1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <linux/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <linux/notifier.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include <net/fib_notifier.h> 85 #include <trace/events/fib.h> 86 #include "fib_lookup.h" 87 88 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 89 enum fib_event_type event_type, u32 dst, 90 int dst_len, struct fib_alias *fa) 91 { 92 struct fib_entry_notifier_info info = { 93 .dst = dst, 94 .dst_len = dst_len, 95 .fi = fa->fa_info, 96 .tos = fa->fa_tos, 97 .type = fa->fa_type, 98 .tb_id = fa->tb_id, 99 }; 100 return call_fib4_notifier(nb, net, event_type, &info.info); 101 } 102 103 static int call_fib_entry_notifiers(struct net *net, 104 enum fib_event_type event_type, u32 dst, 105 int dst_len, struct fib_alias *fa) 106 { 107 struct fib_entry_notifier_info info = { 108 .dst = dst, 109 .dst_len = dst_len, 110 .fi = fa->fa_info, 111 .tos = fa->fa_tos, 112 .type = fa->fa_type, 113 .tb_id = fa->tb_id, 114 }; 115 return call_fib4_notifiers(net, event_type, &info.info); 116 } 117 118 #define MAX_STAT_DEPTH 32 119 120 #define KEYLENGTH (8*sizeof(t_key)) 121 #define KEY_MAX ((t_key)~0) 122 123 typedef unsigned int t_key; 124 125 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 126 #define IS_TNODE(n) ((n)->bits) 127 #define IS_LEAF(n) (!(n)->bits) 128 129 struct key_vector { 130 t_key key; 131 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 132 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 133 unsigned char slen; 134 union { 135 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 136 struct hlist_head leaf; 137 /* This array is valid if (pos | bits) > 0 (TNODE) */ 138 struct key_vector __rcu *tnode[0]; 139 }; 140 }; 141 142 struct tnode { 143 struct rcu_head rcu; 144 t_key empty_children; /* KEYLENGTH bits needed */ 145 t_key full_children; /* KEYLENGTH bits needed */ 146 struct key_vector __rcu *parent; 147 struct key_vector kv[1]; 148 #define tn_bits kv[0].bits 149 }; 150 151 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 152 #define LEAF_SIZE TNODE_SIZE(1) 153 154 #ifdef CONFIG_IP_FIB_TRIE_STATS 155 struct trie_use_stats { 156 unsigned int gets; 157 unsigned int backtrack; 158 unsigned int semantic_match_passed; 159 unsigned int semantic_match_miss; 160 unsigned int null_node_hit; 161 unsigned int resize_node_skipped; 162 }; 163 #endif 164 165 struct trie_stat { 166 unsigned int totdepth; 167 unsigned int maxdepth; 168 unsigned int tnodes; 169 unsigned int leaves; 170 unsigned int nullpointers; 171 unsigned int prefixes; 172 unsigned int nodesizes[MAX_STAT_DEPTH]; 173 }; 174 175 struct trie { 176 struct key_vector kv[1]; 177 #ifdef CONFIG_IP_FIB_TRIE_STATS 178 struct trie_use_stats __percpu *stats; 179 #endif 180 }; 181 182 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 183 static size_t tnode_free_size; 184 185 /* 186 * synchronize_rcu after call_rcu for that many pages; it should be especially 187 * useful before resizing the root node with PREEMPT_NONE configs; the value was 188 * obtained experimentally, aiming to avoid visible slowdown. 189 */ 190 static const int sync_pages = 128; 191 192 static struct kmem_cache *fn_alias_kmem __read_mostly; 193 static struct kmem_cache *trie_leaf_kmem __read_mostly; 194 195 static inline struct tnode *tn_info(struct key_vector *kv) 196 { 197 return container_of(kv, struct tnode, kv[0]); 198 } 199 200 /* caller must hold RTNL */ 201 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 202 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 203 204 /* caller must hold RCU read lock or RTNL */ 205 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 206 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 207 208 /* wrapper for rcu_assign_pointer */ 209 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 210 { 211 if (n) 212 rcu_assign_pointer(tn_info(n)->parent, tp); 213 } 214 215 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 216 217 /* This provides us with the number of children in this node, in the case of a 218 * leaf this will return 0 meaning none of the children are accessible. 219 */ 220 static inline unsigned long child_length(const struct key_vector *tn) 221 { 222 return (1ul << tn->bits) & ~(1ul); 223 } 224 225 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 226 227 static inline unsigned long get_index(t_key key, struct key_vector *kv) 228 { 229 unsigned long index = key ^ kv->key; 230 231 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 232 return 0; 233 234 return index >> kv->pos; 235 } 236 237 /* To understand this stuff, an understanding of keys and all their bits is 238 * necessary. Every node in the trie has a key associated with it, but not 239 * all of the bits in that key are significant. 240 * 241 * Consider a node 'n' and its parent 'tp'. 242 * 243 * If n is a leaf, every bit in its key is significant. Its presence is 244 * necessitated by path compression, since during a tree traversal (when 245 * searching for a leaf - unless we are doing an insertion) we will completely 246 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 247 * a potentially successful search, that we have indeed been walking the 248 * correct key path. 249 * 250 * Note that we can never "miss" the correct key in the tree if present by 251 * following the wrong path. Path compression ensures that segments of the key 252 * that are the same for all keys with a given prefix are skipped, but the 253 * skipped part *is* identical for each node in the subtrie below the skipped 254 * bit! trie_insert() in this implementation takes care of that. 255 * 256 * if n is an internal node - a 'tnode' here, the various parts of its key 257 * have many different meanings. 258 * 259 * Example: 260 * _________________________________________________________________ 261 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 262 * ----------------------------------------------------------------- 263 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 264 * 265 * _________________________________________________________________ 266 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 267 * ----------------------------------------------------------------- 268 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 269 * 270 * tp->pos = 22 271 * tp->bits = 3 272 * n->pos = 13 273 * n->bits = 4 274 * 275 * First, let's just ignore the bits that come before the parent tp, that is 276 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 277 * point we do not use them for anything. 278 * 279 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 280 * index into the parent's child array. That is, they will be used to find 281 * 'n' among tp's children. 282 * 283 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 284 * for the node n. 285 * 286 * All the bits we have seen so far are significant to the node n. The rest 287 * of the bits are really not needed or indeed known in n->key. 288 * 289 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 290 * n's child array, and will of course be different for each child. 291 * 292 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 293 * at this point. 294 */ 295 296 static const int halve_threshold = 25; 297 static const int inflate_threshold = 50; 298 static const int halve_threshold_root = 15; 299 static const int inflate_threshold_root = 30; 300 301 static void __alias_free_mem(struct rcu_head *head) 302 { 303 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 304 kmem_cache_free(fn_alias_kmem, fa); 305 } 306 307 static inline void alias_free_mem_rcu(struct fib_alias *fa) 308 { 309 call_rcu(&fa->rcu, __alias_free_mem); 310 } 311 312 #define TNODE_KMALLOC_MAX \ 313 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 314 #define TNODE_VMALLOC_MAX \ 315 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 316 317 static void __node_free_rcu(struct rcu_head *head) 318 { 319 struct tnode *n = container_of(head, struct tnode, rcu); 320 321 if (!n->tn_bits) 322 kmem_cache_free(trie_leaf_kmem, n); 323 else 324 kvfree(n); 325 } 326 327 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 328 329 static struct tnode *tnode_alloc(int bits) 330 { 331 size_t size; 332 333 /* verify bits is within bounds */ 334 if (bits > TNODE_VMALLOC_MAX) 335 return NULL; 336 337 /* determine size and verify it is non-zero and didn't overflow */ 338 size = TNODE_SIZE(1ul << bits); 339 340 if (size <= PAGE_SIZE) 341 return kzalloc(size, GFP_KERNEL); 342 else 343 return vzalloc(size); 344 } 345 346 static inline void empty_child_inc(struct key_vector *n) 347 { 348 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 349 } 350 351 static inline void empty_child_dec(struct key_vector *n) 352 { 353 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 354 } 355 356 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 357 { 358 struct key_vector *l; 359 struct tnode *kv; 360 361 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 362 if (!kv) 363 return NULL; 364 365 /* initialize key vector */ 366 l = kv->kv; 367 l->key = key; 368 l->pos = 0; 369 l->bits = 0; 370 l->slen = fa->fa_slen; 371 372 /* link leaf to fib alias */ 373 INIT_HLIST_HEAD(&l->leaf); 374 hlist_add_head(&fa->fa_list, &l->leaf); 375 376 return l; 377 } 378 379 static struct key_vector *tnode_new(t_key key, int pos, int bits) 380 { 381 unsigned int shift = pos + bits; 382 struct key_vector *tn; 383 struct tnode *tnode; 384 385 /* verify bits and pos their msb bits clear and values are valid */ 386 BUG_ON(!bits || (shift > KEYLENGTH)); 387 388 tnode = tnode_alloc(bits); 389 if (!tnode) 390 return NULL; 391 392 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 393 sizeof(struct key_vector *) << bits); 394 395 if (bits == KEYLENGTH) 396 tnode->full_children = 1; 397 else 398 tnode->empty_children = 1ul << bits; 399 400 tn = tnode->kv; 401 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 402 tn->pos = pos; 403 tn->bits = bits; 404 tn->slen = pos; 405 406 return tn; 407 } 408 409 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 410 * and no bits are skipped. See discussion in dyntree paper p. 6 411 */ 412 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 413 { 414 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 415 } 416 417 /* Add a child at position i overwriting the old value. 418 * Update the value of full_children and empty_children. 419 */ 420 static void put_child(struct key_vector *tn, unsigned long i, 421 struct key_vector *n) 422 { 423 struct key_vector *chi = get_child(tn, i); 424 int isfull, wasfull; 425 426 BUG_ON(i >= child_length(tn)); 427 428 /* update emptyChildren, overflow into fullChildren */ 429 if (!n && chi) 430 empty_child_inc(tn); 431 if (n && !chi) 432 empty_child_dec(tn); 433 434 /* update fullChildren */ 435 wasfull = tnode_full(tn, chi); 436 isfull = tnode_full(tn, n); 437 438 if (wasfull && !isfull) 439 tn_info(tn)->full_children--; 440 else if (!wasfull && isfull) 441 tn_info(tn)->full_children++; 442 443 if (n && (tn->slen < n->slen)) 444 tn->slen = n->slen; 445 446 rcu_assign_pointer(tn->tnode[i], n); 447 } 448 449 static void update_children(struct key_vector *tn) 450 { 451 unsigned long i; 452 453 /* update all of the child parent pointers */ 454 for (i = child_length(tn); i;) { 455 struct key_vector *inode = get_child(tn, --i); 456 457 if (!inode) 458 continue; 459 460 /* Either update the children of a tnode that 461 * already belongs to us or update the child 462 * to point to ourselves. 463 */ 464 if (node_parent(inode) == tn) 465 update_children(inode); 466 else 467 node_set_parent(inode, tn); 468 } 469 } 470 471 static inline void put_child_root(struct key_vector *tp, t_key key, 472 struct key_vector *n) 473 { 474 if (IS_TRIE(tp)) 475 rcu_assign_pointer(tp->tnode[0], n); 476 else 477 put_child(tp, get_index(key, tp), n); 478 } 479 480 static inline void tnode_free_init(struct key_vector *tn) 481 { 482 tn_info(tn)->rcu.next = NULL; 483 } 484 485 static inline void tnode_free_append(struct key_vector *tn, 486 struct key_vector *n) 487 { 488 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 489 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 490 } 491 492 static void tnode_free(struct key_vector *tn) 493 { 494 struct callback_head *head = &tn_info(tn)->rcu; 495 496 while (head) { 497 head = head->next; 498 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 499 node_free(tn); 500 501 tn = container_of(head, struct tnode, rcu)->kv; 502 } 503 504 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 505 tnode_free_size = 0; 506 synchronize_rcu(); 507 } 508 } 509 510 static struct key_vector *replace(struct trie *t, 511 struct key_vector *oldtnode, 512 struct key_vector *tn) 513 { 514 struct key_vector *tp = node_parent(oldtnode); 515 unsigned long i; 516 517 /* setup the parent pointer out of and back into this node */ 518 NODE_INIT_PARENT(tn, tp); 519 put_child_root(tp, tn->key, tn); 520 521 /* update all of the child parent pointers */ 522 update_children(tn); 523 524 /* all pointers should be clean so we are done */ 525 tnode_free(oldtnode); 526 527 /* resize children now that oldtnode is freed */ 528 for (i = child_length(tn); i;) { 529 struct key_vector *inode = get_child(tn, --i); 530 531 /* resize child node */ 532 if (tnode_full(tn, inode)) 533 tn = resize(t, inode); 534 } 535 536 return tp; 537 } 538 539 static struct key_vector *inflate(struct trie *t, 540 struct key_vector *oldtnode) 541 { 542 struct key_vector *tn; 543 unsigned long i; 544 t_key m; 545 546 pr_debug("In inflate\n"); 547 548 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 549 if (!tn) 550 goto notnode; 551 552 /* prepare oldtnode to be freed */ 553 tnode_free_init(oldtnode); 554 555 /* Assemble all of the pointers in our cluster, in this case that 556 * represents all of the pointers out of our allocated nodes that 557 * point to existing tnodes and the links between our allocated 558 * nodes. 559 */ 560 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 561 struct key_vector *inode = get_child(oldtnode, --i); 562 struct key_vector *node0, *node1; 563 unsigned long j, k; 564 565 /* An empty child */ 566 if (!inode) 567 continue; 568 569 /* A leaf or an internal node with skipped bits */ 570 if (!tnode_full(oldtnode, inode)) { 571 put_child(tn, get_index(inode->key, tn), inode); 572 continue; 573 } 574 575 /* drop the node in the old tnode free list */ 576 tnode_free_append(oldtnode, inode); 577 578 /* An internal node with two children */ 579 if (inode->bits == 1) { 580 put_child(tn, 2 * i + 1, get_child(inode, 1)); 581 put_child(tn, 2 * i, get_child(inode, 0)); 582 continue; 583 } 584 585 /* We will replace this node 'inode' with two new 586 * ones, 'node0' and 'node1', each with half of the 587 * original children. The two new nodes will have 588 * a position one bit further down the key and this 589 * means that the "significant" part of their keys 590 * (see the discussion near the top of this file) 591 * will differ by one bit, which will be "0" in 592 * node0's key and "1" in node1's key. Since we are 593 * moving the key position by one step, the bit that 594 * we are moving away from - the bit at position 595 * (tn->pos) - is the one that will differ between 596 * node0 and node1. So... we synthesize that bit in the 597 * two new keys. 598 */ 599 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 600 if (!node1) 601 goto nomem; 602 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 603 604 tnode_free_append(tn, node1); 605 if (!node0) 606 goto nomem; 607 tnode_free_append(tn, node0); 608 609 /* populate child pointers in new nodes */ 610 for (k = child_length(inode), j = k / 2; j;) { 611 put_child(node1, --j, get_child(inode, --k)); 612 put_child(node0, j, get_child(inode, j)); 613 put_child(node1, --j, get_child(inode, --k)); 614 put_child(node0, j, get_child(inode, j)); 615 } 616 617 /* link new nodes to parent */ 618 NODE_INIT_PARENT(node1, tn); 619 NODE_INIT_PARENT(node0, tn); 620 621 /* link parent to nodes */ 622 put_child(tn, 2 * i + 1, node1); 623 put_child(tn, 2 * i, node0); 624 } 625 626 /* setup the parent pointers into and out of this node */ 627 return replace(t, oldtnode, tn); 628 nomem: 629 /* all pointers should be clean so we are done */ 630 tnode_free(tn); 631 notnode: 632 return NULL; 633 } 634 635 static struct key_vector *halve(struct trie *t, 636 struct key_vector *oldtnode) 637 { 638 struct key_vector *tn; 639 unsigned long i; 640 641 pr_debug("In halve\n"); 642 643 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 644 if (!tn) 645 goto notnode; 646 647 /* prepare oldtnode to be freed */ 648 tnode_free_init(oldtnode); 649 650 /* Assemble all of the pointers in our cluster, in this case that 651 * represents all of the pointers out of our allocated nodes that 652 * point to existing tnodes and the links between our allocated 653 * nodes. 654 */ 655 for (i = child_length(oldtnode); i;) { 656 struct key_vector *node1 = get_child(oldtnode, --i); 657 struct key_vector *node0 = get_child(oldtnode, --i); 658 struct key_vector *inode; 659 660 /* At least one of the children is empty */ 661 if (!node1 || !node0) { 662 put_child(tn, i / 2, node1 ? : node0); 663 continue; 664 } 665 666 /* Two nonempty children */ 667 inode = tnode_new(node0->key, oldtnode->pos, 1); 668 if (!inode) 669 goto nomem; 670 tnode_free_append(tn, inode); 671 672 /* initialize pointers out of node */ 673 put_child(inode, 1, node1); 674 put_child(inode, 0, node0); 675 NODE_INIT_PARENT(inode, tn); 676 677 /* link parent to node */ 678 put_child(tn, i / 2, inode); 679 } 680 681 /* setup the parent pointers into and out of this node */ 682 return replace(t, oldtnode, tn); 683 nomem: 684 /* all pointers should be clean so we are done */ 685 tnode_free(tn); 686 notnode: 687 return NULL; 688 } 689 690 static struct key_vector *collapse(struct trie *t, 691 struct key_vector *oldtnode) 692 { 693 struct key_vector *n, *tp; 694 unsigned long i; 695 696 /* scan the tnode looking for that one child that might still exist */ 697 for (n = NULL, i = child_length(oldtnode); !n && i;) 698 n = get_child(oldtnode, --i); 699 700 /* compress one level */ 701 tp = node_parent(oldtnode); 702 put_child_root(tp, oldtnode->key, n); 703 node_set_parent(n, tp); 704 705 /* drop dead node */ 706 node_free(oldtnode); 707 708 return tp; 709 } 710 711 static unsigned char update_suffix(struct key_vector *tn) 712 { 713 unsigned char slen = tn->pos; 714 unsigned long stride, i; 715 unsigned char slen_max; 716 717 /* only vector 0 can have a suffix length greater than or equal to 718 * tn->pos + tn->bits, the second highest node will have a suffix 719 * length at most of tn->pos + tn->bits - 1 720 */ 721 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 722 723 /* search though the list of children looking for nodes that might 724 * have a suffix greater than the one we currently have. This is 725 * why we start with a stride of 2 since a stride of 1 would 726 * represent the nodes with suffix length equal to tn->pos 727 */ 728 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 729 struct key_vector *n = get_child(tn, i); 730 731 if (!n || (n->slen <= slen)) 732 continue; 733 734 /* update stride and slen based on new value */ 735 stride <<= (n->slen - slen); 736 slen = n->slen; 737 i &= ~(stride - 1); 738 739 /* stop searching if we have hit the maximum possible value */ 740 if (slen >= slen_max) 741 break; 742 } 743 744 tn->slen = slen; 745 746 return slen; 747 } 748 749 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 750 * the Helsinki University of Technology and Matti Tikkanen of Nokia 751 * Telecommunications, page 6: 752 * "A node is doubled if the ratio of non-empty children to all 753 * children in the *doubled* node is at least 'high'." 754 * 755 * 'high' in this instance is the variable 'inflate_threshold'. It 756 * is expressed as a percentage, so we multiply it with 757 * child_length() and instead of multiplying by 2 (since the 758 * child array will be doubled by inflate()) and multiplying 759 * the left-hand side by 100 (to handle the percentage thing) we 760 * multiply the left-hand side by 50. 761 * 762 * The left-hand side may look a bit weird: child_length(tn) 763 * - tn->empty_children is of course the number of non-null children 764 * in the current node. tn->full_children is the number of "full" 765 * children, that is non-null tnodes with a skip value of 0. 766 * All of those will be doubled in the resulting inflated tnode, so 767 * we just count them one extra time here. 768 * 769 * A clearer way to write this would be: 770 * 771 * to_be_doubled = tn->full_children; 772 * not_to_be_doubled = child_length(tn) - tn->empty_children - 773 * tn->full_children; 774 * 775 * new_child_length = child_length(tn) * 2; 776 * 777 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 778 * new_child_length; 779 * if (new_fill_factor >= inflate_threshold) 780 * 781 * ...and so on, tho it would mess up the while () loop. 782 * 783 * anyway, 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 785 * inflate_threshold 786 * 787 * avoid a division: 788 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 789 * inflate_threshold * new_child_length 790 * 791 * expand not_to_be_doubled and to_be_doubled, and shorten: 792 * 100 * (child_length(tn) - tn->empty_children + 793 * tn->full_children) >= inflate_threshold * new_child_length 794 * 795 * expand new_child_length: 796 * 100 * (child_length(tn) - tn->empty_children + 797 * tn->full_children) >= 798 * inflate_threshold * child_length(tn) * 2 799 * 800 * shorten again: 801 * 50 * (tn->full_children + child_length(tn) - 802 * tn->empty_children) >= inflate_threshold * 803 * child_length(tn) 804 * 805 */ 806 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 807 { 808 unsigned long used = child_length(tn); 809 unsigned long threshold = used; 810 811 /* Keep root node larger */ 812 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 813 used -= tn_info(tn)->empty_children; 814 used += tn_info(tn)->full_children; 815 816 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 817 818 return (used > 1) && tn->pos && ((50 * used) >= threshold); 819 } 820 821 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 822 { 823 unsigned long used = child_length(tn); 824 unsigned long threshold = used; 825 826 /* Keep root node larger */ 827 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 828 used -= tn_info(tn)->empty_children; 829 830 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 831 832 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 833 } 834 835 static inline bool should_collapse(struct key_vector *tn) 836 { 837 unsigned long used = child_length(tn); 838 839 used -= tn_info(tn)->empty_children; 840 841 /* account for bits == KEYLENGTH case */ 842 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 843 used -= KEY_MAX; 844 845 /* One child or none, time to drop us from the trie */ 846 return used < 2; 847 } 848 849 #define MAX_WORK 10 850 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 851 { 852 #ifdef CONFIG_IP_FIB_TRIE_STATS 853 struct trie_use_stats __percpu *stats = t->stats; 854 #endif 855 struct key_vector *tp = node_parent(tn); 856 unsigned long cindex = get_index(tn->key, tp); 857 int max_work = MAX_WORK; 858 859 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 860 tn, inflate_threshold, halve_threshold); 861 862 /* track the tnode via the pointer from the parent instead of 863 * doing it ourselves. This way we can let RCU fully do its 864 * thing without us interfering 865 */ 866 BUG_ON(tn != get_child(tp, cindex)); 867 868 /* Double as long as the resulting node has a number of 869 * nonempty nodes that are above the threshold. 870 */ 871 while (should_inflate(tp, tn) && max_work) { 872 tp = inflate(t, tn); 873 if (!tp) { 874 #ifdef CONFIG_IP_FIB_TRIE_STATS 875 this_cpu_inc(stats->resize_node_skipped); 876 #endif 877 break; 878 } 879 880 max_work--; 881 tn = get_child(tp, cindex); 882 } 883 884 /* update parent in case inflate failed */ 885 tp = node_parent(tn); 886 887 /* Return if at least one inflate is run */ 888 if (max_work != MAX_WORK) 889 return tp; 890 891 /* Halve as long as the number of empty children in this 892 * node is above threshold. 893 */ 894 while (should_halve(tp, tn) && max_work) { 895 tp = halve(t, tn); 896 if (!tp) { 897 #ifdef CONFIG_IP_FIB_TRIE_STATS 898 this_cpu_inc(stats->resize_node_skipped); 899 #endif 900 break; 901 } 902 903 max_work--; 904 tn = get_child(tp, cindex); 905 } 906 907 /* Only one child remains */ 908 if (should_collapse(tn)) 909 return collapse(t, tn); 910 911 /* update parent in case halve failed */ 912 return node_parent(tn); 913 } 914 915 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 916 { 917 unsigned char node_slen = tn->slen; 918 919 while ((node_slen > tn->pos) && (node_slen > slen)) { 920 slen = update_suffix(tn); 921 if (node_slen == slen) 922 break; 923 924 tn = node_parent(tn); 925 node_slen = tn->slen; 926 } 927 } 928 929 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 930 { 931 while (tn->slen < slen) { 932 tn->slen = slen; 933 tn = node_parent(tn); 934 } 935 } 936 937 /* rcu_read_lock needs to be hold by caller from readside */ 938 static struct key_vector *fib_find_node(struct trie *t, 939 struct key_vector **tp, u32 key) 940 { 941 struct key_vector *pn, *n = t->kv; 942 unsigned long index = 0; 943 944 do { 945 pn = n; 946 n = get_child_rcu(n, index); 947 948 if (!n) 949 break; 950 951 index = get_cindex(key, n); 952 953 /* This bit of code is a bit tricky but it combines multiple 954 * checks into a single check. The prefix consists of the 955 * prefix plus zeros for the bits in the cindex. The index 956 * is the difference between the key and this value. From 957 * this we can actually derive several pieces of data. 958 * if (index >= (1ul << bits)) 959 * we have a mismatch in skip bits and failed 960 * else 961 * we know the value is cindex 962 * 963 * This check is safe even if bits == KEYLENGTH due to the 964 * fact that we can only allocate a node with 32 bits if a 965 * long is greater than 32 bits. 966 */ 967 if (index >= (1ul << n->bits)) { 968 n = NULL; 969 break; 970 } 971 972 /* keep searching until we find a perfect match leaf or NULL */ 973 } while (IS_TNODE(n)); 974 975 *tp = pn; 976 977 return n; 978 } 979 980 /* Return the first fib alias matching TOS with 981 * priority less than or equal to PRIO. 982 */ 983 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 984 u8 tos, u32 prio, u32 tb_id) 985 { 986 struct fib_alias *fa; 987 988 if (!fah) 989 return NULL; 990 991 hlist_for_each_entry(fa, fah, fa_list) { 992 if (fa->fa_slen < slen) 993 continue; 994 if (fa->fa_slen != slen) 995 break; 996 if (fa->tb_id > tb_id) 997 continue; 998 if (fa->tb_id != tb_id) 999 break; 1000 if (fa->fa_tos > tos) 1001 continue; 1002 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1003 return fa; 1004 } 1005 1006 return NULL; 1007 } 1008 1009 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1010 { 1011 while (!IS_TRIE(tn)) 1012 tn = resize(t, tn); 1013 } 1014 1015 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1016 struct fib_alias *new, t_key key) 1017 { 1018 struct key_vector *n, *l; 1019 1020 l = leaf_new(key, new); 1021 if (!l) 1022 goto noleaf; 1023 1024 /* retrieve child from parent node */ 1025 n = get_child(tp, get_index(key, tp)); 1026 1027 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1028 * 1029 * Add a new tnode here 1030 * first tnode need some special handling 1031 * leaves us in position for handling as case 3 1032 */ 1033 if (n) { 1034 struct key_vector *tn; 1035 1036 tn = tnode_new(key, __fls(key ^ n->key), 1); 1037 if (!tn) 1038 goto notnode; 1039 1040 /* initialize routes out of node */ 1041 NODE_INIT_PARENT(tn, tp); 1042 put_child(tn, get_index(key, tn) ^ 1, n); 1043 1044 /* start adding routes into the node */ 1045 put_child_root(tp, key, tn); 1046 node_set_parent(n, tn); 1047 1048 /* parent now has a NULL spot where the leaf can go */ 1049 tp = tn; 1050 } 1051 1052 /* Case 3: n is NULL, and will just insert a new leaf */ 1053 node_push_suffix(tp, new->fa_slen); 1054 NODE_INIT_PARENT(l, tp); 1055 put_child_root(tp, key, l); 1056 trie_rebalance(t, tp); 1057 1058 return 0; 1059 notnode: 1060 node_free(l); 1061 noleaf: 1062 return -ENOMEM; 1063 } 1064 1065 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1066 struct key_vector *l, struct fib_alias *new, 1067 struct fib_alias *fa, t_key key) 1068 { 1069 if (!l) 1070 return fib_insert_node(t, tp, new, key); 1071 1072 if (fa) { 1073 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1074 } else { 1075 struct fib_alias *last; 1076 1077 hlist_for_each_entry(last, &l->leaf, fa_list) { 1078 if (new->fa_slen < last->fa_slen) 1079 break; 1080 if ((new->fa_slen == last->fa_slen) && 1081 (new->tb_id > last->tb_id)) 1082 break; 1083 fa = last; 1084 } 1085 1086 if (fa) 1087 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1088 else 1089 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1090 } 1091 1092 /* if we added to the tail node then we need to update slen */ 1093 if (l->slen < new->fa_slen) { 1094 l->slen = new->fa_slen; 1095 node_push_suffix(tp, new->fa_slen); 1096 } 1097 1098 return 0; 1099 } 1100 1101 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1102 { 1103 if (plen > KEYLENGTH) { 1104 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1105 return false; 1106 } 1107 1108 if ((plen < KEYLENGTH) && (key << plen)) { 1109 NL_SET_ERR_MSG(extack, 1110 "Invalid prefix for given prefix length"); 1111 return false; 1112 } 1113 1114 return true; 1115 } 1116 1117 /* Caller must hold RTNL. */ 1118 int fib_table_insert(struct net *net, struct fib_table *tb, 1119 struct fib_config *cfg, struct netlink_ext_ack *extack) 1120 { 1121 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1122 struct trie *t = (struct trie *)tb->tb_data; 1123 struct fib_alias *fa, *new_fa; 1124 struct key_vector *l, *tp; 1125 u16 nlflags = NLM_F_EXCL; 1126 struct fib_info *fi; 1127 u8 plen = cfg->fc_dst_len; 1128 u8 slen = KEYLENGTH - plen; 1129 u8 tos = cfg->fc_tos; 1130 u32 key; 1131 int err; 1132 1133 key = ntohl(cfg->fc_dst); 1134 1135 if (!fib_valid_key_len(key, plen, extack)) 1136 return -EINVAL; 1137 1138 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1139 1140 fi = fib_create_info(cfg, extack); 1141 if (IS_ERR(fi)) { 1142 err = PTR_ERR(fi); 1143 goto err; 1144 } 1145 1146 l = fib_find_node(t, &tp, key); 1147 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1148 tb->tb_id) : NULL; 1149 1150 /* Now fa, if non-NULL, points to the first fib alias 1151 * with the same keys [prefix,tos,priority], if such key already 1152 * exists or to the node before which we will insert new one. 1153 * 1154 * If fa is NULL, we will need to allocate a new one and 1155 * insert to the tail of the section matching the suffix length 1156 * of the new alias. 1157 */ 1158 1159 if (fa && fa->fa_tos == tos && 1160 fa->fa_info->fib_priority == fi->fib_priority) { 1161 struct fib_alias *fa_first, *fa_match; 1162 1163 err = -EEXIST; 1164 if (cfg->fc_nlflags & NLM_F_EXCL) 1165 goto out; 1166 1167 nlflags &= ~NLM_F_EXCL; 1168 1169 /* We have 2 goals: 1170 * 1. Find exact match for type, scope, fib_info to avoid 1171 * duplicate routes 1172 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1173 */ 1174 fa_match = NULL; 1175 fa_first = fa; 1176 hlist_for_each_entry_from(fa, fa_list) { 1177 if ((fa->fa_slen != slen) || 1178 (fa->tb_id != tb->tb_id) || 1179 (fa->fa_tos != tos)) 1180 break; 1181 if (fa->fa_info->fib_priority != fi->fib_priority) 1182 break; 1183 if (fa->fa_type == cfg->fc_type && 1184 fa->fa_info == fi) { 1185 fa_match = fa; 1186 break; 1187 } 1188 } 1189 1190 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1191 struct fib_info *fi_drop; 1192 u8 state; 1193 1194 nlflags |= NLM_F_REPLACE; 1195 fa = fa_first; 1196 if (fa_match) { 1197 if (fa == fa_match) 1198 err = 0; 1199 goto out; 1200 } 1201 err = -ENOBUFS; 1202 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1203 if (!new_fa) 1204 goto out; 1205 1206 fi_drop = fa->fa_info; 1207 new_fa->fa_tos = fa->fa_tos; 1208 new_fa->fa_info = fi; 1209 new_fa->fa_type = cfg->fc_type; 1210 state = fa->fa_state; 1211 new_fa->fa_state = state & ~FA_S_ACCESSED; 1212 new_fa->fa_slen = fa->fa_slen; 1213 new_fa->tb_id = tb->tb_id; 1214 new_fa->fa_default = -1; 1215 1216 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1217 key, plen, new_fa); 1218 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1219 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1220 1221 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1222 1223 alias_free_mem_rcu(fa); 1224 1225 fib_release_info(fi_drop); 1226 if (state & FA_S_ACCESSED) 1227 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1228 1229 goto succeeded; 1230 } 1231 /* Error if we find a perfect match which 1232 * uses the same scope, type, and nexthop 1233 * information. 1234 */ 1235 if (fa_match) 1236 goto out; 1237 1238 if (cfg->fc_nlflags & NLM_F_APPEND) { 1239 event = FIB_EVENT_ENTRY_APPEND; 1240 nlflags |= NLM_F_APPEND; 1241 } else { 1242 fa = fa_first; 1243 } 1244 } 1245 err = -ENOENT; 1246 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1247 goto out; 1248 1249 nlflags |= NLM_F_CREATE; 1250 err = -ENOBUFS; 1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1252 if (!new_fa) 1253 goto out; 1254 1255 new_fa->fa_info = fi; 1256 new_fa->fa_tos = tos; 1257 new_fa->fa_type = cfg->fc_type; 1258 new_fa->fa_state = 0; 1259 new_fa->fa_slen = slen; 1260 new_fa->tb_id = tb->tb_id; 1261 new_fa->fa_default = -1; 1262 1263 /* Insert new entry to the list. */ 1264 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1265 if (err) 1266 goto out_free_new_fa; 1267 1268 if (!plen) 1269 tb->tb_num_default++; 1270 1271 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1272 call_fib_entry_notifiers(net, event, key, plen, new_fa); 1273 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1274 &cfg->fc_nlinfo, nlflags); 1275 succeeded: 1276 return 0; 1277 1278 out_free_new_fa: 1279 kmem_cache_free(fn_alias_kmem, new_fa); 1280 out: 1281 fib_release_info(fi); 1282 err: 1283 return err; 1284 } 1285 1286 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1287 { 1288 t_key prefix = n->key; 1289 1290 return (key ^ prefix) & (prefix | -prefix); 1291 } 1292 1293 /* should be called with rcu_read_lock */ 1294 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1295 struct fib_result *res, int fib_flags) 1296 { 1297 struct trie *t = (struct trie *) tb->tb_data; 1298 #ifdef CONFIG_IP_FIB_TRIE_STATS 1299 struct trie_use_stats __percpu *stats = t->stats; 1300 #endif 1301 const t_key key = ntohl(flp->daddr); 1302 struct key_vector *n, *pn; 1303 struct fib_alias *fa; 1304 unsigned long index; 1305 t_key cindex; 1306 1307 trace_fib_table_lookup(tb->tb_id, flp); 1308 1309 pn = t->kv; 1310 cindex = 0; 1311 1312 n = get_child_rcu(pn, cindex); 1313 if (!n) 1314 return -EAGAIN; 1315 1316 #ifdef CONFIG_IP_FIB_TRIE_STATS 1317 this_cpu_inc(stats->gets); 1318 #endif 1319 1320 /* Step 1: Travel to the longest prefix match in the trie */ 1321 for (;;) { 1322 index = get_cindex(key, n); 1323 1324 /* This bit of code is a bit tricky but it combines multiple 1325 * checks into a single check. The prefix consists of the 1326 * prefix plus zeros for the "bits" in the prefix. The index 1327 * is the difference between the key and this value. From 1328 * this we can actually derive several pieces of data. 1329 * if (index >= (1ul << bits)) 1330 * we have a mismatch in skip bits and failed 1331 * else 1332 * we know the value is cindex 1333 * 1334 * This check is safe even if bits == KEYLENGTH due to the 1335 * fact that we can only allocate a node with 32 bits if a 1336 * long is greater than 32 bits. 1337 */ 1338 if (index >= (1ul << n->bits)) 1339 break; 1340 1341 /* we have found a leaf. Prefixes have already been compared */ 1342 if (IS_LEAF(n)) 1343 goto found; 1344 1345 /* only record pn and cindex if we are going to be chopping 1346 * bits later. Otherwise we are just wasting cycles. 1347 */ 1348 if (n->slen > n->pos) { 1349 pn = n; 1350 cindex = index; 1351 } 1352 1353 n = get_child_rcu(n, index); 1354 if (unlikely(!n)) 1355 goto backtrace; 1356 } 1357 1358 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1359 for (;;) { 1360 /* record the pointer where our next node pointer is stored */ 1361 struct key_vector __rcu **cptr = n->tnode; 1362 1363 /* This test verifies that none of the bits that differ 1364 * between the key and the prefix exist in the region of 1365 * the lsb and higher in the prefix. 1366 */ 1367 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1368 goto backtrace; 1369 1370 /* exit out and process leaf */ 1371 if (unlikely(IS_LEAF(n))) 1372 break; 1373 1374 /* Don't bother recording parent info. Since we are in 1375 * prefix match mode we will have to come back to wherever 1376 * we started this traversal anyway 1377 */ 1378 1379 while ((n = rcu_dereference(*cptr)) == NULL) { 1380 backtrace: 1381 #ifdef CONFIG_IP_FIB_TRIE_STATS 1382 if (!n) 1383 this_cpu_inc(stats->null_node_hit); 1384 #endif 1385 /* If we are at cindex 0 there are no more bits for 1386 * us to strip at this level so we must ascend back 1387 * up one level to see if there are any more bits to 1388 * be stripped there. 1389 */ 1390 while (!cindex) { 1391 t_key pkey = pn->key; 1392 1393 /* If we don't have a parent then there is 1394 * nothing for us to do as we do not have any 1395 * further nodes to parse. 1396 */ 1397 if (IS_TRIE(pn)) 1398 return -EAGAIN; 1399 #ifdef CONFIG_IP_FIB_TRIE_STATS 1400 this_cpu_inc(stats->backtrack); 1401 #endif 1402 /* Get Child's index */ 1403 pn = node_parent_rcu(pn); 1404 cindex = get_index(pkey, pn); 1405 } 1406 1407 /* strip the least significant bit from the cindex */ 1408 cindex &= cindex - 1; 1409 1410 /* grab pointer for next child node */ 1411 cptr = &pn->tnode[cindex]; 1412 } 1413 } 1414 1415 found: 1416 /* this line carries forward the xor from earlier in the function */ 1417 index = key ^ n->key; 1418 1419 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1420 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1421 struct fib_info *fi = fa->fa_info; 1422 int nhsel, err; 1423 1424 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1425 if (index >= (1ul << fa->fa_slen)) 1426 continue; 1427 } 1428 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1429 continue; 1430 if (fi->fib_dead) 1431 continue; 1432 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1433 continue; 1434 fib_alias_accessed(fa); 1435 err = fib_props[fa->fa_type].error; 1436 if (unlikely(err < 0)) { 1437 #ifdef CONFIG_IP_FIB_TRIE_STATS 1438 this_cpu_inc(stats->semantic_match_passed); 1439 #endif 1440 return err; 1441 } 1442 if (fi->fib_flags & RTNH_F_DEAD) 1443 continue; 1444 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1445 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1446 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1447 1448 if (nh->nh_flags & RTNH_F_DEAD) 1449 continue; 1450 if (in_dev && 1451 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1452 nh->nh_flags & RTNH_F_LINKDOWN && 1453 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1454 continue; 1455 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1456 if (flp->flowi4_oif && 1457 flp->flowi4_oif != nh->nh_oif) 1458 continue; 1459 } 1460 1461 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1462 refcount_inc(&fi->fib_clntref); 1463 1464 res->prefix = htonl(n->key); 1465 res->prefixlen = KEYLENGTH - fa->fa_slen; 1466 res->nh_sel = nhsel; 1467 res->type = fa->fa_type; 1468 res->scope = fi->fib_scope; 1469 res->fi = fi; 1470 res->table = tb; 1471 res->fa_head = &n->leaf; 1472 #ifdef CONFIG_IP_FIB_TRIE_STATS 1473 this_cpu_inc(stats->semantic_match_passed); 1474 #endif 1475 trace_fib_table_lookup_nh(nh); 1476 1477 return err; 1478 } 1479 } 1480 #ifdef CONFIG_IP_FIB_TRIE_STATS 1481 this_cpu_inc(stats->semantic_match_miss); 1482 #endif 1483 goto backtrace; 1484 } 1485 EXPORT_SYMBOL_GPL(fib_table_lookup); 1486 1487 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1488 struct key_vector *l, struct fib_alias *old) 1489 { 1490 /* record the location of the previous list_info entry */ 1491 struct hlist_node **pprev = old->fa_list.pprev; 1492 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1493 1494 /* remove the fib_alias from the list */ 1495 hlist_del_rcu(&old->fa_list); 1496 1497 /* if we emptied the list this leaf will be freed and we can sort 1498 * out parent suffix lengths as a part of trie_rebalance 1499 */ 1500 if (hlist_empty(&l->leaf)) { 1501 if (tp->slen == l->slen) 1502 node_pull_suffix(tp, tp->pos); 1503 put_child_root(tp, l->key, NULL); 1504 node_free(l); 1505 trie_rebalance(t, tp); 1506 return; 1507 } 1508 1509 /* only access fa if it is pointing at the last valid hlist_node */ 1510 if (*pprev) 1511 return; 1512 1513 /* update the trie with the latest suffix length */ 1514 l->slen = fa->fa_slen; 1515 node_pull_suffix(tp, fa->fa_slen); 1516 } 1517 1518 /* Caller must hold RTNL. */ 1519 int fib_table_delete(struct net *net, struct fib_table *tb, 1520 struct fib_config *cfg, struct netlink_ext_ack *extack) 1521 { 1522 struct trie *t = (struct trie *) tb->tb_data; 1523 struct fib_alias *fa, *fa_to_delete; 1524 struct key_vector *l, *tp; 1525 u8 plen = cfg->fc_dst_len; 1526 u8 slen = KEYLENGTH - plen; 1527 u8 tos = cfg->fc_tos; 1528 u32 key; 1529 1530 key = ntohl(cfg->fc_dst); 1531 1532 if (!fib_valid_key_len(key, plen, extack)) 1533 return -EINVAL; 1534 1535 l = fib_find_node(t, &tp, key); 1536 if (!l) 1537 return -ESRCH; 1538 1539 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1540 if (!fa) 1541 return -ESRCH; 1542 1543 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1544 1545 fa_to_delete = NULL; 1546 hlist_for_each_entry_from(fa, fa_list) { 1547 struct fib_info *fi = fa->fa_info; 1548 1549 if ((fa->fa_slen != slen) || 1550 (fa->tb_id != tb->tb_id) || 1551 (fa->fa_tos != tos)) 1552 break; 1553 1554 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1555 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1556 fa->fa_info->fib_scope == cfg->fc_scope) && 1557 (!cfg->fc_prefsrc || 1558 fi->fib_prefsrc == cfg->fc_prefsrc) && 1559 (!cfg->fc_protocol || 1560 fi->fib_protocol == cfg->fc_protocol) && 1561 fib_nh_match(cfg, fi, extack) == 0 && 1562 fib_metrics_match(cfg, fi)) { 1563 fa_to_delete = fa; 1564 break; 1565 } 1566 } 1567 1568 if (!fa_to_delete) 1569 return -ESRCH; 1570 1571 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1572 fa_to_delete); 1573 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1574 &cfg->fc_nlinfo, 0); 1575 1576 if (!plen) 1577 tb->tb_num_default--; 1578 1579 fib_remove_alias(t, tp, l, fa_to_delete); 1580 1581 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1582 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1583 1584 fib_release_info(fa_to_delete->fa_info); 1585 alias_free_mem_rcu(fa_to_delete); 1586 return 0; 1587 } 1588 1589 /* Scan for the next leaf starting at the provided key value */ 1590 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1591 { 1592 struct key_vector *pn, *n = *tn; 1593 unsigned long cindex; 1594 1595 /* this loop is meant to try and find the key in the trie */ 1596 do { 1597 /* record parent and next child index */ 1598 pn = n; 1599 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1600 1601 if (cindex >> pn->bits) 1602 break; 1603 1604 /* descend into the next child */ 1605 n = get_child_rcu(pn, cindex++); 1606 if (!n) 1607 break; 1608 1609 /* guarantee forward progress on the keys */ 1610 if (IS_LEAF(n) && (n->key >= key)) 1611 goto found; 1612 } while (IS_TNODE(n)); 1613 1614 /* this loop will search for the next leaf with a greater key */ 1615 while (!IS_TRIE(pn)) { 1616 /* if we exhausted the parent node we will need to climb */ 1617 if (cindex >= (1ul << pn->bits)) { 1618 t_key pkey = pn->key; 1619 1620 pn = node_parent_rcu(pn); 1621 cindex = get_index(pkey, pn) + 1; 1622 continue; 1623 } 1624 1625 /* grab the next available node */ 1626 n = get_child_rcu(pn, cindex++); 1627 if (!n) 1628 continue; 1629 1630 /* no need to compare keys since we bumped the index */ 1631 if (IS_LEAF(n)) 1632 goto found; 1633 1634 /* Rescan start scanning in new node */ 1635 pn = n; 1636 cindex = 0; 1637 } 1638 1639 *tn = pn; 1640 return NULL; /* Root of trie */ 1641 found: 1642 /* if we are at the limit for keys just return NULL for the tnode */ 1643 *tn = pn; 1644 return n; 1645 } 1646 1647 static void fib_trie_free(struct fib_table *tb) 1648 { 1649 struct trie *t = (struct trie *)tb->tb_data; 1650 struct key_vector *pn = t->kv; 1651 unsigned long cindex = 1; 1652 struct hlist_node *tmp; 1653 struct fib_alias *fa; 1654 1655 /* walk trie in reverse order and free everything */ 1656 for (;;) { 1657 struct key_vector *n; 1658 1659 if (!(cindex--)) { 1660 t_key pkey = pn->key; 1661 1662 if (IS_TRIE(pn)) 1663 break; 1664 1665 n = pn; 1666 pn = node_parent(pn); 1667 1668 /* drop emptied tnode */ 1669 put_child_root(pn, n->key, NULL); 1670 node_free(n); 1671 1672 cindex = get_index(pkey, pn); 1673 1674 continue; 1675 } 1676 1677 /* grab the next available node */ 1678 n = get_child(pn, cindex); 1679 if (!n) 1680 continue; 1681 1682 if (IS_TNODE(n)) { 1683 /* record pn and cindex for leaf walking */ 1684 pn = n; 1685 cindex = 1ul << n->bits; 1686 1687 continue; 1688 } 1689 1690 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1691 hlist_del_rcu(&fa->fa_list); 1692 alias_free_mem_rcu(fa); 1693 } 1694 1695 put_child_root(pn, n->key, NULL); 1696 node_free(n); 1697 } 1698 1699 #ifdef CONFIG_IP_FIB_TRIE_STATS 1700 free_percpu(t->stats); 1701 #endif 1702 kfree(tb); 1703 } 1704 1705 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1706 { 1707 struct trie *ot = (struct trie *)oldtb->tb_data; 1708 struct key_vector *l, *tp = ot->kv; 1709 struct fib_table *local_tb; 1710 struct fib_alias *fa; 1711 struct trie *lt; 1712 t_key key = 0; 1713 1714 if (oldtb->tb_data == oldtb->__data) 1715 return oldtb; 1716 1717 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1718 if (!local_tb) 1719 return NULL; 1720 1721 lt = (struct trie *)local_tb->tb_data; 1722 1723 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1724 struct key_vector *local_l = NULL, *local_tp; 1725 1726 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1727 struct fib_alias *new_fa; 1728 1729 if (local_tb->tb_id != fa->tb_id) 1730 continue; 1731 1732 /* clone fa for new local table */ 1733 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1734 if (!new_fa) 1735 goto out; 1736 1737 memcpy(new_fa, fa, sizeof(*fa)); 1738 1739 /* insert clone into table */ 1740 if (!local_l) 1741 local_l = fib_find_node(lt, &local_tp, l->key); 1742 1743 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1744 NULL, l->key)) { 1745 kmem_cache_free(fn_alias_kmem, new_fa); 1746 goto out; 1747 } 1748 } 1749 1750 /* stop loop if key wrapped back to 0 */ 1751 key = l->key + 1; 1752 if (key < l->key) 1753 break; 1754 } 1755 1756 return local_tb; 1757 out: 1758 fib_trie_free(local_tb); 1759 1760 return NULL; 1761 } 1762 1763 /* Caller must hold RTNL */ 1764 void fib_table_flush_external(struct fib_table *tb) 1765 { 1766 struct trie *t = (struct trie *)tb->tb_data; 1767 struct key_vector *pn = t->kv; 1768 unsigned long cindex = 1; 1769 struct hlist_node *tmp; 1770 struct fib_alias *fa; 1771 1772 /* walk trie in reverse order */ 1773 for (;;) { 1774 unsigned char slen = 0; 1775 struct key_vector *n; 1776 1777 if (!(cindex--)) { 1778 t_key pkey = pn->key; 1779 1780 /* cannot resize the trie vector */ 1781 if (IS_TRIE(pn)) 1782 break; 1783 1784 /* update the suffix to address pulled leaves */ 1785 if (pn->slen > pn->pos) 1786 update_suffix(pn); 1787 1788 /* resize completed node */ 1789 pn = resize(t, pn); 1790 cindex = get_index(pkey, pn); 1791 1792 continue; 1793 } 1794 1795 /* grab the next available node */ 1796 n = get_child(pn, cindex); 1797 if (!n) 1798 continue; 1799 1800 if (IS_TNODE(n)) { 1801 /* record pn and cindex for leaf walking */ 1802 pn = n; 1803 cindex = 1ul << n->bits; 1804 1805 continue; 1806 } 1807 1808 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1809 /* if alias was cloned to local then we just 1810 * need to remove the local copy from main 1811 */ 1812 if (tb->tb_id != fa->tb_id) { 1813 hlist_del_rcu(&fa->fa_list); 1814 alias_free_mem_rcu(fa); 1815 continue; 1816 } 1817 1818 /* record local slen */ 1819 slen = fa->fa_slen; 1820 } 1821 1822 /* update leaf slen */ 1823 n->slen = slen; 1824 1825 if (hlist_empty(&n->leaf)) { 1826 put_child_root(pn, n->key, NULL); 1827 node_free(n); 1828 } 1829 } 1830 } 1831 1832 /* Caller must hold RTNL. */ 1833 int fib_table_flush(struct net *net, struct fib_table *tb) 1834 { 1835 struct trie *t = (struct trie *)tb->tb_data; 1836 struct key_vector *pn = t->kv; 1837 unsigned long cindex = 1; 1838 struct hlist_node *tmp; 1839 struct fib_alias *fa; 1840 int found = 0; 1841 1842 /* walk trie in reverse order */ 1843 for (;;) { 1844 unsigned char slen = 0; 1845 struct key_vector *n; 1846 1847 if (!(cindex--)) { 1848 t_key pkey = pn->key; 1849 1850 /* cannot resize the trie vector */ 1851 if (IS_TRIE(pn)) 1852 break; 1853 1854 /* update the suffix to address pulled leaves */ 1855 if (pn->slen > pn->pos) 1856 update_suffix(pn); 1857 1858 /* resize completed node */ 1859 pn = resize(t, pn); 1860 cindex = get_index(pkey, pn); 1861 1862 continue; 1863 } 1864 1865 /* grab the next available node */ 1866 n = get_child(pn, cindex); 1867 if (!n) 1868 continue; 1869 1870 if (IS_TNODE(n)) { 1871 /* record pn and cindex for leaf walking */ 1872 pn = n; 1873 cindex = 1ul << n->bits; 1874 1875 continue; 1876 } 1877 1878 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1879 struct fib_info *fi = fa->fa_info; 1880 1881 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) || 1882 tb->tb_id != fa->tb_id) { 1883 slen = fa->fa_slen; 1884 continue; 1885 } 1886 1887 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1888 n->key, 1889 KEYLENGTH - fa->fa_slen, fa); 1890 hlist_del_rcu(&fa->fa_list); 1891 fib_release_info(fa->fa_info); 1892 alias_free_mem_rcu(fa); 1893 found++; 1894 } 1895 1896 /* update leaf slen */ 1897 n->slen = slen; 1898 1899 if (hlist_empty(&n->leaf)) { 1900 put_child_root(pn, n->key, NULL); 1901 node_free(n); 1902 } 1903 } 1904 1905 pr_debug("trie_flush found=%d\n", found); 1906 return found; 1907 } 1908 1909 static void fib_leaf_notify(struct net *net, struct key_vector *l, 1910 struct fib_table *tb, struct notifier_block *nb) 1911 { 1912 struct fib_alias *fa; 1913 1914 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1915 struct fib_info *fi = fa->fa_info; 1916 1917 if (!fi) 1918 continue; 1919 1920 /* local and main table can share the same trie, 1921 * so don't notify twice for the same entry. 1922 */ 1923 if (tb->tb_id != fa->tb_id) 1924 continue; 1925 1926 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 1927 KEYLENGTH - fa->fa_slen, fa); 1928 } 1929 } 1930 1931 static void fib_table_notify(struct net *net, struct fib_table *tb, 1932 struct notifier_block *nb) 1933 { 1934 struct trie *t = (struct trie *)tb->tb_data; 1935 struct key_vector *l, *tp = t->kv; 1936 t_key key = 0; 1937 1938 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1939 fib_leaf_notify(net, l, tb, nb); 1940 1941 key = l->key + 1; 1942 /* stop in case of wrap around */ 1943 if (key < l->key) 1944 break; 1945 } 1946 } 1947 1948 void fib_notify(struct net *net, struct notifier_block *nb) 1949 { 1950 unsigned int h; 1951 1952 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1953 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 1954 struct fib_table *tb; 1955 1956 hlist_for_each_entry_rcu(tb, head, tb_hlist) 1957 fib_table_notify(net, tb, nb); 1958 } 1959 } 1960 1961 static void __trie_free_rcu(struct rcu_head *head) 1962 { 1963 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1964 #ifdef CONFIG_IP_FIB_TRIE_STATS 1965 struct trie *t = (struct trie *)tb->tb_data; 1966 1967 if (tb->tb_data == tb->__data) 1968 free_percpu(t->stats); 1969 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1970 kfree(tb); 1971 } 1972 1973 void fib_free_table(struct fib_table *tb) 1974 { 1975 call_rcu(&tb->rcu, __trie_free_rcu); 1976 } 1977 1978 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1979 struct sk_buff *skb, struct netlink_callback *cb) 1980 { 1981 __be32 xkey = htonl(l->key); 1982 struct fib_alias *fa; 1983 int i, s_i; 1984 1985 s_i = cb->args[4]; 1986 i = 0; 1987 1988 /* rcu_read_lock is hold by caller */ 1989 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1990 int err; 1991 1992 if (i < s_i) { 1993 i++; 1994 continue; 1995 } 1996 1997 if (tb->tb_id != fa->tb_id) { 1998 i++; 1999 continue; 2000 } 2001 2002 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2003 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2004 tb->tb_id, fa->fa_type, 2005 xkey, KEYLENGTH - fa->fa_slen, 2006 fa->fa_tos, fa->fa_info, NLM_F_MULTI); 2007 if (err < 0) { 2008 cb->args[4] = i; 2009 return err; 2010 } 2011 i++; 2012 } 2013 2014 cb->args[4] = i; 2015 return skb->len; 2016 } 2017 2018 /* rcu_read_lock needs to be hold by caller from readside */ 2019 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2020 struct netlink_callback *cb) 2021 { 2022 struct trie *t = (struct trie *)tb->tb_data; 2023 struct key_vector *l, *tp = t->kv; 2024 /* Dump starting at last key. 2025 * Note: 0.0.0.0/0 (ie default) is first key. 2026 */ 2027 int count = cb->args[2]; 2028 t_key key = cb->args[3]; 2029 2030 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2031 int err; 2032 2033 err = fn_trie_dump_leaf(l, tb, skb, cb); 2034 if (err < 0) { 2035 cb->args[3] = key; 2036 cb->args[2] = count; 2037 return err; 2038 } 2039 2040 ++count; 2041 key = l->key + 1; 2042 2043 memset(&cb->args[4], 0, 2044 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2045 2046 /* stop loop if key wrapped back to 0 */ 2047 if (key < l->key) 2048 break; 2049 } 2050 2051 cb->args[3] = key; 2052 cb->args[2] = count; 2053 2054 return skb->len; 2055 } 2056 2057 void __init fib_trie_init(void) 2058 { 2059 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2060 sizeof(struct fib_alias), 2061 0, SLAB_PANIC, NULL); 2062 2063 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2064 LEAF_SIZE, 2065 0, SLAB_PANIC, NULL); 2066 } 2067 2068 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2069 { 2070 struct fib_table *tb; 2071 struct trie *t; 2072 size_t sz = sizeof(*tb); 2073 2074 if (!alias) 2075 sz += sizeof(struct trie); 2076 2077 tb = kzalloc(sz, GFP_KERNEL); 2078 if (!tb) 2079 return NULL; 2080 2081 tb->tb_id = id; 2082 tb->tb_num_default = 0; 2083 tb->tb_data = (alias ? alias->__data : tb->__data); 2084 2085 if (alias) 2086 return tb; 2087 2088 t = (struct trie *) tb->tb_data; 2089 t->kv[0].pos = KEYLENGTH; 2090 t->kv[0].slen = KEYLENGTH; 2091 #ifdef CONFIG_IP_FIB_TRIE_STATS 2092 t->stats = alloc_percpu(struct trie_use_stats); 2093 if (!t->stats) { 2094 kfree(tb); 2095 tb = NULL; 2096 } 2097 #endif 2098 2099 return tb; 2100 } 2101 2102 #ifdef CONFIG_PROC_FS 2103 /* Depth first Trie walk iterator */ 2104 struct fib_trie_iter { 2105 struct seq_net_private p; 2106 struct fib_table *tb; 2107 struct key_vector *tnode; 2108 unsigned int index; 2109 unsigned int depth; 2110 }; 2111 2112 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2113 { 2114 unsigned long cindex = iter->index; 2115 struct key_vector *pn = iter->tnode; 2116 t_key pkey; 2117 2118 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2119 iter->tnode, iter->index, iter->depth); 2120 2121 while (!IS_TRIE(pn)) { 2122 while (cindex < child_length(pn)) { 2123 struct key_vector *n = get_child_rcu(pn, cindex++); 2124 2125 if (!n) 2126 continue; 2127 2128 if (IS_LEAF(n)) { 2129 iter->tnode = pn; 2130 iter->index = cindex; 2131 } else { 2132 /* push down one level */ 2133 iter->tnode = n; 2134 iter->index = 0; 2135 ++iter->depth; 2136 } 2137 2138 return n; 2139 } 2140 2141 /* Current node exhausted, pop back up */ 2142 pkey = pn->key; 2143 pn = node_parent_rcu(pn); 2144 cindex = get_index(pkey, pn) + 1; 2145 --iter->depth; 2146 } 2147 2148 /* record root node so further searches know we are done */ 2149 iter->tnode = pn; 2150 iter->index = 0; 2151 2152 return NULL; 2153 } 2154 2155 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2156 struct trie *t) 2157 { 2158 struct key_vector *n, *pn; 2159 2160 if (!t) 2161 return NULL; 2162 2163 pn = t->kv; 2164 n = rcu_dereference(pn->tnode[0]); 2165 if (!n) 2166 return NULL; 2167 2168 if (IS_TNODE(n)) { 2169 iter->tnode = n; 2170 iter->index = 0; 2171 iter->depth = 1; 2172 } else { 2173 iter->tnode = pn; 2174 iter->index = 0; 2175 iter->depth = 0; 2176 } 2177 2178 return n; 2179 } 2180 2181 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2182 { 2183 struct key_vector *n; 2184 struct fib_trie_iter iter; 2185 2186 memset(s, 0, sizeof(*s)); 2187 2188 rcu_read_lock(); 2189 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2190 if (IS_LEAF(n)) { 2191 struct fib_alias *fa; 2192 2193 s->leaves++; 2194 s->totdepth += iter.depth; 2195 if (iter.depth > s->maxdepth) 2196 s->maxdepth = iter.depth; 2197 2198 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2199 ++s->prefixes; 2200 } else { 2201 s->tnodes++; 2202 if (n->bits < MAX_STAT_DEPTH) 2203 s->nodesizes[n->bits]++; 2204 s->nullpointers += tn_info(n)->empty_children; 2205 } 2206 } 2207 rcu_read_unlock(); 2208 } 2209 2210 /* 2211 * This outputs /proc/net/fib_triestats 2212 */ 2213 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2214 { 2215 unsigned int i, max, pointers, bytes, avdepth; 2216 2217 if (stat->leaves) 2218 avdepth = stat->totdepth*100 / stat->leaves; 2219 else 2220 avdepth = 0; 2221 2222 seq_printf(seq, "\tAver depth: %u.%02d\n", 2223 avdepth / 100, avdepth % 100); 2224 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2225 2226 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2227 bytes = LEAF_SIZE * stat->leaves; 2228 2229 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2230 bytes += sizeof(struct fib_alias) * stat->prefixes; 2231 2232 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2233 bytes += TNODE_SIZE(0) * stat->tnodes; 2234 2235 max = MAX_STAT_DEPTH; 2236 while (max > 0 && stat->nodesizes[max-1] == 0) 2237 max--; 2238 2239 pointers = 0; 2240 for (i = 1; i < max; i++) 2241 if (stat->nodesizes[i] != 0) { 2242 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2243 pointers += (1<<i) * stat->nodesizes[i]; 2244 } 2245 seq_putc(seq, '\n'); 2246 seq_printf(seq, "\tPointers: %u\n", pointers); 2247 2248 bytes += sizeof(struct key_vector *) * pointers; 2249 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2250 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2251 } 2252 2253 #ifdef CONFIG_IP_FIB_TRIE_STATS 2254 static void trie_show_usage(struct seq_file *seq, 2255 const struct trie_use_stats __percpu *stats) 2256 { 2257 struct trie_use_stats s = { 0 }; 2258 int cpu; 2259 2260 /* loop through all of the CPUs and gather up the stats */ 2261 for_each_possible_cpu(cpu) { 2262 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2263 2264 s.gets += pcpu->gets; 2265 s.backtrack += pcpu->backtrack; 2266 s.semantic_match_passed += pcpu->semantic_match_passed; 2267 s.semantic_match_miss += pcpu->semantic_match_miss; 2268 s.null_node_hit += pcpu->null_node_hit; 2269 s.resize_node_skipped += pcpu->resize_node_skipped; 2270 } 2271 2272 seq_printf(seq, "\nCounters:\n---------\n"); 2273 seq_printf(seq, "gets = %u\n", s.gets); 2274 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2275 seq_printf(seq, "semantic match passed = %u\n", 2276 s.semantic_match_passed); 2277 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2278 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2279 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2280 } 2281 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2282 2283 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2284 { 2285 if (tb->tb_id == RT_TABLE_LOCAL) 2286 seq_puts(seq, "Local:\n"); 2287 else if (tb->tb_id == RT_TABLE_MAIN) 2288 seq_puts(seq, "Main:\n"); 2289 else 2290 seq_printf(seq, "Id %d:\n", tb->tb_id); 2291 } 2292 2293 2294 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2295 { 2296 struct net *net = (struct net *)seq->private; 2297 unsigned int h; 2298 2299 seq_printf(seq, 2300 "Basic info: size of leaf:" 2301 " %zd bytes, size of tnode: %zd bytes.\n", 2302 LEAF_SIZE, TNODE_SIZE(0)); 2303 2304 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2305 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2306 struct fib_table *tb; 2307 2308 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2309 struct trie *t = (struct trie *) tb->tb_data; 2310 struct trie_stat stat; 2311 2312 if (!t) 2313 continue; 2314 2315 fib_table_print(seq, tb); 2316 2317 trie_collect_stats(t, &stat); 2318 trie_show_stats(seq, &stat); 2319 #ifdef CONFIG_IP_FIB_TRIE_STATS 2320 trie_show_usage(seq, t->stats); 2321 #endif 2322 } 2323 } 2324 2325 return 0; 2326 } 2327 2328 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2329 { 2330 return single_open_net(inode, file, fib_triestat_seq_show); 2331 } 2332 2333 static const struct file_operations fib_triestat_fops = { 2334 .owner = THIS_MODULE, 2335 .open = fib_triestat_seq_open, 2336 .read = seq_read, 2337 .llseek = seq_lseek, 2338 .release = single_release_net, 2339 }; 2340 2341 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2342 { 2343 struct fib_trie_iter *iter = seq->private; 2344 struct net *net = seq_file_net(seq); 2345 loff_t idx = 0; 2346 unsigned int h; 2347 2348 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2349 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2350 struct fib_table *tb; 2351 2352 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2353 struct key_vector *n; 2354 2355 for (n = fib_trie_get_first(iter, 2356 (struct trie *) tb->tb_data); 2357 n; n = fib_trie_get_next(iter)) 2358 if (pos == idx++) { 2359 iter->tb = tb; 2360 return n; 2361 } 2362 } 2363 } 2364 2365 return NULL; 2366 } 2367 2368 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2369 __acquires(RCU) 2370 { 2371 rcu_read_lock(); 2372 return fib_trie_get_idx(seq, *pos); 2373 } 2374 2375 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2376 { 2377 struct fib_trie_iter *iter = seq->private; 2378 struct net *net = seq_file_net(seq); 2379 struct fib_table *tb = iter->tb; 2380 struct hlist_node *tb_node; 2381 unsigned int h; 2382 struct key_vector *n; 2383 2384 ++*pos; 2385 /* next node in same table */ 2386 n = fib_trie_get_next(iter); 2387 if (n) 2388 return n; 2389 2390 /* walk rest of this hash chain */ 2391 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2392 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2393 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2394 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2395 if (n) 2396 goto found; 2397 } 2398 2399 /* new hash chain */ 2400 while (++h < FIB_TABLE_HASHSZ) { 2401 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2402 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2403 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2404 if (n) 2405 goto found; 2406 } 2407 } 2408 return NULL; 2409 2410 found: 2411 iter->tb = tb; 2412 return n; 2413 } 2414 2415 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2416 __releases(RCU) 2417 { 2418 rcu_read_unlock(); 2419 } 2420 2421 static void seq_indent(struct seq_file *seq, int n) 2422 { 2423 while (n-- > 0) 2424 seq_puts(seq, " "); 2425 } 2426 2427 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2428 { 2429 switch (s) { 2430 case RT_SCOPE_UNIVERSE: return "universe"; 2431 case RT_SCOPE_SITE: return "site"; 2432 case RT_SCOPE_LINK: return "link"; 2433 case RT_SCOPE_HOST: return "host"; 2434 case RT_SCOPE_NOWHERE: return "nowhere"; 2435 default: 2436 snprintf(buf, len, "scope=%d", s); 2437 return buf; 2438 } 2439 } 2440 2441 static const char *const rtn_type_names[__RTN_MAX] = { 2442 [RTN_UNSPEC] = "UNSPEC", 2443 [RTN_UNICAST] = "UNICAST", 2444 [RTN_LOCAL] = "LOCAL", 2445 [RTN_BROADCAST] = "BROADCAST", 2446 [RTN_ANYCAST] = "ANYCAST", 2447 [RTN_MULTICAST] = "MULTICAST", 2448 [RTN_BLACKHOLE] = "BLACKHOLE", 2449 [RTN_UNREACHABLE] = "UNREACHABLE", 2450 [RTN_PROHIBIT] = "PROHIBIT", 2451 [RTN_THROW] = "THROW", 2452 [RTN_NAT] = "NAT", 2453 [RTN_XRESOLVE] = "XRESOLVE", 2454 }; 2455 2456 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2457 { 2458 if (t < __RTN_MAX && rtn_type_names[t]) 2459 return rtn_type_names[t]; 2460 snprintf(buf, len, "type %u", t); 2461 return buf; 2462 } 2463 2464 /* Pretty print the trie */ 2465 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2466 { 2467 const struct fib_trie_iter *iter = seq->private; 2468 struct key_vector *n = v; 2469 2470 if (IS_TRIE(node_parent_rcu(n))) 2471 fib_table_print(seq, iter->tb); 2472 2473 if (IS_TNODE(n)) { 2474 __be32 prf = htonl(n->key); 2475 2476 seq_indent(seq, iter->depth-1); 2477 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2478 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2479 tn_info(n)->full_children, 2480 tn_info(n)->empty_children); 2481 } else { 2482 __be32 val = htonl(n->key); 2483 struct fib_alias *fa; 2484 2485 seq_indent(seq, iter->depth); 2486 seq_printf(seq, " |-- %pI4\n", &val); 2487 2488 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2489 char buf1[32], buf2[32]; 2490 2491 seq_indent(seq, iter->depth + 1); 2492 seq_printf(seq, " /%zu %s %s", 2493 KEYLENGTH - fa->fa_slen, 2494 rtn_scope(buf1, sizeof(buf1), 2495 fa->fa_info->fib_scope), 2496 rtn_type(buf2, sizeof(buf2), 2497 fa->fa_type)); 2498 if (fa->fa_tos) 2499 seq_printf(seq, " tos=%d", fa->fa_tos); 2500 seq_putc(seq, '\n'); 2501 } 2502 } 2503 2504 return 0; 2505 } 2506 2507 static const struct seq_operations fib_trie_seq_ops = { 2508 .start = fib_trie_seq_start, 2509 .next = fib_trie_seq_next, 2510 .stop = fib_trie_seq_stop, 2511 .show = fib_trie_seq_show, 2512 }; 2513 2514 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2515 { 2516 return seq_open_net(inode, file, &fib_trie_seq_ops, 2517 sizeof(struct fib_trie_iter)); 2518 } 2519 2520 static const struct file_operations fib_trie_fops = { 2521 .owner = THIS_MODULE, 2522 .open = fib_trie_seq_open, 2523 .read = seq_read, 2524 .llseek = seq_lseek, 2525 .release = seq_release_net, 2526 }; 2527 2528 struct fib_route_iter { 2529 struct seq_net_private p; 2530 struct fib_table *main_tb; 2531 struct key_vector *tnode; 2532 loff_t pos; 2533 t_key key; 2534 }; 2535 2536 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2537 loff_t pos) 2538 { 2539 struct key_vector *l, **tp = &iter->tnode; 2540 t_key key; 2541 2542 /* use cached location of previously found key */ 2543 if (iter->pos > 0 && pos >= iter->pos) { 2544 key = iter->key; 2545 } else { 2546 iter->pos = 1; 2547 key = 0; 2548 } 2549 2550 pos -= iter->pos; 2551 2552 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2553 key = l->key + 1; 2554 iter->pos++; 2555 l = NULL; 2556 2557 /* handle unlikely case of a key wrap */ 2558 if (!key) 2559 break; 2560 } 2561 2562 if (l) 2563 iter->key = l->key; /* remember it */ 2564 else 2565 iter->pos = 0; /* forget it */ 2566 2567 return l; 2568 } 2569 2570 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2571 __acquires(RCU) 2572 { 2573 struct fib_route_iter *iter = seq->private; 2574 struct fib_table *tb; 2575 struct trie *t; 2576 2577 rcu_read_lock(); 2578 2579 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2580 if (!tb) 2581 return NULL; 2582 2583 iter->main_tb = tb; 2584 t = (struct trie *)tb->tb_data; 2585 iter->tnode = t->kv; 2586 2587 if (*pos != 0) 2588 return fib_route_get_idx(iter, *pos); 2589 2590 iter->pos = 0; 2591 iter->key = KEY_MAX; 2592 2593 return SEQ_START_TOKEN; 2594 } 2595 2596 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2597 { 2598 struct fib_route_iter *iter = seq->private; 2599 struct key_vector *l = NULL; 2600 t_key key = iter->key + 1; 2601 2602 ++*pos; 2603 2604 /* only allow key of 0 for start of sequence */ 2605 if ((v == SEQ_START_TOKEN) || key) 2606 l = leaf_walk_rcu(&iter->tnode, key); 2607 2608 if (l) { 2609 iter->key = l->key; 2610 iter->pos++; 2611 } else { 2612 iter->pos = 0; 2613 } 2614 2615 return l; 2616 } 2617 2618 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2619 __releases(RCU) 2620 { 2621 rcu_read_unlock(); 2622 } 2623 2624 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2625 { 2626 unsigned int flags = 0; 2627 2628 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2629 flags = RTF_REJECT; 2630 if (fi && fi->fib_nh->nh_gw) 2631 flags |= RTF_GATEWAY; 2632 if (mask == htonl(0xFFFFFFFF)) 2633 flags |= RTF_HOST; 2634 flags |= RTF_UP; 2635 return flags; 2636 } 2637 2638 /* 2639 * This outputs /proc/net/route. 2640 * The format of the file is not supposed to be changed 2641 * and needs to be same as fib_hash output to avoid breaking 2642 * legacy utilities 2643 */ 2644 static int fib_route_seq_show(struct seq_file *seq, void *v) 2645 { 2646 struct fib_route_iter *iter = seq->private; 2647 struct fib_table *tb = iter->main_tb; 2648 struct fib_alias *fa; 2649 struct key_vector *l = v; 2650 __be32 prefix; 2651 2652 if (v == SEQ_START_TOKEN) { 2653 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2654 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2655 "\tWindow\tIRTT"); 2656 return 0; 2657 } 2658 2659 prefix = htonl(l->key); 2660 2661 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2662 const struct fib_info *fi = fa->fa_info; 2663 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2664 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2665 2666 if ((fa->fa_type == RTN_BROADCAST) || 2667 (fa->fa_type == RTN_MULTICAST)) 2668 continue; 2669 2670 if (fa->tb_id != tb->tb_id) 2671 continue; 2672 2673 seq_setwidth(seq, 127); 2674 2675 if (fi) 2676 seq_printf(seq, 2677 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2678 "%d\t%08X\t%d\t%u\t%u", 2679 fi->fib_dev ? fi->fib_dev->name : "*", 2680 prefix, 2681 fi->fib_nh->nh_gw, flags, 0, 0, 2682 fi->fib_priority, 2683 mask, 2684 (fi->fib_advmss ? 2685 fi->fib_advmss + 40 : 0), 2686 fi->fib_window, 2687 fi->fib_rtt >> 3); 2688 else 2689 seq_printf(seq, 2690 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2691 "%d\t%08X\t%d\t%u\t%u", 2692 prefix, 0, flags, 0, 0, 0, 2693 mask, 0, 0, 0); 2694 2695 seq_pad(seq, '\n'); 2696 } 2697 2698 return 0; 2699 } 2700 2701 static const struct seq_operations fib_route_seq_ops = { 2702 .start = fib_route_seq_start, 2703 .next = fib_route_seq_next, 2704 .stop = fib_route_seq_stop, 2705 .show = fib_route_seq_show, 2706 }; 2707 2708 static int fib_route_seq_open(struct inode *inode, struct file *file) 2709 { 2710 return seq_open_net(inode, file, &fib_route_seq_ops, 2711 sizeof(struct fib_route_iter)); 2712 } 2713 2714 static const struct file_operations fib_route_fops = { 2715 .owner = THIS_MODULE, 2716 .open = fib_route_seq_open, 2717 .read = seq_read, 2718 .llseek = seq_lseek, 2719 .release = seq_release_net, 2720 }; 2721 2722 int __net_init fib_proc_init(struct net *net) 2723 { 2724 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2725 goto out1; 2726 2727 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2728 &fib_triestat_fops)) 2729 goto out2; 2730 2731 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2732 goto out3; 2733 2734 return 0; 2735 2736 out3: 2737 remove_proc_entry("fib_triestat", net->proc_net); 2738 out2: 2739 remove_proc_entry("fib_trie", net->proc_net); 2740 out1: 2741 return -ENOMEM; 2742 } 2743 2744 void __net_exit fib_proc_exit(struct net *net) 2745 { 2746 remove_proc_entry("fib_trie", net->proc_net); 2747 remove_proc_entry("fib_triestat", net->proc_net); 2748 remove_proc_entry("route", net->proc_net); 2749 } 2750 2751 #endif /* CONFIG_PROC_FS */ 2752