
1746 				goto out;
1747 			}
1748 		}
1749 
1750 		/* stop loop if key wrapped back to 0 */
1751 		key = l->key + 1;
1752 		if (key < l->key)
1753 			break;
1754 	}
1755 
1756 	return local_tb;
1757 out:
1758 	fib_trie_free(local_tb);
1759 
1760 	return NULL;
1761 }
1762 
1763 /* Caller must hold RTNL */
1764 void fib_table_flush_external(struct fib_table *tb)
1765 {
1766 	struct trie *t = (struct trie *)tb->tb_data;
1767 	struct key_vector *pn = t->kv;
1768 	unsigned long cindex = 1;
1769 	struct hlist_node *tmp;
1770 	struct fib_alias *fa;
1771 
1772 	/* walk trie in reverse order */
1773 	for (;;) {
1774 		unsigned char slen = 0;
1775 		struct key_vector *n;
1776 
1777 		if (!(cindex--)) {
1778 			t_key pkey = pn->key;
1779 
1780 			/* cannot resize the trie vector */
1781 			if (IS_TRIE(pn))
1782 				break;
1783 
1784 			/* update the suffix to address pulled leaves */
1785 			if (pn->slen > pn->pos)
1786 				update_suffix(pn);
1787 
1788 			/* resize completed node */
1789 			pn = resize(t, pn);
1790 			cindex = get_index(pkey, pn);
1791 
1792 			continue;
1793 		}
1794 
1795 		/* grab the next available node */
1796 		n = get_child(pn, cindex);
1797 		if (!n)
1798 			continue;
1799 
1800 		if (IS_TNODE(n)) {
1801 			/* record pn and cindex for leaf walking */
1802 			pn = n;
1803 			cindex = 1ul << n->bits;
1804 
1805 			continue;
1806 		}
1807 
1808 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1809 			/* if alias was cloned to local then we just
1810 			 * need to remove the local copy from main
1811 			 */
1812 			if (tb->tb_id != fa->tb_id) {
1813 				hlist_del_rcu(&fa->fa_list);
1814 				alias_free_mem_rcu(fa);
1815 				continue;
1816 			}
1817 
1818 			/* record local slen */
1819 			slen = fa->fa_slen;
1820 		}
1821 
1822 		/* update leaf slen */
1823 		n->slen = slen;
1824 
1825 		if (hlist_empty(&n->leaf)) {
1826 			put_child_root(pn, n->key, NULL);
1827 			node_free(n);
1828 		}
1829 	}
1830 }
1831 
1832 /* Caller must hold RTNL. */
1833 int fib_table_flush(struct net *net, struct fib_table *tb)
1834 {
1835 	struct trie *t = (struct trie *)tb->tb_data;
1836 	struct key_vector *pn = t->kv;
1837 	unsigned long cindex = 1;
1838 	struct hlist_node *tmp;
1839 	struct fib_alias *fa;
1840 	int found = 0;
1841 
1842 	/* walk trie in reverse order */
1843 	for (;;) {
1844 		unsigned char slen = 0;
1845 		struct key_vector *n;
1846 
1847 		if (!(cindex--)) {
1848 			t_key pkey = pn->key;
1849 
1850 			/* cannot resize the trie vector */
1851 			if (IS_TRIE(pn))
1852 				break;
1853 
1854 			/* update the suffix to address pulled leaves */
1855 			if (pn->slen > pn->pos)
1856 				update_suffix(pn);
1857 
1858 			/* resize completed node */
1859 			pn = resize(t, pn);
1860 			cindex = get_index(pkey, pn);
1861 
1862 			continue;
1863 		}
1864 
1865 		/* grab the next available node */
1866 		n = get_child(pn, cindex);
1867 		if (!n)
1868 			continue;
1869 
1870 		if (IS_TNODE(n)) {
1871 			/* record pn and cindex for leaf walking */
1872 			pn = n;
1873 			cindex = 1ul << n->bits;
1874 
1875 			continue;
1876 		}
1877 
1878 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1879 			struct fib_info *fi = fa->fa_info;
1880 
1881 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1882 			    tb->tb_id != fa->tb_id) {
1883 				slen = fa->fa_slen;
1884 				continue;
1885 			}
1886 
1887 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1888 						 n->key,
1889 						 KEYLENGTH - fa->fa_slen, fa);
1890 			hlist_del_rcu(&fa->fa_list);
1891 			fib_release_info(fa->fa_info);
1892 			alias_free_mem_rcu(fa);
1893 			found++;
1894 		}
1895 
1896 		/* update leaf slen */
1897 		n->slen = slen;
1898 
1899 		if (hlist_empty(&n->leaf)) {
1900 			put_child_root(pn, n->key, NULL);
1901 			node_free(n);
1902 		}
1903 	}
1904 
1905 	pr_debug("trie_flush found=%d\n", found);
1906 	return found;
1907 }
1908 
1909 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1910 			    struct fib_table *tb, struct notifier_block *nb)
1911 {
1912 	struct fib_alias *fa;
1913 
1914 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1915 		struct fib_info *fi = fa->fa_info;
1916 
1917 		if (!fi)
1918 			continue;
1919 
1920 		/* local and main table can share the same trie,
1921 		 * so don't notify twice for the same entry.
1922 		 */
1923 		if (tb->tb_id != fa->tb_id)
1924 			continue;
1925 
1926 		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1927 					KEYLENGTH - fa->fa_slen, fa);
1928 	}
1929 }
1930 
1931 static void fib_table_notify(struct net *net, struct fib_table *tb,
1932 			     struct notifier_block *nb)
1933 {
1934 	struct trie *t = (struct trie *)tb->tb_data;
1935 	struct key_vector *l, *tp = t->kv;
1936 	t_key key = 0;
1937 
1938 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1939 		fib_leaf_notify(net, l, tb, nb);
1940 
1941 		key = l->key + 1;
1942 		/* stop in case of wrap around */
1943 		if (key < l->key)
1944 			break;
1945 	}
1946 }
1947 
1948 void fib_notify(struct net *net, struct notifier_block *nb)
1949 {
1950 	unsigned int h;
1951 
1952 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1953 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1954 		struct fib_table *tb;
1955 
1956 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
1957 			fib_table_notify(net, tb, nb);
1958 	}
1959 }
1960 
1961 static void __trie_free_rcu(struct rcu_head *head)
1962 {
1963 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1964 #ifdef CONFIG_IP_FIB_TRIE_STATS
1965 	struct trie *t = (struct trie *)tb->tb_data;
1966 
1967 	if (tb->tb_data == tb->__data)
1968 		free_percpu(t->stats);
1969 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1970 	kfree(tb);
1971 }
1972 
1973 void fib_free_table(struct fib_table *tb)
1974 {
1975 	call_rcu(&tb->rcu, __trie_free_rcu);
1976 }
1977 
1978 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1979 			     struct sk_buff *skb, struct netlink_callback *cb)
1980 {
1981 	__be32 xkey = htonl(l->key);
1982 	struct fib_alias *fa;
1983 	int i, s_i;
1984 
1985 	s_i = cb->args[4];
1986 	i = 0;
1987 
1988 	/* rcu_read_lock is hold by caller */
1989 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1990 		int err;
1991 
1992 		if (i < s_i) {
1993 			i++;
1994 			continue;
1995 		}
1996 
1997 		if (tb->tb_id != fa->tb_id) {
1998 			i++;
1999 			continue;
2000 		}
2001 
2002 		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2003 				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2004 				    tb->tb_id, fa->fa_type,
2005 				    xkey, KEYLENGTH - fa->fa_slen,
2006 				    fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2007 		if (err < 0) {
2008 			cb->args[4] = i;
2009 			return err;
2010 		}
2011 		i++;
2012 	}
2013 
2014 	cb->args[4] = i;
2015 	return skb->len;
2016 }
2017 
2018 /* rcu_read_lock needs to be hold by caller from readside */
2019 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2020 		   struct netlink_callback *cb)
2021 {
2022 	struct trie *t = (struct trie *)tb->tb_data;
2023 	struct key_vector *l, *tp = t->kv;
2024 	/* Dump starting at last key.
2025 	 * Note: 0.0.0.0/0 (ie default) is first key.
2026 	 */
2027 	int count = cb->args[2];
2028 	t_key key = cb->args[3];
2029 
2030 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2031 		int err;
2032 
2033 		err = fn_trie_dump_leaf(l, tb, skb, cb);
2034 		if (err < 0) {
2035 			cb->args[3] = key;
2036 			cb->args[2] = count;
2037 			return err;
2038 		}
2039 
2040 		++count;
2041 		key = l->key + 1;
2042 
2043 		memset(&cb->args[4], 0,
2044 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2045 
2046 		/* stop loop if key wrapped back to 0 */
2047 		if (key < l->key)
2048 			break;
2049 	}
2050 
2051 	cb->args[3] = key;
2052 	cb->args[2] = count;
2053 
2054 	return skb->len;
2055 }
2056 
2057 void __init fib_trie_init(void)
2058 {
2059 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2060 					  sizeof(struct fib_alias),
2061 					  0, SLAB_PANIC, NULL);
2062 
2063 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2064 					   LEAF_SIZE,
2065 					   0, SLAB_PANIC, NULL);
2066 }
2067 
2068 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2069 {
2070 	struct fib_table *tb;
2071 	struct trie *t;
2072 	size_t sz = sizeof(*tb);
2073 
2074 	if (!alias)
2075 		sz += sizeof(struct trie);
2076 
2077 	tb = kzalloc(sz, GFP_KERNEL);
2078 	if (!tb)
2079 		return NULL;
2080 
2081 	tb->tb_id = id;
2082 	tb->tb_num_default = 0;
2083 	tb->tb_data = (alias ? alias->__data : tb->__data);
2084 
2085 	if (alias)
2086 		return tb;
2087 
2088 	t = (struct trie *) tb->tb_data;
2089 	t->kv[0].pos = KEYLENGTH;
2090 	t->kv[0].slen = KEYLENGTH;
2091 #ifdef CONFIG_IP_FIB_TRIE_STATS
2092 	t->stats = alloc_percpu(struct trie_use_stats);
2093 	if (!t->stats) {
2094 		kfree(tb);
2095 		tb = NULL;
2096 	}
2097 #endif
2098 
2099 	return tb;
2100 }
2101 
2102 #ifdef CONFIG_PROC_FS
2103 /* Depth first Trie walk iterator */
2104 struct fib_trie_iter {
2105 	struct seq_net_private p;
2106 	struct fib_table *tb;
2107 	struct key_vector *tnode;
2108 	unsigned int index;
2109 	unsigned int depth;
2110 };
2111 
2112 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2113 {
2114 	unsigned long cindex = iter->index;
2115 	struct key_vector *pn = iter->tnode;
2116 	t_key pkey;
2117 
2118 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2119 		 iter->tnode, iter->index, iter->depth);
2120 
2121 	while (!IS_TRIE(pn)) {
2122 		while (cindex < child_length(pn)) {
2123 			struct key_vector *n = get_child_rcu(pn, cindex++);
2124 
2125 			if (!n)
2126 				continue;
2127 
2128 			if (IS_LEAF(n)) {
2129 				iter->tnode = pn;
2130 				iter->index = cindex;
2131 			} else {
2132 				/* push down one level */
2133 				iter->tnode = n;
2134 				iter->index = 0;
2135 				++iter->depth;
2136 			}
2137 
2138 			return n;
2139 		}
2140 
2141 		/* Current node exhausted, pop back up */
2142 		pkey = pn->key;
2143 		pn = node_parent_rcu(pn);
2144 		cindex = get_index(pkey, pn) + 1;
2145 		--iter->depth;
2146 	}
2147 
2148 	/* record root node so further searches know we are done */
2149 	iter->tnode = pn;
2150 	iter->index = 0;
2151 
2152 	return NULL;
2153 }
2154 
2155 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2156 					     struct trie *t)
2157 {
2158 	struct key_vector *n, *pn;
2159 
2160 	if (!t)
2161 		return NULL;
2162 
2163 	pn = t->kv;
2164 	n = rcu_dereference(pn->tnode[0]);
2165 	if (!n)
2166 		return NULL;
2167 
2168 	if (IS_TNODE(n)) {
2169 		iter->tnode = n;
2170 		iter->index = 0;
2171 		iter->depth = 1;
2172 	} else {
2173 		iter->tnode = pn;
2174 		iter->index = 0;
2175 		iter->depth = 0;
2176 	}
2177 
2178 	return n;
2179 }
2180 
2181 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2182 {
2183 	struct key_vector *n;
2184 	struct fib_trie_iter iter;
2185 
2186 	memset(s, 0, sizeof(*s));
2187 
2188 	rcu_read_lock();
2189 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2190 		if (IS_LEAF(n)) {
2191 			struct fib_alias *fa;
2192 
2193 			s->leaves++;
2194 			s->totdepth += iter.depth;
2195 			if (iter.depth > s->maxdepth)
2196 				s->maxdepth = iter.depth;
2197 
2198 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2199 				++s->prefixes;
2200 		} else {
2201 			s->tnodes++;
2202 			if (n->bits < MAX_STAT_DEPTH)
2203 				s->nodesizes[n->bits]++;
2204 			s->nullpointers += tn_info(n)->empty_children;
2205 		}
2206 	}
2207 	rcu_read_unlock();
2208 }
2209 
2210 /*
2211  *	This outputs /proc/net/fib_triestats
2212  */
2213 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2214 {
2215 	unsigned int i, max, pointers, bytes, avdepth;
2216 
2217 	if (stat->leaves)
2218 		avdepth = stat->totdepth*100 / stat->leaves;
2219 	else
2220 		avdepth = 0;
2221 
2222 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2223 		   avdepth / 100, avdepth % 100);
2224 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2225 
2226 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2227 	bytes = LEAF_SIZE * stat->leaves;
2228 
2229 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2230 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2231 
2232 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2233 	bytes += TNODE_SIZE(0) * stat->tnodes;
2234 
2235 	max = MAX_STAT_DEPTH;
2236 	while (max > 0 && stat->nodesizes[max-1] == 0)
2237 		max--;
2238 
2239 	pointers = 0;
2240 	for (i = 1; i < max; i++)
2241 		if (stat->nodesizes[i] != 0) {
2242 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2243 			pointers += (1<<i) * stat->nodesizes[i];
2244 		}
2245 	seq_putc(seq, '\n');
2246 	seq_printf(seq, "\tPointers: %u\n", pointers);
2247 
2248 	bytes += sizeof(struct key_vector *) * pointers;
2249 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2250 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2251 }
2252 
2253 #ifdef CONFIG_IP_FIB_TRIE_STATS
2254 static void trie_show_usage(struct seq_file *seq,
2255 			    const struct trie_use_stats __percpu *stats)
2256 {
2257 	struct trie_use_stats s = { 0 };
2258 	int cpu;
2259 
2260 	/* loop through all of the CPUs and gather up the stats */
2261 	for_each_possible_cpu(cpu) {
2262 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2263 
2264 		s.gets += pcpu->gets;
2265 		s.backtrack += pcpu->backtrack;
2266 		s.semantic_match_passed += pcpu->semantic_match_passed;
2267 		s.semantic_match_miss += pcpu->semantic_match_miss;
2268 		s.null_node_hit += pcpu->null_node_hit;
2269 		s.resize_node_skipped += pcpu->resize_node_skipped;
2270 	}
2271 
2272 	seq_printf(seq, "\nCounters:\n---------\n");
2273 	seq_printf(seq, "gets = %u\n", s.gets);
2274 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2275 	seq_printf(seq, "semantic match passed = %u\n",
2276 		   s.semantic_match_passed);
2277 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2278 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2279 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2280 }
2281 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2282 
2283 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2284 {
2285 	if (tb->tb_id == RT_TABLE_LOCAL)
2286 		seq_puts(seq, "Local:\n");
2287 	else if (tb->tb_id == RT_TABLE_MAIN)
2288 		seq_puts(seq, "Main:\n");
2289 	else
2290 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2291 }
2292 
2293 
2294 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2295 {
2296 	struct net *net = (struct net *)seq->private;
2297 	unsigned int h;
2298 
2299 	seq_printf(seq,
2300 		   "Basic info: size of leaf:"
2301 		   " %zd bytes, size of tnode: %zd bytes.\n",
2302 		   LEAF_SIZE, TNODE_SIZE(0));
2303 
2304 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2305 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2306 		struct fib_table *tb;
2307 
2308 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2309 			struct trie *t = (struct trie *) tb->tb_data;
2310 			struct trie_stat stat;
2311 
2312 			if (!t)
2313 				continue;
2314 
2315 			fib_table_print(seq, tb);
2316 
2317 			trie_collect_stats(t, &stat);
2318 			trie_show_stats(seq, &stat);
2319 #ifdef CONFIG_IP_FIB_TRIE_STATS
2320 			trie_show_usage(seq, t->stats);
2321 #endif
2322 		}
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2329 {
2330 	return single_open_net(inode, file, fib_triestat_seq_show);
2331 }
2332 
2333 static const struct file_operations fib_triestat_fops = {
2334 	.owner	= THIS_MODULE,
2335 	.open	= fib_triestat_seq_open,
2336 	.read	= seq_read,
2337 	.llseek	= seq_lseek,
2338 	.release = single_release_net,
2339 };
2340 
2341 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2342 {
2343 	struct fib_trie_iter *iter = seq->private;
2344 	struct net *net = seq_file_net(seq);
2345 	loff_t idx = 0;
2346 	unsigned int h;
2347 
2348 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2349 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2350 		struct fib_table *tb;
2351 
2352 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2353 			struct key_vector *n;
2354 
2355 			for (n = fib_trie_get_first(iter,
2356 						    (struct trie *) tb->tb_data);
2357 			     n; n = fib_trie_get_next(iter))
2358 				if (pos == idx++) {
2359 					iter->tb = tb;
2360 					return n;
2361 				}
2362 		}
2363 	}
2364 
2365 	return NULL;
2366 }
2367 
2368 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2369 	__acquires(RCU)
2370 {
2371 	rcu_read_lock();
2372 	return fib_trie_get_idx(seq, *pos);
2373 }
2374 
2375 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2376 {
2377 	struct fib_trie_iter *iter = seq->private;
2378 	struct net *net = seq_file_net(seq);
2379 	struct fib_table *tb = iter->tb;
2380 	struct hlist_node *tb_node;
2381 	unsigned int h;
2382 	struct key_vector *n;
2383 
2384 	++*pos;
2385 	/* next node in same table */
2386 	n = fib_trie_get_next(iter);
2387 	if (n)
2388 		return n;
2389 
2390 	/* walk rest of this hash chain */
2391 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2392 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2393 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2394 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2395 		if (n)
2396 			goto found;
2397 	}
2398 
2399 	/* new hash chain */
2400 	while (++h < FIB_TABLE_HASHSZ) {
2401 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2402 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2403 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2404 			if (n)
2405 				goto found;
2406 		}
2407 	}
2408 	return NULL;
2409 
2410 found:
2411 	iter->tb = tb;
2412 	return n;
2413 }
2414 
2415 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2416 	__releases(RCU)
2417 {
2418 	rcu_read_unlock();
2419 }
2420 
2421 static void seq_indent(struct seq_file *seq, int n)
2422 {
2423 	while (n-- > 0)
2424 		seq_puts(seq, "   ");
2425 }
2426 
2427 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2428 {
2429 	switch (s) {
2430 	case RT_SCOPE_UNIVERSE: return "universe";
2431 	case RT_SCOPE_SITE:	return "site";
2432 	case RT_SCOPE_LINK:	return "link";
2433 	case RT_SCOPE_HOST:	return "host";
2434 	case RT_SCOPE_NOWHERE:	return "nowhere";
2435 	default:
2436 		snprintf(buf, len, "scope=%d", s);
2437 		return buf;
2438 	}
2439 }
2440 
2441 static const char *const rtn_type_names[__RTN_MAX] = {
2442 	[RTN_UNSPEC] = "UNSPEC",
2443 	[RTN_UNICAST] = "UNICAST",
2444 	[RTN_LOCAL] = "LOCAL",
2445 	[RTN_BROADCAST] = "BROADCAST",
2446 	[RTN_ANYCAST] = "ANYCAST",
2447 	[RTN_MULTICAST] = "MULTICAST",
2448 	[RTN_BLACKHOLE] = "BLACKHOLE",
2449 	[RTN_UNREACHABLE] = "UNREACHABLE",
2450 	[RTN_PROHIBIT] = "PROHIBIT",
2451 	[RTN_THROW] = "THROW",
2452 	[RTN_NAT] = "NAT",
2453 	[RTN_XRESOLVE] = "XRESOLVE",
2454 };
2455 
2456 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2457 {
2458 	if (t < __RTN_MAX && rtn_type_names[t])
2459 		return rtn_type_names[t];
2460 	snprintf(buf, len, "type %u", t);
2461 	return buf;
2462 }
2463 
2464 /* Pretty print the trie */
2465 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2466 {
2467 	const struct fib_trie_iter *iter = seq->private;
2468 	struct key_vector *n = v;
2469 
2470 	if (IS_TRIE(node_parent_rcu(n)))
2471 		fib_table_print(seq, iter->tb);
2472 
2473 	if (IS_TNODE(n)) {
2474 		__be32 prf = htonl(n->key);
2475 
2476 		seq_indent(seq, iter->depth-1);
2477 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2478 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2479 			   tn_info(n)->full_children,
2480 			   tn_info(n)->empty_children);
2481 	} else {
2482 		__be32 val = htonl(n->key);
2483 		struct fib_alias *fa;
2484 
2485 		seq_indent(seq, iter->depth);
2486 		seq_printf(seq, "  |-- %pI4\n", &val);
2487 
2488 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2489 			char buf1[32], buf2[32];
2490 
2491 			seq_indent(seq, iter->depth + 1);
2492 			seq_printf(seq, "  /%zu %s %s",
2493 				   KEYLENGTH - fa->fa_slen,
2494 				   rtn_scope(buf1, sizeof(buf1),
2495 					     fa->fa_info->fib_scope),
2496 				   rtn_type(buf2, sizeof(buf2),
2497 					    fa->fa_type));
2498 			if (fa->fa_tos)
2499 				seq_printf(seq, " tos=%d", fa->fa_tos);
2500 			seq_putc(seq, '\n');
2501 		}
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 static const struct seq_operations fib_trie_seq_ops = {
2508 	.start  = fib_trie_seq_start,
2509 	.next   = fib_trie_seq_next,
2510 	.stop   = fib_trie_seq_stop,
2511 	.show   = fib_trie_seq_show,
2512 };
2513 
2514 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2515 {
2516 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2517 			    sizeof(struct fib_trie_iter));
2518 }
2519 
2520 static const struct file_operations fib_trie_fops = {
2521 	.owner  = THIS_MODULE,
2522 	.open   = fib_trie_seq_open,
2523 	.read   = seq_read,
2524 	.llseek = seq_lseek,
2525 	.release = seq_release_net,
2526 };
2527 
2528 struct fib_route_iter {
2529 	struct seq_net_private p;
2530 	struct fib_table *main_tb;
2531 	struct key_vector *tnode;
2532 	loff_t	pos;
2533 	t_key	key;
2534 };
2535 
2536 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2537 					    loff_t pos)
2538 {
2539 	struct key_vector *l, **tp = &iter->tnode;
2540 	t_key key;
2541 
2542 	/* use cached location of previously found key */
2543 	if (iter->pos > 0 && pos >= iter->pos) {
2544 		key = iter->key;
2545 	} else {
2546 		iter->pos = 1;
2547 		key = 0;
2548 	}
2549 
2550 	pos -= iter->pos;
2551 
2552 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2553 		key = l->key + 1;
2554 		iter->pos++;
2555 		l = NULL;
2556 
2557 		/* handle unlikely case of a key wrap */
2558 		if (!key)
2559 			break;
2560 	}
2561 
2562 	if (l)
2563 		iter->key = l->key;	/* remember it */
2564 	else
2565 		iter->pos = 0;		/* forget it */
2566 
2567 	return l;
2568 }
2569 
2570 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2571 	__acquires(RCU)
2572 {
2573 	struct fib_route_iter *iter = seq->private;
2574 	struct fib_table *tb;
2575 	struct trie *t;
2576 
2577 	rcu_read_lock();
2578 
2579 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2580 	if (!tb)
2581 		return NULL;
2582 
2583 	iter->main_tb = tb;
2584 	t = (struct trie *)tb->tb_data;
2585 	iter->tnode = t->kv;
2586 
2587 	if (*pos != 0)
2588 		return fib_route_get_idx(iter, *pos);
2589 
2590 	iter->pos = 0;
2591 	iter->key = KEY_MAX;
2592 
2593 	return SEQ_START_TOKEN;
2594 }
2595 
2596 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2597 {
2598 	struct fib_route_iter *iter = seq->private;
2599 	struct key_vector *l = NULL;
2600 	t_key key = iter->key + 1;
2601 
2602 	++*pos;
2603 
2604 	/* only allow key of 0 for start of sequence */
2605 	if ((v == SEQ_START_TOKEN) || key)
2606 		l = leaf_walk_rcu(&iter->tnode, key);
2607 
2608 	if (l) {
2609 		iter->key = l->key;
2610 		iter->pos++;
2611 	} else {
2612 		iter->pos = 0;
2613 	}
2614 
2615 	return l;
2616 }
2617 
2618 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2619 	__releases(RCU)
2620 {
2621 	rcu_read_unlock();
2622 }
2623 
2624 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2625 {
2626 	unsigned int flags = 0;
2627 
2628 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2629 		flags = RTF_REJECT;
2630 	if (fi && fi->fib_nh->nh_gw)
2631 		flags |= RTF_GATEWAY;
2632 	if (mask == htonl(0xFFFFFFFF))
2633 		flags |= RTF_HOST;
2634 	flags |= RTF_UP;
2635 	return flags;
2636 }
2637 
2638 /*
2639  *	This outputs /proc/net/route.
2640  *	The format of the file is not supposed to be changed
2641  *	and needs to be same as fib_hash output to avoid breaking
2642  *	legacy utilities
2643  */
2644 static int fib_route_seq_show(struct seq_file *seq, void *v)
2645 {
2646 	struct fib_route_iter *iter = seq->private;
2647 	struct fib_table *tb = iter->main_tb;
2648 	struct fib_alias *fa;
2649 	struct key_vector *l = v;
2650 	__be32 prefix;
2651 
2652 	if (v == SEQ_START_TOKEN) {
2653 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2654 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2655 			   "\tWindow\tIRTT");
2656 		return 0;
2657 	}
2658 
2659 	prefix = htonl(l->key);
2660 
2661 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2662 		const struct fib_info *fi = fa->fa_info;
2663 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2664 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2665 
2666 		if ((fa->fa_type == RTN_BROADCAST) ||
2667 		    (fa->fa_type == RTN_MULTICAST))
2668 			continue;
2669 
2670 		if (fa->tb_id != tb->tb_id)
2671 			continue;
2672 
2673 		seq_setwidth(seq, 127);
2674 
2675 		if (fi)
2676 			seq_printf(seq,
2677 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2678 				   "%d\t%08X\t%d\t%u\t%u",
2679 				   fi->fib_dev ? fi->fib_dev->name : "*",
2680 				   prefix,
2681 				   fi->fib_nh->nh_gw, flags, 0, 0,
2682 				   fi->fib_priority,
2683 				   mask,
2684 				   (fi->fib_advmss ?
2685 				    fi->fib_advmss + 40 : 0),
2686 				   fi->fib_window,
2687 				   fi->fib_rtt >> 3);
2688 		else
2689 			seq_printf(seq,
2690 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2691 				   "%d\t%08X\t%d\t%u\t%u",
2692 				   prefix, 0, flags, 0, 0, 0,
2693 				   mask, 0, 0, 0);
2694 
2695 		seq_pad(seq, '\n');
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 static const struct seq_operations fib_route_seq_ops = {
2702 	.start  = fib_route_seq_start,
2703 	.next   = fib_route_seq_next,
2704 	.stop   = fib_route_seq_stop,
2705 	.show   = fib_route_seq_show,
2706 };
2707 
2708 static int fib_route_seq_open(struct inode *inode, struct file *file)
2709 {
2710 	return seq_open_net(inode, file, &fib_route_seq_ops,
2711 			    sizeof(struct fib_route_iter));
2712 }
2713 
2714 static const struct file_operations fib_route_fops = {
2715 	.owner  = THIS_MODULE,
2716 	.open   = fib_route_seq_open,
2717 	.read   = seq_read,
2718 	.llseek = seq_lseek,
2719 	.release = seq_release_net,
2720 };
2721 
2722 int __net_init fib_proc_init(struct net *net)
2723 {
2724 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2725 		goto out1;
2726 
2727 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2728 			 &fib_triestat_fops))
2729 		goto out2;
2730 
2731 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2732 		goto out3;
2733 
2734 	return 0;
2735 
2736 out3:
2737 	remove_proc_entry("fib_triestat", net->proc_net);
2738 out2:
2739 	remove_proc_entry("fib_trie", net->proc_net);
2740 out1:
2741 	return -ENOMEM;
2742 }
2743 
2744 void __net_exit fib_proc_exit(struct net *net)
2745 {
2746 	remove_proc_entry("fib_trie", net->proc_net);
2747 	remove_proc_entry("fib_triestat", net->proc_net);
2748 	remove_proc_entry("route", net->proc_net);
2749 }
2750 
2751 #endif /* CONFIG_PROC_FS */
2752