xref: /linux/net/ipv4/fib_trie.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include <net/switchdev.h>
83 #include "fib_lookup.h"
84 
85 #define MAX_STAT_DEPTH 32
86 
87 #define KEYLENGTH	(8*sizeof(t_key))
88 #define KEY_MAX		((t_key)~0)
89 
90 typedef unsigned int t_key;
91 
92 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
93 #define IS_TNODE(n)	((n)->bits)
94 #define IS_LEAF(n)	(!(n)->bits)
95 
96 struct key_vector {
97 	t_key key;
98 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
99 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
100 	unsigned char slen;
101 	union {
102 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
103 		struct hlist_head leaf;
104 		/* This array is valid if (pos | bits) > 0 (TNODE) */
105 		struct key_vector __rcu *tnode[0];
106 	};
107 };
108 
109 struct tnode {
110 	struct rcu_head rcu;
111 	t_key empty_children;		/* KEYLENGTH bits needed */
112 	t_key full_children;		/* KEYLENGTH bits needed */
113 	struct key_vector __rcu *parent;
114 	struct key_vector kv[1];
115 #define tn_bits kv[0].bits
116 };
117 
118 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
119 #define LEAF_SIZE	TNODE_SIZE(1)
120 
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 	unsigned int gets;
124 	unsigned int backtrack;
125 	unsigned int semantic_match_passed;
126 	unsigned int semantic_match_miss;
127 	unsigned int null_node_hit;
128 	unsigned int resize_node_skipped;
129 };
130 #endif
131 
132 struct trie_stat {
133 	unsigned int totdepth;
134 	unsigned int maxdepth;
135 	unsigned int tnodes;
136 	unsigned int leaves;
137 	unsigned int nullpointers;
138 	unsigned int prefixes;
139 	unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141 
142 struct trie {
143 	struct key_vector kv[1];
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 	struct trie_use_stats __percpu *stats;
146 #endif
147 };
148 
149 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 static size_t tnode_free_size;
151 
152 /*
153  * synchronize_rcu after call_rcu for that many pages; it should be especially
154  * useful before resizing the root node with PREEMPT_NONE configs; the value was
155  * obtained experimentally, aiming to avoid visible slowdown.
156  */
157 static const int sync_pages = 128;
158 
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
161 
162 static inline struct tnode *tn_info(struct key_vector *kv)
163 {
164 	return container_of(kv, struct tnode, kv[0]);
165 }
166 
167 /* caller must hold RTNL */
168 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
170 
171 /* caller must hold RCU read lock or RTNL */
172 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
174 
175 /* wrapper for rcu_assign_pointer */
176 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177 {
178 	if (n)
179 		rcu_assign_pointer(tn_info(n)->parent, tp);
180 }
181 
182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
183 
184 /* This provides us with the number of children in this node, in the case of a
185  * leaf this will return 0 meaning none of the children are accessible.
186  */
187 static inline unsigned long child_length(const struct key_vector *tn)
188 {
189 	return (1ul << tn->bits) & ~(1ul);
190 }
191 
192 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193 
194 static inline unsigned long get_index(t_key key, struct key_vector *kv)
195 {
196 	unsigned long index = key ^ kv->key;
197 
198 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 		return 0;
200 
201 	return index >> kv->pos;
202 }
203 
204 /* To understand this stuff, an understanding of keys and all their bits is
205  * necessary. Every node in the trie has a key associated with it, but not
206  * all of the bits in that key are significant.
207  *
208  * Consider a node 'n' and its parent 'tp'.
209  *
210  * If n is a leaf, every bit in its key is significant. Its presence is
211  * necessitated by path compression, since during a tree traversal (when
212  * searching for a leaf - unless we are doing an insertion) we will completely
213  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214  * a potentially successful search, that we have indeed been walking the
215  * correct key path.
216  *
217  * Note that we can never "miss" the correct key in the tree if present by
218  * following the wrong path. Path compression ensures that segments of the key
219  * that are the same for all keys with a given prefix are skipped, but the
220  * skipped part *is* identical for each node in the subtrie below the skipped
221  * bit! trie_insert() in this implementation takes care of that.
222  *
223  * if n is an internal node - a 'tnode' here, the various parts of its key
224  * have many different meanings.
225  *
226  * Example:
227  * _________________________________________________________________
228  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229  * -----------------------------------------------------------------
230  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
231  *
232  * _________________________________________________________________
233  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234  * -----------------------------------------------------------------
235  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
236  *
237  * tp->pos = 22
238  * tp->bits = 3
239  * n->pos = 13
240  * n->bits = 4
241  *
242  * First, let's just ignore the bits that come before the parent tp, that is
243  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244  * point we do not use them for anything.
245  *
246  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247  * index into the parent's child array. That is, they will be used to find
248  * 'n' among tp's children.
249  *
250  * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251  * for the node n.
252  *
253  * All the bits we have seen so far are significant to the node n. The rest
254  * of the bits are really not needed or indeed known in n->key.
255  *
256  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257  * n's child array, and will of course be different for each child.
258  *
259  * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260  * at this point.
261  */
262 
263 static const int halve_threshold = 25;
264 static const int inflate_threshold = 50;
265 static const int halve_threshold_root = 15;
266 static const int inflate_threshold_root = 30;
267 
268 static void __alias_free_mem(struct rcu_head *head)
269 {
270 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 	kmem_cache_free(fn_alias_kmem, fa);
272 }
273 
274 static inline void alias_free_mem_rcu(struct fib_alias *fa)
275 {
276 	call_rcu(&fa->rcu, __alias_free_mem);
277 }
278 
279 #define TNODE_KMALLOC_MAX \
280 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281 #define TNODE_VMALLOC_MAX \
282 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 
284 static void __node_free_rcu(struct rcu_head *head)
285 {
286 	struct tnode *n = container_of(head, struct tnode, rcu);
287 
288 	if (!n->tn_bits)
289 		kmem_cache_free(trie_leaf_kmem, n);
290 	else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 		kfree(n);
292 	else
293 		vfree(n);
294 }
295 
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297 
298 static struct tnode *tnode_alloc(int bits)
299 {
300 	size_t size;
301 
302 	/* verify bits is within bounds */
303 	if (bits > TNODE_VMALLOC_MAX)
304 		return NULL;
305 
306 	/* determine size and verify it is non-zero and didn't overflow */
307 	size = TNODE_SIZE(1ul << bits);
308 
309 	if (size <= PAGE_SIZE)
310 		return kzalloc(size, GFP_KERNEL);
311 	else
312 		return vzalloc(size);
313 }
314 
315 static inline void empty_child_inc(struct key_vector *n)
316 {
317 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 }
319 
320 static inline void empty_child_dec(struct key_vector *n)
321 {
322 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 }
324 
325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
326 {
327 	struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 	struct key_vector *l = kv->kv;
329 
330 	if (!kv)
331 		return NULL;
332 
333 	/* initialize key vector */
334 	l->key = key;
335 	l->pos = 0;
336 	l->bits = 0;
337 	l->slen = fa->fa_slen;
338 
339 	/* link leaf to fib alias */
340 	INIT_HLIST_HEAD(&l->leaf);
341 	hlist_add_head(&fa->fa_list, &l->leaf);
342 
343 	return l;
344 }
345 
346 static struct key_vector *tnode_new(t_key key, int pos, int bits)
347 {
348 	struct tnode *tnode = tnode_alloc(bits);
349 	unsigned int shift = pos + bits;
350 	struct key_vector *tn = tnode->kv;
351 
352 	/* verify bits and pos their msb bits clear and values are valid */
353 	BUG_ON(!bits || (shift > KEYLENGTH));
354 
355 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356 		 sizeof(struct key_vector *) << bits);
357 
358 	if (!tnode)
359 		return NULL;
360 
361 	if (bits == KEYLENGTH)
362 		tnode->full_children = 1;
363 	else
364 		tnode->empty_children = 1ul << bits;
365 
366 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 	tn->pos = pos;
368 	tn->bits = bits;
369 	tn->slen = pos;
370 
371 	return tn;
372 }
373 
374 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
375  * and no bits are skipped. See discussion in dyntree paper p. 6
376  */
377 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
378 {
379 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
380 }
381 
382 /* Add a child at position i overwriting the old value.
383  * Update the value of full_children and empty_children.
384  */
385 static void put_child(struct key_vector *tn, unsigned long i,
386 		      struct key_vector *n)
387 {
388 	struct key_vector *chi = get_child(tn, i);
389 	int isfull, wasfull;
390 
391 	BUG_ON(i >= child_length(tn));
392 
393 	/* update emptyChildren, overflow into fullChildren */
394 	if (!n && chi)
395 		empty_child_inc(tn);
396 	if (n && !chi)
397 		empty_child_dec(tn);
398 
399 	/* update fullChildren */
400 	wasfull = tnode_full(tn, chi);
401 	isfull = tnode_full(tn, n);
402 
403 	if (wasfull && !isfull)
404 		tn_info(tn)->full_children--;
405 	else if (!wasfull && isfull)
406 		tn_info(tn)->full_children++;
407 
408 	if (n && (tn->slen < n->slen))
409 		tn->slen = n->slen;
410 
411 	rcu_assign_pointer(tn->tnode[i], n);
412 }
413 
414 static void update_children(struct key_vector *tn)
415 {
416 	unsigned long i;
417 
418 	/* update all of the child parent pointers */
419 	for (i = child_length(tn); i;) {
420 		struct key_vector *inode = get_child(tn, --i);
421 
422 		if (!inode)
423 			continue;
424 
425 		/* Either update the children of a tnode that
426 		 * already belongs to us or update the child
427 		 * to point to ourselves.
428 		 */
429 		if (node_parent(inode) == tn)
430 			update_children(inode);
431 		else
432 			node_set_parent(inode, tn);
433 	}
434 }
435 
436 static inline void put_child_root(struct key_vector *tp, t_key key,
437 				  struct key_vector *n)
438 {
439 	if (IS_TRIE(tp))
440 		rcu_assign_pointer(tp->tnode[0], n);
441 	else
442 		put_child(tp, get_index(key, tp), n);
443 }
444 
445 static inline void tnode_free_init(struct key_vector *tn)
446 {
447 	tn_info(tn)->rcu.next = NULL;
448 }
449 
450 static inline void tnode_free_append(struct key_vector *tn,
451 				     struct key_vector *n)
452 {
453 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
455 }
456 
457 static void tnode_free(struct key_vector *tn)
458 {
459 	struct callback_head *head = &tn_info(tn)->rcu;
460 
461 	while (head) {
462 		head = head->next;
463 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 		node_free(tn);
465 
466 		tn = container_of(head, struct tnode, rcu)->kv;
467 	}
468 
469 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 		tnode_free_size = 0;
471 		synchronize_rcu();
472 	}
473 }
474 
475 static struct key_vector *replace(struct trie *t,
476 				  struct key_vector *oldtnode,
477 				  struct key_vector *tn)
478 {
479 	struct key_vector *tp = node_parent(oldtnode);
480 	unsigned long i;
481 
482 	/* setup the parent pointer out of and back into this node */
483 	NODE_INIT_PARENT(tn, tp);
484 	put_child_root(tp, tn->key, tn);
485 
486 	/* update all of the child parent pointers */
487 	update_children(tn);
488 
489 	/* all pointers should be clean so we are done */
490 	tnode_free(oldtnode);
491 
492 	/* resize children now that oldtnode is freed */
493 	for (i = child_length(tn); i;) {
494 		struct key_vector *inode = get_child(tn, --i);
495 
496 		/* resize child node */
497 		if (tnode_full(tn, inode))
498 			tn = resize(t, inode);
499 	}
500 
501 	return tp;
502 }
503 
504 static struct key_vector *inflate(struct trie *t,
505 				  struct key_vector *oldtnode)
506 {
507 	struct key_vector *tn;
508 	unsigned long i;
509 	t_key m;
510 
511 	pr_debug("In inflate\n");
512 
513 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
514 	if (!tn)
515 		goto notnode;
516 
517 	/* prepare oldtnode to be freed */
518 	tnode_free_init(oldtnode);
519 
520 	/* Assemble all of the pointers in our cluster, in this case that
521 	 * represents all of the pointers out of our allocated nodes that
522 	 * point to existing tnodes and the links between our allocated
523 	 * nodes.
524 	 */
525 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526 		struct key_vector *inode = get_child(oldtnode, --i);
527 		struct key_vector *node0, *node1;
528 		unsigned long j, k;
529 
530 		/* An empty child */
531 		if (!inode)
532 			continue;
533 
534 		/* A leaf or an internal node with skipped bits */
535 		if (!tnode_full(oldtnode, inode)) {
536 			put_child(tn, get_index(inode->key, tn), inode);
537 			continue;
538 		}
539 
540 		/* drop the node in the old tnode free list */
541 		tnode_free_append(oldtnode, inode);
542 
543 		/* An internal node with two children */
544 		if (inode->bits == 1) {
545 			put_child(tn, 2 * i + 1, get_child(inode, 1));
546 			put_child(tn, 2 * i, get_child(inode, 0));
547 			continue;
548 		}
549 
550 		/* We will replace this node 'inode' with two new
551 		 * ones, 'node0' and 'node1', each with half of the
552 		 * original children. The two new nodes will have
553 		 * a position one bit further down the key and this
554 		 * means that the "significant" part of their keys
555 		 * (see the discussion near the top of this file)
556 		 * will differ by one bit, which will be "0" in
557 		 * node0's key and "1" in node1's key. Since we are
558 		 * moving the key position by one step, the bit that
559 		 * we are moving away from - the bit at position
560 		 * (tn->pos) - is the one that will differ between
561 		 * node0 and node1. So... we synthesize that bit in the
562 		 * two new keys.
563 		 */
564 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 		if (!node1)
566 			goto nomem;
567 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
568 
569 		tnode_free_append(tn, node1);
570 		if (!node0)
571 			goto nomem;
572 		tnode_free_append(tn, node0);
573 
574 		/* populate child pointers in new nodes */
575 		for (k = child_length(inode), j = k / 2; j;) {
576 			put_child(node1, --j, get_child(inode, --k));
577 			put_child(node0, j, get_child(inode, j));
578 			put_child(node1, --j, get_child(inode, --k));
579 			put_child(node0, j, get_child(inode, j));
580 		}
581 
582 		/* link new nodes to parent */
583 		NODE_INIT_PARENT(node1, tn);
584 		NODE_INIT_PARENT(node0, tn);
585 
586 		/* link parent to nodes */
587 		put_child(tn, 2 * i + 1, node1);
588 		put_child(tn, 2 * i, node0);
589 	}
590 
591 	/* setup the parent pointers into and out of this node */
592 	return replace(t, oldtnode, tn);
593 nomem:
594 	/* all pointers should be clean so we are done */
595 	tnode_free(tn);
596 notnode:
597 	return NULL;
598 }
599 
600 static struct key_vector *halve(struct trie *t,
601 				struct key_vector *oldtnode)
602 {
603 	struct key_vector *tn;
604 	unsigned long i;
605 
606 	pr_debug("In halve\n");
607 
608 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609 	if (!tn)
610 		goto notnode;
611 
612 	/* prepare oldtnode to be freed */
613 	tnode_free_init(oldtnode);
614 
615 	/* Assemble all of the pointers in our cluster, in this case that
616 	 * represents all of the pointers out of our allocated nodes that
617 	 * point to existing tnodes and the links between our allocated
618 	 * nodes.
619 	 */
620 	for (i = child_length(oldtnode); i;) {
621 		struct key_vector *node1 = get_child(oldtnode, --i);
622 		struct key_vector *node0 = get_child(oldtnode, --i);
623 		struct key_vector *inode;
624 
625 		/* At least one of the children is empty */
626 		if (!node1 || !node0) {
627 			put_child(tn, i / 2, node1 ? : node0);
628 			continue;
629 		}
630 
631 		/* Two nonempty children */
632 		inode = tnode_new(node0->key, oldtnode->pos, 1);
633 		if (!inode)
634 			goto nomem;
635 		tnode_free_append(tn, inode);
636 
637 		/* initialize pointers out of node */
638 		put_child(inode, 1, node1);
639 		put_child(inode, 0, node0);
640 		NODE_INIT_PARENT(inode, tn);
641 
642 		/* link parent to node */
643 		put_child(tn, i / 2, inode);
644 	}
645 
646 	/* setup the parent pointers into and out of this node */
647 	return replace(t, oldtnode, tn);
648 nomem:
649 	/* all pointers should be clean so we are done */
650 	tnode_free(tn);
651 notnode:
652 	return NULL;
653 }
654 
655 static struct key_vector *collapse(struct trie *t,
656 				   struct key_vector *oldtnode)
657 {
658 	struct key_vector *n, *tp;
659 	unsigned long i;
660 
661 	/* scan the tnode looking for that one child that might still exist */
662 	for (n = NULL, i = child_length(oldtnode); !n && i;)
663 		n = get_child(oldtnode, --i);
664 
665 	/* compress one level */
666 	tp = node_parent(oldtnode);
667 	put_child_root(tp, oldtnode->key, n);
668 	node_set_parent(n, tp);
669 
670 	/* drop dead node */
671 	node_free(oldtnode);
672 
673 	return tp;
674 }
675 
676 static unsigned char update_suffix(struct key_vector *tn)
677 {
678 	unsigned char slen = tn->pos;
679 	unsigned long stride, i;
680 
681 	/* search though the list of children looking for nodes that might
682 	 * have a suffix greater than the one we currently have.  This is
683 	 * why we start with a stride of 2 since a stride of 1 would
684 	 * represent the nodes with suffix length equal to tn->pos
685 	 */
686 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687 		struct key_vector *n = get_child(tn, i);
688 
689 		if (!n || (n->slen <= slen))
690 			continue;
691 
692 		/* update stride and slen based on new value */
693 		stride <<= (n->slen - slen);
694 		slen = n->slen;
695 		i &= ~(stride - 1);
696 
697 		/* if slen covers all but the last bit we can stop here
698 		 * there will be nothing longer than that since only node
699 		 * 0 and 1 << (bits - 1) could have that as their suffix
700 		 * length.
701 		 */
702 		if ((slen + 1) >= (tn->pos + tn->bits))
703 			break;
704 	}
705 
706 	tn->slen = slen;
707 
708 	return slen;
709 }
710 
711 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712  * the Helsinki University of Technology and Matti Tikkanen of Nokia
713  * Telecommunications, page 6:
714  * "A node is doubled if the ratio of non-empty children to all
715  * children in the *doubled* node is at least 'high'."
716  *
717  * 'high' in this instance is the variable 'inflate_threshold'. It
718  * is expressed as a percentage, so we multiply it with
719  * child_length() and instead of multiplying by 2 (since the
720  * child array will be doubled by inflate()) and multiplying
721  * the left-hand side by 100 (to handle the percentage thing) we
722  * multiply the left-hand side by 50.
723  *
724  * The left-hand side may look a bit weird: child_length(tn)
725  * - tn->empty_children is of course the number of non-null children
726  * in the current node. tn->full_children is the number of "full"
727  * children, that is non-null tnodes with a skip value of 0.
728  * All of those will be doubled in the resulting inflated tnode, so
729  * we just count them one extra time here.
730  *
731  * A clearer way to write this would be:
732  *
733  * to_be_doubled = tn->full_children;
734  * not_to_be_doubled = child_length(tn) - tn->empty_children -
735  *     tn->full_children;
736  *
737  * new_child_length = child_length(tn) * 2;
738  *
739  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740  *      new_child_length;
741  * if (new_fill_factor >= inflate_threshold)
742  *
743  * ...and so on, tho it would mess up the while () loop.
744  *
745  * anyway,
746  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747  *      inflate_threshold
748  *
749  * avoid a division:
750  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751  *      inflate_threshold * new_child_length
752  *
753  * expand not_to_be_doubled and to_be_doubled, and shorten:
754  * 100 * (child_length(tn) - tn->empty_children +
755  *    tn->full_children) >= inflate_threshold * new_child_length
756  *
757  * expand new_child_length:
758  * 100 * (child_length(tn) - tn->empty_children +
759  *    tn->full_children) >=
760  *      inflate_threshold * child_length(tn) * 2
761  *
762  * shorten again:
763  * 50 * (tn->full_children + child_length(tn) -
764  *    tn->empty_children) >= inflate_threshold *
765  *    child_length(tn)
766  *
767  */
768 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
769 {
770 	unsigned long used = child_length(tn);
771 	unsigned long threshold = used;
772 
773 	/* Keep root node larger */
774 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 	used -= tn_info(tn)->empty_children;
776 	used += tn_info(tn)->full_children;
777 
778 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
779 
780 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
781 }
782 
783 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
784 {
785 	unsigned long used = child_length(tn);
786 	unsigned long threshold = used;
787 
788 	/* Keep root node larger */
789 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790 	used -= tn_info(tn)->empty_children;
791 
792 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793 
794 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795 }
796 
797 static inline bool should_collapse(struct key_vector *tn)
798 {
799 	unsigned long used = child_length(tn);
800 
801 	used -= tn_info(tn)->empty_children;
802 
803 	/* account for bits == KEYLENGTH case */
804 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 		used -= KEY_MAX;
806 
807 	/* One child or none, time to drop us from the trie */
808 	return used < 2;
809 }
810 
811 #define MAX_WORK 10
812 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
813 {
814 #ifdef CONFIG_IP_FIB_TRIE_STATS
815 	struct trie_use_stats __percpu *stats = t->stats;
816 #endif
817 	struct key_vector *tp = node_parent(tn);
818 	unsigned long cindex = get_index(tn->key, tp);
819 	int max_work = MAX_WORK;
820 
821 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 		 tn, inflate_threshold, halve_threshold);
823 
824 	/* track the tnode via the pointer from the parent instead of
825 	 * doing it ourselves.  This way we can let RCU fully do its
826 	 * thing without us interfering
827 	 */
828 	BUG_ON(tn != get_child(tp, cindex));
829 
830 	/* Double as long as the resulting node has a number of
831 	 * nonempty nodes that are above the threshold.
832 	 */
833 	while (should_inflate(tp, tn) && max_work) {
834 		tp = inflate(t, tn);
835 		if (!tp) {
836 #ifdef CONFIG_IP_FIB_TRIE_STATS
837 			this_cpu_inc(stats->resize_node_skipped);
838 #endif
839 			break;
840 		}
841 
842 		max_work--;
843 		tn = get_child(tp, cindex);
844 	}
845 
846 	/* update parent in case inflate failed */
847 	tp = node_parent(tn);
848 
849 	/* Return if at least one inflate is run */
850 	if (max_work != MAX_WORK)
851 		return tp;
852 
853 	/* Halve as long as the number of empty children in this
854 	 * node is above threshold.
855 	 */
856 	while (should_halve(tp, tn) && max_work) {
857 		tp = halve(t, tn);
858 		if (!tp) {
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 			this_cpu_inc(stats->resize_node_skipped);
861 #endif
862 			break;
863 		}
864 
865 		max_work--;
866 		tn = get_child(tp, cindex);
867 	}
868 
869 	/* Only one child remains */
870 	if (should_collapse(tn))
871 		return collapse(t, tn);
872 
873 	/* update parent in case halve failed */
874 	tp = node_parent(tn);
875 
876 	/* Return if at least one deflate was run */
877 	if (max_work != MAX_WORK)
878 		return tp;
879 
880 	/* push the suffix length to the parent node */
881 	if (tn->slen > tn->pos) {
882 		unsigned char slen = update_suffix(tn);
883 
884 		if (slen > tp->slen)
885 			tp->slen = slen;
886 	}
887 
888 	return tp;
889 }
890 
891 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
892 {
893 	while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
894 		if (update_suffix(tp) > l->slen)
895 			break;
896 		tp = node_parent(tp);
897 	}
898 }
899 
900 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
901 {
902 	/* if this is a new leaf then tn will be NULL and we can sort
903 	 * out parent suffix lengths as a part of trie_rebalance
904 	 */
905 	while (tn->slen < l->slen) {
906 		tn->slen = l->slen;
907 		tn = node_parent(tn);
908 	}
909 }
910 
911 /* rcu_read_lock needs to be hold by caller from readside */
912 static struct key_vector *fib_find_node(struct trie *t,
913 					struct key_vector **tp, u32 key)
914 {
915 	struct key_vector *pn, *n = t->kv;
916 	unsigned long index = 0;
917 
918 	do {
919 		pn = n;
920 		n = get_child_rcu(n, index);
921 
922 		if (!n)
923 			break;
924 
925 		index = get_cindex(key, n);
926 
927 		/* This bit of code is a bit tricky but it combines multiple
928 		 * checks into a single check.  The prefix consists of the
929 		 * prefix plus zeros for the bits in the cindex. The index
930 		 * is the difference between the key and this value.  From
931 		 * this we can actually derive several pieces of data.
932 		 *   if (index >= (1ul << bits))
933 		 *     we have a mismatch in skip bits and failed
934 		 *   else
935 		 *     we know the value is cindex
936 		 *
937 		 * This check is safe even if bits == KEYLENGTH due to the
938 		 * fact that we can only allocate a node with 32 bits if a
939 		 * long is greater than 32 bits.
940 		 */
941 		if (index >= (1ul << n->bits)) {
942 			n = NULL;
943 			break;
944 		}
945 
946 		/* keep searching until we find a perfect match leaf or NULL */
947 	} while (IS_TNODE(n));
948 
949 	*tp = pn;
950 
951 	return n;
952 }
953 
954 /* Return the first fib alias matching TOS with
955  * priority less than or equal to PRIO.
956  */
957 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
958 					u8 tos, u32 prio, u32 tb_id)
959 {
960 	struct fib_alias *fa;
961 
962 	if (!fah)
963 		return NULL;
964 
965 	hlist_for_each_entry(fa, fah, fa_list) {
966 		if (fa->fa_slen < slen)
967 			continue;
968 		if (fa->fa_slen != slen)
969 			break;
970 		if (fa->tb_id > tb_id)
971 			continue;
972 		if (fa->tb_id != tb_id)
973 			break;
974 		if (fa->fa_tos > tos)
975 			continue;
976 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
977 			return fa;
978 	}
979 
980 	return NULL;
981 }
982 
983 static void trie_rebalance(struct trie *t, struct key_vector *tn)
984 {
985 	while (!IS_TRIE(tn))
986 		tn = resize(t, tn);
987 }
988 
989 static int fib_insert_node(struct trie *t, struct key_vector *tp,
990 			   struct fib_alias *new, t_key key)
991 {
992 	struct key_vector *n, *l;
993 
994 	l = leaf_new(key, new);
995 	if (!l)
996 		goto noleaf;
997 
998 	/* retrieve child from parent node */
999 	n = get_child(tp, get_index(key, tp));
1000 
1001 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1002 	 *
1003 	 *  Add a new tnode here
1004 	 *  first tnode need some special handling
1005 	 *  leaves us in position for handling as case 3
1006 	 */
1007 	if (n) {
1008 		struct key_vector *tn;
1009 
1010 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1011 		if (!tn)
1012 			goto notnode;
1013 
1014 		/* initialize routes out of node */
1015 		NODE_INIT_PARENT(tn, tp);
1016 		put_child(tn, get_index(key, tn) ^ 1, n);
1017 
1018 		/* start adding routes into the node */
1019 		put_child_root(tp, key, tn);
1020 		node_set_parent(n, tn);
1021 
1022 		/* parent now has a NULL spot where the leaf can go */
1023 		tp = tn;
1024 	}
1025 
1026 	/* Case 3: n is NULL, and will just insert a new leaf */
1027 	NODE_INIT_PARENT(l, tp);
1028 	put_child_root(tp, key, l);
1029 	trie_rebalance(t, tp);
1030 
1031 	return 0;
1032 notnode:
1033 	node_free(l);
1034 noleaf:
1035 	return -ENOMEM;
1036 }
1037 
1038 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1039 			    struct key_vector *l, struct fib_alias *new,
1040 			    struct fib_alias *fa, t_key key)
1041 {
1042 	if (!l)
1043 		return fib_insert_node(t, tp, new, key);
1044 
1045 	if (fa) {
1046 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1047 	} else {
1048 		struct fib_alias *last;
1049 
1050 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1051 			if (new->fa_slen < last->fa_slen)
1052 				break;
1053 			if ((new->fa_slen == last->fa_slen) &&
1054 			    (new->tb_id > last->tb_id))
1055 				break;
1056 			fa = last;
1057 		}
1058 
1059 		if (fa)
1060 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 		else
1062 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1063 	}
1064 
1065 	/* if we added to the tail node then we need to update slen */
1066 	if (l->slen < new->fa_slen) {
1067 		l->slen = new->fa_slen;
1068 		leaf_push_suffix(tp, l);
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /* Caller must hold RTNL. */
1075 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1076 {
1077 	struct trie *t = (struct trie *)tb->tb_data;
1078 	struct fib_alias *fa, *new_fa;
1079 	struct key_vector *l, *tp;
1080 	struct fib_info *fi;
1081 	u8 plen = cfg->fc_dst_len;
1082 	u8 slen = KEYLENGTH - plen;
1083 	u8 tos = cfg->fc_tos;
1084 	u32 key;
1085 	int err;
1086 
1087 	if (plen > KEYLENGTH)
1088 		return -EINVAL;
1089 
1090 	key = ntohl(cfg->fc_dst);
1091 
1092 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1093 
1094 	if ((plen < KEYLENGTH) && (key << plen))
1095 		return -EINVAL;
1096 
1097 	fi = fib_create_info(cfg);
1098 	if (IS_ERR(fi)) {
1099 		err = PTR_ERR(fi);
1100 		goto err;
1101 	}
1102 
1103 	l = fib_find_node(t, &tp, key);
1104 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1105 				tb->tb_id) : NULL;
1106 
1107 	/* Now fa, if non-NULL, points to the first fib alias
1108 	 * with the same keys [prefix,tos,priority], if such key already
1109 	 * exists or to the node before which we will insert new one.
1110 	 *
1111 	 * If fa is NULL, we will need to allocate a new one and
1112 	 * insert to the tail of the section matching the suffix length
1113 	 * of the new alias.
1114 	 */
1115 
1116 	if (fa && fa->fa_tos == tos &&
1117 	    fa->fa_info->fib_priority == fi->fib_priority) {
1118 		struct fib_alias *fa_first, *fa_match;
1119 
1120 		err = -EEXIST;
1121 		if (cfg->fc_nlflags & NLM_F_EXCL)
1122 			goto out;
1123 
1124 		/* We have 2 goals:
1125 		 * 1. Find exact match for type, scope, fib_info to avoid
1126 		 * duplicate routes
1127 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1128 		 */
1129 		fa_match = NULL;
1130 		fa_first = fa;
1131 		hlist_for_each_entry_from(fa, fa_list) {
1132 			if ((fa->fa_slen != slen) ||
1133 			    (fa->tb_id != tb->tb_id) ||
1134 			    (fa->fa_tos != tos))
1135 				break;
1136 			if (fa->fa_info->fib_priority != fi->fib_priority)
1137 				break;
1138 			if (fa->fa_type == cfg->fc_type &&
1139 			    fa->fa_info == fi) {
1140 				fa_match = fa;
1141 				break;
1142 			}
1143 		}
1144 
1145 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1146 			struct fib_info *fi_drop;
1147 			u8 state;
1148 
1149 			fa = fa_first;
1150 			if (fa_match) {
1151 				if (fa == fa_match)
1152 					err = 0;
1153 				goto out;
1154 			}
1155 			err = -ENOBUFS;
1156 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1157 			if (!new_fa)
1158 				goto out;
1159 
1160 			fi_drop = fa->fa_info;
1161 			new_fa->fa_tos = fa->fa_tos;
1162 			new_fa->fa_info = fi;
1163 			new_fa->fa_type = cfg->fc_type;
1164 			state = fa->fa_state;
1165 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1166 			new_fa->fa_slen = fa->fa_slen;
1167 			new_fa->tb_id = tb->tb_id;
1168 
1169 			err = netdev_switch_fib_ipv4_add(key, plen, fi,
1170 							 new_fa->fa_tos,
1171 							 cfg->fc_type,
1172 							 cfg->fc_nlflags,
1173 							 tb->tb_id);
1174 			if (err) {
1175 				netdev_switch_fib_ipv4_abort(fi);
1176 				kmem_cache_free(fn_alias_kmem, new_fa);
1177 				goto out;
1178 			}
1179 
1180 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1181 
1182 			alias_free_mem_rcu(fa);
1183 
1184 			fib_release_info(fi_drop);
1185 			if (state & FA_S_ACCESSED)
1186 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1187 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1188 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1189 
1190 			goto succeeded;
1191 		}
1192 		/* Error if we find a perfect match which
1193 		 * uses the same scope, type, and nexthop
1194 		 * information.
1195 		 */
1196 		if (fa_match)
1197 			goto out;
1198 
1199 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1200 			fa = fa_first;
1201 	}
1202 	err = -ENOENT;
1203 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1204 		goto out;
1205 
1206 	err = -ENOBUFS;
1207 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1208 	if (!new_fa)
1209 		goto out;
1210 
1211 	new_fa->fa_info = fi;
1212 	new_fa->fa_tos = tos;
1213 	new_fa->fa_type = cfg->fc_type;
1214 	new_fa->fa_state = 0;
1215 	new_fa->fa_slen = slen;
1216 	new_fa->tb_id = tb->tb_id;
1217 
1218 	/* (Optionally) offload fib entry to switch hardware. */
1219 	err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1220 					 cfg->fc_type,
1221 					 cfg->fc_nlflags,
1222 					 tb->tb_id);
1223 	if (err) {
1224 		netdev_switch_fib_ipv4_abort(fi);
1225 		goto out_free_new_fa;
1226 	}
1227 
1228 	/* Insert new entry to the list. */
1229 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1230 	if (err)
1231 		goto out_sw_fib_del;
1232 
1233 	if (!plen)
1234 		tb->tb_num_default++;
1235 
1236 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1237 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1238 		  &cfg->fc_nlinfo, 0);
1239 succeeded:
1240 	return 0;
1241 
1242 out_sw_fib_del:
1243 	netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1244 out_free_new_fa:
1245 	kmem_cache_free(fn_alias_kmem, new_fa);
1246 out:
1247 	fib_release_info(fi);
1248 err:
1249 	return err;
1250 }
1251 
1252 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1253 {
1254 	t_key prefix = n->key;
1255 
1256 	return (key ^ prefix) & (prefix | -prefix);
1257 }
1258 
1259 /* should be called with rcu_read_lock */
1260 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1261 		     struct fib_result *res, int fib_flags)
1262 {
1263 	struct trie *t = (struct trie *) tb->tb_data;
1264 #ifdef CONFIG_IP_FIB_TRIE_STATS
1265 	struct trie_use_stats __percpu *stats = t->stats;
1266 #endif
1267 	const t_key key = ntohl(flp->daddr);
1268 	struct key_vector *n, *pn;
1269 	struct fib_alias *fa;
1270 	unsigned long index;
1271 	t_key cindex;
1272 
1273 	pn = t->kv;
1274 	cindex = 0;
1275 
1276 	n = get_child_rcu(pn, cindex);
1277 	if (!n)
1278 		return -EAGAIN;
1279 
1280 #ifdef CONFIG_IP_FIB_TRIE_STATS
1281 	this_cpu_inc(stats->gets);
1282 #endif
1283 
1284 	/* Step 1: Travel to the longest prefix match in the trie */
1285 	for (;;) {
1286 		index = get_cindex(key, n);
1287 
1288 		/* This bit of code is a bit tricky but it combines multiple
1289 		 * checks into a single check.  The prefix consists of the
1290 		 * prefix plus zeros for the "bits" in the prefix. The index
1291 		 * is the difference between the key and this value.  From
1292 		 * this we can actually derive several pieces of data.
1293 		 *   if (index >= (1ul << bits))
1294 		 *     we have a mismatch in skip bits and failed
1295 		 *   else
1296 		 *     we know the value is cindex
1297 		 *
1298 		 * This check is safe even if bits == KEYLENGTH due to the
1299 		 * fact that we can only allocate a node with 32 bits if a
1300 		 * long is greater than 32 bits.
1301 		 */
1302 		if (index >= (1ul << n->bits))
1303 			break;
1304 
1305 		/* we have found a leaf. Prefixes have already been compared */
1306 		if (IS_LEAF(n))
1307 			goto found;
1308 
1309 		/* only record pn and cindex if we are going to be chopping
1310 		 * bits later.  Otherwise we are just wasting cycles.
1311 		 */
1312 		if (n->slen > n->pos) {
1313 			pn = n;
1314 			cindex = index;
1315 		}
1316 
1317 		n = get_child_rcu(n, index);
1318 		if (unlikely(!n))
1319 			goto backtrace;
1320 	}
1321 
1322 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1323 	for (;;) {
1324 		/* record the pointer where our next node pointer is stored */
1325 		struct key_vector __rcu **cptr = n->tnode;
1326 
1327 		/* This test verifies that none of the bits that differ
1328 		 * between the key and the prefix exist in the region of
1329 		 * the lsb and higher in the prefix.
1330 		 */
1331 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1332 			goto backtrace;
1333 
1334 		/* exit out and process leaf */
1335 		if (unlikely(IS_LEAF(n)))
1336 			break;
1337 
1338 		/* Don't bother recording parent info.  Since we are in
1339 		 * prefix match mode we will have to come back to wherever
1340 		 * we started this traversal anyway
1341 		 */
1342 
1343 		while ((n = rcu_dereference(*cptr)) == NULL) {
1344 backtrace:
1345 #ifdef CONFIG_IP_FIB_TRIE_STATS
1346 			if (!n)
1347 				this_cpu_inc(stats->null_node_hit);
1348 #endif
1349 			/* If we are at cindex 0 there are no more bits for
1350 			 * us to strip at this level so we must ascend back
1351 			 * up one level to see if there are any more bits to
1352 			 * be stripped there.
1353 			 */
1354 			while (!cindex) {
1355 				t_key pkey = pn->key;
1356 
1357 				/* If we don't have a parent then there is
1358 				 * nothing for us to do as we do not have any
1359 				 * further nodes to parse.
1360 				 */
1361 				if (IS_TRIE(pn))
1362 					return -EAGAIN;
1363 #ifdef CONFIG_IP_FIB_TRIE_STATS
1364 				this_cpu_inc(stats->backtrack);
1365 #endif
1366 				/* Get Child's index */
1367 				pn = node_parent_rcu(pn);
1368 				cindex = get_index(pkey, pn);
1369 			}
1370 
1371 			/* strip the least significant bit from the cindex */
1372 			cindex &= cindex - 1;
1373 
1374 			/* grab pointer for next child node */
1375 			cptr = &pn->tnode[cindex];
1376 		}
1377 	}
1378 
1379 found:
1380 	/* this line carries forward the xor from earlier in the function */
1381 	index = key ^ n->key;
1382 
1383 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1384 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1385 		struct fib_info *fi = fa->fa_info;
1386 		int nhsel, err;
1387 
1388 		if ((index >= (1ul << fa->fa_slen)) &&
1389 		    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1390 			continue;
1391 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1392 			continue;
1393 		if (fi->fib_dead)
1394 			continue;
1395 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1396 			continue;
1397 		fib_alias_accessed(fa);
1398 		err = fib_props[fa->fa_type].error;
1399 		if (unlikely(err < 0)) {
1400 #ifdef CONFIG_IP_FIB_TRIE_STATS
1401 			this_cpu_inc(stats->semantic_match_passed);
1402 #endif
1403 			return err;
1404 		}
1405 		if (fi->fib_flags & RTNH_F_DEAD)
1406 			continue;
1407 		for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1408 			const struct fib_nh *nh = &fi->fib_nh[nhsel];
1409 
1410 			if (nh->nh_flags & RTNH_F_DEAD)
1411 				continue;
1412 			if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1413 				continue;
1414 
1415 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1416 				atomic_inc(&fi->fib_clntref);
1417 
1418 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1419 			res->nh_sel = nhsel;
1420 			res->type = fa->fa_type;
1421 			res->scope = fi->fib_scope;
1422 			res->fi = fi;
1423 			res->table = tb;
1424 			res->fa_head = &n->leaf;
1425 #ifdef CONFIG_IP_FIB_TRIE_STATS
1426 			this_cpu_inc(stats->semantic_match_passed);
1427 #endif
1428 			return err;
1429 		}
1430 	}
1431 #ifdef CONFIG_IP_FIB_TRIE_STATS
1432 	this_cpu_inc(stats->semantic_match_miss);
1433 #endif
1434 	goto backtrace;
1435 }
1436 EXPORT_SYMBOL_GPL(fib_table_lookup);
1437 
1438 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1439 			     struct key_vector *l, struct fib_alias *old)
1440 {
1441 	/* record the location of the previous list_info entry */
1442 	struct hlist_node **pprev = old->fa_list.pprev;
1443 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1444 
1445 	/* remove the fib_alias from the list */
1446 	hlist_del_rcu(&old->fa_list);
1447 
1448 	/* if we emptied the list this leaf will be freed and we can sort
1449 	 * out parent suffix lengths as a part of trie_rebalance
1450 	 */
1451 	if (hlist_empty(&l->leaf)) {
1452 		put_child_root(tp, l->key, NULL);
1453 		node_free(l);
1454 		trie_rebalance(t, tp);
1455 		return;
1456 	}
1457 
1458 	/* only access fa if it is pointing at the last valid hlist_node */
1459 	if (*pprev)
1460 		return;
1461 
1462 	/* update the trie with the latest suffix length */
1463 	l->slen = fa->fa_slen;
1464 	leaf_pull_suffix(tp, l);
1465 }
1466 
1467 /* Caller must hold RTNL. */
1468 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1469 {
1470 	struct trie *t = (struct trie *) tb->tb_data;
1471 	struct fib_alias *fa, *fa_to_delete;
1472 	struct key_vector *l, *tp;
1473 	u8 plen = cfg->fc_dst_len;
1474 	u8 slen = KEYLENGTH - plen;
1475 	u8 tos = cfg->fc_tos;
1476 	u32 key;
1477 
1478 	if (plen > KEYLENGTH)
1479 		return -EINVAL;
1480 
1481 	key = ntohl(cfg->fc_dst);
1482 
1483 	if ((plen < KEYLENGTH) && (key << plen))
1484 		return -EINVAL;
1485 
1486 	l = fib_find_node(t, &tp, key);
1487 	if (!l)
1488 		return -ESRCH;
1489 
1490 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1491 	if (!fa)
1492 		return -ESRCH;
1493 
1494 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1495 
1496 	fa_to_delete = NULL;
1497 	hlist_for_each_entry_from(fa, fa_list) {
1498 		struct fib_info *fi = fa->fa_info;
1499 
1500 		if ((fa->fa_slen != slen) ||
1501 		    (fa->tb_id != tb->tb_id) ||
1502 		    (fa->fa_tos != tos))
1503 			break;
1504 
1505 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1506 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1507 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1508 		    (!cfg->fc_prefsrc ||
1509 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1510 		    (!cfg->fc_protocol ||
1511 		     fi->fib_protocol == cfg->fc_protocol) &&
1512 		    fib_nh_match(cfg, fi) == 0) {
1513 			fa_to_delete = fa;
1514 			break;
1515 		}
1516 	}
1517 
1518 	if (!fa_to_delete)
1519 		return -ESRCH;
1520 
1521 	netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1522 				   cfg->fc_type, tb->tb_id);
1523 
1524 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1525 		  &cfg->fc_nlinfo, 0);
1526 
1527 	if (!plen)
1528 		tb->tb_num_default--;
1529 
1530 	fib_remove_alias(t, tp, l, fa_to_delete);
1531 
1532 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1533 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1534 
1535 	fib_release_info(fa_to_delete->fa_info);
1536 	alias_free_mem_rcu(fa_to_delete);
1537 	return 0;
1538 }
1539 
1540 /* Scan for the next leaf starting at the provided key value */
1541 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1542 {
1543 	struct key_vector *pn, *n = *tn;
1544 	unsigned long cindex;
1545 
1546 	/* this loop is meant to try and find the key in the trie */
1547 	do {
1548 		/* record parent and next child index */
1549 		pn = n;
1550 		cindex = key ? get_index(key, pn) : 0;
1551 
1552 		if (cindex >> pn->bits)
1553 			break;
1554 
1555 		/* descend into the next child */
1556 		n = get_child_rcu(pn, cindex++);
1557 		if (!n)
1558 			break;
1559 
1560 		/* guarantee forward progress on the keys */
1561 		if (IS_LEAF(n) && (n->key >= key))
1562 			goto found;
1563 	} while (IS_TNODE(n));
1564 
1565 	/* this loop will search for the next leaf with a greater key */
1566 	while (!IS_TRIE(pn)) {
1567 		/* if we exhausted the parent node we will need to climb */
1568 		if (cindex >= (1ul << pn->bits)) {
1569 			t_key pkey = pn->key;
1570 
1571 			pn = node_parent_rcu(pn);
1572 			cindex = get_index(pkey, pn) + 1;
1573 			continue;
1574 		}
1575 
1576 		/* grab the next available node */
1577 		n = get_child_rcu(pn, cindex++);
1578 		if (!n)
1579 			continue;
1580 
1581 		/* no need to compare keys since we bumped the index */
1582 		if (IS_LEAF(n))
1583 			goto found;
1584 
1585 		/* Rescan start scanning in new node */
1586 		pn = n;
1587 		cindex = 0;
1588 	}
1589 
1590 	*tn = pn;
1591 	return NULL; /* Root of trie */
1592 found:
1593 	/* if we are at the limit for keys just return NULL for the tnode */
1594 	*tn = pn;
1595 	return n;
1596 }
1597 
1598 static void fib_trie_free(struct fib_table *tb)
1599 {
1600 	struct trie *t = (struct trie *)tb->tb_data;
1601 	struct key_vector *pn = t->kv;
1602 	unsigned long cindex = 1;
1603 	struct hlist_node *tmp;
1604 	struct fib_alias *fa;
1605 
1606 	/* walk trie in reverse order and free everything */
1607 	for (;;) {
1608 		struct key_vector *n;
1609 
1610 		if (!(cindex--)) {
1611 			t_key pkey = pn->key;
1612 
1613 			if (IS_TRIE(pn))
1614 				break;
1615 
1616 			n = pn;
1617 			pn = node_parent(pn);
1618 
1619 			/* drop emptied tnode */
1620 			put_child_root(pn, n->key, NULL);
1621 			node_free(n);
1622 
1623 			cindex = get_index(pkey, pn);
1624 
1625 			continue;
1626 		}
1627 
1628 		/* grab the next available node */
1629 		n = get_child(pn, cindex);
1630 		if (!n)
1631 			continue;
1632 
1633 		if (IS_TNODE(n)) {
1634 			/* record pn and cindex for leaf walking */
1635 			pn = n;
1636 			cindex = 1ul << n->bits;
1637 
1638 			continue;
1639 		}
1640 
1641 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1642 			hlist_del_rcu(&fa->fa_list);
1643 			alias_free_mem_rcu(fa);
1644 		}
1645 
1646 		put_child_root(pn, n->key, NULL);
1647 		node_free(n);
1648 	}
1649 
1650 #ifdef CONFIG_IP_FIB_TRIE_STATS
1651 	free_percpu(t->stats);
1652 #endif
1653 	kfree(tb);
1654 }
1655 
1656 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1657 {
1658 	struct trie *ot = (struct trie *)oldtb->tb_data;
1659 	struct key_vector *l, *tp = ot->kv;
1660 	struct fib_table *local_tb;
1661 	struct fib_alias *fa;
1662 	struct trie *lt;
1663 	t_key key = 0;
1664 
1665 	if (oldtb->tb_data == oldtb->__data)
1666 		return oldtb;
1667 
1668 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1669 	if (!local_tb)
1670 		return NULL;
1671 
1672 	lt = (struct trie *)local_tb->tb_data;
1673 
1674 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1675 		struct key_vector *local_l = NULL, *local_tp;
1676 
1677 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1678 			struct fib_alias *new_fa;
1679 
1680 			if (local_tb->tb_id != fa->tb_id)
1681 				continue;
1682 
1683 			/* clone fa for new local table */
1684 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1685 			if (!new_fa)
1686 				goto out;
1687 
1688 			memcpy(new_fa, fa, sizeof(*fa));
1689 
1690 			/* insert clone into table */
1691 			if (!local_l)
1692 				local_l = fib_find_node(lt, &local_tp, l->key);
1693 
1694 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1695 					     NULL, l->key))
1696 				goto out;
1697 		}
1698 
1699 		/* stop loop if key wrapped back to 0 */
1700 		key = l->key + 1;
1701 		if (key < l->key)
1702 			break;
1703 	}
1704 
1705 	return local_tb;
1706 out:
1707 	fib_trie_free(local_tb);
1708 
1709 	return NULL;
1710 }
1711 
1712 /* Caller must hold RTNL */
1713 void fib_table_flush_external(struct fib_table *tb)
1714 {
1715 	struct trie *t = (struct trie *)tb->tb_data;
1716 	struct key_vector *pn = t->kv;
1717 	unsigned long cindex = 1;
1718 	struct hlist_node *tmp;
1719 	struct fib_alias *fa;
1720 
1721 	/* walk trie in reverse order */
1722 	for (;;) {
1723 		unsigned char slen = 0;
1724 		struct key_vector *n;
1725 
1726 		if (!(cindex--)) {
1727 			t_key pkey = pn->key;
1728 
1729 			/* cannot resize the trie vector */
1730 			if (IS_TRIE(pn))
1731 				break;
1732 
1733 			/* resize completed node */
1734 			pn = resize(t, pn);
1735 			cindex = get_index(pkey, pn);
1736 
1737 			continue;
1738 		}
1739 
1740 		/* grab the next available node */
1741 		n = get_child(pn, cindex);
1742 		if (!n)
1743 			continue;
1744 
1745 		if (IS_TNODE(n)) {
1746 			/* record pn and cindex for leaf walking */
1747 			pn = n;
1748 			cindex = 1ul << n->bits;
1749 
1750 			continue;
1751 		}
1752 
1753 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1754 			struct fib_info *fi = fa->fa_info;
1755 
1756 			/* if alias was cloned to local then we just
1757 			 * need to remove the local copy from main
1758 			 */
1759 			if (tb->tb_id != fa->tb_id) {
1760 				hlist_del_rcu(&fa->fa_list);
1761 				alias_free_mem_rcu(fa);
1762 				continue;
1763 			}
1764 
1765 			/* record local slen */
1766 			slen = fa->fa_slen;
1767 
1768 			if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1769 				continue;
1770 
1771 			netdev_switch_fib_ipv4_del(n->key,
1772 						   KEYLENGTH - fa->fa_slen,
1773 						   fi, fa->fa_tos,
1774 						   fa->fa_type, tb->tb_id);
1775 		}
1776 
1777 		/* update leaf slen */
1778 		n->slen = slen;
1779 
1780 		if (hlist_empty(&n->leaf)) {
1781 			put_child_root(pn, n->key, NULL);
1782 			node_free(n);
1783 		} else {
1784 			leaf_pull_suffix(pn, n);
1785 		}
1786 	}
1787 }
1788 
1789 /* Caller must hold RTNL. */
1790 int fib_table_flush(struct fib_table *tb)
1791 {
1792 	struct trie *t = (struct trie *)tb->tb_data;
1793 	struct key_vector *pn = t->kv;
1794 	unsigned long cindex = 1;
1795 	struct hlist_node *tmp;
1796 	struct fib_alias *fa;
1797 	int found = 0;
1798 
1799 	/* walk trie in reverse order */
1800 	for (;;) {
1801 		unsigned char slen = 0;
1802 		struct key_vector *n;
1803 
1804 		if (!(cindex--)) {
1805 			t_key pkey = pn->key;
1806 
1807 			/* cannot resize the trie vector */
1808 			if (IS_TRIE(pn))
1809 				break;
1810 
1811 			/* resize completed node */
1812 			pn = resize(t, pn);
1813 			cindex = get_index(pkey, pn);
1814 
1815 			continue;
1816 		}
1817 
1818 		/* grab the next available node */
1819 		n = get_child(pn, cindex);
1820 		if (!n)
1821 			continue;
1822 
1823 		if (IS_TNODE(n)) {
1824 			/* record pn and cindex for leaf walking */
1825 			pn = n;
1826 			cindex = 1ul << n->bits;
1827 
1828 			continue;
1829 		}
1830 
1831 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1832 			struct fib_info *fi = fa->fa_info;
1833 
1834 			if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1835 				slen = fa->fa_slen;
1836 				continue;
1837 			}
1838 
1839 			netdev_switch_fib_ipv4_del(n->key,
1840 						   KEYLENGTH - fa->fa_slen,
1841 						   fi, fa->fa_tos,
1842 						   fa->fa_type, tb->tb_id);
1843 			hlist_del_rcu(&fa->fa_list);
1844 			fib_release_info(fa->fa_info);
1845 			alias_free_mem_rcu(fa);
1846 			found++;
1847 		}
1848 
1849 		/* update leaf slen */
1850 		n->slen = slen;
1851 
1852 		if (hlist_empty(&n->leaf)) {
1853 			put_child_root(pn, n->key, NULL);
1854 			node_free(n);
1855 		} else {
1856 			leaf_pull_suffix(pn, n);
1857 		}
1858 	}
1859 
1860 	pr_debug("trie_flush found=%d\n", found);
1861 	return found;
1862 }
1863 
1864 static void __trie_free_rcu(struct rcu_head *head)
1865 {
1866 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
1867 #ifdef CONFIG_IP_FIB_TRIE_STATS
1868 	struct trie *t = (struct trie *)tb->tb_data;
1869 
1870 	if (tb->tb_data == tb->__data)
1871 		free_percpu(t->stats);
1872 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1873 	kfree(tb);
1874 }
1875 
1876 void fib_free_table(struct fib_table *tb)
1877 {
1878 	call_rcu(&tb->rcu, __trie_free_rcu);
1879 }
1880 
1881 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1882 			     struct sk_buff *skb, struct netlink_callback *cb)
1883 {
1884 	__be32 xkey = htonl(l->key);
1885 	struct fib_alias *fa;
1886 	int i, s_i;
1887 
1888 	s_i = cb->args[4];
1889 	i = 0;
1890 
1891 	/* rcu_read_lock is hold by caller */
1892 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1893 		if (i < s_i) {
1894 			i++;
1895 			continue;
1896 		}
1897 
1898 		if (tb->tb_id != fa->tb_id) {
1899 			i++;
1900 			continue;
1901 		}
1902 
1903 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1904 				  cb->nlh->nlmsg_seq,
1905 				  RTM_NEWROUTE,
1906 				  tb->tb_id,
1907 				  fa->fa_type,
1908 				  xkey,
1909 				  KEYLENGTH - fa->fa_slen,
1910 				  fa->fa_tos,
1911 				  fa->fa_info, NLM_F_MULTI) < 0) {
1912 			cb->args[4] = i;
1913 			return -1;
1914 		}
1915 		i++;
1916 	}
1917 
1918 	cb->args[4] = i;
1919 	return skb->len;
1920 }
1921 
1922 /* rcu_read_lock needs to be hold by caller from readside */
1923 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1924 		   struct netlink_callback *cb)
1925 {
1926 	struct trie *t = (struct trie *)tb->tb_data;
1927 	struct key_vector *l, *tp = t->kv;
1928 	/* Dump starting at last key.
1929 	 * Note: 0.0.0.0/0 (ie default) is first key.
1930 	 */
1931 	int count = cb->args[2];
1932 	t_key key = cb->args[3];
1933 
1934 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1935 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1936 			cb->args[3] = key;
1937 			cb->args[2] = count;
1938 			return -1;
1939 		}
1940 
1941 		++count;
1942 		key = l->key + 1;
1943 
1944 		memset(&cb->args[4], 0,
1945 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1946 
1947 		/* stop loop if key wrapped back to 0 */
1948 		if (key < l->key)
1949 			break;
1950 	}
1951 
1952 	cb->args[3] = key;
1953 	cb->args[2] = count;
1954 
1955 	return skb->len;
1956 }
1957 
1958 void __init fib_trie_init(void)
1959 {
1960 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1961 					  sizeof(struct fib_alias),
1962 					  0, SLAB_PANIC, NULL);
1963 
1964 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1965 					   LEAF_SIZE,
1966 					   0, SLAB_PANIC, NULL);
1967 }
1968 
1969 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1970 {
1971 	struct fib_table *tb;
1972 	struct trie *t;
1973 	size_t sz = sizeof(*tb);
1974 
1975 	if (!alias)
1976 		sz += sizeof(struct trie);
1977 
1978 	tb = kzalloc(sz, GFP_KERNEL);
1979 	if (!tb)
1980 		return NULL;
1981 
1982 	tb->tb_id = id;
1983 	tb->tb_default = -1;
1984 	tb->tb_num_default = 0;
1985 	tb->tb_data = (alias ? alias->__data : tb->__data);
1986 
1987 	if (alias)
1988 		return tb;
1989 
1990 	t = (struct trie *) tb->tb_data;
1991 	t->kv[0].pos = KEYLENGTH;
1992 	t->kv[0].slen = KEYLENGTH;
1993 #ifdef CONFIG_IP_FIB_TRIE_STATS
1994 	t->stats = alloc_percpu(struct trie_use_stats);
1995 	if (!t->stats) {
1996 		kfree(tb);
1997 		tb = NULL;
1998 	}
1999 #endif
2000 
2001 	return tb;
2002 }
2003 
2004 #ifdef CONFIG_PROC_FS
2005 /* Depth first Trie walk iterator */
2006 struct fib_trie_iter {
2007 	struct seq_net_private p;
2008 	struct fib_table *tb;
2009 	struct key_vector *tnode;
2010 	unsigned int index;
2011 	unsigned int depth;
2012 };
2013 
2014 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2015 {
2016 	unsigned long cindex = iter->index;
2017 	struct key_vector *pn = iter->tnode;
2018 	t_key pkey;
2019 
2020 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021 		 iter->tnode, iter->index, iter->depth);
2022 
2023 	while (!IS_TRIE(pn)) {
2024 		while (cindex < child_length(pn)) {
2025 			struct key_vector *n = get_child_rcu(pn, cindex++);
2026 
2027 			if (!n)
2028 				continue;
2029 
2030 			if (IS_LEAF(n)) {
2031 				iter->tnode = pn;
2032 				iter->index = cindex;
2033 			} else {
2034 				/* push down one level */
2035 				iter->tnode = n;
2036 				iter->index = 0;
2037 				++iter->depth;
2038 			}
2039 
2040 			return n;
2041 		}
2042 
2043 		/* Current node exhausted, pop back up */
2044 		pkey = pn->key;
2045 		pn = node_parent_rcu(pn);
2046 		cindex = get_index(pkey, pn) + 1;
2047 		--iter->depth;
2048 	}
2049 
2050 	/* record root node so further searches know we are done */
2051 	iter->tnode = pn;
2052 	iter->index = 0;
2053 
2054 	return NULL;
2055 }
2056 
2057 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2058 					     struct trie *t)
2059 {
2060 	struct key_vector *n, *pn = t->kv;
2061 
2062 	if (!t)
2063 		return NULL;
2064 
2065 	n = rcu_dereference(pn->tnode[0]);
2066 	if (!n)
2067 		return NULL;
2068 
2069 	if (IS_TNODE(n)) {
2070 		iter->tnode = n;
2071 		iter->index = 0;
2072 		iter->depth = 1;
2073 	} else {
2074 		iter->tnode = pn;
2075 		iter->index = 0;
2076 		iter->depth = 0;
2077 	}
2078 
2079 	return n;
2080 }
2081 
2082 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083 {
2084 	struct key_vector *n;
2085 	struct fib_trie_iter iter;
2086 
2087 	memset(s, 0, sizeof(*s));
2088 
2089 	rcu_read_lock();
2090 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2091 		if (IS_LEAF(n)) {
2092 			struct fib_alias *fa;
2093 
2094 			s->leaves++;
2095 			s->totdepth += iter.depth;
2096 			if (iter.depth > s->maxdepth)
2097 				s->maxdepth = iter.depth;
2098 
2099 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2100 				++s->prefixes;
2101 		} else {
2102 			s->tnodes++;
2103 			if (n->bits < MAX_STAT_DEPTH)
2104 				s->nodesizes[n->bits]++;
2105 			s->nullpointers += tn_info(n)->empty_children;
2106 		}
2107 	}
2108 	rcu_read_unlock();
2109 }
2110 
2111 /*
2112  *	This outputs /proc/net/fib_triestats
2113  */
2114 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2115 {
2116 	unsigned int i, max, pointers, bytes, avdepth;
2117 
2118 	if (stat->leaves)
2119 		avdepth = stat->totdepth*100 / stat->leaves;
2120 	else
2121 		avdepth = 0;
2122 
2123 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2124 		   avdepth / 100, avdepth % 100);
2125 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2126 
2127 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2128 	bytes = LEAF_SIZE * stat->leaves;
2129 
2130 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2131 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2132 
2133 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2134 	bytes += TNODE_SIZE(0) * stat->tnodes;
2135 
2136 	max = MAX_STAT_DEPTH;
2137 	while (max > 0 && stat->nodesizes[max-1] == 0)
2138 		max--;
2139 
2140 	pointers = 0;
2141 	for (i = 1; i < max; i++)
2142 		if (stat->nodesizes[i] != 0) {
2143 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2144 			pointers += (1<<i) * stat->nodesizes[i];
2145 		}
2146 	seq_putc(seq, '\n');
2147 	seq_printf(seq, "\tPointers: %u\n", pointers);
2148 
2149 	bytes += sizeof(struct key_vector *) * pointers;
2150 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2151 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2152 }
2153 
2154 #ifdef CONFIG_IP_FIB_TRIE_STATS
2155 static void trie_show_usage(struct seq_file *seq,
2156 			    const struct trie_use_stats __percpu *stats)
2157 {
2158 	struct trie_use_stats s = { 0 };
2159 	int cpu;
2160 
2161 	/* loop through all of the CPUs and gather up the stats */
2162 	for_each_possible_cpu(cpu) {
2163 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2164 
2165 		s.gets += pcpu->gets;
2166 		s.backtrack += pcpu->backtrack;
2167 		s.semantic_match_passed += pcpu->semantic_match_passed;
2168 		s.semantic_match_miss += pcpu->semantic_match_miss;
2169 		s.null_node_hit += pcpu->null_node_hit;
2170 		s.resize_node_skipped += pcpu->resize_node_skipped;
2171 	}
2172 
2173 	seq_printf(seq, "\nCounters:\n---------\n");
2174 	seq_printf(seq, "gets = %u\n", s.gets);
2175 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2176 	seq_printf(seq, "semantic match passed = %u\n",
2177 		   s.semantic_match_passed);
2178 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2179 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2180 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2181 }
2182 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2183 
2184 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2185 {
2186 	if (tb->tb_id == RT_TABLE_LOCAL)
2187 		seq_puts(seq, "Local:\n");
2188 	else if (tb->tb_id == RT_TABLE_MAIN)
2189 		seq_puts(seq, "Main:\n");
2190 	else
2191 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2192 }
2193 
2194 
2195 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2196 {
2197 	struct net *net = (struct net *)seq->private;
2198 	unsigned int h;
2199 
2200 	seq_printf(seq,
2201 		   "Basic info: size of leaf:"
2202 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2203 		   LEAF_SIZE, TNODE_SIZE(0));
2204 
2205 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2206 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2207 		struct fib_table *tb;
2208 
2209 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2210 			struct trie *t = (struct trie *) tb->tb_data;
2211 			struct trie_stat stat;
2212 
2213 			if (!t)
2214 				continue;
2215 
2216 			fib_table_print(seq, tb);
2217 
2218 			trie_collect_stats(t, &stat);
2219 			trie_show_stats(seq, &stat);
2220 #ifdef CONFIG_IP_FIB_TRIE_STATS
2221 			trie_show_usage(seq, t->stats);
2222 #endif
2223 		}
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2230 {
2231 	return single_open_net(inode, file, fib_triestat_seq_show);
2232 }
2233 
2234 static const struct file_operations fib_triestat_fops = {
2235 	.owner	= THIS_MODULE,
2236 	.open	= fib_triestat_seq_open,
2237 	.read	= seq_read,
2238 	.llseek	= seq_lseek,
2239 	.release = single_release_net,
2240 };
2241 
2242 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2243 {
2244 	struct fib_trie_iter *iter = seq->private;
2245 	struct net *net = seq_file_net(seq);
2246 	loff_t idx = 0;
2247 	unsigned int h;
2248 
2249 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2250 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2251 		struct fib_table *tb;
2252 
2253 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2254 			struct key_vector *n;
2255 
2256 			for (n = fib_trie_get_first(iter,
2257 						    (struct trie *) tb->tb_data);
2258 			     n; n = fib_trie_get_next(iter))
2259 				if (pos == idx++) {
2260 					iter->tb = tb;
2261 					return n;
2262 				}
2263 		}
2264 	}
2265 
2266 	return NULL;
2267 }
2268 
2269 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2270 	__acquires(RCU)
2271 {
2272 	rcu_read_lock();
2273 	return fib_trie_get_idx(seq, *pos);
2274 }
2275 
2276 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2277 {
2278 	struct fib_trie_iter *iter = seq->private;
2279 	struct net *net = seq_file_net(seq);
2280 	struct fib_table *tb = iter->tb;
2281 	struct hlist_node *tb_node;
2282 	unsigned int h;
2283 	struct key_vector *n;
2284 
2285 	++*pos;
2286 	/* next node in same table */
2287 	n = fib_trie_get_next(iter);
2288 	if (n)
2289 		return n;
2290 
2291 	/* walk rest of this hash chain */
2292 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2293 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2294 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2295 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2296 		if (n)
2297 			goto found;
2298 	}
2299 
2300 	/* new hash chain */
2301 	while (++h < FIB_TABLE_HASHSZ) {
2302 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2303 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2304 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2305 			if (n)
2306 				goto found;
2307 		}
2308 	}
2309 	return NULL;
2310 
2311 found:
2312 	iter->tb = tb;
2313 	return n;
2314 }
2315 
2316 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2317 	__releases(RCU)
2318 {
2319 	rcu_read_unlock();
2320 }
2321 
2322 static void seq_indent(struct seq_file *seq, int n)
2323 {
2324 	while (n-- > 0)
2325 		seq_puts(seq, "   ");
2326 }
2327 
2328 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2329 {
2330 	switch (s) {
2331 	case RT_SCOPE_UNIVERSE: return "universe";
2332 	case RT_SCOPE_SITE:	return "site";
2333 	case RT_SCOPE_LINK:	return "link";
2334 	case RT_SCOPE_HOST:	return "host";
2335 	case RT_SCOPE_NOWHERE:	return "nowhere";
2336 	default:
2337 		snprintf(buf, len, "scope=%d", s);
2338 		return buf;
2339 	}
2340 }
2341 
2342 static const char *const rtn_type_names[__RTN_MAX] = {
2343 	[RTN_UNSPEC] = "UNSPEC",
2344 	[RTN_UNICAST] = "UNICAST",
2345 	[RTN_LOCAL] = "LOCAL",
2346 	[RTN_BROADCAST] = "BROADCAST",
2347 	[RTN_ANYCAST] = "ANYCAST",
2348 	[RTN_MULTICAST] = "MULTICAST",
2349 	[RTN_BLACKHOLE] = "BLACKHOLE",
2350 	[RTN_UNREACHABLE] = "UNREACHABLE",
2351 	[RTN_PROHIBIT] = "PROHIBIT",
2352 	[RTN_THROW] = "THROW",
2353 	[RTN_NAT] = "NAT",
2354 	[RTN_XRESOLVE] = "XRESOLVE",
2355 };
2356 
2357 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2358 {
2359 	if (t < __RTN_MAX && rtn_type_names[t])
2360 		return rtn_type_names[t];
2361 	snprintf(buf, len, "type %u", t);
2362 	return buf;
2363 }
2364 
2365 /* Pretty print the trie */
2366 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2367 {
2368 	const struct fib_trie_iter *iter = seq->private;
2369 	struct key_vector *n = v;
2370 
2371 	if (IS_TRIE(node_parent_rcu(n)))
2372 		fib_table_print(seq, iter->tb);
2373 
2374 	if (IS_TNODE(n)) {
2375 		__be32 prf = htonl(n->key);
2376 
2377 		seq_indent(seq, iter->depth-1);
2378 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2379 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2380 			   tn_info(n)->full_children,
2381 			   tn_info(n)->empty_children);
2382 	} else {
2383 		__be32 val = htonl(n->key);
2384 		struct fib_alias *fa;
2385 
2386 		seq_indent(seq, iter->depth);
2387 		seq_printf(seq, "  |-- %pI4\n", &val);
2388 
2389 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2390 			char buf1[32], buf2[32];
2391 
2392 			seq_indent(seq, iter->depth + 1);
2393 			seq_printf(seq, "  /%zu %s %s",
2394 				   KEYLENGTH - fa->fa_slen,
2395 				   rtn_scope(buf1, sizeof(buf1),
2396 					     fa->fa_info->fib_scope),
2397 				   rtn_type(buf2, sizeof(buf2),
2398 					    fa->fa_type));
2399 			if (fa->fa_tos)
2400 				seq_printf(seq, " tos=%d", fa->fa_tos);
2401 			seq_putc(seq, '\n');
2402 		}
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 static const struct seq_operations fib_trie_seq_ops = {
2409 	.start  = fib_trie_seq_start,
2410 	.next   = fib_trie_seq_next,
2411 	.stop   = fib_trie_seq_stop,
2412 	.show   = fib_trie_seq_show,
2413 };
2414 
2415 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2416 {
2417 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2418 			    sizeof(struct fib_trie_iter));
2419 }
2420 
2421 static const struct file_operations fib_trie_fops = {
2422 	.owner  = THIS_MODULE,
2423 	.open   = fib_trie_seq_open,
2424 	.read   = seq_read,
2425 	.llseek = seq_lseek,
2426 	.release = seq_release_net,
2427 };
2428 
2429 struct fib_route_iter {
2430 	struct seq_net_private p;
2431 	struct fib_table *main_tb;
2432 	struct key_vector *tnode;
2433 	loff_t	pos;
2434 	t_key	key;
2435 };
2436 
2437 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2438 					    loff_t pos)
2439 {
2440 	struct fib_table *tb = iter->main_tb;
2441 	struct key_vector *l, **tp = &iter->tnode;
2442 	struct trie *t;
2443 	t_key key;
2444 
2445 	/* use cache location of next-to-find key */
2446 	if (iter->pos > 0 && pos >= iter->pos) {
2447 		pos -= iter->pos;
2448 		key = iter->key;
2449 	} else {
2450 		t = (struct trie *)tb->tb_data;
2451 		iter->tnode = t->kv;
2452 		iter->pos = 0;
2453 		key = 0;
2454 	}
2455 
2456 	while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2457 		key = l->key + 1;
2458 		iter->pos++;
2459 
2460 		if (pos-- <= 0)
2461 			break;
2462 
2463 		l = NULL;
2464 
2465 		/* handle unlikely case of a key wrap */
2466 		if (!key)
2467 			break;
2468 	}
2469 
2470 	if (l)
2471 		iter->key = key;	/* remember it */
2472 	else
2473 		iter->pos = 0;		/* forget it */
2474 
2475 	return l;
2476 }
2477 
2478 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2479 	__acquires(RCU)
2480 {
2481 	struct fib_route_iter *iter = seq->private;
2482 	struct fib_table *tb;
2483 	struct trie *t;
2484 
2485 	rcu_read_lock();
2486 
2487 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2488 	if (!tb)
2489 		return NULL;
2490 
2491 	iter->main_tb = tb;
2492 
2493 	if (*pos != 0)
2494 		return fib_route_get_idx(iter, *pos);
2495 
2496 	t = (struct trie *)tb->tb_data;
2497 	iter->tnode = t->kv;
2498 	iter->pos = 0;
2499 	iter->key = 0;
2500 
2501 	return SEQ_START_TOKEN;
2502 }
2503 
2504 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2505 {
2506 	struct fib_route_iter *iter = seq->private;
2507 	struct key_vector *l = NULL;
2508 	t_key key = iter->key;
2509 
2510 	++*pos;
2511 
2512 	/* only allow key of 0 for start of sequence */
2513 	if ((v == SEQ_START_TOKEN) || key)
2514 		l = leaf_walk_rcu(&iter->tnode, key);
2515 
2516 	if (l) {
2517 		iter->key = l->key + 1;
2518 		iter->pos++;
2519 	} else {
2520 		iter->pos = 0;
2521 	}
2522 
2523 	return l;
2524 }
2525 
2526 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2527 	__releases(RCU)
2528 {
2529 	rcu_read_unlock();
2530 }
2531 
2532 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2533 {
2534 	unsigned int flags = 0;
2535 
2536 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2537 		flags = RTF_REJECT;
2538 	if (fi && fi->fib_nh->nh_gw)
2539 		flags |= RTF_GATEWAY;
2540 	if (mask == htonl(0xFFFFFFFF))
2541 		flags |= RTF_HOST;
2542 	flags |= RTF_UP;
2543 	return flags;
2544 }
2545 
2546 /*
2547  *	This outputs /proc/net/route.
2548  *	The format of the file is not supposed to be changed
2549  *	and needs to be same as fib_hash output to avoid breaking
2550  *	legacy utilities
2551  */
2552 static int fib_route_seq_show(struct seq_file *seq, void *v)
2553 {
2554 	struct fib_route_iter *iter = seq->private;
2555 	struct fib_table *tb = iter->main_tb;
2556 	struct fib_alias *fa;
2557 	struct key_vector *l = v;
2558 	__be32 prefix;
2559 
2560 	if (v == SEQ_START_TOKEN) {
2561 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2562 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2563 			   "\tWindow\tIRTT");
2564 		return 0;
2565 	}
2566 
2567 	prefix = htonl(l->key);
2568 
2569 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2570 		const struct fib_info *fi = fa->fa_info;
2571 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2572 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2573 
2574 		if ((fa->fa_type == RTN_BROADCAST) ||
2575 		    (fa->fa_type == RTN_MULTICAST))
2576 			continue;
2577 
2578 		if (fa->tb_id != tb->tb_id)
2579 			continue;
2580 
2581 		seq_setwidth(seq, 127);
2582 
2583 		if (fi)
2584 			seq_printf(seq,
2585 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2586 				   "%d\t%08X\t%d\t%u\t%u",
2587 				   fi->fib_dev ? fi->fib_dev->name : "*",
2588 				   prefix,
2589 				   fi->fib_nh->nh_gw, flags, 0, 0,
2590 				   fi->fib_priority,
2591 				   mask,
2592 				   (fi->fib_advmss ?
2593 				    fi->fib_advmss + 40 : 0),
2594 				   fi->fib_window,
2595 				   fi->fib_rtt >> 3);
2596 		else
2597 			seq_printf(seq,
2598 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2599 				   "%d\t%08X\t%d\t%u\t%u",
2600 				   prefix, 0, flags, 0, 0, 0,
2601 				   mask, 0, 0, 0);
2602 
2603 		seq_pad(seq, '\n');
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 static const struct seq_operations fib_route_seq_ops = {
2610 	.start  = fib_route_seq_start,
2611 	.next   = fib_route_seq_next,
2612 	.stop   = fib_route_seq_stop,
2613 	.show   = fib_route_seq_show,
2614 };
2615 
2616 static int fib_route_seq_open(struct inode *inode, struct file *file)
2617 {
2618 	return seq_open_net(inode, file, &fib_route_seq_ops,
2619 			    sizeof(struct fib_route_iter));
2620 }
2621 
2622 static const struct file_operations fib_route_fops = {
2623 	.owner  = THIS_MODULE,
2624 	.open   = fib_route_seq_open,
2625 	.read   = seq_read,
2626 	.llseek = seq_lseek,
2627 	.release = seq_release_net,
2628 };
2629 
2630 int __net_init fib_proc_init(struct net *net)
2631 {
2632 	if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2633 		goto out1;
2634 
2635 	if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2636 			 &fib_triestat_fops))
2637 		goto out2;
2638 
2639 	if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2640 		goto out3;
2641 
2642 	return 0;
2643 
2644 out3:
2645 	remove_proc_entry("fib_triestat", net->proc_net);
2646 out2:
2647 	remove_proc_entry("fib_trie", net->proc_net);
2648 out1:
2649 	return -ENOMEM;
2650 }
2651 
2652 void __net_exit fib_proc_exit(struct net *net)
2653 {
2654 	remove_proc_entry("fib_trie", net->proc_net);
2655 	remove_proc_entry("fib_triestat", net->proc_net);
2656 	remove_proc_entry("route", net->proc_net);
2657 }
2658 
2659 #endif /* CONFIG_PROC_FS */
2660