1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <asm/system.h> 55 #include <linux/bitops.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/mm.h> 59 #include <linux/string.h> 60 #include <linux/socket.h> 61 #include <linux/sockios.h> 62 #include <linux/errno.h> 63 #include <linux/in.h> 64 #include <linux/inet.h> 65 #include <linux/inetdevice.h> 66 #include <linux/netdevice.h> 67 #include <linux/if_arp.h> 68 #include <linux/proc_fs.h> 69 #include <linux/rcupdate.h> 70 #include <linux/skbuff.h> 71 #include <linux/netlink.h> 72 #include <linux/init.h> 73 #include <linux/list.h> 74 #include <linux/slab.h> 75 #include <linux/prefetch.h> 76 #include <linux/export.h> 77 #include <net/net_namespace.h> 78 #include <net/ip.h> 79 #include <net/protocol.h> 80 #include <net/route.h> 81 #include <net/tcp.h> 82 #include <net/sock.h> 83 #include <net/ip_fib.h> 84 #include "fib_lookup.h" 85 86 #define MAX_STAT_DEPTH 32 87 88 #define KEYLENGTH (8*sizeof(t_key)) 89 90 typedef unsigned int t_key; 91 92 #define T_TNODE 0 93 #define T_LEAF 1 94 #define NODE_TYPE_MASK 0x1UL 95 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 96 97 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 98 #define IS_LEAF(n) (n->parent & T_LEAF) 99 100 struct rt_trie_node { 101 unsigned long parent; 102 t_key key; 103 }; 104 105 struct leaf { 106 unsigned long parent; 107 t_key key; 108 struct hlist_head list; 109 struct rcu_head rcu; 110 }; 111 112 struct leaf_info { 113 struct hlist_node hlist; 114 int plen; 115 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ 116 struct list_head falh; 117 struct rcu_head rcu; 118 }; 119 120 struct tnode { 121 unsigned long parent; 122 t_key key; 123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 125 unsigned int full_children; /* KEYLENGTH bits needed */ 126 unsigned int empty_children; /* KEYLENGTH bits needed */ 127 union { 128 struct rcu_head rcu; 129 struct work_struct work; 130 struct tnode *tnode_free; 131 }; 132 struct rt_trie_node __rcu *child[0]; 133 }; 134 135 #ifdef CONFIG_IP_FIB_TRIE_STATS 136 struct trie_use_stats { 137 unsigned int gets; 138 unsigned int backtrack; 139 unsigned int semantic_match_passed; 140 unsigned int semantic_match_miss; 141 unsigned int null_node_hit; 142 unsigned int resize_node_skipped; 143 }; 144 #endif 145 146 struct trie_stat { 147 unsigned int totdepth; 148 unsigned int maxdepth; 149 unsigned int tnodes; 150 unsigned int leaves; 151 unsigned int nullpointers; 152 unsigned int prefixes; 153 unsigned int nodesizes[MAX_STAT_DEPTH]; 154 }; 155 156 struct trie { 157 struct rt_trie_node __rcu *trie; 158 #ifdef CONFIG_IP_FIB_TRIE_STATS 159 struct trie_use_stats stats; 160 #endif 161 }; 162 163 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n); 164 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 165 int wasfull); 166 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 167 static struct tnode *inflate(struct trie *t, struct tnode *tn); 168 static struct tnode *halve(struct trie *t, struct tnode *tn); 169 /* tnodes to free after resize(); protected by RTNL */ 170 static struct tnode *tnode_free_head; 171 static size_t tnode_free_size; 172 173 /* 174 * synchronize_rcu after call_rcu for that many pages; it should be especially 175 * useful before resizing the root node with PREEMPT_NONE configs; the value was 176 * obtained experimentally, aiming to avoid visible slowdown. 177 */ 178 static const int sync_pages = 128; 179 180 static struct kmem_cache *fn_alias_kmem __read_mostly; 181 static struct kmem_cache *trie_leaf_kmem __read_mostly; 182 183 /* 184 * caller must hold RTNL 185 */ 186 static inline struct tnode *node_parent(const struct rt_trie_node *node) 187 { 188 unsigned long parent; 189 190 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 191 192 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 193 } 194 195 /* 196 * caller must hold RCU read lock or RTNL 197 */ 198 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 199 { 200 unsigned long parent; 201 202 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 203 lockdep_rtnl_is_held()); 204 205 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 206 } 207 208 /* Same as rcu_assign_pointer 209 * but that macro() assumes that value is a pointer. 210 */ 211 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 212 { 213 smp_wmb(); 214 node->parent = (unsigned long)ptr | NODE_TYPE(node); 215 } 216 217 /* 218 * caller must hold RTNL 219 */ 220 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 221 { 222 BUG_ON(i >= 1U << tn->bits); 223 224 return rtnl_dereference(tn->child[i]); 225 } 226 227 /* 228 * caller must hold RCU read lock or RTNL 229 */ 230 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 231 { 232 BUG_ON(i >= 1U << tn->bits); 233 234 return rcu_dereference_rtnl(tn->child[i]); 235 } 236 237 static inline int tnode_child_length(const struct tnode *tn) 238 { 239 return 1 << tn->bits; 240 } 241 242 static inline t_key mask_pfx(t_key k, unsigned int l) 243 { 244 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 245 } 246 247 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 248 { 249 if (offset < KEYLENGTH) 250 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 251 else 252 return 0; 253 } 254 255 static inline int tkey_equals(t_key a, t_key b) 256 { 257 return a == b; 258 } 259 260 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 261 { 262 if (bits == 0 || offset >= KEYLENGTH) 263 return 1; 264 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 265 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 266 } 267 268 static inline int tkey_mismatch(t_key a, int offset, t_key b) 269 { 270 t_key diff = a ^ b; 271 int i = offset; 272 273 if (!diff) 274 return 0; 275 while ((diff << i) >> (KEYLENGTH-1) == 0) 276 i++; 277 return i; 278 } 279 280 /* 281 To understand this stuff, an understanding of keys and all their bits is 282 necessary. Every node in the trie has a key associated with it, but not 283 all of the bits in that key are significant. 284 285 Consider a node 'n' and its parent 'tp'. 286 287 If n is a leaf, every bit in its key is significant. Its presence is 288 necessitated by path compression, since during a tree traversal (when 289 searching for a leaf - unless we are doing an insertion) we will completely 290 ignore all skipped bits we encounter. Thus we need to verify, at the end of 291 a potentially successful search, that we have indeed been walking the 292 correct key path. 293 294 Note that we can never "miss" the correct key in the tree if present by 295 following the wrong path. Path compression ensures that segments of the key 296 that are the same for all keys with a given prefix are skipped, but the 297 skipped part *is* identical for each node in the subtrie below the skipped 298 bit! trie_insert() in this implementation takes care of that - note the 299 call to tkey_sub_equals() in trie_insert(). 300 301 if n is an internal node - a 'tnode' here, the various parts of its key 302 have many different meanings. 303 304 Example: 305 _________________________________________________________________ 306 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 307 ----------------------------------------------------------------- 308 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 309 310 _________________________________________________________________ 311 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 312 ----------------------------------------------------------------- 313 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 314 315 tp->pos = 7 316 tp->bits = 3 317 n->pos = 15 318 n->bits = 4 319 320 First, let's just ignore the bits that come before the parent tp, that is 321 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 322 not use them for anything. 323 324 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 325 index into the parent's child array. That is, they will be used to find 326 'n' among tp's children. 327 328 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 329 for the node n. 330 331 All the bits we have seen so far are significant to the node n. The rest 332 of the bits are really not needed or indeed known in n->key. 333 334 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 335 n's child array, and will of course be different for each child. 336 337 338 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 339 at this point. 340 341 */ 342 343 static inline void check_tnode(const struct tnode *tn) 344 { 345 WARN_ON(tn && tn->pos+tn->bits > 32); 346 } 347 348 static const int halve_threshold = 25; 349 static const int inflate_threshold = 50; 350 static const int halve_threshold_root = 15; 351 static const int inflate_threshold_root = 30; 352 353 static void __alias_free_mem(struct rcu_head *head) 354 { 355 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 356 kmem_cache_free(fn_alias_kmem, fa); 357 } 358 359 static inline void alias_free_mem_rcu(struct fib_alias *fa) 360 { 361 call_rcu(&fa->rcu, __alias_free_mem); 362 } 363 364 static void __leaf_free_rcu(struct rcu_head *head) 365 { 366 struct leaf *l = container_of(head, struct leaf, rcu); 367 kmem_cache_free(trie_leaf_kmem, l); 368 } 369 370 static inline void free_leaf(struct leaf *l) 371 { 372 call_rcu_bh(&l->rcu, __leaf_free_rcu); 373 } 374 375 static inline void free_leaf_info(struct leaf_info *leaf) 376 { 377 kfree_rcu(leaf, rcu); 378 } 379 380 static struct tnode *tnode_alloc(size_t size) 381 { 382 if (size <= PAGE_SIZE) 383 return kzalloc(size, GFP_KERNEL); 384 else 385 return vzalloc(size); 386 } 387 388 static void __tnode_vfree(struct work_struct *arg) 389 { 390 struct tnode *tn = container_of(arg, struct tnode, work); 391 vfree(tn); 392 } 393 394 static void __tnode_free_rcu(struct rcu_head *head) 395 { 396 struct tnode *tn = container_of(head, struct tnode, rcu); 397 size_t size = sizeof(struct tnode) + 398 (sizeof(struct rt_trie_node *) << tn->bits); 399 400 if (size <= PAGE_SIZE) 401 kfree(tn); 402 else { 403 INIT_WORK(&tn->work, __tnode_vfree); 404 schedule_work(&tn->work); 405 } 406 } 407 408 static inline void tnode_free(struct tnode *tn) 409 { 410 if (IS_LEAF(tn)) 411 free_leaf((struct leaf *) tn); 412 else 413 call_rcu(&tn->rcu, __tnode_free_rcu); 414 } 415 416 static void tnode_free_safe(struct tnode *tn) 417 { 418 BUG_ON(IS_LEAF(tn)); 419 tn->tnode_free = tnode_free_head; 420 tnode_free_head = tn; 421 tnode_free_size += sizeof(struct tnode) + 422 (sizeof(struct rt_trie_node *) << tn->bits); 423 } 424 425 static void tnode_free_flush(void) 426 { 427 struct tnode *tn; 428 429 while ((tn = tnode_free_head)) { 430 tnode_free_head = tn->tnode_free; 431 tn->tnode_free = NULL; 432 tnode_free(tn); 433 } 434 435 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 436 tnode_free_size = 0; 437 synchronize_rcu(); 438 } 439 } 440 441 static struct leaf *leaf_new(void) 442 { 443 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 444 if (l) { 445 l->parent = T_LEAF; 446 INIT_HLIST_HEAD(&l->list); 447 } 448 return l; 449 } 450 451 static struct leaf_info *leaf_info_new(int plen) 452 { 453 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 454 if (li) { 455 li->plen = plen; 456 li->mask_plen = ntohl(inet_make_mask(plen)); 457 INIT_LIST_HEAD(&li->falh); 458 } 459 return li; 460 } 461 462 static struct tnode *tnode_new(t_key key, int pos, int bits) 463 { 464 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 465 struct tnode *tn = tnode_alloc(sz); 466 467 if (tn) { 468 tn->parent = T_TNODE; 469 tn->pos = pos; 470 tn->bits = bits; 471 tn->key = key; 472 tn->full_children = 0; 473 tn->empty_children = 1<<bits; 474 } 475 476 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 477 sizeof(struct rt_trie_node) << bits); 478 return tn; 479 } 480 481 /* 482 * Check whether a tnode 'n' is "full", i.e. it is an internal node 483 * and no bits are skipped. See discussion in dyntree paper p. 6 484 */ 485 486 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 487 { 488 if (n == NULL || IS_LEAF(n)) 489 return 0; 490 491 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 492 } 493 494 static inline void put_child(struct trie *t, struct tnode *tn, int i, 495 struct rt_trie_node *n) 496 { 497 tnode_put_child_reorg(tn, i, n, -1); 498 } 499 500 /* 501 * Add a child at position i overwriting the old value. 502 * Update the value of full_children and empty_children. 503 */ 504 505 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 506 int wasfull) 507 { 508 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 509 int isfull; 510 511 BUG_ON(i >= 1<<tn->bits); 512 513 /* update emptyChildren */ 514 if (n == NULL && chi != NULL) 515 tn->empty_children++; 516 else if (n != NULL && chi == NULL) 517 tn->empty_children--; 518 519 /* update fullChildren */ 520 if (wasfull == -1) 521 wasfull = tnode_full(tn, chi); 522 523 isfull = tnode_full(tn, n); 524 if (wasfull && !isfull) 525 tn->full_children--; 526 else if (!wasfull && isfull) 527 tn->full_children++; 528 529 if (n) 530 node_set_parent(n, tn); 531 532 rcu_assign_pointer(tn->child[i], n); 533 } 534 535 #define MAX_WORK 10 536 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 537 { 538 int i; 539 struct tnode *old_tn; 540 int inflate_threshold_use; 541 int halve_threshold_use; 542 int max_work; 543 544 if (!tn) 545 return NULL; 546 547 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 548 tn, inflate_threshold, halve_threshold); 549 550 /* No children */ 551 if (tn->empty_children == tnode_child_length(tn)) { 552 tnode_free_safe(tn); 553 return NULL; 554 } 555 /* One child */ 556 if (tn->empty_children == tnode_child_length(tn) - 1) 557 goto one_child; 558 /* 559 * Double as long as the resulting node has a number of 560 * nonempty nodes that are above the threshold. 561 */ 562 563 /* 564 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 565 * the Helsinki University of Technology and Matti Tikkanen of Nokia 566 * Telecommunications, page 6: 567 * "A node is doubled if the ratio of non-empty children to all 568 * children in the *doubled* node is at least 'high'." 569 * 570 * 'high' in this instance is the variable 'inflate_threshold'. It 571 * is expressed as a percentage, so we multiply it with 572 * tnode_child_length() and instead of multiplying by 2 (since the 573 * child array will be doubled by inflate()) and multiplying 574 * the left-hand side by 100 (to handle the percentage thing) we 575 * multiply the left-hand side by 50. 576 * 577 * The left-hand side may look a bit weird: tnode_child_length(tn) 578 * - tn->empty_children is of course the number of non-null children 579 * in the current node. tn->full_children is the number of "full" 580 * children, that is non-null tnodes with a skip value of 0. 581 * All of those will be doubled in the resulting inflated tnode, so 582 * we just count them one extra time here. 583 * 584 * A clearer way to write this would be: 585 * 586 * to_be_doubled = tn->full_children; 587 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 588 * tn->full_children; 589 * 590 * new_child_length = tnode_child_length(tn) * 2; 591 * 592 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 593 * new_child_length; 594 * if (new_fill_factor >= inflate_threshold) 595 * 596 * ...and so on, tho it would mess up the while () loop. 597 * 598 * anyway, 599 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 600 * inflate_threshold 601 * 602 * avoid a division: 603 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 604 * inflate_threshold * new_child_length 605 * 606 * expand not_to_be_doubled and to_be_doubled, and shorten: 607 * 100 * (tnode_child_length(tn) - tn->empty_children + 608 * tn->full_children) >= inflate_threshold * new_child_length 609 * 610 * expand new_child_length: 611 * 100 * (tnode_child_length(tn) - tn->empty_children + 612 * tn->full_children) >= 613 * inflate_threshold * tnode_child_length(tn) * 2 614 * 615 * shorten again: 616 * 50 * (tn->full_children + tnode_child_length(tn) - 617 * tn->empty_children) >= inflate_threshold * 618 * tnode_child_length(tn) 619 * 620 */ 621 622 check_tnode(tn); 623 624 /* Keep root node larger */ 625 626 if (!node_parent((struct rt_trie_node *)tn)) { 627 inflate_threshold_use = inflate_threshold_root; 628 halve_threshold_use = halve_threshold_root; 629 } else { 630 inflate_threshold_use = inflate_threshold; 631 halve_threshold_use = halve_threshold; 632 } 633 634 max_work = MAX_WORK; 635 while ((tn->full_children > 0 && max_work-- && 636 50 * (tn->full_children + tnode_child_length(tn) 637 - tn->empty_children) 638 >= inflate_threshold_use * tnode_child_length(tn))) { 639 640 old_tn = tn; 641 tn = inflate(t, tn); 642 643 if (IS_ERR(tn)) { 644 tn = old_tn; 645 #ifdef CONFIG_IP_FIB_TRIE_STATS 646 t->stats.resize_node_skipped++; 647 #endif 648 break; 649 } 650 } 651 652 check_tnode(tn); 653 654 /* Return if at least one inflate is run */ 655 if (max_work != MAX_WORK) 656 return (struct rt_trie_node *) tn; 657 658 /* 659 * Halve as long as the number of empty children in this 660 * node is above threshold. 661 */ 662 663 max_work = MAX_WORK; 664 while (tn->bits > 1 && max_work-- && 665 100 * (tnode_child_length(tn) - tn->empty_children) < 666 halve_threshold_use * tnode_child_length(tn)) { 667 668 old_tn = tn; 669 tn = halve(t, tn); 670 if (IS_ERR(tn)) { 671 tn = old_tn; 672 #ifdef CONFIG_IP_FIB_TRIE_STATS 673 t->stats.resize_node_skipped++; 674 #endif 675 break; 676 } 677 } 678 679 680 /* Only one child remains */ 681 if (tn->empty_children == tnode_child_length(tn) - 1) { 682 one_child: 683 for (i = 0; i < tnode_child_length(tn); i++) { 684 struct rt_trie_node *n; 685 686 n = rtnl_dereference(tn->child[i]); 687 if (!n) 688 continue; 689 690 /* compress one level */ 691 692 node_set_parent(n, NULL); 693 tnode_free_safe(tn); 694 return n; 695 } 696 } 697 return (struct rt_trie_node *) tn; 698 } 699 700 701 static void tnode_clean_free(struct tnode *tn) 702 { 703 int i; 704 struct tnode *tofree; 705 706 for (i = 0; i < tnode_child_length(tn); i++) { 707 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 708 if (tofree) 709 tnode_free(tofree); 710 } 711 tnode_free(tn); 712 } 713 714 static struct tnode *inflate(struct trie *t, struct tnode *tn) 715 { 716 struct tnode *oldtnode = tn; 717 int olen = tnode_child_length(tn); 718 int i; 719 720 pr_debug("In inflate\n"); 721 722 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 723 724 if (!tn) 725 return ERR_PTR(-ENOMEM); 726 727 /* 728 * Preallocate and store tnodes before the actual work so we 729 * don't get into an inconsistent state if memory allocation 730 * fails. In case of failure we return the oldnode and inflate 731 * of tnode is ignored. 732 */ 733 734 for (i = 0; i < olen; i++) { 735 struct tnode *inode; 736 737 inode = (struct tnode *) tnode_get_child(oldtnode, i); 738 if (inode && 739 IS_TNODE(inode) && 740 inode->pos == oldtnode->pos + oldtnode->bits && 741 inode->bits > 1) { 742 struct tnode *left, *right; 743 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 744 745 left = tnode_new(inode->key&(~m), inode->pos + 1, 746 inode->bits - 1); 747 if (!left) 748 goto nomem; 749 750 right = tnode_new(inode->key|m, inode->pos + 1, 751 inode->bits - 1); 752 753 if (!right) { 754 tnode_free(left); 755 goto nomem; 756 } 757 758 put_child(t, tn, 2*i, (struct rt_trie_node *) left); 759 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right); 760 } 761 } 762 763 for (i = 0; i < olen; i++) { 764 struct tnode *inode; 765 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 766 struct tnode *left, *right; 767 int size, j; 768 769 /* An empty child */ 770 if (node == NULL) 771 continue; 772 773 /* A leaf or an internal node with skipped bits */ 774 775 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 776 tn->pos + tn->bits - 1) { 777 if (tkey_extract_bits(node->key, 778 oldtnode->pos + oldtnode->bits, 779 1) == 0) 780 put_child(t, tn, 2*i, node); 781 else 782 put_child(t, tn, 2*i+1, node); 783 continue; 784 } 785 786 /* An internal node with two children */ 787 inode = (struct tnode *) node; 788 789 if (inode->bits == 1) { 790 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0])); 791 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1])); 792 793 tnode_free_safe(inode); 794 continue; 795 } 796 797 /* An internal node with more than two children */ 798 799 /* We will replace this node 'inode' with two new 800 * ones, 'left' and 'right', each with half of the 801 * original children. The two new nodes will have 802 * a position one bit further down the key and this 803 * means that the "significant" part of their keys 804 * (see the discussion near the top of this file) 805 * will differ by one bit, which will be "0" in 806 * left's key and "1" in right's key. Since we are 807 * moving the key position by one step, the bit that 808 * we are moving away from - the bit at position 809 * (inode->pos) - is the one that will differ between 810 * left and right. So... we synthesize that bit in the 811 * two new keys. 812 * The mask 'm' below will be a single "one" bit at 813 * the position (inode->pos) 814 */ 815 816 /* Use the old key, but set the new significant 817 * bit to zero. 818 */ 819 820 left = (struct tnode *) tnode_get_child(tn, 2*i); 821 put_child(t, tn, 2*i, NULL); 822 823 BUG_ON(!left); 824 825 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 826 put_child(t, tn, 2*i+1, NULL); 827 828 BUG_ON(!right); 829 830 size = tnode_child_length(left); 831 for (j = 0; j < size; j++) { 832 put_child(t, left, j, rtnl_dereference(inode->child[j])); 833 put_child(t, right, j, rtnl_dereference(inode->child[j + size])); 834 } 835 put_child(t, tn, 2*i, resize(t, left)); 836 put_child(t, tn, 2*i+1, resize(t, right)); 837 838 tnode_free_safe(inode); 839 } 840 tnode_free_safe(oldtnode); 841 return tn; 842 nomem: 843 tnode_clean_free(tn); 844 return ERR_PTR(-ENOMEM); 845 } 846 847 static struct tnode *halve(struct trie *t, struct tnode *tn) 848 { 849 struct tnode *oldtnode = tn; 850 struct rt_trie_node *left, *right; 851 int i; 852 int olen = tnode_child_length(tn); 853 854 pr_debug("In halve\n"); 855 856 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 857 858 if (!tn) 859 return ERR_PTR(-ENOMEM); 860 861 /* 862 * Preallocate and store tnodes before the actual work so we 863 * don't get into an inconsistent state if memory allocation 864 * fails. In case of failure we return the oldnode and halve 865 * of tnode is ignored. 866 */ 867 868 for (i = 0; i < olen; i += 2) { 869 left = tnode_get_child(oldtnode, i); 870 right = tnode_get_child(oldtnode, i+1); 871 872 /* Two nonempty children */ 873 if (left && right) { 874 struct tnode *newn; 875 876 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 877 878 if (!newn) 879 goto nomem; 880 881 put_child(t, tn, i/2, (struct rt_trie_node *)newn); 882 } 883 884 } 885 886 for (i = 0; i < olen; i += 2) { 887 struct tnode *newBinNode; 888 889 left = tnode_get_child(oldtnode, i); 890 right = tnode_get_child(oldtnode, i+1); 891 892 /* At least one of the children is empty */ 893 if (left == NULL) { 894 if (right == NULL) /* Both are empty */ 895 continue; 896 put_child(t, tn, i/2, right); 897 continue; 898 } 899 900 if (right == NULL) { 901 put_child(t, tn, i/2, left); 902 continue; 903 } 904 905 /* Two nonempty children */ 906 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 907 put_child(t, tn, i/2, NULL); 908 put_child(t, newBinNode, 0, left); 909 put_child(t, newBinNode, 1, right); 910 put_child(t, tn, i/2, resize(t, newBinNode)); 911 } 912 tnode_free_safe(oldtnode); 913 return tn; 914 nomem: 915 tnode_clean_free(tn); 916 return ERR_PTR(-ENOMEM); 917 } 918 919 /* readside must use rcu_read_lock currently dump routines 920 via get_fa_head and dump */ 921 922 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 923 { 924 struct hlist_head *head = &l->list; 925 struct hlist_node *node; 926 struct leaf_info *li; 927 928 hlist_for_each_entry_rcu(li, node, head, hlist) 929 if (li->plen == plen) 930 return li; 931 932 return NULL; 933 } 934 935 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 936 { 937 struct leaf_info *li = find_leaf_info(l, plen); 938 939 if (!li) 940 return NULL; 941 942 return &li->falh; 943 } 944 945 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 946 { 947 struct leaf_info *li = NULL, *last = NULL; 948 struct hlist_node *node; 949 950 if (hlist_empty(head)) { 951 hlist_add_head_rcu(&new->hlist, head); 952 } else { 953 hlist_for_each_entry(li, node, head, hlist) { 954 if (new->plen > li->plen) 955 break; 956 957 last = li; 958 } 959 if (last) 960 hlist_add_after_rcu(&last->hlist, &new->hlist); 961 else 962 hlist_add_before_rcu(&new->hlist, &li->hlist); 963 } 964 } 965 966 /* rcu_read_lock needs to be hold by caller from readside */ 967 968 static struct leaf * 969 fib_find_node(struct trie *t, u32 key) 970 { 971 int pos; 972 struct tnode *tn; 973 struct rt_trie_node *n; 974 975 pos = 0; 976 n = rcu_dereference_rtnl(t->trie); 977 978 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 979 tn = (struct tnode *) n; 980 981 check_tnode(tn); 982 983 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 984 pos = tn->pos + tn->bits; 985 n = tnode_get_child_rcu(tn, 986 tkey_extract_bits(key, 987 tn->pos, 988 tn->bits)); 989 } else 990 break; 991 } 992 /* Case we have found a leaf. Compare prefixes */ 993 994 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 995 return (struct leaf *)n; 996 997 return NULL; 998 } 999 1000 static void trie_rebalance(struct trie *t, struct tnode *tn) 1001 { 1002 int wasfull; 1003 t_key cindex, key; 1004 struct tnode *tp; 1005 1006 key = tn->key; 1007 1008 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 1009 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1010 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 1011 tn = (struct tnode *) resize(t, (struct tnode *)tn); 1012 1013 tnode_put_child_reorg((struct tnode *)tp, cindex, 1014 (struct rt_trie_node *)tn, wasfull); 1015 1016 tp = node_parent((struct rt_trie_node *) tn); 1017 if (!tp) 1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1019 1020 tnode_free_flush(); 1021 if (!tp) 1022 break; 1023 tn = tp; 1024 } 1025 1026 /* Handle last (top) tnode */ 1027 if (IS_TNODE(tn)) 1028 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1029 1030 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1031 tnode_free_flush(); 1032 } 1033 1034 /* only used from updater-side */ 1035 1036 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1037 { 1038 int pos, newpos; 1039 struct tnode *tp = NULL, *tn = NULL; 1040 struct rt_trie_node *n; 1041 struct leaf *l; 1042 int missbit; 1043 struct list_head *fa_head = NULL; 1044 struct leaf_info *li; 1045 t_key cindex; 1046 1047 pos = 0; 1048 n = rtnl_dereference(t->trie); 1049 1050 /* If we point to NULL, stop. Either the tree is empty and we should 1051 * just put a new leaf in if, or we have reached an empty child slot, 1052 * and we should just put our new leaf in that. 1053 * If we point to a T_TNODE, check if it matches our key. Note that 1054 * a T_TNODE might be skipping any number of bits - its 'pos' need 1055 * not be the parent's 'pos'+'bits'! 1056 * 1057 * If it does match the current key, get pos/bits from it, extract 1058 * the index from our key, push the T_TNODE and walk the tree. 1059 * 1060 * If it doesn't, we have to replace it with a new T_TNODE. 1061 * 1062 * If we point to a T_LEAF, it might or might not have the same key 1063 * as we do. If it does, just change the value, update the T_LEAF's 1064 * value, and return it. 1065 * If it doesn't, we need to replace it with a T_TNODE. 1066 */ 1067 1068 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1069 tn = (struct tnode *) n; 1070 1071 check_tnode(tn); 1072 1073 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1074 tp = tn; 1075 pos = tn->pos + tn->bits; 1076 n = tnode_get_child(tn, 1077 tkey_extract_bits(key, 1078 tn->pos, 1079 tn->bits)); 1080 1081 BUG_ON(n && node_parent(n) != tn); 1082 } else 1083 break; 1084 } 1085 1086 /* 1087 * n ----> NULL, LEAF or TNODE 1088 * 1089 * tp is n's (parent) ----> NULL or TNODE 1090 */ 1091 1092 BUG_ON(tp && IS_LEAF(tp)); 1093 1094 /* Case 1: n is a leaf. Compare prefixes */ 1095 1096 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1097 l = (struct leaf *) n; 1098 li = leaf_info_new(plen); 1099 1100 if (!li) 1101 return NULL; 1102 1103 fa_head = &li->falh; 1104 insert_leaf_info(&l->list, li); 1105 goto done; 1106 } 1107 l = leaf_new(); 1108 1109 if (!l) 1110 return NULL; 1111 1112 l->key = key; 1113 li = leaf_info_new(plen); 1114 1115 if (!li) { 1116 free_leaf(l); 1117 return NULL; 1118 } 1119 1120 fa_head = &li->falh; 1121 insert_leaf_info(&l->list, li); 1122 1123 if (t->trie && n == NULL) { 1124 /* Case 2: n is NULL, and will just insert a new leaf */ 1125 1126 node_set_parent((struct rt_trie_node *)l, tp); 1127 1128 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1129 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l); 1130 } else { 1131 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1132 /* 1133 * Add a new tnode here 1134 * first tnode need some special handling 1135 */ 1136 1137 if (tp) 1138 pos = tp->pos+tp->bits; 1139 else 1140 pos = 0; 1141 1142 if (n) { 1143 newpos = tkey_mismatch(key, pos, n->key); 1144 tn = tnode_new(n->key, newpos, 1); 1145 } else { 1146 newpos = 0; 1147 tn = tnode_new(key, newpos, 1); /* First tnode */ 1148 } 1149 1150 if (!tn) { 1151 free_leaf_info(li); 1152 free_leaf(l); 1153 return NULL; 1154 } 1155 1156 node_set_parent((struct rt_trie_node *)tn, tp); 1157 1158 missbit = tkey_extract_bits(key, newpos, 1); 1159 put_child(t, tn, missbit, (struct rt_trie_node *)l); 1160 put_child(t, tn, 1-missbit, n); 1161 1162 if (tp) { 1163 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1164 put_child(t, (struct tnode *)tp, cindex, 1165 (struct rt_trie_node *)tn); 1166 } else { 1167 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1168 tp = tn; 1169 } 1170 } 1171 1172 if (tp && tp->pos + tp->bits > 32) 1173 pr_warning("fib_trie" 1174 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1175 tp, tp->pos, tp->bits, key, plen); 1176 1177 /* Rebalance the trie */ 1178 1179 trie_rebalance(t, tp); 1180 done: 1181 return fa_head; 1182 } 1183 1184 /* 1185 * Caller must hold RTNL. 1186 */ 1187 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1188 { 1189 struct trie *t = (struct trie *) tb->tb_data; 1190 struct fib_alias *fa, *new_fa; 1191 struct list_head *fa_head = NULL; 1192 struct fib_info *fi; 1193 int plen = cfg->fc_dst_len; 1194 u8 tos = cfg->fc_tos; 1195 u32 key, mask; 1196 int err; 1197 struct leaf *l; 1198 1199 if (plen > 32) 1200 return -EINVAL; 1201 1202 key = ntohl(cfg->fc_dst); 1203 1204 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1205 1206 mask = ntohl(inet_make_mask(plen)); 1207 1208 if (key & ~mask) 1209 return -EINVAL; 1210 1211 key = key & mask; 1212 1213 fi = fib_create_info(cfg); 1214 if (IS_ERR(fi)) { 1215 err = PTR_ERR(fi); 1216 goto err; 1217 } 1218 1219 l = fib_find_node(t, key); 1220 fa = NULL; 1221 1222 if (l) { 1223 fa_head = get_fa_head(l, plen); 1224 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1225 } 1226 1227 /* Now fa, if non-NULL, points to the first fib alias 1228 * with the same keys [prefix,tos,priority], if such key already 1229 * exists or to the node before which we will insert new one. 1230 * 1231 * If fa is NULL, we will need to allocate a new one and 1232 * insert to the head of f. 1233 * 1234 * If f is NULL, no fib node matched the destination key 1235 * and we need to allocate a new one of those as well. 1236 */ 1237 1238 if (fa && fa->fa_tos == tos && 1239 fa->fa_info->fib_priority == fi->fib_priority) { 1240 struct fib_alias *fa_first, *fa_match; 1241 1242 err = -EEXIST; 1243 if (cfg->fc_nlflags & NLM_F_EXCL) 1244 goto out; 1245 1246 /* We have 2 goals: 1247 * 1. Find exact match for type, scope, fib_info to avoid 1248 * duplicate routes 1249 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1250 */ 1251 fa_match = NULL; 1252 fa_first = fa; 1253 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1254 list_for_each_entry_continue(fa, fa_head, fa_list) { 1255 if (fa->fa_tos != tos) 1256 break; 1257 if (fa->fa_info->fib_priority != fi->fib_priority) 1258 break; 1259 if (fa->fa_type == cfg->fc_type && 1260 fa->fa_info == fi) { 1261 fa_match = fa; 1262 break; 1263 } 1264 } 1265 1266 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1267 struct fib_info *fi_drop; 1268 u8 state; 1269 1270 fa = fa_first; 1271 if (fa_match) { 1272 if (fa == fa_match) 1273 err = 0; 1274 goto out; 1275 } 1276 err = -ENOBUFS; 1277 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1278 if (new_fa == NULL) 1279 goto out; 1280 1281 fi_drop = fa->fa_info; 1282 new_fa->fa_tos = fa->fa_tos; 1283 new_fa->fa_info = fi; 1284 new_fa->fa_type = cfg->fc_type; 1285 state = fa->fa_state; 1286 new_fa->fa_state = state & ~FA_S_ACCESSED; 1287 1288 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1289 alias_free_mem_rcu(fa); 1290 1291 fib_release_info(fi_drop); 1292 if (state & FA_S_ACCESSED) 1293 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1294 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1295 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1296 1297 goto succeeded; 1298 } 1299 /* Error if we find a perfect match which 1300 * uses the same scope, type, and nexthop 1301 * information. 1302 */ 1303 if (fa_match) 1304 goto out; 1305 1306 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1307 fa = fa_first; 1308 } 1309 err = -ENOENT; 1310 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1311 goto out; 1312 1313 err = -ENOBUFS; 1314 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1315 if (new_fa == NULL) 1316 goto out; 1317 1318 new_fa->fa_info = fi; 1319 new_fa->fa_tos = tos; 1320 new_fa->fa_type = cfg->fc_type; 1321 new_fa->fa_state = 0; 1322 /* 1323 * Insert new entry to the list. 1324 */ 1325 1326 if (!fa_head) { 1327 fa_head = fib_insert_node(t, key, plen); 1328 if (unlikely(!fa_head)) { 1329 err = -ENOMEM; 1330 goto out_free_new_fa; 1331 } 1332 } 1333 1334 if (!plen) 1335 tb->tb_num_default++; 1336 1337 list_add_tail_rcu(&new_fa->fa_list, 1338 (fa ? &fa->fa_list : fa_head)); 1339 1340 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1341 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1342 &cfg->fc_nlinfo, 0); 1343 succeeded: 1344 return 0; 1345 1346 out_free_new_fa: 1347 kmem_cache_free(fn_alias_kmem, new_fa); 1348 out: 1349 fib_release_info(fi); 1350 err: 1351 return err; 1352 } 1353 1354 /* should be called with rcu_read_lock */ 1355 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1356 t_key key, const struct flowi4 *flp, 1357 struct fib_result *res, int fib_flags) 1358 { 1359 struct leaf_info *li; 1360 struct hlist_head *hhead = &l->list; 1361 struct hlist_node *node; 1362 1363 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1364 struct fib_alias *fa; 1365 1366 if (l->key != (key & li->mask_plen)) 1367 continue; 1368 1369 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1370 struct fib_info *fi = fa->fa_info; 1371 int nhsel, err; 1372 1373 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1374 continue; 1375 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1376 continue; 1377 fib_alias_accessed(fa); 1378 err = fib_props[fa->fa_type].error; 1379 if (err) { 1380 #ifdef CONFIG_IP_FIB_TRIE_STATS 1381 t->stats.semantic_match_passed++; 1382 #endif 1383 return err; 1384 } 1385 if (fi->fib_flags & RTNH_F_DEAD) 1386 continue; 1387 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1388 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1389 1390 if (nh->nh_flags & RTNH_F_DEAD) 1391 continue; 1392 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1393 continue; 1394 1395 #ifdef CONFIG_IP_FIB_TRIE_STATS 1396 t->stats.semantic_match_passed++; 1397 #endif 1398 res->prefixlen = li->plen; 1399 res->nh_sel = nhsel; 1400 res->type = fa->fa_type; 1401 res->scope = fa->fa_info->fib_scope; 1402 res->fi = fi; 1403 res->table = tb; 1404 res->fa_head = &li->falh; 1405 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1406 atomic_inc(&fi->fib_clntref); 1407 return 0; 1408 } 1409 } 1410 1411 #ifdef CONFIG_IP_FIB_TRIE_STATS 1412 t->stats.semantic_match_miss++; 1413 #endif 1414 } 1415 1416 return 1; 1417 } 1418 1419 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1420 struct fib_result *res, int fib_flags) 1421 { 1422 struct trie *t = (struct trie *) tb->tb_data; 1423 int ret; 1424 struct rt_trie_node *n; 1425 struct tnode *pn; 1426 unsigned int pos, bits; 1427 t_key key = ntohl(flp->daddr); 1428 unsigned int chopped_off; 1429 t_key cindex = 0; 1430 unsigned int current_prefix_length = KEYLENGTH; 1431 struct tnode *cn; 1432 t_key pref_mismatch; 1433 1434 rcu_read_lock(); 1435 1436 n = rcu_dereference(t->trie); 1437 if (!n) 1438 goto failed; 1439 1440 #ifdef CONFIG_IP_FIB_TRIE_STATS 1441 t->stats.gets++; 1442 #endif 1443 1444 /* Just a leaf? */ 1445 if (IS_LEAF(n)) { 1446 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1447 goto found; 1448 } 1449 1450 pn = (struct tnode *) n; 1451 chopped_off = 0; 1452 1453 while (pn) { 1454 pos = pn->pos; 1455 bits = pn->bits; 1456 1457 if (!chopped_off) 1458 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1459 pos, bits); 1460 1461 n = tnode_get_child_rcu(pn, cindex); 1462 1463 if (n == NULL) { 1464 #ifdef CONFIG_IP_FIB_TRIE_STATS 1465 t->stats.null_node_hit++; 1466 #endif 1467 goto backtrace; 1468 } 1469 1470 if (IS_LEAF(n)) { 1471 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1472 if (ret > 0) 1473 goto backtrace; 1474 goto found; 1475 } 1476 1477 cn = (struct tnode *)n; 1478 1479 /* 1480 * It's a tnode, and we can do some extra checks here if we 1481 * like, to avoid descending into a dead-end branch. 1482 * This tnode is in the parent's child array at index 1483 * key[p_pos..p_pos+p_bits] but potentially with some bits 1484 * chopped off, so in reality the index may be just a 1485 * subprefix, padded with zero at the end. 1486 * We can also take a look at any skipped bits in this 1487 * tnode - everything up to p_pos is supposed to be ok, 1488 * and the non-chopped bits of the index (se previous 1489 * paragraph) are also guaranteed ok, but the rest is 1490 * considered unknown. 1491 * 1492 * The skipped bits are key[pos+bits..cn->pos]. 1493 */ 1494 1495 /* If current_prefix_length < pos+bits, we are already doing 1496 * actual prefix matching, which means everything from 1497 * pos+(bits-chopped_off) onward must be zero along some 1498 * branch of this subtree - otherwise there is *no* valid 1499 * prefix present. Here we can only check the skipped 1500 * bits. Remember, since we have already indexed into the 1501 * parent's child array, we know that the bits we chopped of 1502 * *are* zero. 1503 */ 1504 1505 /* NOTA BENE: Checking only skipped bits 1506 for the new node here */ 1507 1508 if (current_prefix_length < pos+bits) { 1509 if (tkey_extract_bits(cn->key, current_prefix_length, 1510 cn->pos - current_prefix_length) 1511 || !(cn->child[0])) 1512 goto backtrace; 1513 } 1514 1515 /* 1516 * If chopped_off=0, the index is fully validated and we 1517 * only need to look at the skipped bits for this, the new, 1518 * tnode. What we actually want to do is to find out if 1519 * these skipped bits match our key perfectly, or if we will 1520 * have to count on finding a matching prefix further down, 1521 * because if we do, we would like to have some way of 1522 * verifying the existence of such a prefix at this point. 1523 */ 1524 1525 /* The only thing we can do at this point is to verify that 1526 * any such matching prefix can indeed be a prefix to our 1527 * key, and if the bits in the node we are inspecting that 1528 * do not match our key are not ZERO, this cannot be true. 1529 * Thus, find out where there is a mismatch (before cn->pos) 1530 * and verify that all the mismatching bits are zero in the 1531 * new tnode's key. 1532 */ 1533 1534 /* 1535 * Note: We aren't very concerned about the piece of 1536 * the key that precede pn->pos+pn->bits, since these 1537 * have already been checked. The bits after cn->pos 1538 * aren't checked since these are by definition 1539 * "unknown" at this point. Thus, what we want to see 1540 * is if we are about to enter the "prefix matching" 1541 * state, and in that case verify that the skipped 1542 * bits that will prevail throughout this subtree are 1543 * zero, as they have to be if we are to find a 1544 * matching prefix. 1545 */ 1546 1547 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1548 1549 /* 1550 * In short: If skipped bits in this node do not match 1551 * the search key, enter the "prefix matching" 1552 * state.directly. 1553 */ 1554 if (pref_mismatch) { 1555 int mp = KEYLENGTH - fls(pref_mismatch); 1556 1557 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1558 goto backtrace; 1559 1560 if (current_prefix_length >= cn->pos) 1561 current_prefix_length = mp; 1562 } 1563 1564 pn = (struct tnode *)n; /* Descend */ 1565 chopped_off = 0; 1566 continue; 1567 1568 backtrace: 1569 chopped_off++; 1570 1571 /* As zero don't change the child key (cindex) */ 1572 while ((chopped_off <= pn->bits) 1573 && !(cindex & (1<<(chopped_off-1)))) 1574 chopped_off++; 1575 1576 /* Decrease current_... with bits chopped off */ 1577 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1578 current_prefix_length = pn->pos + pn->bits 1579 - chopped_off; 1580 1581 /* 1582 * Either we do the actual chop off according or if we have 1583 * chopped off all bits in this tnode walk up to our parent. 1584 */ 1585 1586 if (chopped_off <= pn->bits) { 1587 cindex &= ~(1 << (chopped_off-1)); 1588 } else { 1589 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1590 if (!parent) 1591 goto failed; 1592 1593 /* Get Child's index */ 1594 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1595 pn = parent; 1596 chopped_off = 0; 1597 1598 #ifdef CONFIG_IP_FIB_TRIE_STATS 1599 t->stats.backtrack++; 1600 #endif 1601 goto backtrace; 1602 } 1603 } 1604 failed: 1605 ret = 1; 1606 found: 1607 rcu_read_unlock(); 1608 return ret; 1609 } 1610 EXPORT_SYMBOL_GPL(fib_table_lookup); 1611 1612 /* 1613 * Remove the leaf and return parent. 1614 */ 1615 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1616 { 1617 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1618 1619 pr_debug("entering trie_leaf_remove(%p)\n", l); 1620 1621 if (tp) { 1622 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1623 put_child(t, (struct tnode *)tp, cindex, NULL); 1624 trie_rebalance(t, tp); 1625 } else 1626 RCU_INIT_POINTER(t->trie, NULL); 1627 1628 free_leaf(l); 1629 } 1630 1631 /* 1632 * Caller must hold RTNL. 1633 */ 1634 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1635 { 1636 struct trie *t = (struct trie *) tb->tb_data; 1637 u32 key, mask; 1638 int plen = cfg->fc_dst_len; 1639 u8 tos = cfg->fc_tos; 1640 struct fib_alias *fa, *fa_to_delete; 1641 struct list_head *fa_head; 1642 struct leaf *l; 1643 struct leaf_info *li; 1644 1645 if (plen > 32) 1646 return -EINVAL; 1647 1648 key = ntohl(cfg->fc_dst); 1649 mask = ntohl(inet_make_mask(plen)); 1650 1651 if (key & ~mask) 1652 return -EINVAL; 1653 1654 key = key & mask; 1655 l = fib_find_node(t, key); 1656 1657 if (!l) 1658 return -ESRCH; 1659 1660 fa_head = get_fa_head(l, plen); 1661 fa = fib_find_alias(fa_head, tos, 0); 1662 1663 if (!fa) 1664 return -ESRCH; 1665 1666 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1667 1668 fa_to_delete = NULL; 1669 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1670 list_for_each_entry_continue(fa, fa_head, fa_list) { 1671 struct fib_info *fi = fa->fa_info; 1672 1673 if (fa->fa_tos != tos) 1674 break; 1675 1676 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1677 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1678 fa->fa_info->fib_scope == cfg->fc_scope) && 1679 (!cfg->fc_prefsrc || 1680 fi->fib_prefsrc == cfg->fc_prefsrc) && 1681 (!cfg->fc_protocol || 1682 fi->fib_protocol == cfg->fc_protocol) && 1683 fib_nh_match(cfg, fi) == 0) { 1684 fa_to_delete = fa; 1685 break; 1686 } 1687 } 1688 1689 if (!fa_to_delete) 1690 return -ESRCH; 1691 1692 fa = fa_to_delete; 1693 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1694 &cfg->fc_nlinfo, 0); 1695 1696 l = fib_find_node(t, key); 1697 li = find_leaf_info(l, plen); 1698 1699 list_del_rcu(&fa->fa_list); 1700 1701 if (!plen) 1702 tb->tb_num_default--; 1703 1704 if (list_empty(fa_head)) { 1705 hlist_del_rcu(&li->hlist); 1706 free_leaf_info(li); 1707 } 1708 1709 if (hlist_empty(&l->list)) 1710 trie_leaf_remove(t, l); 1711 1712 if (fa->fa_state & FA_S_ACCESSED) 1713 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1714 1715 fib_release_info(fa->fa_info); 1716 alias_free_mem_rcu(fa); 1717 return 0; 1718 } 1719 1720 static int trie_flush_list(struct list_head *head) 1721 { 1722 struct fib_alias *fa, *fa_node; 1723 int found = 0; 1724 1725 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1726 struct fib_info *fi = fa->fa_info; 1727 1728 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1729 list_del_rcu(&fa->fa_list); 1730 fib_release_info(fa->fa_info); 1731 alias_free_mem_rcu(fa); 1732 found++; 1733 } 1734 } 1735 return found; 1736 } 1737 1738 static int trie_flush_leaf(struct leaf *l) 1739 { 1740 int found = 0; 1741 struct hlist_head *lih = &l->list; 1742 struct hlist_node *node, *tmp; 1743 struct leaf_info *li = NULL; 1744 1745 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1746 found += trie_flush_list(&li->falh); 1747 1748 if (list_empty(&li->falh)) { 1749 hlist_del_rcu(&li->hlist); 1750 free_leaf_info(li); 1751 } 1752 } 1753 return found; 1754 } 1755 1756 /* 1757 * Scan for the next right leaf starting at node p->child[idx] 1758 * Since we have back pointer, no recursion necessary. 1759 */ 1760 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1761 { 1762 do { 1763 t_key idx; 1764 1765 if (c) 1766 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1767 else 1768 idx = 0; 1769 1770 while (idx < 1u << p->bits) { 1771 c = tnode_get_child_rcu(p, idx++); 1772 if (!c) 1773 continue; 1774 1775 if (IS_LEAF(c)) { 1776 prefetch(rcu_dereference_rtnl(p->child[idx])); 1777 return (struct leaf *) c; 1778 } 1779 1780 /* Rescan start scanning in new node */ 1781 p = (struct tnode *) c; 1782 idx = 0; 1783 } 1784 1785 /* Node empty, walk back up to parent */ 1786 c = (struct rt_trie_node *) p; 1787 } while ((p = node_parent_rcu(c)) != NULL); 1788 1789 return NULL; /* Root of trie */ 1790 } 1791 1792 static struct leaf *trie_firstleaf(struct trie *t) 1793 { 1794 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1795 1796 if (!n) 1797 return NULL; 1798 1799 if (IS_LEAF(n)) /* trie is just a leaf */ 1800 return (struct leaf *) n; 1801 1802 return leaf_walk_rcu(n, NULL); 1803 } 1804 1805 static struct leaf *trie_nextleaf(struct leaf *l) 1806 { 1807 struct rt_trie_node *c = (struct rt_trie_node *) l; 1808 struct tnode *p = node_parent_rcu(c); 1809 1810 if (!p) 1811 return NULL; /* trie with just one leaf */ 1812 1813 return leaf_walk_rcu(p, c); 1814 } 1815 1816 static struct leaf *trie_leafindex(struct trie *t, int index) 1817 { 1818 struct leaf *l = trie_firstleaf(t); 1819 1820 while (l && index-- > 0) 1821 l = trie_nextleaf(l); 1822 1823 return l; 1824 } 1825 1826 1827 /* 1828 * Caller must hold RTNL. 1829 */ 1830 int fib_table_flush(struct fib_table *tb) 1831 { 1832 struct trie *t = (struct trie *) tb->tb_data; 1833 struct leaf *l, *ll = NULL; 1834 int found = 0; 1835 1836 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1837 found += trie_flush_leaf(l); 1838 1839 if (ll && hlist_empty(&ll->list)) 1840 trie_leaf_remove(t, ll); 1841 ll = l; 1842 } 1843 1844 if (ll && hlist_empty(&ll->list)) 1845 trie_leaf_remove(t, ll); 1846 1847 pr_debug("trie_flush found=%d\n", found); 1848 return found; 1849 } 1850 1851 void fib_free_table(struct fib_table *tb) 1852 { 1853 kfree(tb); 1854 } 1855 1856 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1857 struct fib_table *tb, 1858 struct sk_buff *skb, struct netlink_callback *cb) 1859 { 1860 int i, s_i; 1861 struct fib_alias *fa; 1862 __be32 xkey = htonl(key); 1863 1864 s_i = cb->args[5]; 1865 i = 0; 1866 1867 /* rcu_read_lock is hold by caller */ 1868 1869 list_for_each_entry_rcu(fa, fah, fa_list) { 1870 if (i < s_i) { 1871 i++; 1872 continue; 1873 } 1874 1875 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1876 cb->nlh->nlmsg_seq, 1877 RTM_NEWROUTE, 1878 tb->tb_id, 1879 fa->fa_type, 1880 xkey, 1881 plen, 1882 fa->fa_tos, 1883 fa->fa_info, NLM_F_MULTI) < 0) { 1884 cb->args[5] = i; 1885 return -1; 1886 } 1887 i++; 1888 } 1889 cb->args[5] = i; 1890 return skb->len; 1891 } 1892 1893 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1894 struct sk_buff *skb, struct netlink_callback *cb) 1895 { 1896 struct leaf_info *li; 1897 struct hlist_node *node; 1898 int i, s_i; 1899 1900 s_i = cb->args[4]; 1901 i = 0; 1902 1903 /* rcu_read_lock is hold by caller */ 1904 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1905 if (i < s_i) { 1906 i++; 1907 continue; 1908 } 1909 1910 if (i > s_i) 1911 cb->args[5] = 0; 1912 1913 if (list_empty(&li->falh)) 1914 continue; 1915 1916 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1917 cb->args[4] = i; 1918 return -1; 1919 } 1920 i++; 1921 } 1922 1923 cb->args[4] = i; 1924 return skb->len; 1925 } 1926 1927 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1928 struct netlink_callback *cb) 1929 { 1930 struct leaf *l; 1931 struct trie *t = (struct trie *) tb->tb_data; 1932 t_key key = cb->args[2]; 1933 int count = cb->args[3]; 1934 1935 rcu_read_lock(); 1936 /* Dump starting at last key. 1937 * Note: 0.0.0.0/0 (ie default) is first key. 1938 */ 1939 if (count == 0) 1940 l = trie_firstleaf(t); 1941 else { 1942 /* Normally, continue from last key, but if that is missing 1943 * fallback to using slow rescan 1944 */ 1945 l = fib_find_node(t, key); 1946 if (!l) 1947 l = trie_leafindex(t, count); 1948 } 1949 1950 while (l) { 1951 cb->args[2] = l->key; 1952 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1953 cb->args[3] = count; 1954 rcu_read_unlock(); 1955 return -1; 1956 } 1957 1958 ++count; 1959 l = trie_nextleaf(l); 1960 memset(&cb->args[4], 0, 1961 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1962 } 1963 cb->args[3] = count; 1964 rcu_read_unlock(); 1965 1966 return skb->len; 1967 } 1968 1969 void __init fib_trie_init(void) 1970 { 1971 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1972 sizeof(struct fib_alias), 1973 0, SLAB_PANIC, NULL); 1974 1975 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1976 max(sizeof(struct leaf), 1977 sizeof(struct leaf_info)), 1978 0, SLAB_PANIC, NULL); 1979 } 1980 1981 1982 struct fib_table *fib_trie_table(u32 id) 1983 { 1984 struct fib_table *tb; 1985 struct trie *t; 1986 1987 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1988 GFP_KERNEL); 1989 if (tb == NULL) 1990 return NULL; 1991 1992 tb->tb_id = id; 1993 tb->tb_default = -1; 1994 tb->tb_num_default = 0; 1995 1996 t = (struct trie *) tb->tb_data; 1997 memset(t, 0, sizeof(*t)); 1998 1999 return tb; 2000 } 2001 2002 #ifdef CONFIG_PROC_FS 2003 /* Depth first Trie walk iterator */ 2004 struct fib_trie_iter { 2005 struct seq_net_private p; 2006 struct fib_table *tb; 2007 struct tnode *tnode; 2008 unsigned int index; 2009 unsigned int depth; 2010 }; 2011 2012 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2013 { 2014 struct tnode *tn = iter->tnode; 2015 unsigned int cindex = iter->index; 2016 struct tnode *p; 2017 2018 /* A single entry routing table */ 2019 if (!tn) 2020 return NULL; 2021 2022 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2023 iter->tnode, iter->index, iter->depth); 2024 rescan: 2025 while (cindex < (1<<tn->bits)) { 2026 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2027 2028 if (n) { 2029 if (IS_LEAF(n)) { 2030 iter->tnode = tn; 2031 iter->index = cindex + 1; 2032 } else { 2033 /* push down one level */ 2034 iter->tnode = (struct tnode *) n; 2035 iter->index = 0; 2036 ++iter->depth; 2037 } 2038 return n; 2039 } 2040 2041 ++cindex; 2042 } 2043 2044 /* Current node exhausted, pop back up */ 2045 p = node_parent_rcu((struct rt_trie_node *)tn); 2046 if (p) { 2047 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2048 tn = p; 2049 --iter->depth; 2050 goto rescan; 2051 } 2052 2053 /* got root? */ 2054 return NULL; 2055 } 2056 2057 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2058 struct trie *t) 2059 { 2060 struct rt_trie_node *n; 2061 2062 if (!t) 2063 return NULL; 2064 2065 n = rcu_dereference(t->trie); 2066 if (!n) 2067 return NULL; 2068 2069 if (IS_TNODE(n)) { 2070 iter->tnode = (struct tnode *) n; 2071 iter->index = 0; 2072 iter->depth = 1; 2073 } else { 2074 iter->tnode = NULL; 2075 iter->index = 0; 2076 iter->depth = 0; 2077 } 2078 2079 return n; 2080 } 2081 2082 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2083 { 2084 struct rt_trie_node *n; 2085 struct fib_trie_iter iter; 2086 2087 memset(s, 0, sizeof(*s)); 2088 2089 rcu_read_lock(); 2090 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2091 if (IS_LEAF(n)) { 2092 struct leaf *l = (struct leaf *)n; 2093 struct leaf_info *li; 2094 struct hlist_node *tmp; 2095 2096 s->leaves++; 2097 s->totdepth += iter.depth; 2098 if (iter.depth > s->maxdepth) 2099 s->maxdepth = iter.depth; 2100 2101 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2102 ++s->prefixes; 2103 } else { 2104 const struct tnode *tn = (const struct tnode *) n; 2105 int i; 2106 2107 s->tnodes++; 2108 if (tn->bits < MAX_STAT_DEPTH) 2109 s->nodesizes[tn->bits]++; 2110 2111 for (i = 0; i < (1<<tn->bits); i++) 2112 if (!tn->child[i]) 2113 s->nullpointers++; 2114 } 2115 } 2116 rcu_read_unlock(); 2117 } 2118 2119 /* 2120 * This outputs /proc/net/fib_triestats 2121 */ 2122 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2123 { 2124 unsigned int i, max, pointers, bytes, avdepth; 2125 2126 if (stat->leaves) 2127 avdepth = stat->totdepth*100 / stat->leaves; 2128 else 2129 avdepth = 0; 2130 2131 seq_printf(seq, "\tAver depth: %u.%02d\n", 2132 avdepth / 100, avdepth % 100); 2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2134 2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2136 bytes = sizeof(struct leaf) * stat->leaves; 2137 2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2139 bytes += sizeof(struct leaf_info) * stat->prefixes; 2140 2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2142 bytes += sizeof(struct tnode) * stat->tnodes; 2143 2144 max = MAX_STAT_DEPTH; 2145 while (max > 0 && stat->nodesizes[max-1] == 0) 2146 max--; 2147 2148 pointers = 0; 2149 for (i = 1; i <= max; i++) 2150 if (stat->nodesizes[i] != 0) { 2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2152 pointers += (1<<i) * stat->nodesizes[i]; 2153 } 2154 seq_putc(seq, '\n'); 2155 seq_printf(seq, "\tPointers: %u\n", pointers); 2156 2157 bytes += sizeof(struct rt_trie_node *) * pointers; 2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2160 } 2161 2162 #ifdef CONFIG_IP_FIB_TRIE_STATS 2163 static void trie_show_usage(struct seq_file *seq, 2164 const struct trie_use_stats *stats) 2165 { 2166 seq_printf(seq, "\nCounters:\n---------\n"); 2167 seq_printf(seq, "gets = %u\n", stats->gets); 2168 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2169 seq_printf(seq, "semantic match passed = %u\n", 2170 stats->semantic_match_passed); 2171 seq_printf(seq, "semantic match miss = %u\n", 2172 stats->semantic_match_miss); 2173 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2174 seq_printf(seq, "skipped node resize = %u\n\n", 2175 stats->resize_node_skipped); 2176 } 2177 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2178 2179 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2180 { 2181 if (tb->tb_id == RT_TABLE_LOCAL) 2182 seq_puts(seq, "Local:\n"); 2183 else if (tb->tb_id == RT_TABLE_MAIN) 2184 seq_puts(seq, "Main:\n"); 2185 else 2186 seq_printf(seq, "Id %d:\n", tb->tb_id); 2187 } 2188 2189 2190 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2191 { 2192 struct net *net = (struct net *)seq->private; 2193 unsigned int h; 2194 2195 seq_printf(seq, 2196 "Basic info: size of leaf:" 2197 " %Zd bytes, size of tnode: %Zd bytes.\n", 2198 sizeof(struct leaf), sizeof(struct tnode)); 2199 2200 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2201 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2202 struct hlist_node *node; 2203 struct fib_table *tb; 2204 2205 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2206 struct trie *t = (struct trie *) tb->tb_data; 2207 struct trie_stat stat; 2208 2209 if (!t) 2210 continue; 2211 2212 fib_table_print(seq, tb); 2213 2214 trie_collect_stats(t, &stat); 2215 trie_show_stats(seq, &stat); 2216 #ifdef CONFIG_IP_FIB_TRIE_STATS 2217 trie_show_usage(seq, &t->stats); 2218 #endif 2219 } 2220 } 2221 2222 return 0; 2223 } 2224 2225 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2226 { 2227 return single_open_net(inode, file, fib_triestat_seq_show); 2228 } 2229 2230 static const struct file_operations fib_triestat_fops = { 2231 .owner = THIS_MODULE, 2232 .open = fib_triestat_seq_open, 2233 .read = seq_read, 2234 .llseek = seq_lseek, 2235 .release = single_release_net, 2236 }; 2237 2238 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2239 { 2240 struct fib_trie_iter *iter = seq->private; 2241 struct net *net = seq_file_net(seq); 2242 loff_t idx = 0; 2243 unsigned int h; 2244 2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2247 struct hlist_node *node; 2248 struct fib_table *tb; 2249 2250 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2251 struct rt_trie_node *n; 2252 2253 for (n = fib_trie_get_first(iter, 2254 (struct trie *) tb->tb_data); 2255 n; n = fib_trie_get_next(iter)) 2256 if (pos == idx++) { 2257 iter->tb = tb; 2258 return n; 2259 } 2260 } 2261 } 2262 2263 return NULL; 2264 } 2265 2266 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2267 __acquires(RCU) 2268 { 2269 rcu_read_lock(); 2270 return fib_trie_get_idx(seq, *pos); 2271 } 2272 2273 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2274 { 2275 struct fib_trie_iter *iter = seq->private; 2276 struct net *net = seq_file_net(seq); 2277 struct fib_table *tb = iter->tb; 2278 struct hlist_node *tb_node; 2279 unsigned int h; 2280 struct rt_trie_node *n; 2281 2282 ++*pos; 2283 /* next node in same table */ 2284 n = fib_trie_get_next(iter); 2285 if (n) 2286 return n; 2287 2288 /* walk rest of this hash chain */ 2289 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2290 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2291 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2293 if (n) 2294 goto found; 2295 } 2296 2297 /* new hash chain */ 2298 while (++h < FIB_TABLE_HASHSZ) { 2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2300 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2301 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2302 if (n) 2303 goto found; 2304 } 2305 } 2306 return NULL; 2307 2308 found: 2309 iter->tb = tb; 2310 return n; 2311 } 2312 2313 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2314 __releases(RCU) 2315 { 2316 rcu_read_unlock(); 2317 } 2318 2319 static void seq_indent(struct seq_file *seq, int n) 2320 { 2321 while (n-- > 0) 2322 seq_puts(seq, " "); 2323 } 2324 2325 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2326 { 2327 switch (s) { 2328 case RT_SCOPE_UNIVERSE: return "universe"; 2329 case RT_SCOPE_SITE: return "site"; 2330 case RT_SCOPE_LINK: return "link"; 2331 case RT_SCOPE_HOST: return "host"; 2332 case RT_SCOPE_NOWHERE: return "nowhere"; 2333 default: 2334 snprintf(buf, len, "scope=%d", s); 2335 return buf; 2336 } 2337 } 2338 2339 static const char *const rtn_type_names[__RTN_MAX] = { 2340 [RTN_UNSPEC] = "UNSPEC", 2341 [RTN_UNICAST] = "UNICAST", 2342 [RTN_LOCAL] = "LOCAL", 2343 [RTN_BROADCAST] = "BROADCAST", 2344 [RTN_ANYCAST] = "ANYCAST", 2345 [RTN_MULTICAST] = "MULTICAST", 2346 [RTN_BLACKHOLE] = "BLACKHOLE", 2347 [RTN_UNREACHABLE] = "UNREACHABLE", 2348 [RTN_PROHIBIT] = "PROHIBIT", 2349 [RTN_THROW] = "THROW", 2350 [RTN_NAT] = "NAT", 2351 [RTN_XRESOLVE] = "XRESOLVE", 2352 }; 2353 2354 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2355 { 2356 if (t < __RTN_MAX && rtn_type_names[t]) 2357 return rtn_type_names[t]; 2358 snprintf(buf, len, "type %u", t); 2359 return buf; 2360 } 2361 2362 /* Pretty print the trie */ 2363 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2364 { 2365 const struct fib_trie_iter *iter = seq->private; 2366 struct rt_trie_node *n = v; 2367 2368 if (!node_parent_rcu(n)) 2369 fib_table_print(seq, iter->tb); 2370 2371 if (IS_TNODE(n)) { 2372 struct tnode *tn = (struct tnode *) n; 2373 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2374 2375 seq_indent(seq, iter->depth-1); 2376 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2377 &prf, tn->pos, tn->bits, tn->full_children, 2378 tn->empty_children); 2379 2380 } else { 2381 struct leaf *l = (struct leaf *) n; 2382 struct leaf_info *li; 2383 struct hlist_node *node; 2384 __be32 val = htonl(l->key); 2385 2386 seq_indent(seq, iter->depth); 2387 seq_printf(seq, " |-- %pI4\n", &val); 2388 2389 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2390 struct fib_alias *fa; 2391 2392 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2393 char buf1[32], buf2[32]; 2394 2395 seq_indent(seq, iter->depth+1); 2396 seq_printf(seq, " /%d %s %s", li->plen, 2397 rtn_scope(buf1, sizeof(buf1), 2398 fa->fa_info->fib_scope), 2399 rtn_type(buf2, sizeof(buf2), 2400 fa->fa_type)); 2401 if (fa->fa_tos) 2402 seq_printf(seq, " tos=%d", fa->fa_tos); 2403 seq_putc(seq, '\n'); 2404 } 2405 } 2406 } 2407 2408 return 0; 2409 } 2410 2411 static const struct seq_operations fib_trie_seq_ops = { 2412 .start = fib_trie_seq_start, 2413 .next = fib_trie_seq_next, 2414 .stop = fib_trie_seq_stop, 2415 .show = fib_trie_seq_show, 2416 }; 2417 2418 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2419 { 2420 return seq_open_net(inode, file, &fib_trie_seq_ops, 2421 sizeof(struct fib_trie_iter)); 2422 } 2423 2424 static const struct file_operations fib_trie_fops = { 2425 .owner = THIS_MODULE, 2426 .open = fib_trie_seq_open, 2427 .read = seq_read, 2428 .llseek = seq_lseek, 2429 .release = seq_release_net, 2430 }; 2431 2432 struct fib_route_iter { 2433 struct seq_net_private p; 2434 struct trie *main_trie; 2435 loff_t pos; 2436 t_key key; 2437 }; 2438 2439 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2440 { 2441 struct leaf *l = NULL; 2442 struct trie *t = iter->main_trie; 2443 2444 /* use cache location of last found key */ 2445 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2446 pos -= iter->pos; 2447 else { 2448 iter->pos = 0; 2449 l = trie_firstleaf(t); 2450 } 2451 2452 while (l && pos-- > 0) { 2453 iter->pos++; 2454 l = trie_nextleaf(l); 2455 } 2456 2457 if (l) 2458 iter->key = pos; /* remember it */ 2459 else 2460 iter->pos = 0; /* forget it */ 2461 2462 return l; 2463 } 2464 2465 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2466 __acquires(RCU) 2467 { 2468 struct fib_route_iter *iter = seq->private; 2469 struct fib_table *tb; 2470 2471 rcu_read_lock(); 2472 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2473 if (!tb) 2474 return NULL; 2475 2476 iter->main_trie = (struct trie *) tb->tb_data; 2477 if (*pos == 0) 2478 return SEQ_START_TOKEN; 2479 else 2480 return fib_route_get_idx(iter, *pos - 1); 2481 } 2482 2483 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2484 { 2485 struct fib_route_iter *iter = seq->private; 2486 struct leaf *l = v; 2487 2488 ++*pos; 2489 if (v == SEQ_START_TOKEN) { 2490 iter->pos = 0; 2491 l = trie_firstleaf(iter->main_trie); 2492 } else { 2493 iter->pos++; 2494 l = trie_nextleaf(l); 2495 } 2496 2497 if (l) 2498 iter->key = l->key; 2499 else 2500 iter->pos = 0; 2501 return l; 2502 } 2503 2504 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2505 __releases(RCU) 2506 { 2507 rcu_read_unlock(); 2508 } 2509 2510 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2511 { 2512 unsigned int flags = 0; 2513 2514 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2515 flags = RTF_REJECT; 2516 if (fi && fi->fib_nh->nh_gw) 2517 flags |= RTF_GATEWAY; 2518 if (mask == htonl(0xFFFFFFFF)) 2519 flags |= RTF_HOST; 2520 flags |= RTF_UP; 2521 return flags; 2522 } 2523 2524 /* 2525 * This outputs /proc/net/route. 2526 * The format of the file is not supposed to be changed 2527 * and needs to be same as fib_hash output to avoid breaking 2528 * legacy utilities 2529 */ 2530 static int fib_route_seq_show(struct seq_file *seq, void *v) 2531 { 2532 struct leaf *l = v; 2533 struct leaf_info *li; 2534 struct hlist_node *node; 2535 2536 if (v == SEQ_START_TOKEN) { 2537 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2538 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2539 "\tWindow\tIRTT"); 2540 return 0; 2541 } 2542 2543 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2544 struct fib_alias *fa; 2545 __be32 mask, prefix; 2546 2547 mask = inet_make_mask(li->plen); 2548 prefix = htonl(l->key); 2549 2550 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2551 const struct fib_info *fi = fa->fa_info; 2552 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2553 int len; 2554 2555 if (fa->fa_type == RTN_BROADCAST 2556 || fa->fa_type == RTN_MULTICAST) 2557 continue; 2558 2559 if (fi) 2560 seq_printf(seq, 2561 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2562 "%d\t%08X\t%d\t%u\t%u%n", 2563 fi->fib_dev ? fi->fib_dev->name : "*", 2564 prefix, 2565 fi->fib_nh->nh_gw, flags, 0, 0, 2566 fi->fib_priority, 2567 mask, 2568 (fi->fib_advmss ? 2569 fi->fib_advmss + 40 : 0), 2570 fi->fib_window, 2571 fi->fib_rtt >> 3, &len); 2572 else 2573 seq_printf(seq, 2574 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2575 "%d\t%08X\t%d\t%u\t%u%n", 2576 prefix, 0, flags, 0, 0, 0, 2577 mask, 0, 0, 0, &len); 2578 2579 seq_printf(seq, "%*s\n", 127 - len, ""); 2580 } 2581 } 2582 2583 return 0; 2584 } 2585 2586 static const struct seq_operations fib_route_seq_ops = { 2587 .start = fib_route_seq_start, 2588 .next = fib_route_seq_next, 2589 .stop = fib_route_seq_stop, 2590 .show = fib_route_seq_show, 2591 }; 2592 2593 static int fib_route_seq_open(struct inode *inode, struct file *file) 2594 { 2595 return seq_open_net(inode, file, &fib_route_seq_ops, 2596 sizeof(struct fib_route_iter)); 2597 } 2598 2599 static const struct file_operations fib_route_fops = { 2600 .owner = THIS_MODULE, 2601 .open = fib_route_seq_open, 2602 .read = seq_read, 2603 .llseek = seq_lseek, 2604 .release = seq_release_net, 2605 }; 2606 2607 int __net_init fib_proc_init(struct net *net) 2608 { 2609 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2610 goto out1; 2611 2612 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2613 &fib_triestat_fops)) 2614 goto out2; 2615 2616 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2617 goto out3; 2618 2619 return 0; 2620 2621 out3: 2622 proc_net_remove(net, "fib_triestat"); 2623 out2: 2624 proc_net_remove(net, "fib_trie"); 2625 out1: 2626 return -ENOMEM; 2627 } 2628 2629 void __net_exit fib_proc_exit(struct net *net) 2630 { 2631 proc_net_remove(net, "fib_trie"); 2632 proc_net_remove(net, "fib_triestat"); 2633 proc_net_remove(net, "route"); 2634 } 2635 2636 #endif /* CONFIG_PROC_FS */ 2637