1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 #include <linux/cache.h> 39 #include <linux/uaccess.h> 40 #include <linux/bitops.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/mm.h> 44 #include <linux/string.h> 45 #include <linux/socket.h> 46 #include <linux/sockios.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/inetdevice.h> 51 #include <linux/netdevice.h> 52 #include <linux/if_arp.h> 53 #include <linux/proc_fs.h> 54 #include <linux/rcupdate.h> 55 #include <linux/skbuff.h> 56 #include <linux/netlink.h> 57 #include <linux/init.h> 58 #include <linux/list.h> 59 #include <linux/slab.h> 60 #include <linux/export.h> 61 #include <linux/vmalloc.h> 62 #include <linux/notifier.h> 63 #include <net/net_namespace.h> 64 #include <net/ip.h> 65 #include <net/protocol.h> 66 #include <net/route.h> 67 #include <net/tcp.h> 68 #include <net/sock.h> 69 #include <net/ip_fib.h> 70 #include <net/fib_notifier.h> 71 #include <trace/events/fib.h> 72 #include "fib_lookup.h" 73 74 static int call_fib_entry_notifier(struct notifier_block *nb, 75 enum fib_event_type event_type, u32 dst, 76 int dst_len, struct fib_alias *fa, 77 struct netlink_ext_ack *extack) 78 { 79 struct fib_entry_notifier_info info = { 80 .info.extack = extack, 81 .dst = dst, 82 .dst_len = dst_len, 83 .fi = fa->fa_info, 84 .tos = fa->fa_tos, 85 .type = fa->fa_type, 86 .tb_id = fa->tb_id, 87 }; 88 return call_fib4_notifier(nb, event_type, &info.info); 89 } 90 91 static int call_fib_entry_notifiers(struct net *net, 92 enum fib_event_type event_type, u32 dst, 93 int dst_len, struct fib_alias *fa, 94 struct netlink_ext_ack *extack) 95 { 96 struct fib_entry_notifier_info info = { 97 .info.extack = extack, 98 .dst = dst, 99 .dst_len = dst_len, 100 .fi = fa->fa_info, 101 .tos = fa->fa_tos, 102 .type = fa->fa_type, 103 .tb_id = fa->tb_id, 104 }; 105 return call_fib4_notifiers(net, event_type, &info.info); 106 } 107 108 #define MAX_STAT_DEPTH 32 109 110 #define KEYLENGTH (8*sizeof(t_key)) 111 #define KEY_MAX ((t_key)~0) 112 113 typedef unsigned int t_key; 114 115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 116 #define IS_TNODE(n) ((n)->bits) 117 #define IS_LEAF(n) (!(n)->bits) 118 119 struct key_vector { 120 t_key key; 121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char slen; 124 union { 125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 126 struct hlist_head leaf; 127 /* This array is valid if (pos | bits) > 0 (TNODE) */ 128 struct key_vector __rcu *tnode[0]; 129 }; 130 }; 131 132 struct tnode { 133 struct rcu_head rcu; 134 t_key empty_children; /* KEYLENGTH bits needed */ 135 t_key full_children; /* KEYLENGTH bits needed */ 136 struct key_vector __rcu *parent; 137 struct key_vector kv[1]; 138 #define tn_bits kv[0].bits 139 }; 140 141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 142 #define LEAF_SIZE TNODE_SIZE(1) 143 144 #ifdef CONFIG_IP_FIB_TRIE_STATS 145 struct trie_use_stats { 146 unsigned int gets; 147 unsigned int backtrack; 148 unsigned int semantic_match_passed; 149 unsigned int semantic_match_miss; 150 unsigned int null_node_hit; 151 unsigned int resize_node_skipped; 152 }; 153 #endif 154 155 struct trie_stat { 156 unsigned int totdepth; 157 unsigned int maxdepth; 158 unsigned int tnodes; 159 unsigned int leaves; 160 unsigned int nullpointers; 161 unsigned int prefixes; 162 unsigned int nodesizes[MAX_STAT_DEPTH]; 163 }; 164 165 struct trie { 166 struct key_vector kv[1]; 167 #ifdef CONFIG_IP_FIB_TRIE_STATS 168 struct trie_use_stats __percpu *stats; 169 #endif 170 }; 171 172 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 173 static unsigned int tnode_free_size; 174 175 /* 176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 177 * especially useful before resizing the root node with PREEMPT_NONE configs; 178 * the value was obtained experimentally, aiming to avoid visible slowdown. 179 */ 180 unsigned int sysctl_fib_sync_mem = 512 * 1024; 181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 183 184 static struct kmem_cache *fn_alias_kmem __ro_after_init; 185 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 186 187 static inline struct tnode *tn_info(struct key_vector *kv) 188 { 189 return container_of(kv, struct tnode, kv[0]); 190 } 191 192 /* caller must hold RTNL */ 193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 195 196 /* caller must hold RCU read lock or RTNL */ 197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 199 200 /* wrapper for rcu_assign_pointer */ 201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 202 { 203 if (n) 204 rcu_assign_pointer(tn_info(n)->parent, tp); 205 } 206 207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 208 209 /* This provides us with the number of children in this node, in the case of a 210 * leaf this will return 0 meaning none of the children are accessible. 211 */ 212 static inline unsigned long child_length(const struct key_vector *tn) 213 { 214 return (1ul << tn->bits) & ~(1ul); 215 } 216 217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 218 219 static inline unsigned long get_index(t_key key, struct key_vector *kv) 220 { 221 unsigned long index = key ^ kv->key; 222 223 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 224 return 0; 225 226 return index >> kv->pos; 227 } 228 229 /* To understand this stuff, an understanding of keys and all their bits is 230 * necessary. Every node in the trie has a key associated with it, but not 231 * all of the bits in that key are significant. 232 * 233 * Consider a node 'n' and its parent 'tp'. 234 * 235 * If n is a leaf, every bit in its key is significant. Its presence is 236 * necessitated by path compression, since during a tree traversal (when 237 * searching for a leaf - unless we are doing an insertion) we will completely 238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 239 * a potentially successful search, that we have indeed been walking the 240 * correct key path. 241 * 242 * Note that we can never "miss" the correct key in the tree if present by 243 * following the wrong path. Path compression ensures that segments of the key 244 * that are the same for all keys with a given prefix are skipped, but the 245 * skipped part *is* identical for each node in the subtrie below the skipped 246 * bit! trie_insert() in this implementation takes care of that. 247 * 248 * if n is an internal node - a 'tnode' here, the various parts of its key 249 * have many different meanings. 250 * 251 * Example: 252 * _________________________________________________________________ 253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 254 * ----------------------------------------------------------------- 255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 256 * 257 * _________________________________________________________________ 258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 259 * ----------------------------------------------------------------- 260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 261 * 262 * tp->pos = 22 263 * tp->bits = 3 264 * n->pos = 13 265 * n->bits = 4 266 * 267 * First, let's just ignore the bits that come before the parent tp, that is 268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 269 * point we do not use them for anything. 270 * 271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 272 * index into the parent's child array. That is, they will be used to find 273 * 'n' among tp's children. 274 * 275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 276 * for the node n. 277 * 278 * All the bits we have seen so far are significant to the node n. The rest 279 * of the bits are really not needed or indeed known in n->key. 280 * 281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 282 * n's child array, and will of course be different for each child. 283 * 284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 285 * at this point. 286 */ 287 288 static const int halve_threshold = 25; 289 static const int inflate_threshold = 50; 290 static const int halve_threshold_root = 15; 291 static const int inflate_threshold_root = 30; 292 293 static void __alias_free_mem(struct rcu_head *head) 294 { 295 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 296 kmem_cache_free(fn_alias_kmem, fa); 297 } 298 299 static inline void alias_free_mem_rcu(struct fib_alias *fa) 300 { 301 call_rcu(&fa->rcu, __alias_free_mem); 302 } 303 304 #define TNODE_VMALLOC_MAX \ 305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 306 307 static void __node_free_rcu(struct rcu_head *head) 308 { 309 struct tnode *n = container_of(head, struct tnode, rcu); 310 311 if (!n->tn_bits) 312 kmem_cache_free(trie_leaf_kmem, n); 313 else 314 kvfree(n); 315 } 316 317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 318 319 static struct tnode *tnode_alloc(int bits) 320 { 321 size_t size; 322 323 /* verify bits is within bounds */ 324 if (bits > TNODE_VMALLOC_MAX) 325 return NULL; 326 327 /* determine size and verify it is non-zero and didn't overflow */ 328 size = TNODE_SIZE(1ul << bits); 329 330 if (size <= PAGE_SIZE) 331 return kzalloc(size, GFP_KERNEL); 332 else 333 return vzalloc(size); 334 } 335 336 static inline void empty_child_inc(struct key_vector *n) 337 { 338 tn_info(n)->empty_children++; 339 340 if (!tn_info(n)->empty_children) 341 tn_info(n)->full_children++; 342 } 343 344 static inline void empty_child_dec(struct key_vector *n) 345 { 346 if (!tn_info(n)->empty_children) 347 tn_info(n)->full_children--; 348 349 tn_info(n)->empty_children--; 350 } 351 352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 353 { 354 struct key_vector *l; 355 struct tnode *kv; 356 357 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 358 if (!kv) 359 return NULL; 360 361 /* initialize key vector */ 362 l = kv->kv; 363 l->key = key; 364 l->pos = 0; 365 l->bits = 0; 366 l->slen = fa->fa_slen; 367 368 /* link leaf to fib alias */ 369 INIT_HLIST_HEAD(&l->leaf); 370 hlist_add_head(&fa->fa_list, &l->leaf); 371 372 return l; 373 } 374 375 static struct key_vector *tnode_new(t_key key, int pos, int bits) 376 { 377 unsigned int shift = pos + bits; 378 struct key_vector *tn; 379 struct tnode *tnode; 380 381 /* verify bits and pos their msb bits clear and values are valid */ 382 BUG_ON(!bits || (shift > KEYLENGTH)); 383 384 tnode = tnode_alloc(bits); 385 if (!tnode) 386 return NULL; 387 388 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 389 sizeof(struct key_vector *) << bits); 390 391 if (bits == KEYLENGTH) 392 tnode->full_children = 1; 393 else 394 tnode->empty_children = 1ul << bits; 395 396 tn = tnode->kv; 397 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 398 tn->pos = pos; 399 tn->bits = bits; 400 tn->slen = pos; 401 402 return tn; 403 } 404 405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 406 * and no bits are skipped. See discussion in dyntree paper p. 6 407 */ 408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 409 { 410 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 411 } 412 413 /* Add a child at position i overwriting the old value. 414 * Update the value of full_children and empty_children. 415 */ 416 static void put_child(struct key_vector *tn, unsigned long i, 417 struct key_vector *n) 418 { 419 struct key_vector *chi = get_child(tn, i); 420 int isfull, wasfull; 421 422 BUG_ON(i >= child_length(tn)); 423 424 /* update emptyChildren, overflow into fullChildren */ 425 if (!n && chi) 426 empty_child_inc(tn); 427 if (n && !chi) 428 empty_child_dec(tn); 429 430 /* update fullChildren */ 431 wasfull = tnode_full(tn, chi); 432 isfull = tnode_full(tn, n); 433 434 if (wasfull && !isfull) 435 tn_info(tn)->full_children--; 436 else if (!wasfull && isfull) 437 tn_info(tn)->full_children++; 438 439 if (n && (tn->slen < n->slen)) 440 tn->slen = n->slen; 441 442 rcu_assign_pointer(tn->tnode[i], n); 443 } 444 445 static void update_children(struct key_vector *tn) 446 { 447 unsigned long i; 448 449 /* update all of the child parent pointers */ 450 for (i = child_length(tn); i;) { 451 struct key_vector *inode = get_child(tn, --i); 452 453 if (!inode) 454 continue; 455 456 /* Either update the children of a tnode that 457 * already belongs to us or update the child 458 * to point to ourselves. 459 */ 460 if (node_parent(inode) == tn) 461 update_children(inode); 462 else 463 node_set_parent(inode, tn); 464 } 465 } 466 467 static inline void put_child_root(struct key_vector *tp, t_key key, 468 struct key_vector *n) 469 { 470 if (IS_TRIE(tp)) 471 rcu_assign_pointer(tp->tnode[0], n); 472 else 473 put_child(tp, get_index(key, tp), n); 474 } 475 476 static inline void tnode_free_init(struct key_vector *tn) 477 { 478 tn_info(tn)->rcu.next = NULL; 479 } 480 481 static inline void tnode_free_append(struct key_vector *tn, 482 struct key_vector *n) 483 { 484 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 485 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 486 } 487 488 static void tnode_free(struct key_vector *tn) 489 { 490 struct callback_head *head = &tn_info(tn)->rcu; 491 492 while (head) { 493 head = head->next; 494 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 495 node_free(tn); 496 497 tn = container_of(head, struct tnode, rcu)->kv; 498 } 499 500 if (tnode_free_size >= sysctl_fib_sync_mem) { 501 tnode_free_size = 0; 502 synchronize_rcu(); 503 } 504 } 505 506 static struct key_vector *replace(struct trie *t, 507 struct key_vector *oldtnode, 508 struct key_vector *tn) 509 { 510 struct key_vector *tp = node_parent(oldtnode); 511 unsigned long i; 512 513 /* setup the parent pointer out of and back into this node */ 514 NODE_INIT_PARENT(tn, tp); 515 put_child_root(tp, tn->key, tn); 516 517 /* update all of the child parent pointers */ 518 update_children(tn); 519 520 /* all pointers should be clean so we are done */ 521 tnode_free(oldtnode); 522 523 /* resize children now that oldtnode is freed */ 524 for (i = child_length(tn); i;) { 525 struct key_vector *inode = get_child(tn, --i); 526 527 /* resize child node */ 528 if (tnode_full(tn, inode)) 529 tn = resize(t, inode); 530 } 531 532 return tp; 533 } 534 535 static struct key_vector *inflate(struct trie *t, 536 struct key_vector *oldtnode) 537 { 538 struct key_vector *tn; 539 unsigned long i; 540 t_key m; 541 542 pr_debug("In inflate\n"); 543 544 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 545 if (!tn) 546 goto notnode; 547 548 /* prepare oldtnode to be freed */ 549 tnode_free_init(oldtnode); 550 551 /* Assemble all of the pointers in our cluster, in this case that 552 * represents all of the pointers out of our allocated nodes that 553 * point to existing tnodes and the links between our allocated 554 * nodes. 555 */ 556 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 557 struct key_vector *inode = get_child(oldtnode, --i); 558 struct key_vector *node0, *node1; 559 unsigned long j, k; 560 561 /* An empty child */ 562 if (!inode) 563 continue; 564 565 /* A leaf or an internal node with skipped bits */ 566 if (!tnode_full(oldtnode, inode)) { 567 put_child(tn, get_index(inode->key, tn), inode); 568 continue; 569 } 570 571 /* drop the node in the old tnode free list */ 572 tnode_free_append(oldtnode, inode); 573 574 /* An internal node with two children */ 575 if (inode->bits == 1) { 576 put_child(tn, 2 * i + 1, get_child(inode, 1)); 577 put_child(tn, 2 * i, get_child(inode, 0)); 578 continue; 579 } 580 581 /* We will replace this node 'inode' with two new 582 * ones, 'node0' and 'node1', each with half of the 583 * original children. The two new nodes will have 584 * a position one bit further down the key and this 585 * means that the "significant" part of their keys 586 * (see the discussion near the top of this file) 587 * will differ by one bit, which will be "0" in 588 * node0's key and "1" in node1's key. Since we are 589 * moving the key position by one step, the bit that 590 * we are moving away from - the bit at position 591 * (tn->pos) - is the one that will differ between 592 * node0 and node1. So... we synthesize that bit in the 593 * two new keys. 594 */ 595 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 596 if (!node1) 597 goto nomem; 598 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 599 600 tnode_free_append(tn, node1); 601 if (!node0) 602 goto nomem; 603 tnode_free_append(tn, node0); 604 605 /* populate child pointers in new nodes */ 606 for (k = child_length(inode), j = k / 2; j;) { 607 put_child(node1, --j, get_child(inode, --k)); 608 put_child(node0, j, get_child(inode, j)); 609 put_child(node1, --j, get_child(inode, --k)); 610 put_child(node0, j, get_child(inode, j)); 611 } 612 613 /* link new nodes to parent */ 614 NODE_INIT_PARENT(node1, tn); 615 NODE_INIT_PARENT(node0, tn); 616 617 /* link parent to nodes */ 618 put_child(tn, 2 * i + 1, node1); 619 put_child(tn, 2 * i, node0); 620 } 621 622 /* setup the parent pointers into and out of this node */ 623 return replace(t, oldtnode, tn); 624 nomem: 625 /* all pointers should be clean so we are done */ 626 tnode_free(tn); 627 notnode: 628 return NULL; 629 } 630 631 static struct key_vector *halve(struct trie *t, 632 struct key_vector *oldtnode) 633 { 634 struct key_vector *tn; 635 unsigned long i; 636 637 pr_debug("In halve\n"); 638 639 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 640 if (!tn) 641 goto notnode; 642 643 /* prepare oldtnode to be freed */ 644 tnode_free_init(oldtnode); 645 646 /* Assemble all of the pointers in our cluster, in this case that 647 * represents all of the pointers out of our allocated nodes that 648 * point to existing tnodes and the links between our allocated 649 * nodes. 650 */ 651 for (i = child_length(oldtnode); i;) { 652 struct key_vector *node1 = get_child(oldtnode, --i); 653 struct key_vector *node0 = get_child(oldtnode, --i); 654 struct key_vector *inode; 655 656 /* At least one of the children is empty */ 657 if (!node1 || !node0) { 658 put_child(tn, i / 2, node1 ? : node0); 659 continue; 660 } 661 662 /* Two nonempty children */ 663 inode = tnode_new(node0->key, oldtnode->pos, 1); 664 if (!inode) 665 goto nomem; 666 tnode_free_append(tn, inode); 667 668 /* initialize pointers out of node */ 669 put_child(inode, 1, node1); 670 put_child(inode, 0, node0); 671 NODE_INIT_PARENT(inode, tn); 672 673 /* link parent to node */ 674 put_child(tn, i / 2, inode); 675 } 676 677 /* setup the parent pointers into and out of this node */ 678 return replace(t, oldtnode, tn); 679 nomem: 680 /* all pointers should be clean so we are done */ 681 tnode_free(tn); 682 notnode: 683 return NULL; 684 } 685 686 static struct key_vector *collapse(struct trie *t, 687 struct key_vector *oldtnode) 688 { 689 struct key_vector *n, *tp; 690 unsigned long i; 691 692 /* scan the tnode looking for that one child that might still exist */ 693 for (n = NULL, i = child_length(oldtnode); !n && i;) 694 n = get_child(oldtnode, --i); 695 696 /* compress one level */ 697 tp = node_parent(oldtnode); 698 put_child_root(tp, oldtnode->key, n); 699 node_set_parent(n, tp); 700 701 /* drop dead node */ 702 node_free(oldtnode); 703 704 return tp; 705 } 706 707 static unsigned char update_suffix(struct key_vector *tn) 708 { 709 unsigned char slen = tn->pos; 710 unsigned long stride, i; 711 unsigned char slen_max; 712 713 /* only vector 0 can have a suffix length greater than or equal to 714 * tn->pos + tn->bits, the second highest node will have a suffix 715 * length at most of tn->pos + tn->bits - 1 716 */ 717 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 718 719 /* search though the list of children looking for nodes that might 720 * have a suffix greater than the one we currently have. This is 721 * why we start with a stride of 2 since a stride of 1 would 722 * represent the nodes with suffix length equal to tn->pos 723 */ 724 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 725 struct key_vector *n = get_child(tn, i); 726 727 if (!n || (n->slen <= slen)) 728 continue; 729 730 /* update stride and slen based on new value */ 731 stride <<= (n->slen - slen); 732 slen = n->slen; 733 i &= ~(stride - 1); 734 735 /* stop searching if we have hit the maximum possible value */ 736 if (slen >= slen_max) 737 break; 738 } 739 740 tn->slen = slen; 741 742 return slen; 743 } 744 745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 746 * the Helsinki University of Technology and Matti Tikkanen of Nokia 747 * Telecommunications, page 6: 748 * "A node is doubled if the ratio of non-empty children to all 749 * children in the *doubled* node is at least 'high'." 750 * 751 * 'high' in this instance is the variable 'inflate_threshold'. It 752 * is expressed as a percentage, so we multiply it with 753 * child_length() and instead of multiplying by 2 (since the 754 * child array will be doubled by inflate()) and multiplying 755 * the left-hand side by 100 (to handle the percentage thing) we 756 * multiply the left-hand side by 50. 757 * 758 * The left-hand side may look a bit weird: child_length(tn) 759 * - tn->empty_children is of course the number of non-null children 760 * in the current node. tn->full_children is the number of "full" 761 * children, that is non-null tnodes with a skip value of 0. 762 * All of those will be doubled in the resulting inflated tnode, so 763 * we just count them one extra time here. 764 * 765 * A clearer way to write this would be: 766 * 767 * to_be_doubled = tn->full_children; 768 * not_to_be_doubled = child_length(tn) - tn->empty_children - 769 * tn->full_children; 770 * 771 * new_child_length = child_length(tn) * 2; 772 * 773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 774 * new_child_length; 775 * if (new_fill_factor >= inflate_threshold) 776 * 777 * ...and so on, tho it would mess up the while () loop. 778 * 779 * anyway, 780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 781 * inflate_threshold 782 * 783 * avoid a division: 784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 785 * inflate_threshold * new_child_length 786 * 787 * expand not_to_be_doubled and to_be_doubled, and shorten: 788 * 100 * (child_length(tn) - tn->empty_children + 789 * tn->full_children) >= inflate_threshold * new_child_length 790 * 791 * expand new_child_length: 792 * 100 * (child_length(tn) - tn->empty_children + 793 * tn->full_children) >= 794 * inflate_threshold * child_length(tn) * 2 795 * 796 * shorten again: 797 * 50 * (tn->full_children + child_length(tn) - 798 * tn->empty_children) >= inflate_threshold * 799 * child_length(tn) 800 * 801 */ 802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 803 { 804 unsigned long used = child_length(tn); 805 unsigned long threshold = used; 806 807 /* Keep root node larger */ 808 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 809 used -= tn_info(tn)->empty_children; 810 used += tn_info(tn)->full_children; 811 812 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 813 814 return (used > 1) && tn->pos && ((50 * used) >= threshold); 815 } 816 817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 818 { 819 unsigned long used = child_length(tn); 820 unsigned long threshold = used; 821 822 /* Keep root node larger */ 823 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 824 used -= tn_info(tn)->empty_children; 825 826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 827 828 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 829 } 830 831 static inline bool should_collapse(struct key_vector *tn) 832 { 833 unsigned long used = child_length(tn); 834 835 used -= tn_info(tn)->empty_children; 836 837 /* account for bits == KEYLENGTH case */ 838 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 839 used -= KEY_MAX; 840 841 /* One child or none, time to drop us from the trie */ 842 return used < 2; 843 } 844 845 #define MAX_WORK 10 846 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 847 { 848 #ifdef CONFIG_IP_FIB_TRIE_STATS 849 struct trie_use_stats __percpu *stats = t->stats; 850 #endif 851 struct key_vector *tp = node_parent(tn); 852 unsigned long cindex = get_index(tn->key, tp); 853 int max_work = MAX_WORK; 854 855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 856 tn, inflate_threshold, halve_threshold); 857 858 /* track the tnode via the pointer from the parent instead of 859 * doing it ourselves. This way we can let RCU fully do its 860 * thing without us interfering 861 */ 862 BUG_ON(tn != get_child(tp, cindex)); 863 864 /* Double as long as the resulting node has a number of 865 * nonempty nodes that are above the threshold. 866 */ 867 while (should_inflate(tp, tn) && max_work) { 868 tp = inflate(t, tn); 869 if (!tp) { 870 #ifdef CONFIG_IP_FIB_TRIE_STATS 871 this_cpu_inc(stats->resize_node_skipped); 872 #endif 873 break; 874 } 875 876 max_work--; 877 tn = get_child(tp, cindex); 878 } 879 880 /* update parent in case inflate failed */ 881 tp = node_parent(tn); 882 883 /* Return if at least one inflate is run */ 884 if (max_work != MAX_WORK) 885 return tp; 886 887 /* Halve as long as the number of empty children in this 888 * node is above threshold. 889 */ 890 while (should_halve(tp, tn) && max_work) { 891 tp = halve(t, tn); 892 if (!tp) { 893 #ifdef CONFIG_IP_FIB_TRIE_STATS 894 this_cpu_inc(stats->resize_node_skipped); 895 #endif 896 break; 897 } 898 899 max_work--; 900 tn = get_child(tp, cindex); 901 } 902 903 /* Only one child remains */ 904 if (should_collapse(tn)) 905 return collapse(t, tn); 906 907 /* update parent in case halve failed */ 908 return node_parent(tn); 909 } 910 911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 912 { 913 unsigned char node_slen = tn->slen; 914 915 while ((node_slen > tn->pos) && (node_slen > slen)) { 916 slen = update_suffix(tn); 917 if (node_slen == slen) 918 break; 919 920 tn = node_parent(tn); 921 node_slen = tn->slen; 922 } 923 } 924 925 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 926 { 927 while (tn->slen < slen) { 928 tn->slen = slen; 929 tn = node_parent(tn); 930 } 931 } 932 933 /* rcu_read_lock needs to be hold by caller from readside */ 934 static struct key_vector *fib_find_node(struct trie *t, 935 struct key_vector **tp, u32 key) 936 { 937 struct key_vector *pn, *n = t->kv; 938 unsigned long index = 0; 939 940 do { 941 pn = n; 942 n = get_child_rcu(n, index); 943 944 if (!n) 945 break; 946 947 index = get_cindex(key, n); 948 949 /* This bit of code is a bit tricky but it combines multiple 950 * checks into a single check. The prefix consists of the 951 * prefix plus zeros for the bits in the cindex. The index 952 * is the difference between the key and this value. From 953 * this we can actually derive several pieces of data. 954 * if (index >= (1ul << bits)) 955 * we have a mismatch in skip bits and failed 956 * else 957 * we know the value is cindex 958 * 959 * This check is safe even if bits == KEYLENGTH due to the 960 * fact that we can only allocate a node with 32 bits if a 961 * long is greater than 32 bits. 962 */ 963 if (index >= (1ul << n->bits)) { 964 n = NULL; 965 break; 966 } 967 968 /* keep searching until we find a perfect match leaf or NULL */ 969 } while (IS_TNODE(n)); 970 971 *tp = pn; 972 973 return n; 974 } 975 976 /* Return the first fib alias matching TOS with 977 * priority less than or equal to PRIO. 978 * If 'find_first' is set, return the first matching 979 * fib alias, regardless of TOS and priority. 980 */ 981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 982 u8 tos, u32 prio, u32 tb_id, 983 bool find_first) 984 { 985 struct fib_alias *fa; 986 987 if (!fah) 988 return NULL; 989 990 hlist_for_each_entry(fa, fah, fa_list) { 991 if (fa->fa_slen < slen) 992 continue; 993 if (fa->fa_slen != slen) 994 break; 995 if (fa->tb_id > tb_id) 996 continue; 997 if (fa->tb_id != tb_id) 998 break; 999 if (find_first) 1000 return fa; 1001 if (fa->fa_tos > tos) 1002 continue; 1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 1004 return fa; 1005 } 1006 1007 return NULL; 1008 } 1009 1010 static struct fib_alias * 1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1012 { 1013 u8 slen = KEYLENGTH - fri->dst_len; 1014 struct key_vector *l, *tp; 1015 struct fib_table *tb; 1016 struct fib_alias *fa; 1017 struct trie *t; 1018 1019 tb = fib_get_table(net, fri->tb_id); 1020 if (!tb) 1021 return NULL; 1022 1023 t = (struct trie *)tb->tb_data; 1024 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1025 if (!l) 1026 return NULL; 1027 1028 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1029 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1030 fa->fa_tos == fri->tos && fa->fa_info == fri->fi && 1031 fa->fa_type == fri->type) 1032 return fa; 1033 } 1034 1035 return NULL; 1036 } 1037 1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1039 { 1040 struct fib_alias *fa_match; 1041 struct sk_buff *skb; 1042 int err; 1043 1044 rcu_read_lock(); 1045 1046 fa_match = fib_find_matching_alias(net, fri); 1047 if (!fa_match) 1048 goto out; 1049 1050 if (fa_match->offload == fri->offload && fa_match->trap == fri->trap) 1051 goto out; 1052 1053 fa_match->offload = fri->offload; 1054 fa_match->trap = fri->trap; 1055 1056 if (!net->ipv4.sysctl_fib_notify_on_flag_change) 1057 goto out; 1058 1059 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC); 1060 if (!skb) { 1061 err = -ENOBUFS; 1062 goto errout; 1063 } 1064 1065 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0); 1066 if (err < 0) { 1067 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */ 1068 WARN_ON(err == -EMSGSIZE); 1069 kfree_skb(skb); 1070 goto errout; 1071 } 1072 1073 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC); 1074 goto out; 1075 1076 errout: 1077 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err); 1078 out: 1079 rcu_read_unlock(); 1080 } 1081 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1082 1083 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1084 { 1085 while (!IS_TRIE(tn)) 1086 tn = resize(t, tn); 1087 } 1088 1089 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1090 struct fib_alias *new, t_key key) 1091 { 1092 struct key_vector *n, *l; 1093 1094 l = leaf_new(key, new); 1095 if (!l) 1096 goto noleaf; 1097 1098 /* retrieve child from parent node */ 1099 n = get_child(tp, get_index(key, tp)); 1100 1101 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1102 * 1103 * Add a new tnode here 1104 * first tnode need some special handling 1105 * leaves us in position for handling as case 3 1106 */ 1107 if (n) { 1108 struct key_vector *tn; 1109 1110 tn = tnode_new(key, __fls(key ^ n->key), 1); 1111 if (!tn) 1112 goto notnode; 1113 1114 /* initialize routes out of node */ 1115 NODE_INIT_PARENT(tn, tp); 1116 put_child(tn, get_index(key, tn) ^ 1, n); 1117 1118 /* start adding routes into the node */ 1119 put_child_root(tp, key, tn); 1120 node_set_parent(n, tn); 1121 1122 /* parent now has a NULL spot where the leaf can go */ 1123 tp = tn; 1124 } 1125 1126 /* Case 3: n is NULL, and will just insert a new leaf */ 1127 node_push_suffix(tp, new->fa_slen); 1128 NODE_INIT_PARENT(l, tp); 1129 put_child_root(tp, key, l); 1130 trie_rebalance(t, tp); 1131 1132 return 0; 1133 notnode: 1134 node_free(l); 1135 noleaf: 1136 return -ENOMEM; 1137 } 1138 1139 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1140 struct key_vector *l, struct fib_alias *new, 1141 struct fib_alias *fa, t_key key) 1142 { 1143 if (!l) 1144 return fib_insert_node(t, tp, new, key); 1145 1146 if (fa) { 1147 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1148 } else { 1149 struct fib_alias *last; 1150 1151 hlist_for_each_entry(last, &l->leaf, fa_list) { 1152 if (new->fa_slen < last->fa_slen) 1153 break; 1154 if ((new->fa_slen == last->fa_slen) && 1155 (new->tb_id > last->tb_id)) 1156 break; 1157 fa = last; 1158 } 1159 1160 if (fa) 1161 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1162 else 1163 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1164 } 1165 1166 /* if we added to the tail node then we need to update slen */ 1167 if (l->slen < new->fa_slen) { 1168 l->slen = new->fa_slen; 1169 node_push_suffix(tp, new->fa_slen); 1170 } 1171 1172 return 0; 1173 } 1174 1175 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1176 { 1177 if (plen > KEYLENGTH) { 1178 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1179 return false; 1180 } 1181 1182 if ((plen < KEYLENGTH) && (key << plen)) { 1183 NL_SET_ERR_MSG(extack, 1184 "Invalid prefix for given prefix length"); 1185 return false; 1186 } 1187 1188 return true; 1189 } 1190 1191 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1192 struct key_vector *l, struct fib_alias *old); 1193 1194 /* Caller must hold RTNL. */ 1195 int fib_table_insert(struct net *net, struct fib_table *tb, 1196 struct fib_config *cfg, struct netlink_ext_ack *extack) 1197 { 1198 struct trie *t = (struct trie *)tb->tb_data; 1199 struct fib_alias *fa, *new_fa; 1200 struct key_vector *l, *tp; 1201 u16 nlflags = NLM_F_EXCL; 1202 struct fib_info *fi; 1203 u8 plen = cfg->fc_dst_len; 1204 u8 slen = KEYLENGTH - plen; 1205 u8 tos = cfg->fc_tos; 1206 u32 key; 1207 int err; 1208 1209 key = ntohl(cfg->fc_dst); 1210 1211 if (!fib_valid_key_len(key, plen, extack)) 1212 return -EINVAL; 1213 1214 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1215 1216 fi = fib_create_info(cfg, extack); 1217 if (IS_ERR(fi)) { 1218 err = PTR_ERR(fi); 1219 goto err; 1220 } 1221 1222 l = fib_find_node(t, &tp, key); 1223 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1224 tb->tb_id, false) : NULL; 1225 1226 /* Now fa, if non-NULL, points to the first fib alias 1227 * with the same keys [prefix,tos,priority], if such key already 1228 * exists or to the node before which we will insert new one. 1229 * 1230 * If fa is NULL, we will need to allocate a new one and 1231 * insert to the tail of the section matching the suffix length 1232 * of the new alias. 1233 */ 1234 1235 if (fa && fa->fa_tos == tos && 1236 fa->fa_info->fib_priority == fi->fib_priority) { 1237 struct fib_alias *fa_first, *fa_match; 1238 1239 err = -EEXIST; 1240 if (cfg->fc_nlflags & NLM_F_EXCL) 1241 goto out; 1242 1243 nlflags &= ~NLM_F_EXCL; 1244 1245 /* We have 2 goals: 1246 * 1. Find exact match for type, scope, fib_info to avoid 1247 * duplicate routes 1248 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1249 */ 1250 fa_match = NULL; 1251 fa_first = fa; 1252 hlist_for_each_entry_from(fa, fa_list) { 1253 if ((fa->fa_slen != slen) || 1254 (fa->tb_id != tb->tb_id) || 1255 (fa->fa_tos != tos)) 1256 break; 1257 if (fa->fa_info->fib_priority != fi->fib_priority) 1258 break; 1259 if (fa->fa_type == cfg->fc_type && 1260 fa->fa_info == fi) { 1261 fa_match = fa; 1262 break; 1263 } 1264 } 1265 1266 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1267 struct fib_info *fi_drop; 1268 u8 state; 1269 1270 nlflags |= NLM_F_REPLACE; 1271 fa = fa_first; 1272 if (fa_match) { 1273 if (fa == fa_match) 1274 err = 0; 1275 goto out; 1276 } 1277 err = -ENOBUFS; 1278 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1279 if (!new_fa) 1280 goto out; 1281 1282 fi_drop = fa->fa_info; 1283 new_fa->fa_tos = fa->fa_tos; 1284 new_fa->fa_info = fi; 1285 new_fa->fa_type = cfg->fc_type; 1286 state = fa->fa_state; 1287 new_fa->fa_state = state & ~FA_S_ACCESSED; 1288 new_fa->fa_slen = fa->fa_slen; 1289 new_fa->tb_id = tb->tb_id; 1290 new_fa->fa_default = -1; 1291 new_fa->offload = 0; 1292 new_fa->trap = 0; 1293 1294 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1295 1296 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1297 tb->tb_id, true) == new_fa) { 1298 enum fib_event_type fib_event; 1299 1300 fib_event = FIB_EVENT_ENTRY_REPLACE; 1301 err = call_fib_entry_notifiers(net, fib_event, 1302 key, plen, 1303 new_fa, extack); 1304 if (err) { 1305 hlist_replace_rcu(&new_fa->fa_list, 1306 &fa->fa_list); 1307 goto out_free_new_fa; 1308 } 1309 } 1310 1311 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1312 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1313 1314 alias_free_mem_rcu(fa); 1315 1316 fib_release_info(fi_drop); 1317 if (state & FA_S_ACCESSED) 1318 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1319 1320 goto succeeded; 1321 } 1322 /* Error if we find a perfect match which 1323 * uses the same scope, type, and nexthop 1324 * information. 1325 */ 1326 if (fa_match) 1327 goto out; 1328 1329 if (cfg->fc_nlflags & NLM_F_APPEND) 1330 nlflags |= NLM_F_APPEND; 1331 else 1332 fa = fa_first; 1333 } 1334 err = -ENOENT; 1335 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1336 goto out; 1337 1338 nlflags |= NLM_F_CREATE; 1339 err = -ENOBUFS; 1340 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1341 if (!new_fa) 1342 goto out; 1343 1344 new_fa->fa_info = fi; 1345 new_fa->fa_tos = tos; 1346 new_fa->fa_type = cfg->fc_type; 1347 new_fa->fa_state = 0; 1348 new_fa->fa_slen = slen; 1349 new_fa->tb_id = tb->tb_id; 1350 new_fa->fa_default = -1; 1351 new_fa->offload = 0; 1352 new_fa->trap = 0; 1353 1354 /* Insert new entry to the list. */ 1355 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1356 if (err) 1357 goto out_free_new_fa; 1358 1359 /* The alias was already inserted, so the node must exist. */ 1360 l = l ? l : fib_find_node(t, &tp, key); 1361 if (WARN_ON_ONCE(!l)) 1362 goto out_free_new_fa; 1363 1364 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1365 new_fa) { 1366 enum fib_event_type fib_event; 1367 1368 fib_event = FIB_EVENT_ENTRY_REPLACE; 1369 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1370 new_fa, extack); 1371 if (err) 1372 goto out_remove_new_fa; 1373 } 1374 1375 if (!plen) 1376 tb->tb_num_default++; 1377 1378 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1379 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1380 &cfg->fc_nlinfo, nlflags); 1381 succeeded: 1382 return 0; 1383 1384 out_remove_new_fa: 1385 fib_remove_alias(t, tp, l, new_fa); 1386 out_free_new_fa: 1387 kmem_cache_free(fn_alias_kmem, new_fa); 1388 out: 1389 fib_release_info(fi); 1390 err: 1391 return err; 1392 } 1393 1394 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1395 { 1396 t_key prefix = n->key; 1397 1398 return (key ^ prefix) & (prefix | -prefix); 1399 } 1400 1401 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, 1402 const struct flowi4 *flp) 1403 { 1404 if (nhc->nhc_flags & RTNH_F_DEAD) 1405 return false; 1406 1407 if (ip_ignore_linkdown(nhc->nhc_dev) && 1408 nhc->nhc_flags & RTNH_F_LINKDOWN && 1409 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1410 return false; 1411 1412 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1413 if (flp->flowi4_oif && 1414 flp->flowi4_oif != nhc->nhc_oif) 1415 return false; 1416 } 1417 1418 return true; 1419 } 1420 1421 /* should be called with rcu_read_lock */ 1422 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1423 struct fib_result *res, int fib_flags) 1424 { 1425 struct trie *t = (struct trie *) tb->tb_data; 1426 #ifdef CONFIG_IP_FIB_TRIE_STATS 1427 struct trie_use_stats __percpu *stats = t->stats; 1428 #endif 1429 const t_key key = ntohl(flp->daddr); 1430 struct key_vector *n, *pn; 1431 struct fib_alias *fa; 1432 unsigned long index; 1433 t_key cindex; 1434 1435 pn = t->kv; 1436 cindex = 0; 1437 1438 n = get_child_rcu(pn, cindex); 1439 if (!n) { 1440 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1441 return -EAGAIN; 1442 } 1443 1444 #ifdef CONFIG_IP_FIB_TRIE_STATS 1445 this_cpu_inc(stats->gets); 1446 #endif 1447 1448 /* Step 1: Travel to the longest prefix match in the trie */ 1449 for (;;) { 1450 index = get_cindex(key, n); 1451 1452 /* This bit of code is a bit tricky but it combines multiple 1453 * checks into a single check. The prefix consists of the 1454 * prefix plus zeros for the "bits" in the prefix. The index 1455 * is the difference between the key and this value. From 1456 * this we can actually derive several pieces of data. 1457 * if (index >= (1ul << bits)) 1458 * we have a mismatch in skip bits and failed 1459 * else 1460 * we know the value is cindex 1461 * 1462 * This check is safe even if bits == KEYLENGTH due to the 1463 * fact that we can only allocate a node with 32 bits if a 1464 * long is greater than 32 bits. 1465 */ 1466 if (index >= (1ul << n->bits)) 1467 break; 1468 1469 /* we have found a leaf. Prefixes have already been compared */ 1470 if (IS_LEAF(n)) 1471 goto found; 1472 1473 /* only record pn and cindex if we are going to be chopping 1474 * bits later. Otherwise we are just wasting cycles. 1475 */ 1476 if (n->slen > n->pos) { 1477 pn = n; 1478 cindex = index; 1479 } 1480 1481 n = get_child_rcu(n, index); 1482 if (unlikely(!n)) 1483 goto backtrace; 1484 } 1485 1486 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1487 for (;;) { 1488 /* record the pointer where our next node pointer is stored */ 1489 struct key_vector __rcu **cptr = n->tnode; 1490 1491 /* This test verifies that none of the bits that differ 1492 * between the key and the prefix exist in the region of 1493 * the lsb and higher in the prefix. 1494 */ 1495 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1496 goto backtrace; 1497 1498 /* exit out and process leaf */ 1499 if (unlikely(IS_LEAF(n))) 1500 break; 1501 1502 /* Don't bother recording parent info. Since we are in 1503 * prefix match mode we will have to come back to wherever 1504 * we started this traversal anyway 1505 */ 1506 1507 while ((n = rcu_dereference(*cptr)) == NULL) { 1508 backtrace: 1509 #ifdef CONFIG_IP_FIB_TRIE_STATS 1510 if (!n) 1511 this_cpu_inc(stats->null_node_hit); 1512 #endif 1513 /* If we are at cindex 0 there are no more bits for 1514 * us to strip at this level so we must ascend back 1515 * up one level to see if there are any more bits to 1516 * be stripped there. 1517 */ 1518 while (!cindex) { 1519 t_key pkey = pn->key; 1520 1521 /* If we don't have a parent then there is 1522 * nothing for us to do as we do not have any 1523 * further nodes to parse. 1524 */ 1525 if (IS_TRIE(pn)) { 1526 trace_fib_table_lookup(tb->tb_id, flp, 1527 NULL, -EAGAIN); 1528 return -EAGAIN; 1529 } 1530 #ifdef CONFIG_IP_FIB_TRIE_STATS 1531 this_cpu_inc(stats->backtrack); 1532 #endif 1533 /* Get Child's index */ 1534 pn = node_parent_rcu(pn); 1535 cindex = get_index(pkey, pn); 1536 } 1537 1538 /* strip the least significant bit from the cindex */ 1539 cindex &= cindex - 1; 1540 1541 /* grab pointer for next child node */ 1542 cptr = &pn->tnode[cindex]; 1543 } 1544 } 1545 1546 found: 1547 /* this line carries forward the xor from earlier in the function */ 1548 index = key ^ n->key; 1549 1550 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1551 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1552 struct fib_info *fi = fa->fa_info; 1553 struct fib_nh_common *nhc; 1554 int nhsel, err; 1555 1556 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1557 if (index >= (1ul << fa->fa_slen)) 1558 continue; 1559 } 1560 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1561 continue; 1562 if (fi->fib_dead) 1563 continue; 1564 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1565 continue; 1566 fib_alias_accessed(fa); 1567 err = fib_props[fa->fa_type].error; 1568 if (unlikely(err < 0)) { 1569 out_reject: 1570 #ifdef CONFIG_IP_FIB_TRIE_STATS 1571 this_cpu_inc(stats->semantic_match_passed); 1572 #endif 1573 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1574 return err; 1575 } 1576 if (fi->fib_flags & RTNH_F_DEAD) 1577 continue; 1578 1579 if (unlikely(fi->nh)) { 1580 if (nexthop_is_blackhole(fi->nh)) { 1581 err = fib_props[RTN_BLACKHOLE].error; 1582 goto out_reject; 1583 } 1584 1585 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, 1586 &nhsel); 1587 if (nhc) 1588 goto set_result; 1589 goto miss; 1590 } 1591 1592 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1593 nhc = fib_info_nhc(fi, nhsel); 1594 1595 if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) 1596 continue; 1597 set_result: 1598 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1599 refcount_inc(&fi->fib_clntref); 1600 1601 res->prefix = htonl(n->key); 1602 res->prefixlen = KEYLENGTH - fa->fa_slen; 1603 res->nh_sel = nhsel; 1604 res->nhc = nhc; 1605 res->type = fa->fa_type; 1606 res->scope = fi->fib_scope; 1607 res->fi = fi; 1608 res->table = tb; 1609 res->fa_head = &n->leaf; 1610 #ifdef CONFIG_IP_FIB_TRIE_STATS 1611 this_cpu_inc(stats->semantic_match_passed); 1612 #endif 1613 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1614 1615 return err; 1616 } 1617 } 1618 miss: 1619 #ifdef CONFIG_IP_FIB_TRIE_STATS 1620 this_cpu_inc(stats->semantic_match_miss); 1621 #endif 1622 goto backtrace; 1623 } 1624 EXPORT_SYMBOL_GPL(fib_table_lookup); 1625 1626 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1627 struct key_vector *l, struct fib_alias *old) 1628 { 1629 /* record the location of the previous list_info entry */ 1630 struct hlist_node **pprev = old->fa_list.pprev; 1631 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1632 1633 /* remove the fib_alias from the list */ 1634 hlist_del_rcu(&old->fa_list); 1635 1636 /* if we emptied the list this leaf will be freed and we can sort 1637 * out parent suffix lengths as a part of trie_rebalance 1638 */ 1639 if (hlist_empty(&l->leaf)) { 1640 if (tp->slen == l->slen) 1641 node_pull_suffix(tp, tp->pos); 1642 put_child_root(tp, l->key, NULL); 1643 node_free(l); 1644 trie_rebalance(t, tp); 1645 return; 1646 } 1647 1648 /* only access fa if it is pointing at the last valid hlist_node */ 1649 if (*pprev) 1650 return; 1651 1652 /* update the trie with the latest suffix length */ 1653 l->slen = fa->fa_slen; 1654 node_pull_suffix(tp, fa->fa_slen); 1655 } 1656 1657 static void fib_notify_alias_delete(struct net *net, u32 key, 1658 struct hlist_head *fah, 1659 struct fib_alias *fa_to_delete, 1660 struct netlink_ext_ack *extack) 1661 { 1662 struct fib_alias *fa_next, *fa_to_notify; 1663 u32 tb_id = fa_to_delete->tb_id; 1664 u8 slen = fa_to_delete->fa_slen; 1665 enum fib_event_type fib_event; 1666 1667 /* Do not notify if we do not care about the route. */ 1668 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1669 return; 1670 1671 /* Determine if the route should be replaced by the next route in the 1672 * list. 1673 */ 1674 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1675 struct fib_alias, fa_list); 1676 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1677 fib_event = FIB_EVENT_ENTRY_REPLACE; 1678 fa_to_notify = fa_next; 1679 } else { 1680 fib_event = FIB_EVENT_ENTRY_DEL; 1681 fa_to_notify = fa_to_delete; 1682 } 1683 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1684 fa_to_notify, extack); 1685 } 1686 1687 /* Caller must hold RTNL. */ 1688 int fib_table_delete(struct net *net, struct fib_table *tb, 1689 struct fib_config *cfg, struct netlink_ext_ack *extack) 1690 { 1691 struct trie *t = (struct trie *) tb->tb_data; 1692 struct fib_alias *fa, *fa_to_delete; 1693 struct key_vector *l, *tp; 1694 u8 plen = cfg->fc_dst_len; 1695 u8 slen = KEYLENGTH - plen; 1696 u8 tos = cfg->fc_tos; 1697 u32 key; 1698 1699 key = ntohl(cfg->fc_dst); 1700 1701 if (!fib_valid_key_len(key, plen, extack)) 1702 return -EINVAL; 1703 1704 l = fib_find_node(t, &tp, key); 1705 if (!l) 1706 return -ESRCH; 1707 1708 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false); 1709 if (!fa) 1710 return -ESRCH; 1711 1712 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1713 1714 fa_to_delete = NULL; 1715 hlist_for_each_entry_from(fa, fa_list) { 1716 struct fib_info *fi = fa->fa_info; 1717 1718 if ((fa->fa_slen != slen) || 1719 (fa->tb_id != tb->tb_id) || 1720 (fa->fa_tos != tos)) 1721 break; 1722 1723 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1724 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1725 fa->fa_info->fib_scope == cfg->fc_scope) && 1726 (!cfg->fc_prefsrc || 1727 fi->fib_prefsrc == cfg->fc_prefsrc) && 1728 (!cfg->fc_protocol || 1729 fi->fib_protocol == cfg->fc_protocol) && 1730 fib_nh_match(net, cfg, fi, extack) == 0 && 1731 fib_metrics_match(cfg, fi)) { 1732 fa_to_delete = fa; 1733 break; 1734 } 1735 } 1736 1737 if (!fa_to_delete) 1738 return -ESRCH; 1739 1740 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1741 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1742 &cfg->fc_nlinfo, 0); 1743 1744 if (!plen) 1745 tb->tb_num_default--; 1746 1747 fib_remove_alias(t, tp, l, fa_to_delete); 1748 1749 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1750 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1751 1752 fib_release_info(fa_to_delete->fa_info); 1753 alias_free_mem_rcu(fa_to_delete); 1754 return 0; 1755 } 1756 1757 /* Scan for the next leaf starting at the provided key value */ 1758 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1759 { 1760 struct key_vector *pn, *n = *tn; 1761 unsigned long cindex; 1762 1763 /* this loop is meant to try and find the key in the trie */ 1764 do { 1765 /* record parent and next child index */ 1766 pn = n; 1767 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1768 1769 if (cindex >> pn->bits) 1770 break; 1771 1772 /* descend into the next child */ 1773 n = get_child_rcu(pn, cindex++); 1774 if (!n) 1775 break; 1776 1777 /* guarantee forward progress on the keys */ 1778 if (IS_LEAF(n) && (n->key >= key)) 1779 goto found; 1780 } while (IS_TNODE(n)); 1781 1782 /* this loop will search for the next leaf with a greater key */ 1783 while (!IS_TRIE(pn)) { 1784 /* if we exhausted the parent node we will need to climb */ 1785 if (cindex >= (1ul << pn->bits)) { 1786 t_key pkey = pn->key; 1787 1788 pn = node_parent_rcu(pn); 1789 cindex = get_index(pkey, pn) + 1; 1790 continue; 1791 } 1792 1793 /* grab the next available node */ 1794 n = get_child_rcu(pn, cindex++); 1795 if (!n) 1796 continue; 1797 1798 /* no need to compare keys since we bumped the index */ 1799 if (IS_LEAF(n)) 1800 goto found; 1801 1802 /* Rescan start scanning in new node */ 1803 pn = n; 1804 cindex = 0; 1805 } 1806 1807 *tn = pn; 1808 return NULL; /* Root of trie */ 1809 found: 1810 /* if we are at the limit for keys just return NULL for the tnode */ 1811 *tn = pn; 1812 return n; 1813 } 1814 1815 static void fib_trie_free(struct fib_table *tb) 1816 { 1817 struct trie *t = (struct trie *)tb->tb_data; 1818 struct key_vector *pn = t->kv; 1819 unsigned long cindex = 1; 1820 struct hlist_node *tmp; 1821 struct fib_alias *fa; 1822 1823 /* walk trie in reverse order and free everything */ 1824 for (;;) { 1825 struct key_vector *n; 1826 1827 if (!(cindex--)) { 1828 t_key pkey = pn->key; 1829 1830 if (IS_TRIE(pn)) 1831 break; 1832 1833 n = pn; 1834 pn = node_parent(pn); 1835 1836 /* drop emptied tnode */ 1837 put_child_root(pn, n->key, NULL); 1838 node_free(n); 1839 1840 cindex = get_index(pkey, pn); 1841 1842 continue; 1843 } 1844 1845 /* grab the next available node */ 1846 n = get_child(pn, cindex); 1847 if (!n) 1848 continue; 1849 1850 if (IS_TNODE(n)) { 1851 /* record pn and cindex for leaf walking */ 1852 pn = n; 1853 cindex = 1ul << n->bits; 1854 1855 continue; 1856 } 1857 1858 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1859 hlist_del_rcu(&fa->fa_list); 1860 alias_free_mem_rcu(fa); 1861 } 1862 1863 put_child_root(pn, n->key, NULL); 1864 node_free(n); 1865 } 1866 1867 #ifdef CONFIG_IP_FIB_TRIE_STATS 1868 free_percpu(t->stats); 1869 #endif 1870 kfree(tb); 1871 } 1872 1873 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1874 { 1875 struct trie *ot = (struct trie *)oldtb->tb_data; 1876 struct key_vector *l, *tp = ot->kv; 1877 struct fib_table *local_tb; 1878 struct fib_alias *fa; 1879 struct trie *lt; 1880 t_key key = 0; 1881 1882 if (oldtb->tb_data == oldtb->__data) 1883 return oldtb; 1884 1885 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1886 if (!local_tb) 1887 return NULL; 1888 1889 lt = (struct trie *)local_tb->tb_data; 1890 1891 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1892 struct key_vector *local_l = NULL, *local_tp; 1893 1894 hlist_for_each_entry(fa, &l->leaf, fa_list) { 1895 struct fib_alias *new_fa; 1896 1897 if (local_tb->tb_id != fa->tb_id) 1898 continue; 1899 1900 /* clone fa for new local table */ 1901 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1902 if (!new_fa) 1903 goto out; 1904 1905 memcpy(new_fa, fa, sizeof(*fa)); 1906 1907 /* insert clone into table */ 1908 if (!local_l) 1909 local_l = fib_find_node(lt, &local_tp, l->key); 1910 1911 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1912 NULL, l->key)) { 1913 kmem_cache_free(fn_alias_kmem, new_fa); 1914 goto out; 1915 } 1916 } 1917 1918 /* stop loop if key wrapped back to 0 */ 1919 key = l->key + 1; 1920 if (key < l->key) 1921 break; 1922 } 1923 1924 return local_tb; 1925 out: 1926 fib_trie_free(local_tb); 1927 1928 return NULL; 1929 } 1930 1931 /* Caller must hold RTNL */ 1932 void fib_table_flush_external(struct fib_table *tb) 1933 { 1934 struct trie *t = (struct trie *)tb->tb_data; 1935 struct key_vector *pn = t->kv; 1936 unsigned long cindex = 1; 1937 struct hlist_node *tmp; 1938 struct fib_alias *fa; 1939 1940 /* walk trie in reverse order */ 1941 for (;;) { 1942 unsigned char slen = 0; 1943 struct key_vector *n; 1944 1945 if (!(cindex--)) { 1946 t_key pkey = pn->key; 1947 1948 /* cannot resize the trie vector */ 1949 if (IS_TRIE(pn)) 1950 break; 1951 1952 /* update the suffix to address pulled leaves */ 1953 if (pn->slen > pn->pos) 1954 update_suffix(pn); 1955 1956 /* resize completed node */ 1957 pn = resize(t, pn); 1958 cindex = get_index(pkey, pn); 1959 1960 continue; 1961 } 1962 1963 /* grab the next available node */ 1964 n = get_child(pn, cindex); 1965 if (!n) 1966 continue; 1967 1968 if (IS_TNODE(n)) { 1969 /* record pn and cindex for leaf walking */ 1970 pn = n; 1971 cindex = 1ul << n->bits; 1972 1973 continue; 1974 } 1975 1976 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1977 /* if alias was cloned to local then we just 1978 * need to remove the local copy from main 1979 */ 1980 if (tb->tb_id != fa->tb_id) { 1981 hlist_del_rcu(&fa->fa_list); 1982 alias_free_mem_rcu(fa); 1983 continue; 1984 } 1985 1986 /* record local slen */ 1987 slen = fa->fa_slen; 1988 } 1989 1990 /* update leaf slen */ 1991 n->slen = slen; 1992 1993 if (hlist_empty(&n->leaf)) { 1994 put_child_root(pn, n->key, NULL); 1995 node_free(n); 1996 } 1997 } 1998 } 1999 2000 /* Caller must hold RTNL. */ 2001 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 2002 { 2003 struct trie *t = (struct trie *)tb->tb_data; 2004 struct key_vector *pn = t->kv; 2005 unsigned long cindex = 1; 2006 struct hlist_node *tmp; 2007 struct fib_alias *fa; 2008 int found = 0; 2009 2010 /* walk trie in reverse order */ 2011 for (;;) { 2012 unsigned char slen = 0; 2013 struct key_vector *n; 2014 2015 if (!(cindex--)) { 2016 t_key pkey = pn->key; 2017 2018 /* cannot resize the trie vector */ 2019 if (IS_TRIE(pn)) 2020 break; 2021 2022 /* update the suffix to address pulled leaves */ 2023 if (pn->slen > pn->pos) 2024 update_suffix(pn); 2025 2026 /* resize completed node */ 2027 pn = resize(t, pn); 2028 cindex = get_index(pkey, pn); 2029 2030 continue; 2031 } 2032 2033 /* grab the next available node */ 2034 n = get_child(pn, cindex); 2035 if (!n) 2036 continue; 2037 2038 if (IS_TNODE(n)) { 2039 /* record pn and cindex for leaf walking */ 2040 pn = n; 2041 cindex = 1ul << n->bits; 2042 2043 continue; 2044 } 2045 2046 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2047 struct fib_info *fi = fa->fa_info; 2048 2049 if (!fi || tb->tb_id != fa->tb_id || 2050 (!(fi->fib_flags & RTNH_F_DEAD) && 2051 !fib_props[fa->fa_type].error)) { 2052 slen = fa->fa_slen; 2053 continue; 2054 } 2055 2056 /* Do not flush error routes if network namespace is 2057 * not being dismantled 2058 */ 2059 if (!flush_all && fib_props[fa->fa_type].error) { 2060 slen = fa->fa_slen; 2061 continue; 2062 } 2063 2064 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2065 NULL); 2066 hlist_del_rcu(&fa->fa_list); 2067 fib_release_info(fa->fa_info); 2068 alias_free_mem_rcu(fa); 2069 found++; 2070 } 2071 2072 /* update leaf slen */ 2073 n->slen = slen; 2074 2075 if (hlist_empty(&n->leaf)) { 2076 put_child_root(pn, n->key, NULL); 2077 node_free(n); 2078 } 2079 } 2080 2081 pr_debug("trie_flush found=%d\n", found); 2082 return found; 2083 } 2084 2085 /* derived from fib_trie_free */ 2086 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2087 struct nl_info *info) 2088 { 2089 struct trie *t = (struct trie *)tb->tb_data; 2090 struct key_vector *pn = t->kv; 2091 unsigned long cindex = 1; 2092 struct fib_alias *fa; 2093 2094 for (;;) { 2095 struct key_vector *n; 2096 2097 if (!(cindex--)) { 2098 t_key pkey = pn->key; 2099 2100 if (IS_TRIE(pn)) 2101 break; 2102 2103 pn = node_parent(pn); 2104 cindex = get_index(pkey, pn); 2105 continue; 2106 } 2107 2108 /* grab the next available node */ 2109 n = get_child(pn, cindex); 2110 if (!n) 2111 continue; 2112 2113 if (IS_TNODE(n)) { 2114 /* record pn and cindex for leaf walking */ 2115 pn = n; 2116 cindex = 1ul << n->bits; 2117 2118 continue; 2119 } 2120 2121 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2122 struct fib_info *fi = fa->fa_info; 2123 2124 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2125 continue; 2126 2127 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2128 KEYLENGTH - fa->fa_slen, tb->tb_id, 2129 info, NLM_F_REPLACE); 2130 } 2131 } 2132 } 2133 2134 void fib_info_notify_update(struct net *net, struct nl_info *info) 2135 { 2136 unsigned int h; 2137 2138 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2139 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2140 struct fib_table *tb; 2141 2142 hlist_for_each_entry_rcu(tb, head, tb_hlist, 2143 lockdep_rtnl_is_held()) 2144 __fib_info_notify_update(net, tb, info); 2145 } 2146 } 2147 2148 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2149 struct notifier_block *nb, 2150 struct netlink_ext_ack *extack) 2151 { 2152 struct fib_alias *fa; 2153 int last_slen = -1; 2154 int err; 2155 2156 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2157 struct fib_info *fi = fa->fa_info; 2158 2159 if (!fi) 2160 continue; 2161 2162 /* local and main table can share the same trie, 2163 * so don't notify twice for the same entry. 2164 */ 2165 if (tb->tb_id != fa->tb_id) 2166 continue; 2167 2168 if (fa->fa_slen == last_slen) 2169 continue; 2170 2171 last_slen = fa->fa_slen; 2172 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2173 l->key, KEYLENGTH - fa->fa_slen, 2174 fa, extack); 2175 if (err) 2176 return err; 2177 } 2178 return 0; 2179 } 2180 2181 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2182 struct netlink_ext_ack *extack) 2183 { 2184 struct trie *t = (struct trie *)tb->tb_data; 2185 struct key_vector *l, *tp = t->kv; 2186 t_key key = 0; 2187 int err; 2188 2189 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2190 err = fib_leaf_notify(l, tb, nb, extack); 2191 if (err) 2192 return err; 2193 2194 key = l->key + 1; 2195 /* stop in case of wrap around */ 2196 if (key < l->key) 2197 break; 2198 } 2199 return 0; 2200 } 2201 2202 int fib_notify(struct net *net, struct notifier_block *nb, 2203 struct netlink_ext_ack *extack) 2204 { 2205 unsigned int h; 2206 int err; 2207 2208 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2209 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2210 struct fib_table *tb; 2211 2212 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2213 err = fib_table_notify(tb, nb, extack); 2214 if (err) 2215 return err; 2216 } 2217 } 2218 return 0; 2219 } 2220 2221 static void __trie_free_rcu(struct rcu_head *head) 2222 { 2223 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2224 #ifdef CONFIG_IP_FIB_TRIE_STATS 2225 struct trie *t = (struct trie *)tb->tb_data; 2226 2227 if (tb->tb_data == tb->__data) 2228 free_percpu(t->stats); 2229 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2230 kfree(tb); 2231 } 2232 2233 void fib_free_table(struct fib_table *tb) 2234 { 2235 call_rcu(&tb->rcu, __trie_free_rcu); 2236 } 2237 2238 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2239 struct sk_buff *skb, struct netlink_callback *cb, 2240 struct fib_dump_filter *filter) 2241 { 2242 unsigned int flags = NLM_F_MULTI; 2243 __be32 xkey = htonl(l->key); 2244 int i, s_i, i_fa, s_fa, err; 2245 struct fib_alias *fa; 2246 2247 if (filter->filter_set || 2248 !filter->dump_exceptions || !filter->dump_routes) 2249 flags |= NLM_F_DUMP_FILTERED; 2250 2251 s_i = cb->args[4]; 2252 s_fa = cb->args[5]; 2253 i = 0; 2254 2255 /* rcu_read_lock is hold by caller */ 2256 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2257 struct fib_info *fi = fa->fa_info; 2258 2259 if (i < s_i) 2260 goto next; 2261 2262 i_fa = 0; 2263 2264 if (tb->tb_id != fa->tb_id) 2265 goto next; 2266 2267 if (filter->filter_set) { 2268 if (filter->rt_type && fa->fa_type != filter->rt_type) 2269 goto next; 2270 2271 if ((filter->protocol && 2272 fi->fib_protocol != filter->protocol)) 2273 goto next; 2274 2275 if (filter->dev && 2276 !fib_info_nh_uses_dev(fi, filter->dev)) 2277 goto next; 2278 } 2279 2280 if (filter->dump_routes) { 2281 if (!s_fa) { 2282 struct fib_rt_info fri; 2283 2284 fri.fi = fi; 2285 fri.tb_id = tb->tb_id; 2286 fri.dst = xkey; 2287 fri.dst_len = KEYLENGTH - fa->fa_slen; 2288 fri.tos = fa->fa_tos; 2289 fri.type = fa->fa_type; 2290 fri.offload = fa->offload; 2291 fri.trap = fa->trap; 2292 err = fib_dump_info(skb, 2293 NETLINK_CB(cb->skb).portid, 2294 cb->nlh->nlmsg_seq, 2295 RTM_NEWROUTE, &fri, flags); 2296 if (err < 0) 2297 goto stop; 2298 } 2299 2300 i_fa++; 2301 } 2302 2303 if (filter->dump_exceptions) { 2304 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2305 &i_fa, s_fa, flags); 2306 if (err < 0) 2307 goto stop; 2308 } 2309 2310 next: 2311 i++; 2312 } 2313 2314 cb->args[4] = i; 2315 return skb->len; 2316 2317 stop: 2318 cb->args[4] = i; 2319 cb->args[5] = i_fa; 2320 return err; 2321 } 2322 2323 /* rcu_read_lock needs to be hold by caller from readside */ 2324 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2325 struct netlink_callback *cb, struct fib_dump_filter *filter) 2326 { 2327 struct trie *t = (struct trie *)tb->tb_data; 2328 struct key_vector *l, *tp = t->kv; 2329 /* Dump starting at last key. 2330 * Note: 0.0.0.0/0 (ie default) is first key. 2331 */ 2332 int count = cb->args[2]; 2333 t_key key = cb->args[3]; 2334 2335 /* First time here, count and key are both always 0. Count > 0 2336 * and key == 0 means the dump has wrapped around and we are done. 2337 */ 2338 if (count && !key) 2339 return skb->len; 2340 2341 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2342 int err; 2343 2344 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2345 if (err < 0) { 2346 cb->args[3] = key; 2347 cb->args[2] = count; 2348 return err; 2349 } 2350 2351 ++count; 2352 key = l->key + 1; 2353 2354 memset(&cb->args[4], 0, 2355 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2356 2357 /* stop loop if key wrapped back to 0 */ 2358 if (key < l->key) 2359 break; 2360 } 2361 2362 cb->args[3] = key; 2363 cb->args[2] = count; 2364 2365 return skb->len; 2366 } 2367 2368 void __init fib_trie_init(void) 2369 { 2370 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2371 sizeof(struct fib_alias), 2372 0, SLAB_PANIC, NULL); 2373 2374 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2375 LEAF_SIZE, 2376 0, SLAB_PANIC, NULL); 2377 } 2378 2379 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2380 { 2381 struct fib_table *tb; 2382 struct trie *t; 2383 size_t sz = sizeof(*tb); 2384 2385 if (!alias) 2386 sz += sizeof(struct trie); 2387 2388 tb = kzalloc(sz, GFP_KERNEL); 2389 if (!tb) 2390 return NULL; 2391 2392 tb->tb_id = id; 2393 tb->tb_num_default = 0; 2394 tb->tb_data = (alias ? alias->__data : tb->__data); 2395 2396 if (alias) 2397 return tb; 2398 2399 t = (struct trie *) tb->tb_data; 2400 t->kv[0].pos = KEYLENGTH; 2401 t->kv[0].slen = KEYLENGTH; 2402 #ifdef CONFIG_IP_FIB_TRIE_STATS 2403 t->stats = alloc_percpu(struct trie_use_stats); 2404 if (!t->stats) { 2405 kfree(tb); 2406 tb = NULL; 2407 } 2408 #endif 2409 2410 return tb; 2411 } 2412 2413 #ifdef CONFIG_PROC_FS 2414 /* Depth first Trie walk iterator */ 2415 struct fib_trie_iter { 2416 struct seq_net_private p; 2417 struct fib_table *tb; 2418 struct key_vector *tnode; 2419 unsigned int index; 2420 unsigned int depth; 2421 }; 2422 2423 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2424 { 2425 unsigned long cindex = iter->index; 2426 struct key_vector *pn = iter->tnode; 2427 t_key pkey; 2428 2429 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2430 iter->tnode, iter->index, iter->depth); 2431 2432 while (!IS_TRIE(pn)) { 2433 while (cindex < child_length(pn)) { 2434 struct key_vector *n = get_child_rcu(pn, cindex++); 2435 2436 if (!n) 2437 continue; 2438 2439 if (IS_LEAF(n)) { 2440 iter->tnode = pn; 2441 iter->index = cindex; 2442 } else { 2443 /* push down one level */ 2444 iter->tnode = n; 2445 iter->index = 0; 2446 ++iter->depth; 2447 } 2448 2449 return n; 2450 } 2451 2452 /* Current node exhausted, pop back up */ 2453 pkey = pn->key; 2454 pn = node_parent_rcu(pn); 2455 cindex = get_index(pkey, pn) + 1; 2456 --iter->depth; 2457 } 2458 2459 /* record root node so further searches know we are done */ 2460 iter->tnode = pn; 2461 iter->index = 0; 2462 2463 return NULL; 2464 } 2465 2466 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2467 struct trie *t) 2468 { 2469 struct key_vector *n, *pn; 2470 2471 if (!t) 2472 return NULL; 2473 2474 pn = t->kv; 2475 n = rcu_dereference(pn->tnode[0]); 2476 if (!n) 2477 return NULL; 2478 2479 if (IS_TNODE(n)) { 2480 iter->tnode = n; 2481 iter->index = 0; 2482 iter->depth = 1; 2483 } else { 2484 iter->tnode = pn; 2485 iter->index = 0; 2486 iter->depth = 0; 2487 } 2488 2489 return n; 2490 } 2491 2492 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2493 { 2494 struct key_vector *n; 2495 struct fib_trie_iter iter; 2496 2497 memset(s, 0, sizeof(*s)); 2498 2499 rcu_read_lock(); 2500 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2501 if (IS_LEAF(n)) { 2502 struct fib_alias *fa; 2503 2504 s->leaves++; 2505 s->totdepth += iter.depth; 2506 if (iter.depth > s->maxdepth) 2507 s->maxdepth = iter.depth; 2508 2509 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2510 ++s->prefixes; 2511 } else { 2512 s->tnodes++; 2513 if (n->bits < MAX_STAT_DEPTH) 2514 s->nodesizes[n->bits]++; 2515 s->nullpointers += tn_info(n)->empty_children; 2516 } 2517 } 2518 rcu_read_unlock(); 2519 } 2520 2521 /* 2522 * This outputs /proc/net/fib_triestats 2523 */ 2524 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2525 { 2526 unsigned int i, max, pointers, bytes, avdepth; 2527 2528 if (stat->leaves) 2529 avdepth = stat->totdepth*100 / stat->leaves; 2530 else 2531 avdepth = 0; 2532 2533 seq_printf(seq, "\tAver depth: %u.%02d\n", 2534 avdepth / 100, avdepth % 100); 2535 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2536 2537 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2538 bytes = LEAF_SIZE * stat->leaves; 2539 2540 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2541 bytes += sizeof(struct fib_alias) * stat->prefixes; 2542 2543 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2544 bytes += TNODE_SIZE(0) * stat->tnodes; 2545 2546 max = MAX_STAT_DEPTH; 2547 while (max > 0 && stat->nodesizes[max-1] == 0) 2548 max--; 2549 2550 pointers = 0; 2551 for (i = 1; i < max; i++) 2552 if (stat->nodesizes[i] != 0) { 2553 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2554 pointers += (1<<i) * stat->nodesizes[i]; 2555 } 2556 seq_putc(seq, '\n'); 2557 seq_printf(seq, "\tPointers: %u\n", pointers); 2558 2559 bytes += sizeof(struct key_vector *) * pointers; 2560 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2561 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2562 } 2563 2564 #ifdef CONFIG_IP_FIB_TRIE_STATS 2565 static void trie_show_usage(struct seq_file *seq, 2566 const struct trie_use_stats __percpu *stats) 2567 { 2568 struct trie_use_stats s = { 0 }; 2569 int cpu; 2570 2571 /* loop through all of the CPUs and gather up the stats */ 2572 for_each_possible_cpu(cpu) { 2573 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2574 2575 s.gets += pcpu->gets; 2576 s.backtrack += pcpu->backtrack; 2577 s.semantic_match_passed += pcpu->semantic_match_passed; 2578 s.semantic_match_miss += pcpu->semantic_match_miss; 2579 s.null_node_hit += pcpu->null_node_hit; 2580 s.resize_node_skipped += pcpu->resize_node_skipped; 2581 } 2582 2583 seq_printf(seq, "\nCounters:\n---------\n"); 2584 seq_printf(seq, "gets = %u\n", s.gets); 2585 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2586 seq_printf(seq, "semantic match passed = %u\n", 2587 s.semantic_match_passed); 2588 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2589 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2590 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2591 } 2592 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2593 2594 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2595 { 2596 if (tb->tb_id == RT_TABLE_LOCAL) 2597 seq_puts(seq, "Local:\n"); 2598 else if (tb->tb_id == RT_TABLE_MAIN) 2599 seq_puts(seq, "Main:\n"); 2600 else 2601 seq_printf(seq, "Id %d:\n", tb->tb_id); 2602 } 2603 2604 2605 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2606 { 2607 struct net *net = (struct net *)seq->private; 2608 unsigned int h; 2609 2610 seq_printf(seq, 2611 "Basic info: size of leaf:" 2612 " %zd bytes, size of tnode: %zd bytes.\n", 2613 LEAF_SIZE, TNODE_SIZE(0)); 2614 2615 rcu_read_lock(); 2616 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2617 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2618 struct fib_table *tb; 2619 2620 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2621 struct trie *t = (struct trie *) tb->tb_data; 2622 struct trie_stat stat; 2623 2624 if (!t) 2625 continue; 2626 2627 fib_table_print(seq, tb); 2628 2629 trie_collect_stats(t, &stat); 2630 trie_show_stats(seq, &stat); 2631 #ifdef CONFIG_IP_FIB_TRIE_STATS 2632 trie_show_usage(seq, t->stats); 2633 #endif 2634 } 2635 cond_resched_rcu(); 2636 } 2637 rcu_read_unlock(); 2638 2639 return 0; 2640 } 2641 2642 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2643 { 2644 struct fib_trie_iter *iter = seq->private; 2645 struct net *net = seq_file_net(seq); 2646 loff_t idx = 0; 2647 unsigned int h; 2648 2649 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2650 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2651 struct fib_table *tb; 2652 2653 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2654 struct key_vector *n; 2655 2656 for (n = fib_trie_get_first(iter, 2657 (struct trie *) tb->tb_data); 2658 n; n = fib_trie_get_next(iter)) 2659 if (pos == idx++) { 2660 iter->tb = tb; 2661 return n; 2662 } 2663 } 2664 } 2665 2666 return NULL; 2667 } 2668 2669 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2670 __acquires(RCU) 2671 { 2672 rcu_read_lock(); 2673 return fib_trie_get_idx(seq, *pos); 2674 } 2675 2676 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2677 { 2678 struct fib_trie_iter *iter = seq->private; 2679 struct net *net = seq_file_net(seq); 2680 struct fib_table *tb = iter->tb; 2681 struct hlist_node *tb_node; 2682 unsigned int h; 2683 struct key_vector *n; 2684 2685 ++*pos; 2686 /* next node in same table */ 2687 n = fib_trie_get_next(iter); 2688 if (n) 2689 return n; 2690 2691 /* walk rest of this hash chain */ 2692 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2693 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2694 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2695 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2696 if (n) 2697 goto found; 2698 } 2699 2700 /* new hash chain */ 2701 while (++h < FIB_TABLE_HASHSZ) { 2702 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2703 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2704 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2705 if (n) 2706 goto found; 2707 } 2708 } 2709 return NULL; 2710 2711 found: 2712 iter->tb = tb; 2713 return n; 2714 } 2715 2716 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2717 __releases(RCU) 2718 { 2719 rcu_read_unlock(); 2720 } 2721 2722 static void seq_indent(struct seq_file *seq, int n) 2723 { 2724 while (n-- > 0) 2725 seq_puts(seq, " "); 2726 } 2727 2728 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2729 { 2730 switch (s) { 2731 case RT_SCOPE_UNIVERSE: return "universe"; 2732 case RT_SCOPE_SITE: return "site"; 2733 case RT_SCOPE_LINK: return "link"; 2734 case RT_SCOPE_HOST: return "host"; 2735 case RT_SCOPE_NOWHERE: return "nowhere"; 2736 default: 2737 snprintf(buf, len, "scope=%d", s); 2738 return buf; 2739 } 2740 } 2741 2742 static const char *const rtn_type_names[__RTN_MAX] = { 2743 [RTN_UNSPEC] = "UNSPEC", 2744 [RTN_UNICAST] = "UNICAST", 2745 [RTN_LOCAL] = "LOCAL", 2746 [RTN_BROADCAST] = "BROADCAST", 2747 [RTN_ANYCAST] = "ANYCAST", 2748 [RTN_MULTICAST] = "MULTICAST", 2749 [RTN_BLACKHOLE] = "BLACKHOLE", 2750 [RTN_UNREACHABLE] = "UNREACHABLE", 2751 [RTN_PROHIBIT] = "PROHIBIT", 2752 [RTN_THROW] = "THROW", 2753 [RTN_NAT] = "NAT", 2754 [RTN_XRESOLVE] = "XRESOLVE", 2755 }; 2756 2757 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2758 { 2759 if (t < __RTN_MAX && rtn_type_names[t]) 2760 return rtn_type_names[t]; 2761 snprintf(buf, len, "type %u", t); 2762 return buf; 2763 } 2764 2765 /* Pretty print the trie */ 2766 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2767 { 2768 const struct fib_trie_iter *iter = seq->private; 2769 struct key_vector *n = v; 2770 2771 if (IS_TRIE(node_parent_rcu(n))) 2772 fib_table_print(seq, iter->tb); 2773 2774 if (IS_TNODE(n)) { 2775 __be32 prf = htonl(n->key); 2776 2777 seq_indent(seq, iter->depth-1); 2778 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2779 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2780 tn_info(n)->full_children, 2781 tn_info(n)->empty_children); 2782 } else { 2783 __be32 val = htonl(n->key); 2784 struct fib_alias *fa; 2785 2786 seq_indent(seq, iter->depth); 2787 seq_printf(seq, " |-- %pI4\n", &val); 2788 2789 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2790 char buf1[32], buf2[32]; 2791 2792 seq_indent(seq, iter->depth + 1); 2793 seq_printf(seq, " /%zu %s %s", 2794 KEYLENGTH - fa->fa_slen, 2795 rtn_scope(buf1, sizeof(buf1), 2796 fa->fa_info->fib_scope), 2797 rtn_type(buf2, sizeof(buf2), 2798 fa->fa_type)); 2799 if (fa->fa_tos) 2800 seq_printf(seq, " tos=%d", fa->fa_tos); 2801 seq_putc(seq, '\n'); 2802 } 2803 } 2804 2805 return 0; 2806 } 2807 2808 static const struct seq_operations fib_trie_seq_ops = { 2809 .start = fib_trie_seq_start, 2810 .next = fib_trie_seq_next, 2811 .stop = fib_trie_seq_stop, 2812 .show = fib_trie_seq_show, 2813 }; 2814 2815 struct fib_route_iter { 2816 struct seq_net_private p; 2817 struct fib_table *main_tb; 2818 struct key_vector *tnode; 2819 loff_t pos; 2820 t_key key; 2821 }; 2822 2823 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2824 loff_t pos) 2825 { 2826 struct key_vector *l, **tp = &iter->tnode; 2827 t_key key; 2828 2829 /* use cached location of previously found key */ 2830 if (iter->pos > 0 && pos >= iter->pos) { 2831 key = iter->key; 2832 } else { 2833 iter->pos = 1; 2834 key = 0; 2835 } 2836 2837 pos -= iter->pos; 2838 2839 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2840 key = l->key + 1; 2841 iter->pos++; 2842 l = NULL; 2843 2844 /* handle unlikely case of a key wrap */ 2845 if (!key) 2846 break; 2847 } 2848 2849 if (l) 2850 iter->key = l->key; /* remember it */ 2851 else 2852 iter->pos = 0; /* forget it */ 2853 2854 return l; 2855 } 2856 2857 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2858 __acquires(RCU) 2859 { 2860 struct fib_route_iter *iter = seq->private; 2861 struct fib_table *tb; 2862 struct trie *t; 2863 2864 rcu_read_lock(); 2865 2866 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2867 if (!tb) 2868 return NULL; 2869 2870 iter->main_tb = tb; 2871 t = (struct trie *)tb->tb_data; 2872 iter->tnode = t->kv; 2873 2874 if (*pos != 0) 2875 return fib_route_get_idx(iter, *pos); 2876 2877 iter->pos = 0; 2878 iter->key = KEY_MAX; 2879 2880 return SEQ_START_TOKEN; 2881 } 2882 2883 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2884 { 2885 struct fib_route_iter *iter = seq->private; 2886 struct key_vector *l = NULL; 2887 t_key key = iter->key + 1; 2888 2889 ++*pos; 2890 2891 /* only allow key of 0 for start of sequence */ 2892 if ((v == SEQ_START_TOKEN) || key) 2893 l = leaf_walk_rcu(&iter->tnode, key); 2894 2895 if (l) { 2896 iter->key = l->key; 2897 iter->pos++; 2898 } else { 2899 iter->pos = 0; 2900 } 2901 2902 return l; 2903 } 2904 2905 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2906 __releases(RCU) 2907 { 2908 rcu_read_unlock(); 2909 } 2910 2911 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2912 { 2913 unsigned int flags = 0; 2914 2915 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2916 flags = RTF_REJECT; 2917 if (fi) { 2918 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2919 2920 if (nhc->nhc_gw.ipv4) 2921 flags |= RTF_GATEWAY; 2922 } 2923 if (mask == htonl(0xFFFFFFFF)) 2924 flags |= RTF_HOST; 2925 flags |= RTF_UP; 2926 return flags; 2927 } 2928 2929 /* 2930 * This outputs /proc/net/route. 2931 * The format of the file is not supposed to be changed 2932 * and needs to be same as fib_hash output to avoid breaking 2933 * legacy utilities 2934 */ 2935 static int fib_route_seq_show(struct seq_file *seq, void *v) 2936 { 2937 struct fib_route_iter *iter = seq->private; 2938 struct fib_table *tb = iter->main_tb; 2939 struct fib_alias *fa; 2940 struct key_vector *l = v; 2941 __be32 prefix; 2942 2943 if (v == SEQ_START_TOKEN) { 2944 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2945 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2946 "\tWindow\tIRTT"); 2947 return 0; 2948 } 2949 2950 prefix = htonl(l->key); 2951 2952 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2953 struct fib_info *fi = fa->fa_info; 2954 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2955 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2956 2957 if ((fa->fa_type == RTN_BROADCAST) || 2958 (fa->fa_type == RTN_MULTICAST)) 2959 continue; 2960 2961 if (fa->tb_id != tb->tb_id) 2962 continue; 2963 2964 seq_setwidth(seq, 127); 2965 2966 if (fi) { 2967 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2968 __be32 gw = 0; 2969 2970 if (nhc->nhc_gw_family == AF_INET) 2971 gw = nhc->nhc_gw.ipv4; 2972 2973 seq_printf(seq, 2974 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2975 "%d\t%08X\t%d\t%u\t%u", 2976 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2977 prefix, gw, flags, 0, 0, 2978 fi->fib_priority, 2979 mask, 2980 (fi->fib_advmss ? 2981 fi->fib_advmss + 40 : 0), 2982 fi->fib_window, 2983 fi->fib_rtt >> 3); 2984 } else { 2985 seq_printf(seq, 2986 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2987 "%d\t%08X\t%d\t%u\t%u", 2988 prefix, 0, flags, 0, 0, 0, 2989 mask, 0, 0, 0); 2990 } 2991 seq_pad(seq, '\n'); 2992 } 2993 2994 return 0; 2995 } 2996 2997 static const struct seq_operations fib_route_seq_ops = { 2998 .start = fib_route_seq_start, 2999 .next = fib_route_seq_next, 3000 .stop = fib_route_seq_stop, 3001 .show = fib_route_seq_show, 3002 }; 3003 3004 int __net_init fib_proc_init(struct net *net) 3005 { 3006 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 3007 sizeof(struct fib_trie_iter))) 3008 goto out1; 3009 3010 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 3011 fib_triestat_seq_show, NULL)) 3012 goto out2; 3013 3014 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 3015 sizeof(struct fib_route_iter))) 3016 goto out3; 3017 3018 return 0; 3019 3020 out3: 3021 remove_proc_entry("fib_triestat", net->proc_net); 3022 out2: 3023 remove_proc_entry("fib_trie", net->proc_net); 3024 out1: 3025 return -ENOMEM; 3026 } 3027 3028 void __net_exit fib_proc_exit(struct net *net) 3029 { 3030 remove_proc_entry("fib_trie", net->proc_net); 3031 remove_proc_entry("fib_triestat", net->proc_net); 3032 remove_proc_entry("route", net->proc_net); 3033 } 3034 3035 #endif /* CONFIG_PROC_FS */ 3036