xref: /linux/net/ipv4/fib_trie.c (revision 389cb1ecc86e6c6f210424017cf930a81ddfbf2d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/mm.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
67 #include <net/tcp.h>
68 #include <net/sock.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
73 
74 static int call_fib_entry_notifier(struct notifier_block *nb,
75 				   enum fib_event_type event_type, u32 dst,
76 				   int dst_len, struct fib_alias *fa,
77 				   struct netlink_ext_ack *extack)
78 {
79 	struct fib_entry_notifier_info info = {
80 		.info.extack = extack,
81 		.dst = dst,
82 		.dst_len = dst_len,
83 		.fi = fa->fa_info,
84 		.tos = fa->fa_tos,
85 		.type = fa->fa_type,
86 		.tb_id = fa->tb_id,
87 	};
88 	return call_fib4_notifier(nb, event_type, &info.info);
89 }
90 
91 static int call_fib_entry_notifiers(struct net *net,
92 				    enum fib_event_type event_type, u32 dst,
93 				    int dst_len, struct fib_alias *fa,
94 				    struct netlink_ext_ack *extack)
95 {
96 	struct fib_entry_notifier_info info = {
97 		.info.extack = extack,
98 		.dst = dst,
99 		.dst_len = dst_len,
100 		.fi = fa->fa_info,
101 		.tos = fa->fa_tos,
102 		.type = fa->fa_type,
103 		.tb_id = fa->tb_id,
104 	};
105 	return call_fib4_notifiers(net, event_type, &info.info);
106 }
107 
108 #define MAX_STAT_DEPTH 32
109 
110 #define KEYLENGTH	(8*sizeof(t_key))
111 #define KEY_MAX		((t_key)~0)
112 
113 typedef unsigned int t_key;
114 
115 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n)	((n)->bits)
117 #define IS_LEAF(n)	(!(n)->bits)
118 
119 struct key_vector {
120 	t_key key;
121 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned char slen;
124 	union {
125 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 		struct hlist_head leaf;
127 		/* This array is valid if (pos | bits) > 0 (TNODE) */
128 		struct key_vector __rcu *tnode[0];
129 	};
130 };
131 
132 struct tnode {
133 	struct rcu_head rcu;
134 	t_key empty_children;		/* KEYLENGTH bits needed */
135 	t_key full_children;		/* KEYLENGTH bits needed */
136 	struct key_vector __rcu *parent;
137 	struct key_vector kv[1];
138 #define tn_bits kv[0].bits
139 };
140 
141 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE	TNODE_SIZE(1)
143 
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats {
146 	unsigned int gets;
147 	unsigned int backtrack;
148 	unsigned int semantic_match_passed;
149 	unsigned int semantic_match_miss;
150 	unsigned int null_node_hit;
151 	unsigned int resize_node_skipped;
152 };
153 #endif
154 
155 struct trie_stat {
156 	unsigned int totdepth;
157 	unsigned int maxdepth;
158 	unsigned int tnodes;
159 	unsigned int leaves;
160 	unsigned int nullpointers;
161 	unsigned int prefixes;
162 	unsigned int nodesizes[MAX_STAT_DEPTH];
163 };
164 
165 struct trie {
166 	struct key_vector kv[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 	struct trie_use_stats __percpu *stats;
169 #endif
170 };
171 
172 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
173 static unsigned int tnode_free_size;
174 
175 /*
176  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177  * especially useful before resizing the root node with PREEMPT_NONE configs;
178  * the value was obtained experimentally, aiming to avoid visible slowdown.
179  */
180 unsigned int sysctl_fib_sync_mem = 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
183 
184 static struct kmem_cache *fn_alias_kmem __ro_after_init;
185 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
186 
187 static inline struct tnode *tn_info(struct key_vector *kv)
188 {
189 	return container_of(kv, struct tnode, kv[0]);
190 }
191 
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
195 
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
199 
200 /* wrapper for rcu_assign_pointer */
201 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
202 {
203 	if (n)
204 		rcu_assign_pointer(tn_info(n)->parent, tp);
205 }
206 
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
208 
209 /* This provides us with the number of children in this node, in the case of a
210  * leaf this will return 0 meaning none of the children are accessible.
211  */
212 static inline unsigned long child_length(const struct key_vector *tn)
213 {
214 	return (1ul << tn->bits) & ~(1ul);
215 }
216 
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
218 
219 static inline unsigned long get_index(t_key key, struct key_vector *kv)
220 {
221 	unsigned long index = key ^ kv->key;
222 
223 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
224 		return 0;
225 
226 	return index >> kv->pos;
227 }
228 
229 /* To understand this stuff, an understanding of keys and all their bits is
230  * necessary. Every node in the trie has a key associated with it, but not
231  * all of the bits in that key are significant.
232  *
233  * Consider a node 'n' and its parent 'tp'.
234  *
235  * If n is a leaf, every bit in its key is significant. Its presence is
236  * necessitated by path compression, since during a tree traversal (when
237  * searching for a leaf - unless we are doing an insertion) we will completely
238  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239  * a potentially successful search, that we have indeed been walking the
240  * correct key path.
241  *
242  * Note that we can never "miss" the correct key in the tree if present by
243  * following the wrong path. Path compression ensures that segments of the key
244  * that are the same for all keys with a given prefix are skipped, but the
245  * skipped part *is* identical for each node in the subtrie below the skipped
246  * bit! trie_insert() in this implementation takes care of that.
247  *
248  * if n is an internal node - a 'tnode' here, the various parts of its key
249  * have many different meanings.
250  *
251  * Example:
252  * _________________________________________________________________
253  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254  * -----------------------------------------------------------------
255  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
256  *
257  * _________________________________________________________________
258  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259  * -----------------------------------------------------------------
260  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
261  *
262  * tp->pos = 22
263  * tp->bits = 3
264  * n->pos = 13
265  * n->bits = 4
266  *
267  * First, let's just ignore the bits that come before the parent tp, that is
268  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269  * point we do not use them for anything.
270  *
271  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272  * index into the parent's child array. That is, they will be used to find
273  * 'n' among tp's children.
274  *
275  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
276  * for the node n.
277  *
278  * All the bits we have seen so far are significant to the node n. The rest
279  * of the bits are really not needed or indeed known in n->key.
280  *
281  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282  * n's child array, and will of course be different for each child.
283  *
284  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
285  * at this point.
286  */
287 
288 static const int halve_threshold = 25;
289 static const int inflate_threshold = 50;
290 static const int halve_threshold_root = 15;
291 static const int inflate_threshold_root = 30;
292 
293 static void __alias_free_mem(struct rcu_head *head)
294 {
295 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
296 	kmem_cache_free(fn_alias_kmem, fa);
297 }
298 
299 static inline void alias_free_mem_rcu(struct fib_alias *fa)
300 {
301 	call_rcu(&fa->rcu, __alias_free_mem);
302 }
303 
304 #define TNODE_VMALLOC_MAX \
305 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
306 
307 static void __node_free_rcu(struct rcu_head *head)
308 {
309 	struct tnode *n = container_of(head, struct tnode, rcu);
310 
311 	if (!n->tn_bits)
312 		kmem_cache_free(trie_leaf_kmem, n);
313 	else
314 		kvfree(n);
315 }
316 
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
318 
319 static struct tnode *tnode_alloc(int bits)
320 {
321 	size_t size;
322 
323 	/* verify bits is within bounds */
324 	if (bits > TNODE_VMALLOC_MAX)
325 		return NULL;
326 
327 	/* determine size and verify it is non-zero and didn't overflow */
328 	size = TNODE_SIZE(1ul << bits);
329 
330 	if (size <= PAGE_SIZE)
331 		return kzalloc(size, GFP_KERNEL);
332 	else
333 		return vzalloc(size);
334 }
335 
336 static inline void empty_child_inc(struct key_vector *n)
337 {
338 	tn_info(n)->empty_children++;
339 
340 	if (!tn_info(n)->empty_children)
341 		tn_info(n)->full_children++;
342 }
343 
344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 	if (!tn_info(n)->empty_children)
347 		tn_info(n)->full_children--;
348 
349 	tn_info(n)->empty_children--;
350 }
351 
352 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
353 {
354 	struct key_vector *l;
355 	struct tnode *kv;
356 
357 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
358 	if (!kv)
359 		return NULL;
360 
361 	/* initialize key vector */
362 	l = kv->kv;
363 	l->key = key;
364 	l->pos = 0;
365 	l->bits = 0;
366 	l->slen = fa->fa_slen;
367 
368 	/* link leaf to fib alias */
369 	INIT_HLIST_HEAD(&l->leaf);
370 	hlist_add_head(&fa->fa_list, &l->leaf);
371 
372 	return l;
373 }
374 
375 static struct key_vector *tnode_new(t_key key, int pos, int bits)
376 {
377 	unsigned int shift = pos + bits;
378 	struct key_vector *tn;
379 	struct tnode *tnode;
380 
381 	/* verify bits and pos their msb bits clear and values are valid */
382 	BUG_ON(!bits || (shift > KEYLENGTH));
383 
384 	tnode = tnode_alloc(bits);
385 	if (!tnode)
386 		return NULL;
387 
388 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
389 		 sizeof(struct key_vector *) << bits);
390 
391 	if (bits == KEYLENGTH)
392 		tnode->full_children = 1;
393 	else
394 		tnode->empty_children = 1ul << bits;
395 
396 	tn = tnode->kv;
397 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
398 	tn->pos = pos;
399 	tn->bits = bits;
400 	tn->slen = pos;
401 
402 	return tn;
403 }
404 
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406  * and no bits are skipped. See discussion in dyntree paper p. 6
407  */
408 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
409 {
410 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
411 }
412 
413 /* Add a child at position i overwriting the old value.
414  * Update the value of full_children and empty_children.
415  */
416 static void put_child(struct key_vector *tn, unsigned long i,
417 		      struct key_vector *n)
418 {
419 	struct key_vector *chi = get_child(tn, i);
420 	int isfull, wasfull;
421 
422 	BUG_ON(i >= child_length(tn));
423 
424 	/* update emptyChildren, overflow into fullChildren */
425 	if (!n && chi)
426 		empty_child_inc(tn);
427 	if (n && !chi)
428 		empty_child_dec(tn);
429 
430 	/* update fullChildren */
431 	wasfull = tnode_full(tn, chi);
432 	isfull = tnode_full(tn, n);
433 
434 	if (wasfull && !isfull)
435 		tn_info(tn)->full_children--;
436 	else if (!wasfull && isfull)
437 		tn_info(tn)->full_children++;
438 
439 	if (n && (tn->slen < n->slen))
440 		tn->slen = n->slen;
441 
442 	rcu_assign_pointer(tn->tnode[i], n);
443 }
444 
445 static void update_children(struct key_vector *tn)
446 {
447 	unsigned long i;
448 
449 	/* update all of the child parent pointers */
450 	for (i = child_length(tn); i;) {
451 		struct key_vector *inode = get_child(tn, --i);
452 
453 		if (!inode)
454 			continue;
455 
456 		/* Either update the children of a tnode that
457 		 * already belongs to us or update the child
458 		 * to point to ourselves.
459 		 */
460 		if (node_parent(inode) == tn)
461 			update_children(inode);
462 		else
463 			node_set_parent(inode, tn);
464 	}
465 }
466 
467 static inline void put_child_root(struct key_vector *tp, t_key key,
468 				  struct key_vector *n)
469 {
470 	if (IS_TRIE(tp))
471 		rcu_assign_pointer(tp->tnode[0], n);
472 	else
473 		put_child(tp, get_index(key, tp), n);
474 }
475 
476 static inline void tnode_free_init(struct key_vector *tn)
477 {
478 	tn_info(tn)->rcu.next = NULL;
479 }
480 
481 static inline void tnode_free_append(struct key_vector *tn,
482 				     struct key_vector *n)
483 {
484 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
485 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
486 }
487 
488 static void tnode_free(struct key_vector *tn)
489 {
490 	struct callback_head *head = &tn_info(tn)->rcu;
491 
492 	while (head) {
493 		head = head->next;
494 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
495 		node_free(tn);
496 
497 		tn = container_of(head, struct tnode, rcu)->kv;
498 	}
499 
500 	if (tnode_free_size >= sysctl_fib_sync_mem) {
501 		tnode_free_size = 0;
502 		synchronize_rcu();
503 	}
504 }
505 
506 static struct key_vector *replace(struct trie *t,
507 				  struct key_vector *oldtnode,
508 				  struct key_vector *tn)
509 {
510 	struct key_vector *tp = node_parent(oldtnode);
511 	unsigned long i;
512 
513 	/* setup the parent pointer out of and back into this node */
514 	NODE_INIT_PARENT(tn, tp);
515 	put_child_root(tp, tn->key, tn);
516 
517 	/* update all of the child parent pointers */
518 	update_children(tn);
519 
520 	/* all pointers should be clean so we are done */
521 	tnode_free(oldtnode);
522 
523 	/* resize children now that oldtnode is freed */
524 	for (i = child_length(tn); i;) {
525 		struct key_vector *inode = get_child(tn, --i);
526 
527 		/* resize child node */
528 		if (tnode_full(tn, inode))
529 			tn = resize(t, inode);
530 	}
531 
532 	return tp;
533 }
534 
535 static struct key_vector *inflate(struct trie *t,
536 				  struct key_vector *oldtnode)
537 {
538 	struct key_vector *tn;
539 	unsigned long i;
540 	t_key m;
541 
542 	pr_debug("In inflate\n");
543 
544 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
545 	if (!tn)
546 		goto notnode;
547 
548 	/* prepare oldtnode to be freed */
549 	tnode_free_init(oldtnode);
550 
551 	/* Assemble all of the pointers in our cluster, in this case that
552 	 * represents all of the pointers out of our allocated nodes that
553 	 * point to existing tnodes and the links between our allocated
554 	 * nodes.
555 	 */
556 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
557 		struct key_vector *inode = get_child(oldtnode, --i);
558 		struct key_vector *node0, *node1;
559 		unsigned long j, k;
560 
561 		/* An empty child */
562 		if (!inode)
563 			continue;
564 
565 		/* A leaf or an internal node with skipped bits */
566 		if (!tnode_full(oldtnode, inode)) {
567 			put_child(tn, get_index(inode->key, tn), inode);
568 			continue;
569 		}
570 
571 		/* drop the node in the old tnode free list */
572 		tnode_free_append(oldtnode, inode);
573 
574 		/* An internal node with two children */
575 		if (inode->bits == 1) {
576 			put_child(tn, 2 * i + 1, get_child(inode, 1));
577 			put_child(tn, 2 * i, get_child(inode, 0));
578 			continue;
579 		}
580 
581 		/* We will replace this node 'inode' with two new
582 		 * ones, 'node0' and 'node1', each with half of the
583 		 * original children. The two new nodes will have
584 		 * a position one bit further down the key and this
585 		 * means that the "significant" part of their keys
586 		 * (see the discussion near the top of this file)
587 		 * will differ by one bit, which will be "0" in
588 		 * node0's key and "1" in node1's key. Since we are
589 		 * moving the key position by one step, the bit that
590 		 * we are moving away from - the bit at position
591 		 * (tn->pos) - is the one that will differ between
592 		 * node0 and node1. So... we synthesize that bit in the
593 		 * two new keys.
594 		 */
595 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
596 		if (!node1)
597 			goto nomem;
598 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
599 
600 		tnode_free_append(tn, node1);
601 		if (!node0)
602 			goto nomem;
603 		tnode_free_append(tn, node0);
604 
605 		/* populate child pointers in new nodes */
606 		for (k = child_length(inode), j = k / 2; j;) {
607 			put_child(node1, --j, get_child(inode, --k));
608 			put_child(node0, j, get_child(inode, j));
609 			put_child(node1, --j, get_child(inode, --k));
610 			put_child(node0, j, get_child(inode, j));
611 		}
612 
613 		/* link new nodes to parent */
614 		NODE_INIT_PARENT(node1, tn);
615 		NODE_INIT_PARENT(node0, tn);
616 
617 		/* link parent to nodes */
618 		put_child(tn, 2 * i + 1, node1);
619 		put_child(tn, 2 * i, node0);
620 	}
621 
622 	/* setup the parent pointers into and out of this node */
623 	return replace(t, oldtnode, tn);
624 nomem:
625 	/* all pointers should be clean so we are done */
626 	tnode_free(tn);
627 notnode:
628 	return NULL;
629 }
630 
631 static struct key_vector *halve(struct trie *t,
632 				struct key_vector *oldtnode)
633 {
634 	struct key_vector *tn;
635 	unsigned long i;
636 
637 	pr_debug("In halve\n");
638 
639 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
640 	if (!tn)
641 		goto notnode;
642 
643 	/* prepare oldtnode to be freed */
644 	tnode_free_init(oldtnode);
645 
646 	/* Assemble all of the pointers in our cluster, in this case that
647 	 * represents all of the pointers out of our allocated nodes that
648 	 * point to existing tnodes and the links between our allocated
649 	 * nodes.
650 	 */
651 	for (i = child_length(oldtnode); i;) {
652 		struct key_vector *node1 = get_child(oldtnode, --i);
653 		struct key_vector *node0 = get_child(oldtnode, --i);
654 		struct key_vector *inode;
655 
656 		/* At least one of the children is empty */
657 		if (!node1 || !node0) {
658 			put_child(tn, i / 2, node1 ? : node0);
659 			continue;
660 		}
661 
662 		/* Two nonempty children */
663 		inode = tnode_new(node0->key, oldtnode->pos, 1);
664 		if (!inode)
665 			goto nomem;
666 		tnode_free_append(tn, inode);
667 
668 		/* initialize pointers out of node */
669 		put_child(inode, 1, node1);
670 		put_child(inode, 0, node0);
671 		NODE_INIT_PARENT(inode, tn);
672 
673 		/* link parent to node */
674 		put_child(tn, i / 2, inode);
675 	}
676 
677 	/* setup the parent pointers into and out of this node */
678 	return replace(t, oldtnode, tn);
679 nomem:
680 	/* all pointers should be clean so we are done */
681 	tnode_free(tn);
682 notnode:
683 	return NULL;
684 }
685 
686 static struct key_vector *collapse(struct trie *t,
687 				   struct key_vector *oldtnode)
688 {
689 	struct key_vector *n, *tp;
690 	unsigned long i;
691 
692 	/* scan the tnode looking for that one child that might still exist */
693 	for (n = NULL, i = child_length(oldtnode); !n && i;)
694 		n = get_child(oldtnode, --i);
695 
696 	/* compress one level */
697 	tp = node_parent(oldtnode);
698 	put_child_root(tp, oldtnode->key, n);
699 	node_set_parent(n, tp);
700 
701 	/* drop dead node */
702 	node_free(oldtnode);
703 
704 	return tp;
705 }
706 
707 static unsigned char update_suffix(struct key_vector *tn)
708 {
709 	unsigned char slen = tn->pos;
710 	unsigned long stride, i;
711 	unsigned char slen_max;
712 
713 	/* only vector 0 can have a suffix length greater than or equal to
714 	 * tn->pos + tn->bits, the second highest node will have a suffix
715 	 * length at most of tn->pos + tn->bits - 1
716 	 */
717 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
718 
719 	/* search though the list of children looking for nodes that might
720 	 * have a suffix greater than the one we currently have.  This is
721 	 * why we start with a stride of 2 since a stride of 1 would
722 	 * represent the nodes with suffix length equal to tn->pos
723 	 */
724 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
725 		struct key_vector *n = get_child(tn, i);
726 
727 		if (!n || (n->slen <= slen))
728 			continue;
729 
730 		/* update stride and slen based on new value */
731 		stride <<= (n->slen - slen);
732 		slen = n->slen;
733 		i &= ~(stride - 1);
734 
735 		/* stop searching if we have hit the maximum possible value */
736 		if (slen >= slen_max)
737 			break;
738 	}
739 
740 	tn->slen = slen;
741 
742 	return slen;
743 }
744 
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746  * the Helsinki University of Technology and Matti Tikkanen of Nokia
747  * Telecommunications, page 6:
748  * "A node is doubled if the ratio of non-empty children to all
749  * children in the *doubled* node is at least 'high'."
750  *
751  * 'high' in this instance is the variable 'inflate_threshold'. It
752  * is expressed as a percentage, so we multiply it with
753  * child_length() and instead of multiplying by 2 (since the
754  * child array will be doubled by inflate()) and multiplying
755  * the left-hand side by 100 (to handle the percentage thing) we
756  * multiply the left-hand side by 50.
757  *
758  * The left-hand side may look a bit weird: child_length(tn)
759  * - tn->empty_children is of course the number of non-null children
760  * in the current node. tn->full_children is the number of "full"
761  * children, that is non-null tnodes with a skip value of 0.
762  * All of those will be doubled in the resulting inflated tnode, so
763  * we just count them one extra time here.
764  *
765  * A clearer way to write this would be:
766  *
767  * to_be_doubled = tn->full_children;
768  * not_to_be_doubled = child_length(tn) - tn->empty_children -
769  *     tn->full_children;
770  *
771  * new_child_length = child_length(tn) * 2;
772  *
773  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
774  *      new_child_length;
775  * if (new_fill_factor >= inflate_threshold)
776  *
777  * ...and so on, tho it would mess up the while () loop.
778  *
779  * anyway,
780  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
781  *      inflate_threshold
782  *
783  * avoid a division:
784  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785  *      inflate_threshold * new_child_length
786  *
787  * expand not_to_be_doubled and to_be_doubled, and shorten:
788  * 100 * (child_length(tn) - tn->empty_children +
789  *    tn->full_children) >= inflate_threshold * new_child_length
790  *
791  * expand new_child_length:
792  * 100 * (child_length(tn) - tn->empty_children +
793  *    tn->full_children) >=
794  *      inflate_threshold * child_length(tn) * 2
795  *
796  * shorten again:
797  * 50 * (tn->full_children + child_length(tn) -
798  *    tn->empty_children) >= inflate_threshold *
799  *    child_length(tn)
800  *
801  */
802 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
803 {
804 	unsigned long used = child_length(tn);
805 	unsigned long threshold = used;
806 
807 	/* Keep root node larger */
808 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
809 	used -= tn_info(tn)->empty_children;
810 	used += tn_info(tn)->full_children;
811 
812 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
813 
814 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
815 }
816 
817 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
818 {
819 	unsigned long used = child_length(tn);
820 	unsigned long threshold = used;
821 
822 	/* Keep root node larger */
823 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
824 	used -= tn_info(tn)->empty_children;
825 
826 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
827 
828 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
829 }
830 
831 static inline bool should_collapse(struct key_vector *tn)
832 {
833 	unsigned long used = child_length(tn);
834 
835 	used -= tn_info(tn)->empty_children;
836 
837 	/* account for bits == KEYLENGTH case */
838 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
839 		used -= KEY_MAX;
840 
841 	/* One child or none, time to drop us from the trie */
842 	return used < 2;
843 }
844 
845 #define MAX_WORK 10
846 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
847 {
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 	struct trie_use_stats __percpu *stats = t->stats;
850 #endif
851 	struct key_vector *tp = node_parent(tn);
852 	unsigned long cindex = get_index(tn->key, tp);
853 	int max_work = MAX_WORK;
854 
855 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 		 tn, inflate_threshold, halve_threshold);
857 
858 	/* track the tnode via the pointer from the parent instead of
859 	 * doing it ourselves.  This way we can let RCU fully do its
860 	 * thing without us interfering
861 	 */
862 	BUG_ON(tn != get_child(tp, cindex));
863 
864 	/* Double as long as the resulting node has a number of
865 	 * nonempty nodes that are above the threshold.
866 	 */
867 	while (should_inflate(tp, tn) && max_work) {
868 		tp = inflate(t, tn);
869 		if (!tp) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 			this_cpu_inc(stats->resize_node_skipped);
872 #endif
873 			break;
874 		}
875 
876 		max_work--;
877 		tn = get_child(tp, cindex);
878 	}
879 
880 	/* update parent in case inflate failed */
881 	tp = node_parent(tn);
882 
883 	/* Return if at least one inflate is run */
884 	if (max_work != MAX_WORK)
885 		return tp;
886 
887 	/* Halve as long as the number of empty children in this
888 	 * node is above threshold.
889 	 */
890 	while (should_halve(tp, tn) && max_work) {
891 		tp = halve(t, tn);
892 		if (!tp) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 			this_cpu_inc(stats->resize_node_skipped);
895 #endif
896 			break;
897 		}
898 
899 		max_work--;
900 		tn = get_child(tp, cindex);
901 	}
902 
903 	/* Only one child remains */
904 	if (should_collapse(tn))
905 		return collapse(t, tn);
906 
907 	/* update parent in case halve failed */
908 	return node_parent(tn);
909 }
910 
911 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
912 {
913 	unsigned char node_slen = tn->slen;
914 
915 	while ((node_slen > tn->pos) && (node_slen > slen)) {
916 		slen = update_suffix(tn);
917 		if (node_slen == slen)
918 			break;
919 
920 		tn = node_parent(tn);
921 		node_slen = tn->slen;
922 	}
923 }
924 
925 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
926 {
927 	while (tn->slen < slen) {
928 		tn->slen = slen;
929 		tn = node_parent(tn);
930 	}
931 }
932 
933 /* rcu_read_lock needs to be hold by caller from readside */
934 static struct key_vector *fib_find_node(struct trie *t,
935 					struct key_vector **tp, u32 key)
936 {
937 	struct key_vector *pn, *n = t->kv;
938 	unsigned long index = 0;
939 
940 	do {
941 		pn = n;
942 		n = get_child_rcu(n, index);
943 
944 		if (!n)
945 			break;
946 
947 		index = get_cindex(key, n);
948 
949 		/* This bit of code is a bit tricky but it combines multiple
950 		 * checks into a single check.  The prefix consists of the
951 		 * prefix plus zeros for the bits in the cindex. The index
952 		 * is the difference between the key and this value.  From
953 		 * this we can actually derive several pieces of data.
954 		 *   if (index >= (1ul << bits))
955 		 *     we have a mismatch in skip bits and failed
956 		 *   else
957 		 *     we know the value is cindex
958 		 *
959 		 * This check is safe even if bits == KEYLENGTH due to the
960 		 * fact that we can only allocate a node with 32 bits if a
961 		 * long is greater than 32 bits.
962 		 */
963 		if (index >= (1ul << n->bits)) {
964 			n = NULL;
965 			break;
966 		}
967 
968 		/* keep searching until we find a perfect match leaf or NULL */
969 	} while (IS_TNODE(n));
970 
971 	*tp = pn;
972 
973 	return n;
974 }
975 
976 /* Return the first fib alias matching TOS with
977  * priority less than or equal to PRIO.
978  * If 'find_first' is set, return the first matching
979  * fib alias, regardless of TOS and priority.
980  */
981 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
982 					u8 tos, u32 prio, u32 tb_id,
983 					bool find_first)
984 {
985 	struct fib_alias *fa;
986 
987 	if (!fah)
988 		return NULL;
989 
990 	hlist_for_each_entry(fa, fah, fa_list) {
991 		if (fa->fa_slen < slen)
992 			continue;
993 		if (fa->fa_slen != slen)
994 			break;
995 		if (fa->tb_id > tb_id)
996 			continue;
997 		if (fa->tb_id != tb_id)
998 			break;
999 		if (find_first)
1000 			return fa;
1001 		if (fa->fa_tos > tos)
1002 			continue;
1003 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 			return fa;
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 static struct fib_alias *
1011 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1012 {
1013 	u8 slen = KEYLENGTH - fri->dst_len;
1014 	struct key_vector *l, *tp;
1015 	struct fib_table *tb;
1016 	struct fib_alias *fa;
1017 	struct trie *t;
1018 
1019 	tb = fib_get_table(net, fri->tb_id);
1020 	if (!tb)
1021 		return NULL;
1022 
1023 	t = (struct trie *)tb->tb_data;
1024 	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1025 	if (!l)
1026 		return NULL;
1027 
1028 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1029 		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1030 		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1031 		    fa->fa_type == fri->type)
1032 			return fa;
1033 	}
1034 
1035 	return NULL;
1036 }
1037 
1038 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1039 {
1040 	struct fib_alias *fa_match;
1041 	struct sk_buff *skb;
1042 	int err;
1043 
1044 	rcu_read_lock();
1045 
1046 	fa_match = fib_find_matching_alias(net, fri);
1047 	if (!fa_match)
1048 		goto out;
1049 
1050 	if (fa_match->offload == fri->offload && fa_match->trap == fri->trap)
1051 		goto out;
1052 
1053 	fa_match->offload = fri->offload;
1054 	fa_match->trap = fri->trap;
1055 
1056 	if (!net->ipv4.sysctl_fib_notify_on_flag_change)
1057 		goto out;
1058 
1059 	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1060 	if (!skb) {
1061 		err = -ENOBUFS;
1062 		goto errout;
1063 	}
1064 
1065 	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1066 	if (err < 0) {
1067 		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1068 		WARN_ON(err == -EMSGSIZE);
1069 		kfree_skb(skb);
1070 		goto errout;
1071 	}
1072 
1073 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1074 	goto out;
1075 
1076 errout:
1077 	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1078 out:
1079 	rcu_read_unlock();
1080 }
1081 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1082 
1083 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1084 {
1085 	while (!IS_TRIE(tn))
1086 		tn = resize(t, tn);
1087 }
1088 
1089 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1090 			   struct fib_alias *new, t_key key)
1091 {
1092 	struct key_vector *n, *l;
1093 
1094 	l = leaf_new(key, new);
1095 	if (!l)
1096 		goto noleaf;
1097 
1098 	/* retrieve child from parent node */
1099 	n = get_child(tp, get_index(key, tp));
1100 
1101 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1102 	 *
1103 	 *  Add a new tnode here
1104 	 *  first tnode need some special handling
1105 	 *  leaves us in position for handling as case 3
1106 	 */
1107 	if (n) {
1108 		struct key_vector *tn;
1109 
1110 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1111 		if (!tn)
1112 			goto notnode;
1113 
1114 		/* initialize routes out of node */
1115 		NODE_INIT_PARENT(tn, tp);
1116 		put_child(tn, get_index(key, tn) ^ 1, n);
1117 
1118 		/* start adding routes into the node */
1119 		put_child_root(tp, key, tn);
1120 		node_set_parent(n, tn);
1121 
1122 		/* parent now has a NULL spot where the leaf can go */
1123 		tp = tn;
1124 	}
1125 
1126 	/* Case 3: n is NULL, and will just insert a new leaf */
1127 	node_push_suffix(tp, new->fa_slen);
1128 	NODE_INIT_PARENT(l, tp);
1129 	put_child_root(tp, key, l);
1130 	trie_rebalance(t, tp);
1131 
1132 	return 0;
1133 notnode:
1134 	node_free(l);
1135 noleaf:
1136 	return -ENOMEM;
1137 }
1138 
1139 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1140 			    struct key_vector *l, struct fib_alias *new,
1141 			    struct fib_alias *fa, t_key key)
1142 {
1143 	if (!l)
1144 		return fib_insert_node(t, tp, new, key);
1145 
1146 	if (fa) {
1147 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1148 	} else {
1149 		struct fib_alias *last;
1150 
1151 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1152 			if (new->fa_slen < last->fa_slen)
1153 				break;
1154 			if ((new->fa_slen == last->fa_slen) &&
1155 			    (new->tb_id > last->tb_id))
1156 				break;
1157 			fa = last;
1158 		}
1159 
1160 		if (fa)
1161 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1162 		else
1163 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1164 	}
1165 
1166 	/* if we added to the tail node then we need to update slen */
1167 	if (l->slen < new->fa_slen) {
1168 		l->slen = new->fa_slen;
1169 		node_push_suffix(tp, new->fa_slen);
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1176 {
1177 	if (plen > KEYLENGTH) {
1178 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1179 		return false;
1180 	}
1181 
1182 	if ((plen < KEYLENGTH) && (key << plen)) {
1183 		NL_SET_ERR_MSG(extack,
1184 			       "Invalid prefix for given prefix length");
1185 		return false;
1186 	}
1187 
1188 	return true;
1189 }
1190 
1191 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1192 			     struct key_vector *l, struct fib_alias *old);
1193 
1194 /* Caller must hold RTNL. */
1195 int fib_table_insert(struct net *net, struct fib_table *tb,
1196 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1197 {
1198 	struct trie *t = (struct trie *)tb->tb_data;
1199 	struct fib_alias *fa, *new_fa;
1200 	struct key_vector *l, *tp;
1201 	u16 nlflags = NLM_F_EXCL;
1202 	struct fib_info *fi;
1203 	u8 plen = cfg->fc_dst_len;
1204 	u8 slen = KEYLENGTH - plen;
1205 	u8 tos = cfg->fc_tos;
1206 	u32 key;
1207 	int err;
1208 
1209 	key = ntohl(cfg->fc_dst);
1210 
1211 	if (!fib_valid_key_len(key, plen, extack))
1212 		return -EINVAL;
1213 
1214 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1215 
1216 	fi = fib_create_info(cfg, extack);
1217 	if (IS_ERR(fi)) {
1218 		err = PTR_ERR(fi);
1219 		goto err;
1220 	}
1221 
1222 	l = fib_find_node(t, &tp, key);
1223 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1224 				tb->tb_id, false) : NULL;
1225 
1226 	/* Now fa, if non-NULL, points to the first fib alias
1227 	 * with the same keys [prefix,tos,priority], if such key already
1228 	 * exists or to the node before which we will insert new one.
1229 	 *
1230 	 * If fa is NULL, we will need to allocate a new one and
1231 	 * insert to the tail of the section matching the suffix length
1232 	 * of the new alias.
1233 	 */
1234 
1235 	if (fa && fa->fa_tos == tos &&
1236 	    fa->fa_info->fib_priority == fi->fib_priority) {
1237 		struct fib_alias *fa_first, *fa_match;
1238 
1239 		err = -EEXIST;
1240 		if (cfg->fc_nlflags & NLM_F_EXCL)
1241 			goto out;
1242 
1243 		nlflags &= ~NLM_F_EXCL;
1244 
1245 		/* We have 2 goals:
1246 		 * 1. Find exact match for type, scope, fib_info to avoid
1247 		 * duplicate routes
1248 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1249 		 */
1250 		fa_match = NULL;
1251 		fa_first = fa;
1252 		hlist_for_each_entry_from(fa, fa_list) {
1253 			if ((fa->fa_slen != slen) ||
1254 			    (fa->tb_id != tb->tb_id) ||
1255 			    (fa->fa_tos != tos))
1256 				break;
1257 			if (fa->fa_info->fib_priority != fi->fib_priority)
1258 				break;
1259 			if (fa->fa_type == cfg->fc_type &&
1260 			    fa->fa_info == fi) {
1261 				fa_match = fa;
1262 				break;
1263 			}
1264 		}
1265 
1266 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1267 			struct fib_info *fi_drop;
1268 			u8 state;
1269 
1270 			nlflags |= NLM_F_REPLACE;
1271 			fa = fa_first;
1272 			if (fa_match) {
1273 				if (fa == fa_match)
1274 					err = 0;
1275 				goto out;
1276 			}
1277 			err = -ENOBUFS;
1278 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1279 			if (!new_fa)
1280 				goto out;
1281 
1282 			fi_drop = fa->fa_info;
1283 			new_fa->fa_tos = fa->fa_tos;
1284 			new_fa->fa_info = fi;
1285 			new_fa->fa_type = cfg->fc_type;
1286 			state = fa->fa_state;
1287 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1288 			new_fa->fa_slen = fa->fa_slen;
1289 			new_fa->tb_id = tb->tb_id;
1290 			new_fa->fa_default = -1;
1291 			new_fa->offload = 0;
1292 			new_fa->trap = 0;
1293 
1294 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1295 
1296 			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1297 					   tb->tb_id, true) == new_fa) {
1298 				enum fib_event_type fib_event;
1299 
1300 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1301 				err = call_fib_entry_notifiers(net, fib_event,
1302 							       key, plen,
1303 							       new_fa, extack);
1304 				if (err) {
1305 					hlist_replace_rcu(&new_fa->fa_list,
1306 							  &fa->fa_list);
1307 					goto out_free_new_fa;
1308 				}
1309 			}
1310 
1311 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1312 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1313 
1314 			alias_free_mem_rcu(fa);
1315 
1316 			fib_release_info(fi_drop);
1317 			if (state & FA_S_ACCESSED)
1318 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1319 
1320 			goto succeeded;
1321 		}
1322 		/* Error if we find a perfect match which
1323 		 * uses the same scope, type, and nexthop
1324 		 * information.
1325 		 */
1326 		if (fa_match)
1327 			goto out;
1328 
1329 		if (cfg->fc_nlflags & NLM_F_APPEND)
1330 			nlflags |= NLM_F_APPEND;
1331 		else
1332 			fa = fa_first;
1333 	}
1334 	err = -ENOENT;
1335 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1336 		goto out;
1337 
1338 	nlflags |= NLM_F_CREATE;
1339 	err = -ENOBUFS;
1340 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1341 	if (!new_fa)
1342 		goto out;
1343 
1344 	new_fa->fa_info = fi;
1345 	new_fa->fa_tos = tos;
1346 	new_fa->fa_type = cfg->fc_type;
1347 	new_fa->fa_state = 0;
1348 	new_fa->fa_slen = slen;
1349 	new_fa->tb_id = tb->tb_id;
1350 	new_fa->fa_default = -1;
1351 	new_fa->offload = 0;
1352 	new_fa->trap = 0;
1353 
1354 	/* Insert new entry to the list. */
1355 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1356 	if (err)
1357 		goto out_free_new_fa;
1358 
1359 	/* The alias was already inserted, so the node must exist. */
1360 	l = l ? l : fib_find_node(t, &tp, key);
1361 	if (WARN_ON_ONCE(!l))
1362 		goto out_free_new_fa;
1363 
1364 	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1365 	    new_fa) {
1366 		enum fib_event_type fib_event;
1367 
1368 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1369 		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1370 					       new_fa, extack);
1371 		if (err)
1372 			goto out_remove_new_fa;
1373 	}
1374 
1375 	if (!plen)
1376 		tb->tb_num_default++;
1377 
1378 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1379 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1380 		  &cfg->fc_nlinfo, nlflags);
1381 succeeded:
1382 	return 0;
1383 
1384 out_remove_new_fa:
1385 	fib_remove_alias(t, tp, l, new_fa);
1386 out_free_new_fa:
1387 	kmem_cache_free(fn_alias_kmem, new_fa);
1388 out:
1389 	fib_release_info(fi);
1390 err:
1391 	return err;
1392 }
1393 
1394 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1395 {
1396 	t_key prefix = n->key;
1397 
1398 	return (key ^ prefix) & (prefix | -prefix);
1399 }
1400 
1401 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1402 			 const struct flowi4 *flp)
1403 {
1404 	if (nhc->nhc_flags & RTNH_F_DEAD)
1405 		return false;
1406 
1407 	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1408 	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1409 	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1410 		return false;
1411 
1412 	if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1413 		if (flp->flowi4_oif &&
1414 		    flp->flowi4_oif != nhc->nhc_oif)
1415 			return false;
1416 	}
1417 
1418 	return true;
1419 }
1420 
1421 /* should be called with rcu_read_lock */
1422 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1423 		     struct fib_result *res, int fib_flags)
1424 {
1425 	struct trie *t = (struct trie *) tb->tb_data;
1426 #ifdef CONFIG_IP_FIB_TRIE_STATS
1427 	struct trie_use_stats __percpu *stats = t->stats;
1428 #endif
1429 	const t_key key = ntohl(flp->daddr);
1430 	struct key_vector *n, *pn;
1431 	struct fib_alias *fa;
1432 	unsigned long index;
1433 	t_key cindex;
1434 
1435 	pn = t->kv;
1436 	cindex = 0;
1437 
1438 	n = get_child_rcu(pn, cindex);
1439 	if (!n) {
1440 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1441 		return -EAGAIN;
1442 	}
1443 
1444 #ifdef CONFIG_IP_FIB_TRIE_STATS
1445 	this_cpu_inc(stats->gets);
1446 #endif
1447 
1448 	/* Step 1: Travel to the longest prefix match in the trie */
1449 	for (;;) {
1450 		index = get_cindex(key, n);
1451 
1452 		/* This bit of code is a bit tricky but it combines multiple
1453 		 * checks into a single check.  The prefix consists of the
1454 		 * prefix plus zeros for the "bits" in the prefix. The index
1455 		 * is the difference between the key and this value.  From
1456 		 * this we can actually derive several pieces of data.
1457 		 *   if (index >= (1ul << bits))
1458 		 *     we have a mismatch in skip bits and failed
1459 		 *   else
1460 		 *     we know the value is cindex
1461 		 *
1462 		 * This check is safe even if bits == KEYLENGTH due to the
1463 		 * fact that we can only allocate a node with 32 bits if a
1464 		 * long is greater than 32 bits.
1465 		 */
1466 		if (index >= (1ul << n->bits))
1467 			break;
1468 
1469 		/* we have found a leaf. Prefixes have already been compared */
1470 		if (IS_LEAF(n))
1471 			goto found;
1472 
1473 		/* only record pn and cindex if we are going to be chopping
1474 		 * bits later.  Otherwise we are just wasting cycles.
1475 		 */
1476 		if (n->slen > n->pos) {
1477 			pn = n;
1478 			cindex = index;
1479 		}
1480 
1481 		n = get_child_rcu(n, index);
1482 		if (unlikely(!n))
1483 			goto backtrace;
1484 	}
1485 
1486 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1487 	for (;;) {
1488 		/* record the pointer where our next node pointer is stored */
1489 		struct key_vector __rcu **cptr = n->tnode;
1490 
1491 		/* This test verifies that none of the bits that differ
1492 		 * between the key and the prefix exist in the region of
1493 		 * the lsb and higher in the prefix.
1494 		 */
1495 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1496 			goto backtrace;
1497 
1498 		/* exit out and process leaf */
1499 		if (unlikely(IS_LEAF(n)))
1500 			break;
1501 
1502 		/* Don't bother recording parent info.  Since we are in
1503 		 * prefix match mode we will have to come back to wherever
1504 		 * we started this traversal anyway
1505 		 */
1506 
1507 		while ((n = rcu_dereference(*cptr)) == NULL) {
1508 backtrace:
1509 #ifdef CONFIG_IP_FIB_TRIE_STATS
1510 			if (!n)
1511 				this_cpu_inc(stats->null_node_hit);
1512 #endif
1513 			/* If we are at cindex 0 there are no more bits for
1514 			 * us to strip at this level so we must ascend back
1515 			 * up one level to see if there are any more bits to
1516 			 * be stripped there.
1517 			 */
1518 			while (!cindex) {
1519 				t_key pkey = pn->key;
1520 
1521 				/* If we don't have a parent then there is
1522 				 * nothing for us to do as we do not have any
1523 				 * further nodes to parse.
1524 				 */
1525 				if (IS_TRIE(pn)) {
1526 					trace_fib_table_lookup(tb->tb_id, flp,
1527 							       NULL, -EAGAIN);
1528 					return -EAGAIN;
1529 				}
1530 #ifdef CONFIG_IP_FIB_TRIE_STATS
1531 				this_cpu_inc(stats->backtrack);
1532 #endif
1533 				/* Get Child's index */
1534 				pn = node_parent_rcu(pn);
1535 				cindex = get_index(pkey, pn);
1536 			}
1537 
1538 			/* strip the least significant bit from the cindex */
1539 			cindex &= cindex - 1;
1540 
1541 			/* grab pointer for next child node */
1542 			cptr = &pn->tnode[cindex];
1543 		}
1544 	}
1545 
1546 found:
1547 	/* this line carries forward the xor from earlier in the function */
1548 	index = key ^ n->key;
1549 
1550 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1551 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1552 		struct fib_info *fi = fa->fa_info;
1553 		struct fib_nh_common *nhc;
1554 		int nhsel, err;
1555 
1556 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1557 			if (index >= (1ul << fa->fa_slen))
1558 				continue;
1559 		}
1560 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1561 			continue;
1562 		if (fi->fib_dead)
1563 			continue;
1564 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1565 			continue;
1566 		fib_alias_accessed(fa);
1567 		err = fib_props[fa->fa_type].error;
1568 		if (unlikely(err < 0)) {
1569 out_reject:
1570 #ifdef CONFIG_IP_FIB_TRIE_STATS
1571 			this_cpu_inc(stats->semantic_match_passed);
1572 #endif
1573 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1574 			return err;
1575 		}
1576 		if (fi->fib_flags & RTNH_F_DEAD)
1577 			continue;
1578 
1579 		if (unlikely(fi->nh)) {
1580 			if (nexthop_is_blackhole(fi->nh)) {
1581 				err = fib_props[RTN_BLACKHOLE].error;
1582 				goto out_reject;
1583 			}
1584 
1585 			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1586 						     &nhsel);
1587 			if (nhc)
1588 				goto set_result;
1589 			goto miss;
1590 		}
1591 
1592 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1593 			nhc = fib_info_nhc(fi, nhsel);
1594 
1595 			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1596 				continue;
1597 set_result:
1598 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1599 				refcount_inc(&fi->fib_clntref);
1600 
1601 			res->prefix = htonl(n->key);
1602 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1603 			res->nh_sel = nhsel;
1604 			res->nhc = nhc;
1605 			res->type = fa->fa_type;
1606 			res->scope = fi->fib_scope;
1607 			res->fi = fi;
1608 			res->table = tb;
1609 			res->fa_head = &n->leaf;
1610 #ifdef CONFIG_IP_FIB_TRIE_STATS
1611 			this_cpu_inc(stats->semantic_match_passed);
1612 #endif
1613 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1614 
1615 			return err;
1616 		}
1617 	}
1618 miss:
1619 #ifdef CONFIG_IP_FIB_TRIE_STATS
1620 	this_cpu_inc(stats->semantic_match_miss);
1621 #endif
1622 	goto backtrace;
1623 }
1624 EXPORT_SYMBOL_GPL(fib_table_lookup);
1625 
1626 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1627 			     struct key_vector *l, struct fib_alias *old)
1628 {
1629 	/* record the location of the previous list_info entry */
1630 	struct hlist_node **pprev = old->fa_list.pprev;
1631 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1632 
1633 	/* remove the fib_alias from the list */
1634 	hlist_del_rcu(&old->fa_list);
1635 
1636 	/* if we emptied the list this leaf will be freed and we can sort
1637 	 * out parent suffix lengths as a part of trie_rebalance
1638 	 */
1639 	if (hlist_empty(&l->leaf)) {
1640 		if (tp->slen == l->slen)
1641 			node_pull_suffix(tp, tp->pos);
1642 		put_child_root(tp, l->key, NULL);
1643 		node_free(l);
1644 		trie_rebalance(t, tp);
1645 		return;
1646 	}
1647 
1648 	/* only access fa if it is pointing at the last valid hlist_node */
1649 	if (*pprev)
1650 		return;
1651 
1652 	/* update the trie with the latest suffix length */
1653 	l->slen = fa->fa_slen;
1654 	node_pull_suffix(tp, fa->fa_slen);
1655 }
1656 
1657 static void fib_notify_alias_delete(struct net *net, u32 key,
1658 				    struct hlist_head *fah,
1659 				    struct fib_alias *fa_to_delete,
1660 				    struct netlink_ext_ack *extack)
1661 {
1662 	struct fib_alias *fa_next, *fa_to_notify;
1663 	u32 tb_id = fa_to_delete->tb_id;
1664 	u8 slen = fa_to_delete->fa_slen;
1665 	enum fib_event_type fib_event;
1666 
1667 	/* Do not notify if we do not care about the route. */
1668 	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1669 		return;
1670 
1671 	/* Determine if the route should be replaced by the next route in the
1672 	 * list.
1673 	 */
1674 	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1675 				   struct fib_alias, fa_list);
1676 	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1677 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1678 		fa_to_notify = fa_next;
1679 	} else {
1680 		fib_event = FIB_EVENT_ENTRY_DEL;
1681 		fa_to_notify = fa_to_delete;
1682 	}
1683 	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1684 				 fa_to_notify, extack);
1685 }
1686 
1687 /* Caller must hold RTNL. */
1688 int fib_table_delete(struct net *net, struct fib_table *tb,
1689 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1690 {
1691 	struct trie *t = (struct trie *) tb->tb_data;
1692 	struct fib_alias *fa, *fa_to_delete;
1693 	struct key_vector *l, *tp;
1694 	u8 plen = cfg->fc_dst_len;
1695 	u8 slen = KEYLENGTH - plen;
1696 	u8 tos = cfg->fc_tos;
1697 	u32 key;
1698 
1699 	key = ntohl(cfg->fc_dst);
1700 
1701 	if (!fib_valid_key_len(key, plen, extack))
1702 		return -EINVAL;
1703 
1704 	l = fib_find_node(t, &tp, key);
1705 	if (!l)
1706 		return -ESRCH;
1707 
1708 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1709 	if (!fa)
1710 		return -ESRCH;
1711 
1712 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1713 
1714 	fa_to_delete = NULL;
1715 	hlist_for_each_entry_from(fa, fa_list) {
1716 		struct fib_info *fi = fa->fa_info;
1717 
1718 		if ((fa->fa_slen != slen) ||
1719 		    (fa->tb_id != tb->tb_id) ||
1720 		    (fa->fa_tos != tos))
1721 			break;
1722 
1723 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1724 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1725 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1726 		    (!cfg->fc_prefsrc ||
1727 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1728 		    (!cfg->fc_protocol ||
1729 		     fi->fib_protocol == cfg->fc_protocol) &&
1730 		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1731 		    fib_metrics_match(cfg, fi)) {
1732 			fa_to_delete = fa;
1733 			break;
1734 		}
1735 	}
1736 
1737 	if (!fa_to_delete)
1738 		return -ESRCH;
1739 
1740 	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1741 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1742 		  &cfg->fc_nlinfo, 0);
1743 
1744 	if (!plen)
1745 		tb->tb_num_default--;
1746 
1747 	fib_remove_alias(t, tp, l, fa_to_delete);
1748 
1749 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1750 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1751 
1752 	fib_release_info(fa_to_delete->fa_info);
1753 	alias_free_mem_rcu(fa_to_delete);
1754 	return 0;
1755 }
1756 
1757 /* Scan for the next leaf starting at the provided key value */
1758 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1759 {
1760 	struct key_vector *pn, *n = *tn;
1761 	unsigned long cindex;
1762 
1763 	/* this loop is meant to try and find the key in the trie */
1764 	do {
1765 		/* record parent and next child index */
1766 		pn = n;
1767 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1768 
1769 		if (cindex >> pn->bits)
1770 			break;
1771 
1772 		/* descend into the next child */
1773 		n = get_child_rcu(pn, cindex++);
1774 		if (!n)
1775 			break;
1776 
1777 		/* guarantee forward progress on the keys */
1778 		if (IS_LEAF(n) && (n->key >= key))
1779 			goto found;
1780 	} while (IS_TNODE(n));
1781 
1782 	/* this loop will search for the next leaf with a greater key */
1783 	while (!IS_TRIE(pn)) {
1784 		/* if we exhausted the parent node we will need to climb */
1785 		if (cindex >= (1ul << pn->bits)) {
1786 			t_key pkey = pn->key;
1787 
1788 			pn = node_parent_rcu(pn);
1789 			cindex = get_index(pkey, pn) + 1;
1790 			continue;
1791 		}
1792 
1793 		/* grab the next available node */
1794 		n = get_child_rcu(pn, cindex++);
1795 		if (!n)
1796 			continue;
1797 
1798 		/* no need to compare keys since we bumped the index */
1799 		if (IS_LEAF(n))
1800 			goto found;
1801 
1802 		/* Rescan start scanning in new node */
1803 		pn = n;
1804 		cindex = 0;
1805 	}
1806 
1807 	*tn = pn;
1808 	return NULL; /* Root of trie */
1809 found:
1810 	/* if we are at the limit for keys just return NULL for the tnode */
1811 	*tn = pn;
1812 	return n;
1813 }
1814 
1815 static void fib_trie_free(struct fib_table *tb)
1816 {
1817 	struct trie *t = (struct trie *)tb->tb_data;
1818 	struct key_vector *pn = t->kv;
1819 	unsigned long cindex = 1;
1820 	struct hlist_node *tmp;
1821 	struct fib_alias *fa;
1822 
1823 	/* walk trie in reverse order and free everything */
1824 	for (;;) {
1825 		struct key_vector *n;
1826 
1827 		if (!(cindex--)) {
1828 			t_key pkey = pn->key;
1829 
1830 			if (IS_TRIE(pn))
1831 				break;
1832 
1833 			n = pn;
1834 			pn = node_parent(pn);
1835 
1836 			/* drop emptied tnode */
1837 			put_child_root(pn, n->key, NULL);
1838 			node_free(n);
1839 
1840 			cindex = get_index(pkey, pn);
1841 
1842 			continue;
1843 		}
1844 
1845 		/* grab the next available node */
1846 		n = get_child(pn, cindex);
1847 		if (!n)
1848 			continue;
1849 
1850 		if (IS_TNODE(n)) {
1851 			/* record pn and cindex for leaf walking */
1852 			pn = n;
1853 			cindex = 1ul << n->bits;
1854 
1855 			continue;
1856 		}
1857 
1858 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1859 			hlist_del_rcu(&fa->fa_list);
1860 			alias_free_mem_rcu(fa);
1861 		}
1862 
1863 		put_child_root(pn, n->key, NULL);
1864 		node_free(n);
1865 	}
1866 
1867 #ifdef CONFIG_IP_FIB_TRIE_STATS
1868 	free_percpu(t->stats);
1869 #endif
1870 	kfree(tb);
1871 }
1872 
1873 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1874 {
1875 	struct trie *ot = (struct trie *)oldtb->tb_data;
1876 	struct key_vector *l, *tp = ot->kv;
1877 	struct fib_table *local_tb;
1878 	struct fib_alias *fa;
1879 	struct trie *lt;
1880 	t_key key = 0;
1881 
1882 	if (oldtb->tb_data == oldtb->__data)
1883 		return oldtb;
1884 
1885 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1886 	if (!local_tb)
1887 		return NULL;
1888 
1889 	lt = (struct trie *)local_tb->tb_data;
1890 
1891 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1892 		struct key_vector *local_l = NULL, *local_tp;
1893 
1894 		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1895 			struct fib_alias *new_fa;
1896 
1897 			if (local_tb->tb_id != fa->tb_id)
1898 				continue;
1899 
1900 			/* clone fa for new local table */
1901 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1902 			if (!new_fa)
1903 				goto out;
1904 
1905 			memcpy(new_fa, fa, sizeof(*fa));
1906 
1907 			/* insert clone into table */
1908 			if (!local_l)
1909 				local_l = fib_find_node(lt, &local_tp, l->key);
1910 
1911 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1912 					     NULL, l->key)) {
1913 				kmem_cache_free(fn_alias_kmem, new_fa);
1914 				goto out;
1915 			}
1916 		}
1917 
1918 		/* stop loop if key wrapped back to 0 */
1919 		key = l->key + 1;
1920 		if (key < l->key)
1921 			break;
1922 	}
1923 
1924 	return local_tb;
1925 out:
1926 	fib_trie_free(local_tb);
1927 
1928 	return NULL;
1929 }
1930 
1931 /* Caller must hold RTNL */
1932 void fib_table_flush_external(struct fib_table *tb)
1933 {
1934 	struct trie *t = (struct trie *)tb->tb_data;
1935 	struct key_vector *pn = t->kv;
1936 	unsigned long cindex = 1;
1937 	struct hlist_node *tmp;
1938 	struct fib_alias *fa;
1939 
1940 	/* walk trie in reverse order */
1941 	for (;;) {
1942 		unsigned char slen = 0;
1943 		struct key_vector *n;
1944 
1945 		if (!(cindex--)) {
1946 			t_key pkey = pn->key;
1947 
1948 			/* cannot resize the trie vector */
1949 			if (IS_TRIE(pn))
1950 				break;
1951 
1952 			/* update the suffix to address pulled leaves */
1953 			if (pn->slen > pn->pos)
1954 				update_suffix(pn);
1955 
1956 			/* resize completed node */
1957 			pn = resize(t, pn);
1958 			cindex = get_index(pkey, pn);
1959 
1960 			continue;
1961 		}
1962 
1963 		/* grab the next available node */
1964 		n = get_child(pn, cindex);
1965 		if (!n)
1966 			continue;
1967 
1968 		if (IS_TNODE(n)) {
1969 			/* record pn and cindex for leaf walking */
1970 			pn = n;
1971 			cindex = 1ul << n->bits;
1972 
1973 			continue;
1974 		}
1975 
1976 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1977 			/* if alias was cloned to local then we just
1978 			 * need to remove the local copy from main
1979 			 */
1980 			if (tb->tb_id != fa->tb_id) {
1981 				hlist_del_rcu(&fa->fa_list);
1982 				alias_free_mem_rcu(fa);
1983 				continue;
1984 			}
1985 
1986 			/* record local slen */
1987 			slen = fa->fa_slen;
1988 		}
1989 
1990 		/* update leaf slen */
1991 		n->slen = slen;
1992 
1993 		if (hlist_empty(&n->leaf)) {
1994 			put_child_root(pn, n->key, NULL);
1995 			node_free(n);
1996 		}
1997 	}
1998 }
1999 
2000 /* Caller must hold RTNL. */
2001 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2002 {
2003 	struct trie *t = (struct trie *)tb->tb_data;
2004 	struct key_vector *pn = t->kv;
2005 	unsigned long cindex = 1;
2006 	struct hlist_node *tmp;
2007 	struct fib_alias *fa;
2008 	int found = 0;
2009 
2010 	/* walk trie in reverse order */
2011 	for (;;) {
2012 		unsigned char slen = 0;
2013 		struct key_vector *n;
2014 
2015 		if (!(cindex--)) {
2016 			t_key pkey = pn->key;
2017 
2018 			/* cannot resize the trie vector */
2019 			if (IS_TRIE(pn))
2020 				break;
2021 
2022 			/* update the suffix to address pulled leaves */
2023 			if (pn->slen > pn->pos)
2024 				update_suffix(pn);
2025 
2026 			/* resize completed node */
2027 			pn = resize(t, pn);
2028 			cindex = get_index(pkey, pn);
2029 
2030 			continue;
2031 		}
2032 
2033 		/* grab the next available node */
2034 		n = get_child(pn, cindex);
2035 		if (!n)
2036 			continue;
2037 
2038 		if (IS_TNODE(n)) {
2039 			/* record pn and cindex for leaf walking */
2040 			pn = n;
2041 			cindex = 1ul << n->bits;
2042 
2043 			continue;
2044 		}
2045 
2046 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2047 			struct fib_info *fi = fa->fa_info;
2048 
2049 			if (!fi || tb->tb_id != fa->tb_id ||
2050 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2051 			     !fib_props[fa->fa_type].error)) {
2052 				slen = fa->fa_slen;
2053 				continue;
2054 			}
2055 
2056 			/* Do not flush error routes if network namespace is
2057 			 * not being dismantled
2058 			 */
2059 			if (!flush_all && fib_props[fa->fa_type].error) {
2060 				slen = fa->fa_slen;
2061 				continue;
2062 			}
2063 
2064 			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2065 						NULL);
2066 			hlist_del_rcu(&fa->fa_list);
2067 			fib_release_info(fa->fa_info);
2068 			alias_free_mem_rcu(fa);
2069 			found++;
2070 		}
2071 
2072 		/* update leaf slen */
2073 		n->slen = slen;
2074 
2075 		if (hlist_empty(&n->leaf)) {
2076 			put_child_root(pn, n->key, NULL);
2077 			node_free(n);
2078 		}
2079 	}
2080 
2081 	pr_debug("trie_flush found=%d\n", found);
2082 	return found;
2083 }
2084 
2085 /* derived from fib_trie_free */
2086 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2087 				     struct nl_info *info)
2088 {
2089 	struct trie *t = (struct trie *)tb->tb_data;
2090 	struct key_vector *pn = t->kv;
2091 	unsigned long cindex = 1;
2092 	struct fib_alias *fa;
2093 
2094 	for (;;) {
2095 		struct key_vector *n;
2096 
2097 		if (!(cindex--)) {
2098 			t_key pkey = pn->key;
2099 
2100 			if (IS_TRIE(pn))
2101 				break;
2102 
2103 			pn = node_parent(pn);
2104 			cindex = get_index(pkey, pn);
2105 			continue;
2106 		}
2107 
2108 		/* grab the next available node */
2109 		n = get_child(pn, cindex);
2110 		if (!n)
2111 			continue;
2112 
2113 		if (IS_TNODE(n)) {
2114 			/* record pn and cindex for leaf walking */
2115 			pn = n;
2116 			cindex = 1ul << n->bits;
2117 
2118 			continue;
2119 		}
2120 
2121 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2122 			struct fib_info *fi = fa->fa_info;
2123 
2124 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2125 				continue;
2126 
2127 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2128 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2129 				  info, NLM_F_REPLACE);
2130 		}
2131 	}
2132 }
2133 
2134 void fib_info_notify_update(struct net *net, struct nl_info *info)
2135 {
2136 	unsigned int h;
2137 
2138 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2139 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2140 		struct fib_table *tb;
2141 
2142 		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2143 					 lockdep_rtnl_is_held())
2144 			__fib_info_notify_update(net, tb, info);
2145 	}
2146 }
2147 
2148 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2149 			   struct notifier_block *nb,
2150 			   struct netlink_ext_ack *extack)
2151 {
2152 	struct fib_alias *fa;
2153 	int last_slen = -1;
2154 	int err;
2155 
2156 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2157 		struct fib_info *fi = fa->fa_info;
2158 
2159 		if (!fi)
2160 			continue;
2161 
2162 		/* local and main table can share the same trie,
2163 		 * so don't notify twice for the same entry.
2164 		 */
2165 		if (tb->tb_id != fa->tb_id)
2166 			continue;
2167 
2168 		if (fa->fa_slen == last_slen)
2169 			continue;
2170 
2171 		last_slen = fa->fa_slen;
2172 		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2173 					      l->key, KEYLENGTH - fa->fa_slen,
2174 					      fa, extack);
2175 		if (err)
2176 			return err;
2177 	}
2178 	return 0;
2179 }
2180 
2181 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2182 			    struct netlink_ext_ack *extack)
2183 {
2184 	struct trie *t = (struct trie *)tb->tb_data;
2185 	struct key_vector *l, *tp = t->kv;
2186 	t_key key = 0;
2187 	int err;
2188 
2189 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2190 		err = fib_leaf_notify(l, tb, nb, extack);
2191 		if (err)
2192 			return err;
2193 
2194 		key = l->key + 1;
2195 		/* stop in case of wrap around */
2196 		if (key < l->key)
2197 			break;
2198 	}
2199 	return 0;
2200 }
2201 
2202 int fib_notify(struct net *net, struct notifier_block *nb,
2203 	       struct netlink_ext_ack *extack)
2204 {
2205 	unsigned int h;
2206 	int err;
2207 
2208 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2209 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2210 		struct fib_table *tb;
2211 
2212 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2213 			err = fib_table_notify(tb, nb, extack);
2214 			if (err)
2215 				return err;
2216 		}
2217 	}
2218 	return 0;
2219 }
2220 
2221 static void __trie_free_rcu(struct rcu_head *head)
2222 {
2223 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2224 #ifdef CONFIG_IP_FIB_TRIE_STATS
2225 	struct trie *t = (struct trie *)tb->tb_data;
2226 
2227 	if (tb->tb_data == tb->__data)
2228 		free_percpu(t->stats);
2229 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2230 	kfree(tb);
2231 }
2232 
2233 void fib_free_table(struct fib_table *tb)
2234 {
2235 	call_rcu(&tb->rcu, __trie_free_rcu);
2236 }
2237 
2238 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2239 			     struct sk_buff *skb, struct netlink_callback *cb,
2240 			     struct fib_dump_filter *filter)
2241 {
2242 	unsigned int flags = NLM_F_MULTI;
2243 	__be32 xkey = htonl(l->key);
2244 	int i, s_i, i_fa, s_fa, err;
2245 	struct fib_alias *fa;
2246 
2247 	if (filter->filter_set ||
2248 	    !filter->dump_exceptions || !filter->dump_routes)
2249 		flags |= NLM_F_DUMP_FILTERED;
2250 
2251 	s_i = cb->args[4];
2252 	s_fa = cb->args[5];
2253 	i = 0;
2254 
2255 	/* rcu_read_lock is hold by caller */
2256 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2257 		struct fib_info *fi = fa->fa_info;
2258 
2259 		if (i < s_i)
2260 			goto next;
2261 
2262 		i_fa = 0;
2263 
2264 		if (tb->tb_id != fa->tb_id)
2265 			goto next;
2266 
2267 		if (filter->filter_set) {
2268 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2269 				goto next;
2270 
2271 			if ((filter->protocol &&
2272 			     fi->fib_protocol != filter->protocol))
2273 				goto next;
2274 
2275 			if (filter->dev &&
2276 			    !fib_info_nh_uses_dev(fi, filter->dev))
2277 				goto next;
2278 		}
2279 
2280 		if (filter->dump_routes) {
2281 			if (!s_fa) {
2282 				struct fib_rt_info fri;
2283 
2284 				fri.fi = fi;
2285 				fri.tb_id = tb->tb_id;
2286 				fri.dst = xkey;
2287 				fri.dst_len = KEYLENGTH - fa->fa_slen;
2288 				fri.tos = fa->fa_tos;
2289 				fri.type = fa->fa_type;
2290 				fri.offload = fa->offload;
2291 				fri.trap = fa->trap;
2292 				err = fib_dump_info(skb,
2293 						    NETLINK_CB(cb->skb).portid,
2294 						    cb->nlh->nlmsg_seq,
2295 						    RTM_NEWROUTE, &fri, flags);
2296 				if (err < 0)
2297 					goto stop;
2298 			}
2299 
2300 			i_fa++;
2301 		}
2302 
2303 		if (filter->dump_exceptions) {
2304 			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2305 						 &i_fa, s_fa, flags);
2306 			if (err < 0)
2307 				goto stop;
2308 		}
2309 
2310 next:
2311 		i++;
2312 	}
2313 
2314 	cb->args[4] = i;
2315 	return skb->len;
2316 
2317 stop:
2318 	cb->args[4] = i;
2319 	cb->args[5] = i_fa;
2320 	return err;
2321 }
2322 
2323 /* rcu_read_lock needs to be hold by caller from readside */
2324 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2325 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2326 {
2327 	struct trie *t = (struct trie *)tb->tb_data;
2328 	struct key_vector *l, *tp = t->kv;
2329 	/* Dump starting at last key.
2330 	 * Note: 0.0.0.0/0 (ie default) is first key.
2331 	 */
2332 	int count = cb->args[2];
2333 	t_key key = cb->args[3];
2334 
2335 	/* First time here, count and key are both always 0. Count > 0
2336 	 * and key == 0 means the dump has wrapped around and we are done.
2337 	 */
2338 	if (count && !key)
2339 		return skb->len;
2340 
2341 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2342 		int err;
2343 
2344 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2345 		if (err < 0) {
2346 			cb->args[3] = key;
2347 			cb->args[2] = count;
2348 			return err;
2349 		}
2350 
2351 		++count;
2352 		key = l->key + 1;
2353 
2354 		memset(&cb->args[4], 0,
2355 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2356 
2357 		/* stop loop if key wrapped back to 0 */
2358 		if (key < l->key)
2359 			break;
2360 	}
2361 
2362 	cb->args[3] = key;
2363 	cb->args[2] = count;
2364 
2365 	return skb->len;
2366 }
2367 
2368 void __init fib_trie_init(void)
2369 {
2370 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2371 					  sizeof(struct fib_alias),
2372 					  0, SLAB_PANIC, NULL);
2373 
2374 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2375 					   LEAF_SIZE,
2376 					   0, SLAB_PANIC, NULL);
2377 }
2378 
2379 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2380 {
2381 	struct fib_table *tb;
2382 	struct trie *t;
2383 	size_t sz = sizeof(*tb);
2384 
2385 	if (!alias)
2386 		sz += sizeof(struct trie);
2387 
2388 	tb = kzalloc(sz, GFP_KERNEL);
2389 	if (!tb)
2390 		return NULL;
2391 
2392 	tb->tb_id = id;
2393 	tb->tb_num_default = 0;
2394 	tb->tb_data = (alias ? alias->__data : tb->__data);
2395 
2396 	if (alias)
2397 		return tb;
2398 
2399 	t = (struct trie *) tb->tb_data;
2400 	t->kv[0].pos = KEYLENGTH;
2401 	t->kv[0].slen = KEYLENGTH;
2402 #ifdef CONFIG_IP_FIB_TRIE_STATS
2403 	t->stats = alloc_percpu(struct trie_use_stats);
2404 	if (!t->stats) {
2405 		kfree(tb);
2406 		tb = NULL;
2407 	}
2408 #endif
2409 
2410 	return tb;
2411 }
2412 
2413 #ifdef CONFIG_PROC_FS
2414 /* Depth first Trie walk iterator */
2415 struct fib_trie_iter {
2416 	struct seq_net_private p;
2417 	struct fib_table *tb;
2418 	struct key_vector *tnode;
2419 	unsigned int index;
2420 	unsigned int depth;
2421 };
2422 
2423 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2424 {
2425 	unsigned long cindex = iter->index;
2426 	struct key_vector *pn = iter->tnode;
2427 	t_key pkey;
2428 
2429 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2430 		 iter->tnode, iter->index, iter->depth);
2431 
2432 	while (!IS_TRIE(pn)) {
2433 		while (cindex < child_length(pn)) {
2434 			struct key_vector *n = get_child_rcu(pn, cindex++);
2435 
2436 			if (!n)
2437 				continue;
2438 
2439 			if (IS_LEAF(n)) {
2440 				iter->tnode = pn;
2441 				iter->index = cindex;
2442 			} else {
2443 				/* push down one level */
2444 				iter->tnode = n;
2445 				iter->index = 0;
2446 				++iter->depth;
2447 			}
2448 
2449 			return n;
2450 		}
2451 
2452 		/* Current node exhausted, pop back up */
2453 		pkey = pn->key;
2454 		pn = node_parent_rcu(pn);
2455 		cindex = get_index(pkey, pn) + 1;
2456 		--iter->depth;
2457 	}
2458 
2459 	/* record root node so further searches know we are done */
2460 	iter->tnode = pn;
2461 	iter->index = 0;
2462 
2463 	return NULL;
2464 }
2465 
2466 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2467 					     struct trie *t)
2468 {
2469 	struct key_vector *n, *pn;
2470 
2471 	if (!t)
2472 		return NULL;
2473 
2474 	pn = t->kv;
2475 	n = rcu_dereference(pn->tnode[0]);
2476 	if (!n)
2477 		return NULL;
2478 
2479 	if (IS_TNODE(n)) {
2480 		iter->tnode = n;
2481 		iter->index = 0;
2482 		iter->depth = 1;
2483 	} else {
2484 		iter->tnode = pn;
2485 		iter->index = 0;
2486 		iter->depth = 0;
2487 	}
2488 
2489 	return n;
2490 }
2491 
2492 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2493 {
2494 	struct key_vector *n;
2495 	struct fib_trie_iter iter;
2496 
2497 	memset(s, 0, sizeof(*s));
2498 
2499 	rcu_read_lock();
2500 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2501 		if (IS_LEAF(n)) {
2502 			struct fib_alias *fa;
2503 
2504 			s->leaves++;
2505 			s->totdepth += iter.depth;
2506 			if (iter.depth > s->maxdepth)
2507 				s->maxdepth = iter.depth;
2508 
2509 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2510 				++s->prefixes;
2511 		} else {
2512 			s->tnodes++;
2513 			if (n->bits < MAX_STAT_DEPTH)
2514 				s->nodesizes[n->bits]++;
2515 			s->nullpointers += tn_info(n)->empty_children;
2516 		}
2517 	}
2518 	rcu_read_unlock();
2519 }
2520 
2521 /*
2522  *	This outputs /proc/net/fib_triestats
2523  */
2524 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2525 {
2526 	unsigned int i, max, pointers, bytes, avdepth;
2527 
2528 	if (stat->leaves)
2529 		avdepth = stat->totdepth*100 / stat->leaves;
2530 	else
2531 		avdepth = 0;
2532 
2533 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2534 		   avdepth / 100, avdepth % 100);
2535 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2536 
2537 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2538 	bytes = LEAF_SIZE * stat->leaves;
2539 
2540 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2541 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2542 
2543 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2544 	bytes += TNODE_SIZE(0) * stat->tnodes;
2545 
2546 	max = MAX_STAT_DEPTH;
2547 	while (max > 0 && stat->nodesizes[max-1] == 0)
2548 		max--;
2549 
2550 	pointers = 0;
2551 	for (i = 1; i < max; i++)
2552 		if (stat->nodesizes[i] != 0) {
2553 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2554 			pointers += (1<<i) * stat->nodesizes[i];
2555 		}
2556 	seq_putc(seq, '\n');
2557 	seq_printf(seq, "\tPointers: %u\n", pointers);
2558 
2559 	bytes += sizeof(struct key_vector *) * pointers;
2560 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2561 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2562 }
2563 
2564 #ifdef CONFIG_IP_FIB_TRIE_STATS
2565 static void trie_show_usage(struct seq_file *seq,
2566 			    const struct trie_use_stats __percpu *stats)
2567 {
2568 	struct trie_use_stats s = { 0 };
2569 	int cpu;
2570 
2571 	/* loop through all of the CPUs and gather up the stats */
2572 	for_each_possible_cpu(cpu) {
2573 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2574 
2575 		s.gets += pcpu->gets;
2576 		s.backtrack += pcpu->backtrack;
2577 		s.semantic_match_passed += pcpu->semantic_match_passed;
2578 		s.semantic_match_miss += pcpu->semantic_match_miss;
2579 		s.null_node_hit += pcpu->null_node_hit;
2580 		s.resize_node_skipped += pcpu->resize_node_skipped;
2581 	}
2582 
2583 	seq_printf(seq, "\nCounters:\n---------\n");
2584 	seq_printf(seq, "gets = %u\n", s.gets);
2585 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2586 	seq_printf(seq, "semantic match passed = %u\n",
2587 		   s.semantic_match_passed);
2588 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2589 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2590 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2591 }
2592 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2593 
2594 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2595 {
2596 	if (tb->tb_id == RT_TABLE_LOCAL)
2597 		seq_puts(seq, "Local:\n");
2598 	else if (tb->tb_id == RT_TABLE_MAIN)
2599 		seq_puts(seq, "Main:\n");
2600 	else
2601 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2602 }
2603 
2604 
2605 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2606 {
2607 	struct net *net = (struct net *)seq->private;
2608 	unsigned int h;
2609 
2610 	seq_printf(seq,
2611 		   "Basic info: size of leaf:"
2612 		   " %zd bytes, size of tnode: %zd bytes.\n",
2613 		   LEAF_SIZE, TNODE_SIZE(0));
2614 
2615 	rcu_read_lock();
2616 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2617 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2618 		struct fib_table *tb;
2619 
2620 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2621 			struct trie *t = (struct trie *) tb->tb_data;
2622 			struct trie_stat stat;
2623 
2624 			if (!t)
2625 				continue;
2626 
2627 			fib_table_print(seq, tb);
2628 
2629 			trie_collect_stats(t, &stat);
2630 			trie_show_stats(seq, &stat);
2631 #ifdef CONFIG_IP_FIB_TRIE_STATS
2632 			trie_show_usage(seq, t->stats);
2633 #endif
2634 		}
2635 		cond_resched_rcu();
2636 	}
2637 	rcu_read_unlock();
2638 
2639 	return 0;
2640 }
2641 
2642 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2643 {
2644 	struct fib_trie_iter *iter = seq->private;
2645 	struct net *net = seq_file_net(seq);
2646 	loff_t idx = 0;
2647 	unsigned int h;
2648 
2649 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2650 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2651 		struct fib_table *tb;
2652 
2653 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2654 			struct key_vector *n;
2655 
2656 			for (n = fib_trie_get_first(iter,
2657 						    (struct trie *) tb->tb_data);
2658 			     n; n = fib_trie_get_next(iter))
2659 				if (pos == idx++) {
2660 					iter->tb = tb;
2661 					return n;
2662 				}
2663 		}
2664 	}
2665 
2666 	return NULL;
2667 }
2668 
2669 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2670 	__acquires(RCU)
2671 {
2672 	rcu_read_lock();
2673 	return fib_trie_get_idx(seq, *pos);
2674 }
2675 
2676 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2677 {
2678 	struct fib_trie_iter *iter = seq->private;
2679 	struct net *net = seq_file_net(seq);
2680 	struct fib_table *tb = iter->tb;
2681 	struct hlist_node *tb_node;
2682 	unsigned int h;
2683 	struct key_vector *n;
2684 
2685 	++*pos;
2686 	/* next node in same table */
2687 	n = fib_trie_get_next(iter);
2688 	if (n)
2689 		return n;
2690 
2691 	/* walk rest of this hash chain */
2692 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2693 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2694 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2695 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2696 		if (n)
2697 			goto found;
2698 	}
2699 
2700 	/* new hash chain */
2701 	while (++h < FIB_TABLE_HASHSZ) {
2702 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2703 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2704 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2705 			if (n)
2706 				goto found;
2707 		}
2708 	}
2709 	return NULL;
2710 
2711 found:
2712 	iter->tb = tb;
2713 	return n;
2714 }
2715 
2716 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2717 	__releases(RCU)
2718 {
2719 	rcu_read_unlock();
2720 }
2721 
2722 static void seq_indent(struct seq_file *seq, int n)
2723 {
2724 	while (n-- > 0)
2725 		seq_puts(seq, "   ");
2726 }
2727 
2728 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2729 {
2730 	switch (s) {
2731 	case RT_SCOPE_UNIVERSE: return "universe";
2732 	case RT_SCOPE_SITE:	return "site";
2733 	case RT_SCOPE_LINK:	return "link";
2734 	case RT_SCOPE_HOST:	return "host";
2735 	case RT_SCOPE_NOWHERE:	return "nowhere";
2736 	default:
2737 		snprintf(buf, len, "scope=%d", s);
2738 		return buf;
2739 	}
2740 }
2741 
2742 static const char *const rtn_type_names[__RTN_MAX] = {
2743 	[RTN_UNSPEC] = "UNSPEC",
2744 	[RTN_UNICAST] = "UNICAST",
2745 	[RTN_LOCAL] = "LOCAL",
2746 	[RTN_BROADCAST] = "BROADCAST",
2747 	[RTN_ANYCAST] = "ANYCAST",
2748 	[RTN_MULTICAST] = "MULTICAST",
2749 	[RTN_BLACKHOLE] = "BLACKHOLE",
2750 	[RTN_UNREACHABLE] = "UNREACHABLE",
2751 	[RTN_PROHIBIT] = "PROHIBIT",
2752 	[RTN_THROW] = "THROW",
2753 	[RTN_NAT] = "NAT",
2754 	[RTN_XRESOLVE] = "XRESOLVE",
2755 };
2756 
2757 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2758 {
2759 	if (t < __RTN_MAX && rtn_type_names[t])
2760 		return rtn_type_names[t];
2761 	snprintf(buf, len, "type %u", t);
2762 	return buf;
2763 }
2764 
2765 /* Pretty print the trie */
2766 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2767 {
2768 	const struct fib_trie_iter *iter = seq->private;
2769 	struct key_vector *n = v;
2770 
2771 	if (IS_TRIE(node_parent_rcu(n)))
2772 		fib_table_print(seq, iter->tb);
2773 
2774 	if (IS_TNODE(n)) {
2775 		__be32 prf = htonl(n->key);
2776 
2777 		seq_indent(seq, iter->depth-1);
2778 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2779 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2780 			   tn_info(n)->full_children,
2781 			   tn_info(n)->empty_children);
2782 	} else {
2783 		__be32 val = htonl(n->key);
2784 		struct fib_alias *fa;
2785 
2786 		seq_indent(seq, iter->depth);
2787 		seq_printf(seq, "  |-- %pI4\n", &val);
2788 
2789 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2790 			char buf1[32], buf2[32];
2791 
2792 			seq_indent(seq, iter->depth + 1);
2793 			seq_printf(seq, "  /%zu %s %s",
2794 				   KEYLENGTH - fa->fa_slen,
2795 				   rtn_scope(buf1, sizeof(buf1),
2796 					     fa->fa_info->fib_scope),
2797 				   rtn_type(buf2, sizeof(buf2),
2798 					    fa->fa_type));
2799 			if (fa->fa_tos)
2800 				seq_printf(seq, " tos=%d", fa->fa_tos);
2801 			seq_putc(seq, '\n');
2802 		}
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 static const struct seq_operations fib_trie_seq_ops = {
2809 	.start  = fib_trie_seq_start,
2810 	.next   = fib_trie_seq_next,
2811 	.stop   = fib_trie_seq_stop,
2812 	.show   = fib_trie_seq_show,
2813 };
2814 
2815 struct fib_route_iter {
2816 	struct seq_net_private p;
2817 	struct fib_table *main_tb;
2818 	struct key_vector *tnode;
2819 	loff_t	pos;
2820 	t_key	key;
2821 };
2822 
2823 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2824 					    loff_t pos)
2825 {
2826 	struct key_vector *l, **tp = &iter->tnode;
2827 	t_key key;
2828 
2829 	/* use cached location of previously found key */
2830 	if (iter->pos > 0 && pos >= iter->pos) {
2831 		key = iter->key;
2832 	} else {
2833 		iter->pos = 1;
2834 		key = 0;
2835 	}
2836 
2837 	pos -= iter->pos;
2838 
2839 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2840 		key = l->key + 1;
2841 		iter->pos++;
2842 		l = NULL;
2843 
2844 		/* handle unlikely case of a key wrap */
2845 		if (!key)
2846 			break;
2847 	}
2848 
2849 	if (l)
2850 		iter->key = l->key;	/* remember it */
2851 	else
2852 		iter->pos = 0;		/* forget it */
2853 
2854 	return l;
2855 }
2856 
2857 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2858 	__acquires(RCU)
2859 {
2860 	struct fib_route_iter *iter = seq->private;
2861 	struct fib_table *tb;
2862 	struct trie *t;
2863 
2864 	rcu_read_lock();
2865 
2866 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2867 	if (!tb)
2868 		return NULL;
2869 
2870 	iter->main_tb = tb;
2871 	t = (struct trie *)tb->tb_data;
2872 	iter->tnode = t->kv;
2873 
2874 	if (*pos != 0)
2875 		return fib_route_get_idx(iter, *pos);
2876 
2877 	iter->pos = 0;
2878 	iter->key = KEY_MAX;
2879 
2880 	return SEQ_START_TOKEN;
2881 }
2882 
2883 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2884 {
2885 	struct fib_route_iter *iter = seq->private;
2886 	struct key_vector *l = NULL;
2887 	t_key key = iter->key + 1;
2888 
2889 	++*pos;
2890 
2891 	/* only allow key of 0 for start of sequence */
2892 	if ((v == SEQ_START_TOKEN) || key)
2893 		l = leaf_walk_rcu(&iter->tnode, key);
2894 
2895 	if (l) {
2896 		iter->key = l->key;
2897 		iter->pos++;
2898 	} else {
2899 		iter->pos = 0;
2900 	}
2901 
2902 	return l;
2903 }
2904 
2905 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2906 	__releases(RCU)
2907 {
2908 	rcu_read_unlock();
2909 }
2910 
2911 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2912 {
2913 	unsigned int flags = 0;
2914 
2915 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2916 		flags = RTF_REJECT;
2917 	if (fi) {
2918 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2919 
2920 		if (nhc->nhc_gw.ipv4)
2921 			flags |= RTF_GATEWAY;
2922 	}
2923 	if (mask == htonl(0xFFFFFFFF))
2924 		flags |= RTF_HOST;
2925 	flags |= RTF_UP;
2926 	return flags;
2927 }
2928 
2929 /*
2930  *	This outputs /proc/net/route.
2931  *	The format of the file is not supposed to be changed
2932  *	and needs to be same as fib_hash output to avoid breaking
2933  *	legacy utilities
2934  */
2935 static int fib_route_seq_show(struct seq_file *seq, void *v)
2936 {
2937 	struct fib_route_iter *iter = seq->private;
2938 	struct fib_table *tb = iter->main_tb;
2939 	struct fib_alias *fa;
2940 	struct key_vector *l = v;
2941 	__be32 prefix;
2942 
2943 	if (v == SEQ_START_TOKEN) {
2944 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2945 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2946 			   "\tWindow\tIRTT");
2947 		return 0;
2948 	}
2949 
2950 	prefix = htonl(l->key);
2951 
2952 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2953 		struct fib_info *fi = fa->fa_info;
2954 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2955 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2956 
2957 		if ((fa->fa_type == RTN_BROADCAST) ||
2958 		    (fa->fa_type == RTN_MULTICAST))
2959 			continue;
2960 
2961 		if (fa->tb_id != tb->tb_id)
2962 			continue;
2963 
2964 		seq_setwidth(seq, 127);
2965 
2966 		if (fi) {
2967 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2968 			__be32 gw = 0;
2969 
2970 			if (nhc->nhc_gw_family == AF_INET)
2971 				gw = nhc->nhc_gw.ipv4;
2972 
2973 			seq_printf(seq,
2974 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2975 				   "%d\t%08X\t%d\t%u\t%u",
2976 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2977 				   prefix, gw, flags, 0, 0,
2978 				   fi->fib_priority,
2979 				   mask,
2980 				   (fi->fib_advmss ?
2981 				    fi->fib_advmss + 40 : 0),
2982 				   fi->fib_window,
2983 				   fi->fib_rtt >> 3);
2984 		} else {
2985 			seq_printf(seq,
2986 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2987 				   "%d\t%08X\t%d\t%u\t%u",
2988 				   prefix, 0, flags, 0, 0, 0,
2989 				   mask, 0, 0, 0);
2990 		}
2991 		seq_pad(seq, '\n');
2992 	}
2993 
2994 	return 0;
2995 }
2996 
2997 static const struct seq_operations fib_route_seq_ops = {
2998 	.start  = fib_route_seq_start,
2999 	.next   = fib_route_seq_next,
3000 	.stop   = fib_route_seq_stop,
3001 	.show   = fib_route_seq_show,
3002 };
3003 
3004 int __net_init fib_proc_init(struct net *net)
3005 {
3006 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3007 			sizeof(struct fib_trie_iter)))
3008 		goto out1;
3009 
3010 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3011 			fib_triestat_seq_show, NULL))
3012 		goto out2;
3013 
3014 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3015 			sizeof(struct fib_route_iter)))
3016 		goto out3;
3017 
3018 	return 0;
3019 
3020 out3:
3021 	remove_proc_entry("fib_triestat", net->proc_net);
3022 out2:
3023 	remove_proc_entry("fib_trie", net->proc_net);
3024 out1:
3025 	return -ENOMEM;
3026 }
3027 
3028 void __net_exit fib_proc_exit(struct net *net)
3029 {
3030 	remove_proc_entry("fib_trie", net->proc_net);
3031 	remove_proc_entry("fib_triestat", net->proc_net);
3032 	remove_proc_entry("route", net->proc_net);
3033 }
3034 
3035 #endif /* CONFIG_PROC_FS */
3036