xref: /linux/net/ipv4/fib_trie.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 
39 #define VERSION "0.409"
40 
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
46 #include <linux/mm.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
51 #include <linux/in.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/tcp.h>
71 #include <net/sock.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
76 
77 static int call_fib_entry_notifier(struct notifier_block *nb,
78 				   enum fib_event_type event_type, u32 dst,
79 				   int dst_len, struct fib_alias *fa,
80 				   struct netlink_ext_ack *extack)
81 {
82 	struct fib_entry_notifier_info info = {
83 		.info.extack = extack,
84 		.dst = dst,
85 		.dst_len = dst_len,
86 		.fi = fa->fa_info,
87 		.tos = fa->fa_tos,
88 		.type = fa->fa_type,
89 		.tb_id = fa->tb_id,
90 	};
91 	return call_fib4_notifier(nb, event_type, &info.info);
92 }
93 
94 static int call_fib_entry_notifiers(struct net *net,
95 				    enum fib_event_type event_type, u32 dst,
96 				    int dst_len, struct fib_alias *fa,
97 				    struct netlink_ext_ack *extack)
98 {
99 	struct fib_entry_notifier_info info = {
100 		.info.extack = extack,
101 		.dst = dst,
102 		.dst_len = dst_len,
103 		.fi = fa->fa_info,
104 		.tos = fa->fa_tos,
105 		.type = fa->fa_type,
106 		.tb_id = fa->tb_id,
107 	};
108 	return call_fib4_notifiers(net, event_type, &info.info);
109 }
110 
111 #define MAX_STAT_DEPTH 32
112 
113 #define KEYLENGTH	(8*sizeof(t_key))
114 #define KEY_MAX		((t_key)~0)
115 
116 typedef unsigned int t_key;
117 
118 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
119 #define IS_TNODE(n)	((n)->bits)
120 #define IS_LEAF(n)	(!(n)->bits)
121 
122 struct key_vector {
123 	t_key key;
124 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
125 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
126 	unsigned char slen;
127 	union {
128 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
129 		struct hlist_head leaf;
130 		/* This array is valid if (pos | bits) > 0 (TNODE) */
131 		struct key_vector __rcu *tnode[0];
132 	};
133 };
134 
135 struct tnode {
136 	struct rcu_head rcu;
137 	t_key empty_children;		/* KEYLENGTH bits needed */
138 	t_key full_children;		/* KEYLENGTH bits needed */
139 	struct key_vector __rcu *parent;
140 	struct key_vector kv[1];
141 #define tn_bits kv[0].bits
142 };
143 
144 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
145 #define LEAF_SIZE	TNODE_SIZE(1)
146 
147 #ifdef CONFIG_IP_FIB_TRIE_STATS
148 struct trie_use_stats {
149 	unsigned int gets;
150 	unsigned int backtrack;
151 	unsigned int semantic_match_passed;
152 	unsigned int semantic_match_miss;
153 	unsigned int null_node_hit;
154 	unsigned int resize_node_skipped;
155 };
156 #endif
157 
158 struct trie_stat {
159 	unsigned int totdepth;
160 	unsigned int maxdepth;
161 	unsigned int tnodes;
162 	unsigned int leaves;
163 	unsigned int nullpointers;
164 	unsigned int prefixes;
165 	unsigned int nodesizes[MAX_STAT_DEPTH];
166 };
167 
168 struct trie {
169 	struct key_vector kv[1];
170 #ifdef CONFIG_IP_FIB_TRIE_STATS
171 	struct trie_use_stats __percpu *stats;
172 #endif
173 };
174 
175 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
176 static unsigned int tnode_free_size;
177 
178 /*
179  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
180  * especially useful before resizing the root node with PREEMPT_NONE configs;
181  * the value was obtained experimentally, aiming to avoid visible slowdown.
182  */
183 unsigned int sysctl_fib_sync_mem = 512 * 1024;
184 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
185 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
186 
187 static struct kmem_cache *fn_alias_kmem __ro_after_init;
188 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
189 
190 static inline struct tnode *tn_info(struct key_vector *kv)
191 {
192 	return container_of(kv, struct tnode, kv[0]);
193 }
194 
195 /* caller must hold RTNL */
196 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
197 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
198 
199 /* caller must hold RCU read lock or RTNL */
200 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
201 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
202 
203 /* wrapper for rcu_assign_pointer */
204 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
205 {
206 	if (n)
207 		rcu_assign_pointer(tn_info(n)->parent, tp);
208 }
209 
210 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
211 
212 /* This provides us with the number of children in this node, in the case of a
213  * leaf this will return 0 meaning none of the children are accessible.
214  */
215 static inline unsigned long child_length(const struct key_vector *tn)
216 {
217 	return (1ul << tn->bits) & ~(1ul);
218 }
219 
220 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
221 
222 static inline unsigned long get_index(t_key key, struct key_vector *kv)
223 {
224 	unsigned long index = key ^ kv->key;
225 
226 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
227 		return 0;
228 
229 	return index >> kv->pos;
230 }
231 
232 /* To understand this stuff, an understanding of keys and all their bits is
233  * necessary. Every node in the trie has a key associated with it, but not
234  * all of the bits in that key are significant.
235  *
236  * Consider a node 'n' and its parent 'tp'.
237  *
238  * If n is a leaf, every bit in its key is significant. Its presence is
239  * necessitated by path compression, since during a tree traversal (when
240  * searching for a leaf - unless we are doing an insertion) we will completely
241  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
242  * a potentially successful search, that we have indeed been walking the
243  * correct key path.
244  *
245  * Note that we can never "miss" the correct key in the tree if present by
246  * following the wrong path. Path compression ensures that segments of the key
247  * that are the same for all keys with a given prefix are skipped, but the
248  * skipped part *is* identical for each node in the subtrie below the skipped
249  * bit! trie_insert() in this implementation takes care of that.
250  *
251  * if n is an internal node - a 'tnode' here, the various parts of its key
252  * have many different meanings.
253  *
254  * Example:
255  * _________________________________________________________________
256  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
257  * -----------------------------------------------------------------
258  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
259  *
260  * _________________________________________________________________
261  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
262  * -----------------------------------------------------------------
263  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
264  *
265  * tp->pos = 22
266  * tp->bits = 3
267  * n->pos = 13
268  * n->bits = 4
269  *
270  * First, let's just ignore the bits that come before the parent tp, that is
271  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
272  * point we do not use them for anything.
273  *
274  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
275  * index into the parent's child array. That is, they will be used to find
276  * 'n' among tp's children.
277  *
278  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
279  * for the node n.
280  *
281  * All the bits we have seen so far are significant to the node n. The rest
282  * of the bits are really not needed or indeed known in n->key.
283  *
284  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
285  * n's child array, and will of course be different for each child.
286  *
287  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
288  * at this point.
289  */
290 
291 static const int halve_threshold = 25;
292 static const int inflate_threshold = 50;
293 static const int halve_threshold_root = 15;
294 static const int inflate_threshold_root = 30;
295 
296 static void __alias_free_mem(struct rcu_head *head)
297 {
298 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
299 	kmem_cache_free(fn_alias_kmem, fa);
300 }
301 
302 static inline void alias_free_mem_rcu(struct fib_alias *fa)
303 {
304 	call_rcu(&fa->rcu, __alias_free_mem);
305 }
306 
307 #define TNODE_KMALLOC_MAX \
308 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309 #define TNODE_VMALLOC_MAX \
310 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
311 
312 static void __node_free_rcu(struct rcu_head *head)
313 {
314 	struct tnode *n = container_of(head, struct tnode, rcu);
315 
316 	if (!n->tn_bits)
317 		kmem_cache_free(trie_leaf_kmem, n);
318 	else
319 		kvfree(n);
320 }
321 
322 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
323 
324 static struct tnode *tnode_alloc(int bits)
325 {
326 	size_t size;
327 
328 	/* verify bits is within bounds */
329 	if (bits > TNODE_VMALLOC_MAX)
330 		return NULL;
331 
332 	/* determine size and verify it is non-zero and didn't overflow */
333 	size = TNODE_SIZE(1ul << bits);
334 
335 	if (size <= PAGE_SIZE)
336 		return kzalloc(size, GFP_KERNEL);
337 	else
338 		return vzalloc(size);
339 }
340 
341 static inline void empty_child_inc(struct key_vector *n)
342 {
343 	tn_info(n)->empty_children++;
344 
345 	if (!tn_info(n)->empty_children)
346 		tn_info(n)->full_children++;
347 }
348 
349 static inline void empty_child_dec(struct key_vector *n)
350 {
351 	if (!tn_info(n)->empty_children)
352 		tn_info(n)->full_children--;
353 
354 	tn_info(n)->empty_children--;
355 }
356 
357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
358 {
359 	struct key_vector *l;
360 	struct tnode *kv;
361 
362 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
363 	if (!kv)
364 		return NULL;
365 
366 	/* initialize key vector */
367 	l = kv->kv;
368 	l->key = key;
369 	l->pos = 0;
370 	l->bits = 0;
371 	l->slen = fa->fa_slen;
372 
373 	/* link leaf to fib alias */
374 	INIT_HLIST_HEAD(&l->leaf);
375 	hlist_add_head(&fa->fa_list, &l->leaf);
376 
377 	return l;
378 }
379 
380 static struct key_vector *tnode_new(t_key key, int pos, int bits)
381 {
382 	unsigned int shift = pos + bits;
383 	struct key_vector *tn;
384 	struct tnode *tnode;
385 
386 	/* verify bits and pos their msb bits clear and values are valid */
387 	BUG_ON(!bits || (shift > KEYLENGTH));
388 
389 	tnode = tnode_alloc(bits);
390 	if (!tnode)
391 		return NULL;
392 
393 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
394 		 sizeof(struct key_vector *) << bits);
395 
396 	if (bits == KEYLENGTH)
397 		tnode->full_children = 1;
398 	else
399 		tnode->empty_children = 1ul << bits;
400 
401 	tn = tnode->kv;
402 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
403 	tn->pos = pos;
404 	tn->bits = bits;
405 	tn->slen = pos;
406 
407 	return tn;
408 }
409 
410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
411  * and no bits are skipped. See discussion in dyntree paper p. 6
412  */
413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
414 {
415 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
416 }
417 
418 /* Add a child at position i overwriting the old value.
419  * Update the value of full_children and empty_children.
420  */
421 static void put_child(struct key_vector *tn, unsigned long i,
422 		      struct key_vector *n)
423 {
424 	struct key_vector *chi = get_child(tn, i);
425 	int isfull, wasfull;
426 
427 	BUG_ON(i >= child_length(tn));
428 
429 	/* update emptyChildren, overflow into fullChildren */
430 	if (!n && chi)
431 		empty_child_inc(tn);
432 	if (n && !chi)
433 		empty_child_dec(tn);
434 
435 	/* update fullChildren */
436 	wasfull = tnode_full(tn, chi);
437 	isfull = tnode_full(tn, n);
438 
439 	if (wasfull && !isfull)
440 		tn_info(tn)->full_children--;
441 	else if (!wasfull && isfull)
442 		tn_info(tn)->full_children++;
443 
444 	if (n && (tn->slen < n->slen))
445 		tn->slen = n->slen;
446 
447 	rcu_assign_pointer(tn->tnode[i], n);
448 }
449 
450 static void update_children(struct key_vector *tn)
451 {
452 	unsigned long i;
453 
454 	/* update all of the child parent pointers */
455 	for (i = child_length(tn); i;) {
456 		struct key_vector *inode = get_child(tn, --i);
457 
458 		if (!inode)
459 			continue;
460 
461 		/* Either update the children of a tnode that
462 		 * already belongs to us or update the child
463 		 * to point to ourselves.
464 		 */
465 		if (node_parent(inode) == tn)
466 			update_children(inode);
467 		else
468 			node_set_parent(inode, tn);
469 	}
470 }
471 
472 static inline void put_child_root(struct key_vector *tp, t_key key,
473 				  struct key_vector *n)
474 {
475 	if (IS_TRIE(tp))
476 		rcu_assign_pointer(tp->tnode[0], n);
477 	else
478 		put_child(tp, get_index(key, tp), n);
479 }
480 
481 static inline void tnode_free_init(struct key_vector *tn)
482 {
483 	tn_info(tn)->rcu.next = NULL;
484 }
485 
486 static inline void tnode_free_append(struct key_vector *tn,
487 				     struct key_vector *n)
488 {
489 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
490 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
491 }
492 
493 static void tnode_free(struct key_vector *tn)
494 {
495 	struct callback_head *head = &tn_info(tn)->rcu;
496 
497 	while (head) {
498 		head = head->next;
499 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
500 		node_free(tn);
501 
502 		tn = container_of(head, struct tnode, rcu)->kv;
503 	}
504 
505 	if (tnode_free_size >= sysctl_fib_sync_mem) {
506 		tnode_free_size = 0;
507 		synchronize_rcu();
508 	}
509 }
510 
511 static struct key_vector *replace(struct trie *t,
512 				  struct key_vector *oldtnode,
513 				  struct key_vector *tn)
514 {
515 	struct key_vector *tp = node_parent(oldtnode);
516 	unsigned long i;
517 
518 	/* setup the parent pointer out of and back into this node */
519 	NODE_INIT_PARENT(tn, tp);
520 	put_child_root(tp, tn->key, tn);
521 
522 	/* update all of the child parent pointers */
523 	update_children(tn);
524 
525 	/* all pointers should be clean so we are done */
526 	tnode_free(oldtnode);
527 
528 	/* resize children now that oldtnode is freed */
529 	for (i = child_length(tn); i;) {
530 		struct key_vector *inode = get_child(tn, --i);
531 
532 		/* resize child node */
533 		if (tnode_full(tn, inode))
534 			tn = resize(t, inode);
535 	}
536 
537 	return tp;
538 }
539 
540 static struct key_vector *inflate(struct trie *t,
541 				  struct key_vector *oldtnode)
542 {
543 	struct key_vector *tn;
544 	unsigned long i;
545 	t_key m;
546 
547 	pr_debug("In inflate\n");
548 
549 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
550 	if (!tn)
551 		goto notnode;
552 
553 	/* prepare oldtnode to be freed */
554 	tnode_free_init(oldtnode);
555 
556 	/* Assemble all of the pointers in our cluster, in this case that
557 	 * represents all of the pointers out of our allocated nodes that
558 	 * point to existing tnodes and the links between our allocated
559 	 * nodes.
560 	 */
561 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
562 		struct key_vector *inode = get_child(oldtnode, --i);
563 		struct key_vector *node0, *node1;
564 		unsigned long j, k;
565 
566 		/* An empty child */
567 		if (!inode)
568 			continue;
569 
570 		/* A leaf or an internal node with skipped bits */
571 		if (!tnode_full(oldtnode, inode)) {
572 			put_child(tn, get_index(inode->key, tn), inode);
573 			continue;
574 		}
575 
576 		/* drop the node in the old tnode free list */
577 		tnode_free_append(oldtnode, inode);
578 
579 		/* An internal node with two children */
580 		if (inode->bits == 1) {
581 			put_child(tn, 2 * i + 1, get_child(inode, 1));
582 			put_child(tn, 2 * i, get_child(inode, 0));
583 			continue;
584 		}
585 
586 		/* We will replace this node 'inode' with two new
587 		 * ones, 'node0' and 'node1', each with half of the
588 		 * original children. The two new nodes will have
589 		 * a position one bit further down the key and this
590 		 * means that the "significant" part of their keys
591 		 * (see the discussion near the top of this file)
592 		 * will differ by one bit, which will be "0" in
593 		 * node0's key and "1" in node1's key. Since we are
594 		 * moving the key position by one step, the bit that
595 		 * we are moving away from - the bit at position
596 		 * (tn->pos) - is the one that will differ between
597 		 * node0 and node1. So... we synthesize that bit in the
598 		 * two new keys.
599 		 */
600 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
601 		if (!node1)
602 			goto nomem;
603 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
604 
605 		tnode_free_append(tn, node1);
606 		if (!node0)
607 			goto nomem;
608 		tnode_free_append(tn, node0);
609 
610 		/* populate child pointers in new nodes */
611 		for (k = child_length(inode), j = k / 2; j;) {
612 			put_child(node1, --j, get_child(inode, --k));
613 			put_child(node0, j, get_child(inode, j));
614 			put_child(node1, --j, get_child(inode, --k));
615 			put_child(node0, j, get_child(inode, j));
616 		}
617 
618 		/* link new nodes to parent */
619 		NODE_INIT_PARENT(node1, tn);
620 		NODE_INIT_PARENT(node0, tn);
621 
622 		/* link parent to nodes */
623 		put_child(tn, 2 * i + 1, node1);
624 		put_child(tn, 2 * i, node0);
625 	}
626 
627 	/* setup the parent pointers into and out of this node */
628 	return replace(t, oldtnode, tn);
629 nomem:
630 	/* all pointers should be clean so we are done */
631 	tnode_free(tn);
632 notnode:
633 	return NULL;
634 }
635 
636 static struct key_vector *halve(struct trie *t,
637 				struct key_vector *oldtnode)
638 {
639 	struct key_vector *tn;
640 	unsigned long i;
641 
642 	pr_debug("In halve\n");
643 
644 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
645 	if (!tn)
646 		goto notnode;
647 
648 	/* prepare oldtnode to be freed */
649 	tnode_free_init(oldtnode);
650 
651 	/* Assemble all of the pointers in our cluster, in this case that
652 	 * represents all of the pointers out of our allocated nodes that
653 	 * point to existing tnodes and the links between our allocated
654 	 * nodes.
655 	 */
656 	for (i = child_length(oldtnode); i;) {
657 		struct key_vector *node1 = get_child(oldtnode, --i);
658 		struct key_vector *node0 = get_child(oldtnode, --i);
659 		struct key_vector *inode;
660 
661 		/* At least one of the children is empty */
662 		if (!node1 || !node0) {
663 			put_child(tn, i / 2, node1 ? : node0);
664 			continue;
665 		}
666 
667 		/* Two nonempty children */
668 		inode = tnode_new(node0->key, oldtnode->pos, 1);
669 		if (!inode)
670 			goto nomem;
671 		tnode_free_append(tn, inode);
672 
673 		/* initialize pointers out of node */
674 		put_child(inode, 1, node1);
675 		put_child(inode, 0, node0);
676 		NODE_INIT_PARENT(inode, tn);
677 
678 		/* link parent to node */
679 		put_child(tn, i / 2, inode);
680 	}
681 
682 	/* setup the parent pointers into and out of this node */
683 	return replace(t, oldtnode, tn);
684 nomem:
685 	/* all pointers should be clean so we are done */
686 	tnode_free(tn);
687 notnode:
688 	return NULL;
689 }
690 
691 static struct key_vector *collapse(struct trie *t,
692 				   struct key_vector *oldtnode)
693 {
694 	struct key_vector *n, *tp;
695 	unsigned long i;
696 
697 	/* scan the tnode looking for that one child that might still exist */
698 	for (n = NULL, i = child_length(oldtnode); !n && i;)
699 		n = get_child(oldtnode, --i);
700 
701 	/* compress one level */
702 	tp = node_parent(oldtnode);
703 	put_child_root(tp, oldtnode->key, n);
704 	node_set_parent(n, tp);
705 
706 	/* drop dead node */
707 	node_free(oldtnode);
708 
709 	return tp;
710 }
711 
712 static unsigned char update_suffix(struct key_vector *tn)
713 {
714 	unsigned char slen = tn->pos;
715 	unsigned long stride, i;
716 	unsigned char slen_max;
717 
718 	/* only vector 0 can have a suffix length greater than or equal to
719 	 * tn->pos + tn->bits, the second highest node will have a suffix
720 	 * length at most of tn->pos + tn->bits - 1
721 	 */
722 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
723 
724 	/* search though the list of children looking for nodes that might
725 	 * have a suffix greater than the one we currently have.  This is
726 	 * why we start with a stride of 2 since a stride of 1 would
727 	 * represent the nodes with suffix length equal to tn->pos
728 	 */
729 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
730 		struct key_vector *n = get_child(tn, i);
731 
732 		if (!n || (n->slen <= slen))
733 			continue;
734 
735 		/* update stride and slen based on new value */
736 		stride <<= (n->slen - slen);
737 		slen = n->slen;
738 		i &= ~(stride - 1);
739 
740 		/* stop searching if we have hit the maximum possible value */
741 		if (slen >= slen_max)
742 			break;
743 	}
744 
745 	tn->slen = slen;
746 
747 	return slen;
748 }
749 
750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751  * the Helsinki University of Technology and Matti Tikkanen of Nokia
752  * Telecommunications, page 6:
753  * "A node is doubled if the ratio of non-empty children to all
754  * children in the *doubled* node is at least 'high'."
755  *
756  * 'high' in this instance is the variable 'inflate_threshold'. It
757  * is expressed as a percentage, so we multiply it with
758  * child_length() and instead of multiplying by 2 (since the
759  * child array will be doubled by inflate()) and multiplying
760  * the left-hand side by 100 (to handle the percentage thing) we
761  * multiply the left-hand side by 50.
762  *
763  * The left-hand side may look a bit weird: child_length(tn)
764  * - tn->empty_children is of course the number of non-null children
765  * in the current node. tn->full_children is the number of "full"
766  * children, that is non-null tnodes with a skip value of 0.
767  * All of those will be doubled in the resulting inflated tnode, so
768  * we just count them one extra time here.
769  *
770  * A clearer way to write this would be:
771  *
772  * to_be_doubled = tn->full_children;
773  * not_to_be_doubled = child_length(tn) - tn->empty_children -
774  *     tn->full_children;
775  *
776  * new_child_length = child_length(tn) * 2;
777  *
778  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
779  *      new_child_length;
780  * if (new_fill_factor >= inflate_threshold)
781  *
782  * ...and so on, tho it would mess up the while () loop.
783  *
784  * anyway,
785  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
786  *      inflate_threshold
787  *
788  * avoid a division:
789  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790  *      inflate_threshold * new_child_length
791  *
792  * expand not_to_be_doubled and to_be_doubled, and shorten:
793  * 100 * (child_length(tn) - tn->empty_children +
794  *    tn->full_children) >= inflate_threshold * new_child_length
795  *
796  * expand new_child_length:
797  * 100 * (child_length(tn) - tn->empty_children +
798  *    tn->full_children) >=
799  *      inflate_threshold * child_length(tn) * 2
800  *
801  * shorten again:
802  * 50 * (tn->full_children + child_length(tn) -
803  *    tn->empty_children) >= inflate_threshold *
804  *    child_length(tn)
805  *
806  */
807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
808 {
809 	unsigned long used = child_length(tn);
810 	unsigned long threshold = used;
811 
812 	/* Keep root node larger */
813 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
814 	used -= tn_info(tn)->empty_children;
815 	used += tn_info(tn)->full_children;
816 
817 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
818 
819 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
820 }
821 
822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
823 {
824 	unsigned long used = child_length(tn);
825 	unsigned long threshold = used;
826 
827 	/* Keep root node larger */
828 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
829 	used -= tn_info(tn)->empty_children;
830 
831 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
832 
833 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
834 }
835 
836 static inline bool should_collapse(struct key_vector *tn)
837 {
838 	unsigned long used = child_length(tn);
839 
840 	used -= tn_info(tn)->empty_children;
841 
842 	/* account for bits == KEYLENGTH case */
843 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
844 		used -= KEY_MAX;
845 
846 	/* One child or none, time to drop us from the trie */
847 	return used < 2;
848 }
849 
850 #define MAX_WORK 10
851 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
852 {
853 #ifdef CONFIG_IP_FIB_TRIE_STATS
854 	struct trie_use_stats __percpu *stats = t->stats;
855 #endif
856 	struct key_vector *tp = node_parent(tn);
857 	unsigned long cindex = get_index(tn->key, tp);
858 	int max_work = MAX_WORK;
859 
860 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 		 tn, inflate_threshold, halve_threshold);
862 
863 	/* track the tnode via the pointer from the parent instead of
864 	 * doing it ourselves.  This way we can let RCU fully do its
865 	 * thing without us interfering
866 	 */
867 	BUG_ON(tn != get_child(tp, cindex));
868 
869 	/* Double as long as the resulting node has a number of
870 	 * nonempty nodes that are above the threshold.
871 	 */
872 	while (should_inflate(tp, tn) && max_work) {
873 		tp = inflate(t, tn);
874 		if (!tp) {
875 #ifdef CONFIG_IP_FIB_TRIE_STATS
876 			this_cpu_inc(stats->resize_node_skipped);
877 #endif
878 			break;
879 		}
880 
881 		max_work--;
882 		tn = get_child(tp, cindex);
883 	}
884 
885 	/* update parent in case inflate failed */
886 	tp = node_parent(tn);
887 
888 	/* Return if at least one inflate is run */
889 	if (max_work != MAX_WORK)
890 		return tp;
891 
892 	/* Halve as long as the number of empty children in this
893 	 * node is above threshold.
894 	 */
895 	while (should_halve(tp, tn) && max_work) {
896 		tp = halve(t, tn);
897 		if (!tp) {
898 #ifdef CONFIG_IP_FIB_TRIE_STATS
899 			this_cpu_inc(stats->resize_node_skipped);
900 #endif
901 			break;
902 		}
903 
904 		max_work--;
905 		tn = get_child(tp, cindex);
906 	}
907 
908 	/* Only one child remains */
909 	if (should_collapse(tn))
910 		return collapse(t, tn);
911 
912 	/* update parent in case halve failed */
913 	return node_parent(tn);
914 }
915 
916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
917 {
918 	unsigned char node_slen = tn->slen;
919 
920 	while ((node_slen > tn->pos) && (node_slen > slen)) {
921 		slen = update_suffix(tn);
922 		if (node_slen == slen)
923 			break;
924 
925 		tn = node_parent(tn);
926 		node_slen = tn->slen;
927 	}
928 }
929 
930 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
931 {
932 	while (tn->slen < slen) {
933 		tn->slen = slen;
934 		tn = node_parent(tn);
935 	}
936 }
937 
938 /* rcu_read_lock needs to be hold by caller from readside */
939 static struct key_vector *fib_find_node(struct trie *t,
940 					struct key_vector **tp, u32 key)
941 {
942 	struct key_vector *pn, *n = t->kv;
943 	unsigned long index = 0;
944 
945 	do {
946 		pn = n;
947 		n = get_child_rcu(n, index);
948 
949 		if (!n)
950 			break;
951 
952 		index = get_cindex(key, n);
953 
954 		/* This bit of code is a bit tricky but it combines multiple
955 		 * checks into a single check.  The prefix consists of the
956 		 * prefix plus zeros for the bits in the cindex. The index
957 		 * is the difference between the key and this value.  From
958 		 * this we can actually derive several pieces of data.
959 		 *   if (index >= (1ul << bits))
960 		 *     we have a mismatch in skip bits and failed
961 		 *   else
962 		 *     we know the value is cindex
963 		 *
964 		 * This check is safe even if bits == KEYLENGTH due to the
965 		 * fact that we can only allocate a node with 32 bits if a
966 		 * long is greater than 32 bits.
967 		 */
968 		if (index >= (1ul << n->bits)) {
969 			n = NULL;
970 			break;
971 		}
972 
973 		/* keep searching until we find a perfect match leaf or NULL */
974 	} while (IS_TNODE(n));
975 
976 	*tp = pn;
977 
978 	return n;
979 }
980 
981 /* Return the first fib alias matching TOS with
982  * priority less than or equal to PRIO.
983  * If 'find_first' is set, return the first matching
984  * fib alias, regardless of TOS and priority.
985  */
986 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
987 					u8 tos, u32 prio, u32 tb_id,
988 					bool find_first)
989 {
990 	struct fib_alias *fa;
991 
992 	if (!fah)
993 		return NULL;
994 
995 	hlist_for_each_entry(fa, fah, fa_list) {
996 		if (fa->fa_slen < slen)
997 			continue;
998 		if (fa->fa_slen != slen)
999 			break;
1000 		if (fa->tb_id > tb_id)
1001 			continue;
1002 		if (fa->tb_id != tb_id)
1003 			break;
1004 		if (find_first)
1005 			return fa;
1006 		if (fa->fa_tos > tos)
1007 			continue;
1008 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1009 			return fa;
1010 	}
1011 
1012 	return NULL;
1013 }
1014 
1015 static struct fib_alias *
1016 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1017 {
1018 	u8 slen = KEYLENGTH - fri->dst_len;
1019 	struct key_vector *l, *tp;
1020 	struct fib_table *tb;
1021 	struct fib_alias *fa;
1022 	struct trie *t;
1023 
1024 	tb = fib_get_table(net, fri->tb_id);
1025 	if (!tb)
1026 		return NULL;
1027 
1028 	t = (struct trie *)tb->tb_data;
1029 	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1030 	if (!l)
1031 		return NULL;
1032 
1033 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1034 		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1035 		    fa->fa_tos == fri->tos && fa->fa_info == fri->fi &&
1036 		    fa->fa_type == fri->type)
1037 			return fa;
1038 	}
1039 
1040 	return NULL;
1041 }
1042 
1043 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1044 {
1045 	struct fib_alias *fa_match;
1046 
1047 	rcu_read_lock();
1048 
1049 	fa_match = fib_find_matching_alias(net, fri);
1050 	if (!fa_match)
1051 		goto out;
1052 
1053 	fa_match->offload = fri->offload;
1054 	fa_match->trap = fri->trap;
1055 
1056 out:
1057 	rcu_read_unlock();
1058 }
1059 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1060 
1061 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1062 {
1063 	while (!IS_TRIE(tn))
1064 		tn = resize(t, tn);
1065 }
1066 
1067 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1068 			   struct fib_alias *new, t_key key)
1069 {
1070 	struct key_vector *n, *l;
1071 
1072 	l = leaf_new(key, new);
1073 	if (!l)
1074 		goto noleaf;
1075 
1076 	/* retrieve child from parent node */
1077 	n = get_child(tp, get_index(key, tp));
1078 
1079 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1080 	 *
1081 	 *  Add a new tnode here
1082 	 *  first tnode need some special handling
1083 	 *  leaves us in position for handling as case 3
1084 	 */
1085 	if (n) {
1086 		struct key_vector *tn;
1087 
1088 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1089 		if (!tn)
1090 			goto notnode;
1091 
1092 		/* initialize routes out of node */
1093 		NODE_INIT_PARENT(tn, tp);
1094 		put_child(tn, get_index(key, tn) ^ 1, n);
1095 
1096 		/* start adding routes into the node */
1097 		put_child_root(tp, key, tn);
1098 		node_set_parent(n, tn);
1099 
1100 		/* parent now has a NULL spot where the leaf can go */
1101 		tp = tn;
1102 	}
1103 
1104 	/* Case 3: n is NULL, and will just insert a new leaf */
1105 	node_push_suffix(tp, new->fa_slen);
1106 	NODE_INIT_PARENT(l, tp);
1107 	put_child_root(tp, key, l);
1108 	trie_rebalance(t, tp);
1109 
1110 	return 0;
1111 notnode:
1112 	node_free(l);
1113 noleaf:
1114 	return -ENOMEM;
1115 }
1116 
1117 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1118 			    struct key_vector *l, struct fib_alias *new,
1119 			    struct fib_alias *fa, t_key key)
1120 {
1121 	if (!l)
1122 		return fib_insert_node(t, tp, new, key);
1123 
1124 	if (fa) {
1125 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1126 	} else {
1127 		struct fib_alias *last;
1128 
1129 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1130 			if (new->fa_slen < last->fa_slen)
1131 				break;
1132 			if ((new->fa_slen == last->fa_slen) &&
1133 			    (new->tb_id > last->tb_id))
1134 				break;
1135 			fa = last;
1136 		}
1137 
1138 		if (fa)
1139 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1140 		else
1141 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1142 	}
1143 
1144 	/* if we added to the tail node then we need to update slen */
1145 	if (l->slen < new->fa_slen) {
1146 		l->slen = new->fa_slen;
1147 		node_push_suffix(tp, new->fa_slen);
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1154 {
1155 	if (plen > KEYLENGTH) {
1156 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1157 		return false;
1158 	}
1159 
1160 	if ((plen < KEYLENGTH) && (key << plen)) {
1161 		NL_SET_ERR_MSG(extack,
1162 			       "Invalid prefix for given prefix length");
1163 		return false;
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1170 			     struct key_vector *l, struct fib_alias *old);
1171 
1172 /* Caller must hold RTNL. */
1173 int fib_table_insert(struct net *net, struct fib_table *tb,
1174 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1175 {
1176 	struct trie *t = (struct trie *)tb->tb_data;
1177 	struct fib_alias *fa, *new_fa;
1178 	struct key_vector *l, *tp;
1179 	u16 nlflags = NLM_F_EXCL;
1180 	struct fib_info *fi;
1181 	u8 plen = cfg->fc_dst_len;
1182 	u8 slen = KEYLENGTH - plen;
1183 	u8 tos = cfg->fc_tos;
1184 	u32 key;
1185 	int err;
1186 
1187 	key = ntohl(cfg->fc_dst);
1188 
1189 	if (!fib_valid_key_len(key, plen, extack))
1190 		return -EINVAL;
1191 
1192 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1193 
1194 	fi = fib_create_info(cfg, extack);
1195 	if (IS_ERR(fi)) {
1196 		err = PTR_ERR(fi);
1197 		goto err;
1198 	}
1199 
1200 	l = fib_find_node(t, &tp, key);
1201 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1202 				tb->tb_id, false) : NULL;
1203 
1204 	/* Now fa, if non-NULL, points to the first fib alias
1205 	 * with the same keys [prefix,tos,priority], if such key already
1206 	 * exists or to the node before which we will insert new one.
1207 	 *
1208 	 * If fa is NULL, we will need to allocate a new one and
1209 	 * insert to the tail of the section matching the suffix length
1210 	 * of the new alias.
1211 	 */
1212 
1213 	if (fa && fa->fa_tos == tos &&
1214 	    fa->fa_info->fib_priority == fi->fib_priority) {
1215 		struct fib_alias *fa_first, *fa_match;
1216 
1217 		err = -EEXIST;
1218 		if (cfg->fc_nlflags & NLM_F_EXCL)
1219 			goto out;
1220 
1221 		nlflags &= ~NLM_F_EXCL;
1222 
1223 		/* We have 2 goals:
1224 		 * 1. Find exact match for type, scope, fib_info to avoid
1225 		 * duplicate routes
1226 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1227 		 */
1228 		fa_match = NULL;
1229 		fa_first = fa;
1230 		hlist_for_each_entry_from(fa, fa_list) {
1231 			if ((fa->fa_slen != slen) ||
1232 			    (fa->tb_id != tb->tb_id) ||
1233 			    (fa->fa_tos != tos))
1234 				break;
1235 			if (fa->fa_info->fib_priority != fi->fib_priority)
1236 				break;
1237 			if (fa->fa_type == cfg->fc_type &&
1238 			    fa->fa_info == fi) {
1239 				fa_match = fa;
1240 				break;
1241 			}
1242 		}
1243 
1244 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1245 			struct fib_info *fi_drop;
1246 			u8 state;
1247 
1248 			nlflags |= NLM_F_REPLACE;
1249 			fa = fa_first;
1250 			if (fa_match) {
1251 				if (fa == fa_match)
1252 					err = 0;
1253 				goto out;
1254 			}
1255 			err = -ENOBUFS;
1256 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1257 			if (!new_fa)
1258 				goto out;
1259 
1260 			fi_drop = fa->fa_info;
1261 			new_fa->fa_tos = fa->fa_tos;
1262 			new_fa->fa_info = fi;
1263 			new_fa->fa_type = cfg->fc_type;
1264 			state = fa->fa_state;
1265 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1266 			new_fa->fa_slen = fa->fa_slen;
1267 			new_fa->tb_id = tb->tb_id;
1268 			new_fa->fa_default = -1;
1269 			new_fa->offload = 0;
1270 			new_fa->trap = 0;
1271 
1272 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1273 
1274 			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1275 					   tb->tb_id, true) == new_fa) {
1276 				enum fib_event_type fib_event;
1277 
1278 				fib_event = FIB_EVENT_ENTRY_REPLACE;
1279 				err = call_fib_entry_notifiers(net, fib_event,
1280 							       key, plen,
1281 							       new_fa, extack);
1282 				if (err) {
1283 					hlist_replace_rcu(&new_fa->fa_list,
1284 							  &fa->fa_list);
1285 					goto out_free_new_fa;
1286 				}
1287 			}
1288 
1289 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1290 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1291 
1292 			alias_free_mem_rcu(fa);
1293 
1294 			fib_release_info(fi_drop);
1295 			if (state & FA_S_ACCESSED)
1296 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1297 
1298 			goto succeeded;
1299 		}
1300 		/* Error if we find a perfect match which
1301 		 * uses the same scope, type, and nexthop
1302 		 * information.
1303 		 */
1304 		if (fa_match)
1305 			goto out;
1306 
1307 		if (cfg->fc_nlflags & NLM_F_APPEND)
1308 			nlflags |= NLM_F_APPEND;
1309 		else
1310 			fa = fa_first;
1311 	}
1312 	err = -ENOENT;
1313 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1314 		goto out;
1315 
1316 	nlflags |= NLM_F_CREATE;
1317 	err = -ENOBUFS;
1318 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1319 	if (!new_fa)
1320 		goto out;
1321 
1322 	new_fa->fa_info = fi;
1323 	new_fa->fa_tos = tos;
1324 	new_fa->fa_type = cfg->fc_type;
1325 	new_fa->fa_state = 0;
1326 	new_fa->fa_slen = slen;
1327 	new_fa->tb_id = tb->tb_id;
1328 	new_fa->fa_default = -1;
1329 	new_fa->offload = 0;
1330 	new_fa->trap = 0;
1331 
1332 	/* Insert new entry to the list. */
1333 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1334 	if (err)
1335 		goto out_free_new_fa;
1336 
1337 	/* The alias was already inserted, so the node must exist. */
1338 	l = l ? l : fib_find_node(t, &tp, key);
1339 	if (WARN_ON_ONCE(!l))
1340 		goto out_free_new_fa;
1341 
1342 	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1343 	    new_fa) {
1344 		enum fib_event_type fib_event;
1345 
1346 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1347 		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1348 					       new_fa, extack);
1349 		if (err)
1350 			goto out_remove_new_fa;
1351 	}
1352 
1353 	if (!plen)
1354 		tb->tb_num_default++;
1355 
1356 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1357 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1358 		  &cfg->fc_nlinfo, nlflags);
1359 succeeded:
1360 	return 0;
1361 
1362 out_remove_new_fa:
1363 	fib_remove_alias(t, tp, l, new_fa);
1364 out_free_new_fa:
1365 	kmem_cache_free(fn_alias_kmem, new_fa);
1366 out:
1367 	fib_release_info(fi);
1368 err:
1369 	return err;
1370 }
1371 
1372 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1373 {
1374 	t_key prefix = n->key;
1375 
1376 	return (key ^ prefix) & (prefix | -prefix);
1377 }
1378 
1379 /* should be called with rcu_read_lock */
1380 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1381 		     struct fib_result *res, int fib_flags)
1382 {
1383 	struct trie *t = (struct trie *) tb->tb_data;
1384 #ifdef CONFIG_IP_FIB_TRIE_STATS
1385 	struct trie_use_stats __percpu *stats = t->stats;
1386 #endif
1387 	const t_key key = ntohl(flp->daddr);
1388 	struct key_vector *n, *pn;
1389 	struct fib_alias *fa;
1390 	unsigned long index;
1391 	t_key cindex;
1392 
1393 	pn = t->kv;
1394 	cindex = 0;
1395 
1396 	n = get_child_rcu(pn, cindex);
1397 	if (!n) {
1398 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1399 		return -EAGAIN;
1400 	}
1401 
1402 #ifdef CONFIG_IP_FIB_TRIE_STATS
1403 	this_cpu_inc(stats->gets);
1404 #endif
1405 
1406 	/* Step 1: Travel to the longest prefix match in the trie */
1407 	for (;;) {
1408 		index = get_cindex(key, n);
1409 
1410 		/* This bit of code is a bit tricky but it combines multiple
1411 		 * checks into a single check.  The prefix consists of the
1412 		 * prefix plus zeros for the "bits" in the prefix. The index
1413 		 * is the difference between the key and this value.  From
1414 		 * this we can actually derive several pieces of data.
1415 		 *   if (index >= (1ul << bits))
1416 		 *     we have a mismatch in skip bits and failed
1417 		 *   else
1418 		 *     we know the value is cindex
1419 		 *
1420 		 * This check is safe even if bits == KEYLENGTH due to the
1421 		 * fact that we can only allocate a node with 32 bits if a
1422 		 * long is greater than 32 bits.
1423 		 */
1424 		if (index >= (1ul << n->bits))
1425 			break;
1426 
1427 		/* we have found a leaf. Prefixes have already been compared */
1428 		if (IS_LEAF(n))
1429 			goto found;
1430 
1431 		/* only record pn and cindex if we are going to be chopping
1432 		 * bits later.  Otherwise we are just wasting cycles.
1433 		 */
1434 		if (n->slen > n->pos) {
1435 			pn = n;
1436 			cindex = index;
1437 		}
1438 
1439 		n = get_child_rcu(n, index);
1440 		if (unlikely(!n))
1441 			goto backtrace;
1442 	}
1443 
1444 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1445 	for (;;) {
1446 		/* record the pointer where our next node pointer is stored */
1447 		struct key_vector __rcu **cptr = n->tnode;
1448 
1449 		/* This test verifies that none of the bits that differ
1450 		 * between the key and the prefix exist in the region of
1451 		 * the lsb and higher in the prefix.
1452 		 */
1453 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1454 			goto backtrace;
1455 
1456 		/* exit out and process leaf */
1457 		if (unlikely(IS_LEAF(n)))
1458 			break;
1459 
1460 		/* Don't bother recording parent info.  Since we are in
1461 		 * prefix match mode we will have to come back to wherever
1462 		 * we started this traversal anyway
1463 		 */
1464 
1465 		while ((n = rcu_dereference(*cptr)) == NULL) {
1466 backtrace:
1467 #ifdef CONFIG_IP_FIB_TRIE_STATS
1468 			if (!n)
1469 				this_cpu_inc(stats->null_node_hit);
1470 #endif
1471 			/* If we are at cindex 0 there are no more bits for
1472 			 * us to strip at this level so we must ascend back
1473 			 * up one level to see if there are any more bits to
1474 			 * be stripped there.
1475 			 */
1476 			while (!cindex) {
1477 				t_key pkey = pn->key;
1478 
1479 				/* If we don't have a parent then there is
1480 				 * nothing for us to do as we do not have any
1481 				 * further nodes to parse.
1482 				 */
1483 				if (IS_TRIE(pn)) {
1484 					trace_fib_table_lookup(tb->tb_id, flp,
1485 							       NULL, -EAGAIN);
1486 					return -EAGAIN;
1487 				}
1488 #ifdef CONFIG_IP_FIB_TRIE_STATS
1489 				this_cpu_inc(stats->backtrack);
1490 #endif
1491 				/* Get Child's index */
1492 				pn = node_parent_rcu(pn);
1493 				cindex = get_index(pkey, pn);
1494 			}
1495 
1496 			/* strip the least significant bit from the cindex */
1497 			cindex &= cindex - 1;
1498 
1499 			/* grab pointer for next child node */
1500 			cptr = &pn->tnode[cindex];
1501 		}
1502 	}
1503 
1504 found:
1505 	/* this line carries forward the xor from earlier in the function */
1506 	index = key ^ n->key;
1507 
1508 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1509 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1510 		struct fib_info *fi = fa->fa_info;
1511 		int nhsel, err;
1512 
1513 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1514 			if (index >= (1ul << fa->fa_slen))
1515 				continue;
1516 		}
1517 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1518 			continue;
1519 		if (fi->fib_dead)
1520 			continue;
1521 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1522 			continue;
1523 		fib_alias_accessed(fa);
1524 		err = fib_props[fa->fa_type].error;
1525 		if (unlikely(err < 0)) {
1526 out_reject:
1527 #ifdef CONFIG_IP_FIB_TRIE_STATS
1528 			this_cpu_inc(stats->semantic_match_passed);
1529 #endif
1530 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1531 			return err;
1532 		}
1533 		if (fi->fib_flags & RTNH_F_DEAD)
1534 			continue;
1535 
1536 		if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1537 			err = fib_props[RTN_BLACKHOLE].error;
1538 			goto out_reject;
1539 		}
1540 
1541 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1542 			struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1543 
1544 			if (nhc->nhc_flags & RTNH_F_DEAD)
1545 				continue;
1546 			if (ip_ignore_linkdown(nhc->nhc_dev) &&
1547 			    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1548 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1549 				continue;
1550 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1551 				if (flp->flowi4_oif &&
1552 				    flp->flowi4_oif != nhc->nhc_oif)
1553 					continue;
1554 			}
1555 
1556 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1557 				refcount_inc(&fi->fib_clntref);
1558 
1559 			res->prefix = htonl(n->key);
1560 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1561 			res->nh_sel = nhsel;
1562 			res->nhc = nhc;
1563 			res->type = fa->fa_type;
1564 			res->scope = fi->fib_scope;
1565 			res->fi = fi;
1566 			res->table = tb;
1567 			res->fa_head = &n->leaf;
1568 #ifdef CONFIG_IP_FIB_TRIE_STATS
1569 			this_cpu_inc(stats->semantic_match_passed);
1570 #endif
1571 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1572 
1573 			return err;
1574 		}
1575 	}
1576 #ifdef CONFIG_IP_FIB_TRIE_STATS
1577 	this_cpu_inc(stats->semantic_match_miss);
1578 #endif
1579 	goto backtrace;
1580 }
1581 EXPORT_SYMBOL_GPL(fib_table_lookup);
1582 
1583 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1584 			     struct key_vector *l, struct fib_alias *old)
1585 {
1586 	/* record the location of the previous list_info entry */
1587 	struct hlist_node **pprev = old->fa_list.pprev;
1588 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1589 
1590 	/* remove the fib_alias from the list */
1591 	hlist_del_rcu(&old->fa_list);
1592 
1593 	/* if we emptied the list this leaf will be freed and we can sort
1594 	 * out parent suffix lengths as a part of trie_rebalance
1595 	 */
1596 	if (hlist_empty(&l->leaf)) {
1597 		if (tp->slen == l->slen)
1598 			node_pull_suffix(tp, tp->pos);
1599 		put_child_root(tp, l->key, NULL);
1600 		node_free(l);
1601 		trie_rebalance(t, tp);
1602 		return;
1603 	}
1604 
1605 	/* only access fa if it is pointing at the last valid hlist_node */
1606 	if (*pprev)
1607 		return;
1608 
1609 	/* update the trie with the latest suffix length */
1610 	l->slen = fa->fa_slen;
1611 	node_pull_suffix(tp, fa->fa_slen);
1612 }
1613 
1614 static void fib_notify_alias_delete(struct net *net, u32 key,
1615 				    struct hlist_head *fah,
1616 				    struct fib_alias *fa_to_delete,
1617 				    struct netlink_ext_ack *extack)
1618 {
1619 	struct fib_alias *fa_next, *fa_to_notify;
1620 	u32 tb_id = fa_to_delete->tb_id;
1621 	u8 slen = fa_to_delete->fa_slen;
1622 	enum fib_event_type fib_event;
1623 
1624 	/* Do not notify if we do not care about the route. */
1625 	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1626 		return;
1627 
1628 	/* Determine if the route should be replaced by the next route in the
1629 	 * list.
1630 	 */
1631 	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1632 				   struct fib_alias, fa_list);
1633 	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1634 		fib_event = FIB_EVENT_ENTRY_REPLACE;
1635 		fa_to_notify = fa_next;
1636 	} else {
1637 		fib_event = FIB_EVENT_ENTRY_DEL;
1638 		fa_to_notify = fa_to_delete;
1639 	}
1640 	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1641 				 fa_to_notify, extack);
1642 }
1643 
1644 /* Caller must hold RTNL. */
1645 int fib_table_delete(struct net *net, struct fib_table *tb,
1646 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1647 {
1648 	struct trie *t = (struct trie *) tb->tb_data;
1649 	struct fib_alias *fa, *fa_to_delete;
1650 	struct key_vector *l, *tp;
1651 	u8 plen = cfg->fc_dst_len;
1652 	u8 slen = KEYLENGTH - plen;
1653 	u8 tos = cfg->fc_tos;
1654 	u32 key;
1655 
1656 	key = ntohl(cfg->fc_dst);
1657 
1658 	if (!fib_valid_key_len(key, plen, extack))
1659 		return -EINVAL;
1660 
1661 	l = fib_find_node(t, &tp, key);
1662 	if (!l)
1663 		return -ESRCH;
1664 
1665 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id, false);
1666 	if (!fa)
1667 		return -ESRCH;
1668 
1669 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1670 
1671 	fa_to_delete = NULL;
1672 	hlist_for_each_entry_from(fa, fa_list) {
1673 		struct fib_info *fi = fa->fa_info;
1674 
1675 		if ((fa->fa_slen != slen) ||
1676 		    (fa->tb_id != tb->tb_id) ||
1677 		    (fa->fa_tos != tos))
1678 			break;
1679 
1680 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1681 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1682 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1683 		    (!cfg->fc_prefsrc ||
1684 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1685 		    (!cfg->fc_protocol ||
1686 		     fi->fib_protocol == cfg->fc_protocol) &&
1687 		    fib_nh_match(cfg, fi, extack) == 0 &&
1688 		    fib_metrics_match(cfg, fi)) {
1689 			fa_to_delete = fa;
1690 			break;
1691 		}
1692 	}
1693 
1694 	if (!fa_to_delete)
1695 		return -ESRCH;
1696 
1697 	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1698 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1699 		  &cfg->fc_nlinfo, 0);
1700 
1701 	if (!plen)
1702 		tb->tb_num_default--;
1703 
1704 	fib_remove_alias(t, tp, l, fa_to_delete);
1705 
1706 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1707 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1708 
1709 	fib_release_info(fa_to_delete->fa_info);
1710 	alias_free_mem_rcu(fa_to_delete);
1711 	return 0;
1712 }
1713 
1714 /* Scan for the next leaf starting at the provided key value */
1715 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1716 {
1717 	struct key_vector *pn, *n = *tn;
1718 	unsigned long cindex;
1719 
1720 	/* this loop is meant to try and find the key in the trie */
1721 	do {
1722 		/* record parent and next child index */
1723 		pn = n;
1724 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1725 
1726 		if (cindex >> pn->bits)
1727 			break;
1728 
1729 		/* descend into the next child */
1730 		n = get_child_rcu(pn, cindex++);
1731 		if (!n)
1732 			break;
1733 
1734 		/* guarantee forward progress on the keys */
1735 		if (IS_LEAF(n) && (n->key >= key))
1736 			goto found;
1737 	} while (IS_TNODE(n));
1738 
1739 	/* this loop will search for the next leaf with a greater key */
1740 	while (!IS_TRIE(pn)) {
1741 		/* if we exhausted the parent node we will need to climb */
1742 		if (cindex >= (1ul << pn->bits)) {
1743 			t_key pkey = pn->key;
1744 
1745 			pn = node_parent_rcu(pn);
1746 			cindex = get_index(pkey, pn) + 1;
1747 			continue;
1748 		}
1749 
1750 		/* grab the next available node */
1751 		n = get_child_rcu(pn, cindex++);
1752 		if (!n)
1753 			continue;
1754 
1755 		/* no need to compare keys since we bumped the index */
1756 		if (IS_LEAF(n))
1757 			goto found;
1758 
1759 		/* Rescan start scanning in new node */
1760 		pn = n;
1761 		cindex = 0;
1762 	}
1763 
1764 	*tn = pn;
1765 	return NULL; /* Root of trie */
1766 found:
1767 	/* if we are at the limit for keys just return NULL for the tnode */
1768 	*tn = pn;
1769 	return n;
1770 }
1771 
1772 static void fib_trie_free(struct fib_table *tb)
1773 {
1774 	struct trie *t = (struct trie *)tb->tb_data;
1775 	struct key_vector *pn = t->kv;
1776 	unsigned long cindex = 1;
1777 	struct hlist_node *tmp;
1778 	struct fib_alias *fa;
1779 
1780 	/* walk trie in reverse order and free everything */
1781 	for (;;) {
1782 		struct key_vector *n;
1783 
1784 		if (!(cindex--)) {
1785 			t_key pkey = pn->key;
1786 
1787 			if (IS_TRIE(pn))
1788 				break;
1789 
1790 			n = pn;
1791 			pn = node_parent(pn);
1792 
1793 			/* drop emptied tnode */
1794 			put_child_root(pn, n->key, NULL);
1795 			node_free(n);
1796 
1797 			cindex = get_index(pkey, pn);
1798 
1799 			continue;
1800 		}
1801 
1802 		/* grab the next available node */
1803 		n = get_child(pn, cindex);
1804 		if (!n)
1805 			continue;
1806 
1807 		if (IS_TNODE(n)) {
1808 			/* record pn and cindex for leaf walking */
1809 			pn = n;
1810 			cindex = 1ul << n->bits;
1811 
1812 			continue;
1813 		}
1814 
1815 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1816 			hlist_del_rcu(&fa->fa_list);
1817 			alias_free_mem_rcu(fa);
1818 		}
1819 
1820 		put_child_root(pn, n->key, NULL);
1821 		node_free(n);
1822 	}
1823 
1824 #ifdef CONFIG_IP_FIB_TRIE_STATS
1825 	free_percpu(t->stats);
1826 #endif
1827 	kfree(tb);
1828 }
1829 
1830 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1831 {
1832 	struct trie *ot = (struct trie *)oldtb->tb_data;
1833 	struct key_vector *l, *tp = ot->kv;
1834 	struct fib_table *local_tb;
1835 	struct fib_alias *fa;
1836 	struct trie *lt;
1837 	t_key key = 0;
1838 
1839 	if (oldtb->tb_data == oldtb->__data)
1840 		return oldtb;
1841 
1842 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1843 	if (!local_tb)
1844 		return NULL;
1845 
1846 	lt = (struct trie *)local_tb->tb_data;
1847 
1848 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1849 		struct key_vector *local_l = NULL, *local_tp;
1850 
1851 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1852 			struct fib_alias *new_fa;
1853 
1854 			if (local_tb->tb_id != fa->tb_id)
1855 				continue;
1856 
1857 			/* clone fa for new local table */
1858 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1859 			if (!new_fa)
1860 				goto out;
1861 
1862 			memcpy(new_fa, fa, sizeof(*fa));
1863 
1864 			/* insert clone into table */
1865 			if (!local_l)
1866 				local_l = fib_find_node(lt, &local_tp, l->key);
1867 
1868 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1869 					     NULL, l->key)) {
1870 				kmem_cache_free(fn_alias_kmem, new_fa);
1871 				goto out;
1872 			}
1873 		}
1874 
1875 		/* stop loop if key wrapped back to 0 */
1876 		key = l->key + 1;
1877 		if (key < l->key)
1878 			break;
1879 	}
1880 
1881 	return local_tb;
1882 out:
1883 	fib_trie_free(local_tb);
1884 
1885 	return NULL;
1886 }
1887 
1888 /* Caller must hold RTNL */
1889 void fib_table_flush_external(struct fib_table *tb)
1890 {
1891 	struct trie *t = (struct trie *)tb->tb_data;
1892 	struct key_vector *pn = t->kv;
1893 	unsigned long cindex = 1;
1894 	struct hlist_node *tmp;
1895 	struct fib_alias *fa;
1896 
1897 	/* walk trie in reverse order */
1898 	for (;;) {
1899 		unsigned char slen = 0;
1900 		struct key_vector *n;
1901 
1902 		if (!(cindex--)) {
1903 			t_key pkey = pn->key;
1904 
1905 			/* cannot resize the trie vector */
1906 			if (IS_TRIE(pn))
1907 				break;
1908 
1909 			/* update the suffix to address pulled leaves */
1910 			if (pn->slen > pn->pos)
1911 				update_suffix(pn);
1912 
1913 			/* resize completed node */
1914 			pn = resize(t, pn);
1915 			cindex = get_index(pkey, pn);
1916 
1917 			continue;
1918 		}
1919 
1920 		/* grab the next available node */
1921 		n = get_child(pn, cindex);
1922 		if (!n)
1923 			continue;
1924 
1925 		if (IS_TNODE(n)) {
1926 			/* record pn and cindex for leaf walking */
1927 			pn = n;
1928 			cindex = 1ul << n->bits;
1929 
1930 			continue;
1931 		}
1932 
1933 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1934 			/* if alias was cloned to local then we just
1935 			 * need to remove the local copy from main
1936 			 */
1937 			if (tb->tb_id != fa->tb_id) {
1938 				hlist_del_rcu(&fa->fa_list);
1939 				alias_free_mem_rcu(fa);
1940 				continue;
1941 			}
1942 
1943 			/* record local slen */
1944 			slen = fa->fa_slen;
1945 		}
1946 
1947 		/* update leaf slen */
1948 		n->slen = slen;
1949 
1950 		if (hlist_empty(&n->leaf)) {
1951 			put_child_root(pn, n->key, NULL);
1952 			node_free(n);
1953 		}
1954 	}
1955 }
1956 
1957 /* Caller must hold RTNL. */
1958 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1959 {
1960 	struct trie *t = (struct trie *)tb->tb_data;
1961 	struct key_vector *pn = t->kv;
1962 	unsigned long cindex = 1;
1963 	struct hlist_node *tmp;
1964 	struct fib_alias *fa;
1965 	int found = 0;
1966 
1967 	/* walk trie in reverse order */
1968 	for (;;) {
1969 		unsigned char slen = 0;
1970 		struct key_vector *n;
1971 
1972 		if (!(cindex--)) {
1973 			t_key pkey = pn->key;
1974 
1975 			/* cannot resize the trie vector */
1976 			if (IS_TRIE(pn))
1977 				break;
1978 
1979 			/* update the suffix to address pulled leaves */
1980 			if (pn->slen > pn->pos)
1981 				update_suffix(pn);
1982 
1983 			/* resize completed node */
1984 			pn = resize(t, pn);
1985 			cindex = get_index(pkey, pn);
1986 
1987 			continue;
1988 		}
1989 
1990 		/* grab the next available node */
1991 		n = get_child(pn, cindex);
1992 		if (!n)
1993 			continue;
1994 
1995 		if (IS_TNODE(n)) {
1996 			/* record pn and cindex for leaf walking */
1997 			pn = n;
1998 			cindex = 1ul << n->bits;
1999 
2000 			continue;
2001 		}
2002 
2003 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2004 			struct fib_info *fi = fa->fa_info;
2005 
2006 			if (!fi || tb->tb_id != fa->tb_id ||
2007 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2008 			     !fib_props[fa->fa_type].error)) {
2009 				slen = fa->fa_slen;
2010 				continue;
2011 			}
2012 
2013 			/* Do not flush error routes if network namespace is
2014 			 * not being dismantled
2015 			 */
2016 			if (!flush_all && fib_props[fa->fa_type].error) {
2017 				slen = fa->fa_slen;
2018 				continue;
2019 			}
2020 
2021 			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2022 						NULL);
2023 			hlist_del_rcu(&fa->fa_list);
2024 			fib_release_info(fa->fa_info);
2025 			alias_free_mem_rcu(fa);
2026 			found++;
2027 		}
2028 
2029 		/* update leaf slen */
2030 		n->slen = slen;
2031 
2032 		if (hlist_empty(&n->leaf)) {
2033 			put_child_root(pn, n->key, NULL);
2034 			node_free(n);
2035 		}
2036 	}
2037 
2038 	pr_debug("trie_flush found=%d\n", found);
2039 	return found;
2040 }
2041 
2042 /* derived from fib_trie_free */
2043 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2044 				     struct nl_info *info)
2045 {
2046 	struct trie *t = (struct trie *)tb->tb_data;
2047 	struct key_vector *pn = t->kv;
2048 	unsigned long cindex = 1;
2049 	struct fib_alias *fa;
2050 
2051 	for (;;) {
2052 		struct key_vector *n;
2053 
2054 		if (!(cindex--)) {
2055 			t_key pkey = pn->key;
2056 
2057 			if (IS_TRIE(pn))
2058 				break;
2059 
2060 			pn = node_parent(pn);
2061 			cindex = get_index(pkey, pn);
2062 			continue;
2063 		}
2064 
2065 		/* grab the next available node */
2066 		n = get_child(pn, cindex);
2067 		if (!n)
2068 			continue;
2069 
2070 		if (IS_TNODE(n)) {
2071 			/* record pn and cindex for leaf walking */
2072 			pn = n;
2073 			cindex = 1ul << n->bits;
2074 
2075 			continue;
2076 		}
2077 
2078 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2079 			struct fib_info *fi = fa->fa_info;
2080 
2081 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2082 				continue;
2083 
2084 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2085 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2086 				  info, NLM_F_REPLACE);
2087 
2088 			/* call_fib_entry_notifiers will be removed when
2089 			 * in-kernel notifier is implemented and supported
2090 			 * for nexthop objects
2091 			 */
2092 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
2093 						 n->key,
2094 						 KEYLENGTH - fa->fa_slen, fa,
2095 						 NULL);
2096 		}
2097 	}
2098 }
2099 
2100 void fib_info_notify_update(struct net *net, struct nl_info *info)
2101 {
2102 	unsigned int h;
2103 
2104 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2105 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2106 		struct fib_table *tb;
2107 
2108 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2109 			__fib_info_notify_update(net, tb, info);
2110 	}
2111 }
2112 
2113 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2114 			   struct notifier_block *nb,
2115 			   struct netlink_ext_ack *extack)
2116 {
2117 	struct fib_alias *fa;
2118 	int last_slen = -1;
2119 	int err;
2120 
2121 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2122 		struct fib_info *fi = fa->fa_info;
2123 
2124 		if (!fi)
2125 			continue;
2126 
2127 		/* local and main table can share the same trie,
2128 		 * so don't notify twice for the same entry.
2129 		 */
2130 		if (tb->tb_id != fa->tb_id)
2131 			continue;
2132 
2133 		if (fa->fa_slen == last_slen)
2134 			continue;
2135 
2136 		last_slen = fa->fa_slen;
2137 		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2138 					      l->key, KEYLENGTH - fa->fa_slen,
2139 					      fa, extack);
2140 		if (err)
2141 			return err;
2142 	}
2143 	return 0;
2144 }
2145 
2146 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2147 			    struct netlink_ext_ack *extack)
2148 {
2149 	struct trie *t = (struct trie *)tb->tb_data;
2150 	struct key_vector *l, *tp = t->kv;
2151 	t_key key = 0;
2152 	int err;
2153 
2154 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2155 		err = fib_leaf_notify(l, tb, nb, extack);
2156 		if (err)
2157 			return err;
2158 
2159 		key = l->key + 1;
2160 		/* stop in case of wrap around */
2161 		if (key < l->key)
2162 			break;
2163 	}
2164 	return 0;
2165 }
2166 
2167 int fib_notify(struct net *net, struct notifier_block *nb,
2168 	       struct netlink_ext_ack *extack)
2169 {
2170 	unsigned int h;
2171 	int err;
2172 
2173 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2174 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2175 		struct fib_table *tb;
2176 
2177 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2178 			err = fib_table_notify(tb, nb, extack);
2179 			if (err)
2180 				return err;
2181 		}
2182 	}
2183 	return 0;
2184 }
2185 
2186 static void __trie_free_rcu(struct rcu_head *head)
2187 {
2188 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2189 #ifdef CONFIG_IP_FIB_TRIE_STATS
2190 	struct trie *t = (struct trie *)tb->tb_data;
2191 
2192 	if (tb->tb_data == tb->__data)
2193 		free_percpu(t->stats);
2194 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2195 	kfree(tb);
2196 }
2197 
2198 void fib_free_table(struct fib_table *tb)
2199 {
2200 	call_rcu(&tb->rcu, __trie_free_rcu);
2201 }
2202 
2203 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2204 			     struct sk_buff *skb, struct netlink_callback *cb,
2205 			     struct fib_dump_filter *filter)
2206 {
2207 	unsigned int flags = NLM_F_MULTI;
2208 	__be32 xkey = htonl(l->key);
2209 	int i, s_i, i_fa, s_fa, err;
2210 	struct fib_alias *fa;
2211 
2212 	if (filter->filter_set ||
2213 	    !filter->dump_exceptions || !filter->dump_routes)
2214 		flags |= NLM_F_DUMP_FILTERED;
2215 
2216 	s_i = cb->args[4];
2217 	s_fa = cb->args[5];
2218 	i = 0;
2219 
2220 	/* rcu_read_lock is hold by caller */
2221 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2222 		struct fib_info *fi = fa->fa_info;
2223 
2224 		if (i < s_i)
2225 			goto next;
2226 
2227 		i_fa = 0;
2228 
2229 		if (tb->tb_id != fa->tb_id)
2230 			goto next;
2231 
2232 		if (filter->filter_set) {
2233 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2234 				goto next;
2235 
2236 			if ((filter->protocol &&
2237 			     fi->fib_protocol != filter->protocol))
2238 				goto next;
2239 
2240 			if (filter->dev &&
2241 			    !fib_info_nh_uses_dev(fi, filter->dev))
2242 				goto next;
2243 		}
2244 
2245 		if (filter->dump_routes) {
2246 			if (!s_fa) {
2247 				struct fib_rt_info fri;
2248 
2249 				fri.fi = fi;
2250 				fri.tb_id = tb->tb_id;
2251 				fri.dst = xkey;
2252 				fri.dst_len = KEYLENGTH - fa->fa_slen;
2253 				fri.tos = fa->fa_tos;
2254 				fri.type = fa->fa_type;
2255 				fri.offload = fa->offload;
2256 				fri.trap = fa->trap;
2257 				err = fib_dump_info(skb,
2258 						    NETLINK_CB(cb->skb).portid,
2259 						    cb->nlh->nlmsg_seq,
2260 						    RTM_NEWROUTE, &fri, flags);
2261 				if (err < 0)
2262 					goto stop;
2263 			}
2264 
2265 			i_fa++;
2266 		}
2267 
2268 		if (filter->dump_exceptions) {
2269 			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2270 						 &i_fa, s_fa, flags);
2271 			if (err < 0)
2272 				goto stop;
2273 		}
2274 
2275 next:
2276 		i++;
2277 	}
2278 
2279 	cb->args[4] = i;
2280 	return skb->len;
2281 
2282 stop:
2283 	cb->args[4] = i;
2284 	cb->args[5] = i_fa;
2285 	return err;
2286 }
2287 
2288 /* rcu_read_lock needs to be hold by caller from readside */
2289 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2290 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2291 {
2292 	struct trie *t = (struct trie *)tb->tb_data;
2293 	struct key_vector *l, *tp = t->kv;
2294 	/* Dump starting at last key.
2295 	 * Note: 0.0.0.0/0 (ie default) is first key.
2296 	 */
2297 	int count = cb->args[2];
2298 	t_key key = cb->args[3];
2299 
2300 	/* First time here, count and key are both always 0. Count > 0
2301 	 * and key == 0 means the dump has wrapped around and we are done.
2302 	 */
2303 	if (count && !key)
2304 		return skb->len;
2305 
2306 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2307 		int err;
2308 
2309 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2310 		if (err < 0) {
2311 			cb->args[3] = key;
2312 			cb->args[2] = count;
2313 			return err;
2314 		}
2315 
2316 		++count;
2317 		key = l->key + 1;
2318 
2319 		memset(&cb->args[4], 0,
2320 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2321 
2322 		/* stop loop if key wrapped back to 0 */
2323 		if (key < l->key)
2324 			break;
2325 	}
2326 
2327 	cb->args[3] = key;
2328 	cb->args[2] = count;
2329 
2330 	return skb->len;
2331 }
2332 
2333 void __init fib_trie_init(void)
2334 {
2335 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2336 					  sizeof(struct fib_alias),
2337 					  0, SLAB_PANIC, NULL);
2338 
2339 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2340 					   LEAF_SIZE,
2341 					   0, SLAB_PANIC, NULL);
2342 }
2343 
2344 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2345 {
2346 	struct fib_table *tb;
2347 	struct trie *t;
2348 	size_t sz = sizeof(*tb);
2349 
2350 	if (!alias)
2351 		sz += sizeof(struct trie);
2352 
2353 	tb = kzalloc(sz, GFP_KERNEL);
2354 	if (!tb)
2355 		return NULL;
2356 
2357 	tb->tb_id = id;
2358 	tb->tb_num_default = 0;
2359 	tb->tb_data = (alias ? alias->__data : tb->__data);
2360 
2361 	if (alias)
2362 		return tb;
2363 
2364 	t = (struct trie *) tb->tb_data;
2365 	t->kv[0].pos = KEYLENGTH;
2366 	t->kv[0].slen = KEYLENGTH;
2367 #ifdef CONFIG_IP_FIB_TRIE_STATS
2368 	t->stats = alloc_percpu(struct trie_use_stats);
2369 	if (!t->stats) {
2370 		kfree(tb);
2371 		tb = NULL;
2372 	}
2373 #endif
2374 
2375 	return tb;
2376 }
2377 
2378 #ifdef CONFIG_PROC_FS
2379 /* Depth first Trie walk iterator */
2380 struct fib_trie_iter {
2381 	struct seq_net_private p;
2382 	struct fib_table *tb;
2383 	struct key_vector *tnode;
2384 	unsigned int index;
2385 	unsigned int depth;
2386 };
2387 
2388 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2389 {
2390 	unsigned long cindex = iter->index;
2391 	struct key_vector *pn = iter->tnode;
2392 	t_key pkey;
2393 
2394 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2395 		 iter->tnode, iter->index, iter->depth);
2396 
2397 	while (!IS_TRIE(pn)) {
2398 		while (cindex < child_length(pn)) {
2399 			struct key_vector *n = get_child_rcu(pn, cindex++);
2400 
2401 			if (!n)
2402 				continue;
2403 
2404 			if (IS_LEAF(n)) {
2405 				iter->tnode = pn;
2406 				iter->index = cindex;
2407 			} else {
2408 				/* push down one level */
2409 				iter->tnode = n;
2410 				iter->index = 0;
2411 				++iter->depth;
2412 			}
2413 
2414 			return n;
2415 		}
2416 
2417 		/* Current node exhausted, pop back up */
2418 		pkey = pn->key;
2419 		pn = node_parent_rcu(pn);
2420 		cindex = get_index(pkey, pn) + 1;
2421 		--iter->depth;
2422 	}
2423 
2424 	/* record root node so further searches know we are done */
2425 	iter->tnode = pn;
2426 	iter->index = 0;
2427 
2428 	return NULL;
2429 }
2430 
2431 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2432 					     struct trie *t)
2433 {
2434 	struct key_vector *n, *pn;
2435 
2436 	if (!t)
2437 		return NULL;
2438 
2439 	pn = t->kv;
2440 	n = rcu_dereference(pn->tnode[0]);
2441 	if (!n)
2442 		return NULL;
2443 
2444 	if (IS_TNODE(n)) {
2445 		iter->tnode = n;
2446 		iter->index = 0;
2447 		iter->depth = 1;
2448 	} else {
2449 		iter->tnode = pn;
2450 		iter->index = 0;
2451 		iter->depth = 0;
2452 	}
2453 
2454 	return n;
2455 }
2456 
2457 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2458 {
2459 	struct key_vector *n;
2460 	struct fib_trie_iter iter;
2461 
2462 	memset(s, 0, sizeof(*s));
2463 
2464 	rcu_read_lock();
2465 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2466 		if (IS_LEAF(n)) {
2467 			struct fib_alias *fa;
2468 
2469 			s->leaves++;
2470 			s->totdepth += iter.depth;
2471 			if (iter.depth > s->maxdepth)
2472 				s->maxdepth = iter.depth;
2473 
2474 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2475 				++s->prefixes;
2476 		} else {
2477 			s->tnodes++;
2478 			if (n->bits < MAX_STAT_DEPTH)
2479 				s->nodesizes[n->bits]++;
2480 			s->nullpointers += tn_info(n)->empty_children;
2481 		}
2482 	}
2483 	rcu_read_unlock();
2484 }
2485 
2486 /*
2487  *	This outputs /proc/net/fib_triestats
2488  */
2489 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2490 {
2491 	unsigned int i, max, pointers, bytes, avdepth;
2492 
2493 	if (stat->leaves)
2494 		avdepth = stat->totdepth*100 / stat->leaves;
2495 	else
2496 		avdepth = 0;
2497 
2498 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2499 		   avdepth / 100, avdepth % 100);
2500 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2501 
2502 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2503 	bytes = LEAF_SIZE * stat->leaves;
2504 
2505 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2506 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2507 
2508 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2509 	bytes += TNODE_SIZE(0) * stat->tnodes;
2510 
2511 	max = MAX_STAT_DEPTH;
2512 	while (max > 0 && stat->nodesizes[max-1] == 0)
2513 		max--;
2514 
2515 	pointers = 0;
2516 	for (i = 1; i < max; i++)
2517 		if (stat->nodesizes[i] != 0) {
2518 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2519 			pointers += (1<<i) * stat->nodesizes[i];
2520 		}
2521 	seq_putc(seq, '\n');
2522 	seq_printf(seq, "\tPointers: %u\n", pointers);
2523 
2524 	bytes += sizeof(struct key_vector *) * pointers;
2525 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2526 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2527 }
2528 
2529 #ifdef CONFIG_IP_FIB_TRIE_STATS
2530 static void trie_show_usage(struct seq_file *seq,
2531 			    const struct trie_use_stats __percpu *stats)
2532 {
2533 	struct trie_use_stats s = { 0 };
2534 	int cpu;
2535 
2536 	/* loop through all of the CPUs and gather up the stats */
2537 	for_each_possible_cpu(cpu) {
2538 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2539 
2540 		s.gets += pcpu->gets;
2541 		s.backtrack += pcpu->backtrack;
2542 		s.semantic_match_passed += pcpu->semantic_match_passed;
2543 		s.semantic_match_miss += pcpu->semantic_match_miss;
2544 		s.null_node_hit += pcpu->null_node_hit;
2545 		s.resize_node_skipped += pcpu->resize_node_skipped;
2546 	}
2547 
2548 	seq_printf(seq, "\nCounters:\n---------\n");
2549 	seq_printf(seq, "gets = %u\n", s.gets);
2550 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2551 	seq_printf(seq, "semantic match passed = %u\n",
2552 		   s.semantic_match_passed);
2553 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2554 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2555 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2556 }
2557 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2558 
2559 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2560 {
2561 	if (tb->tb_id == RT_TABLE_LOCAL)
2562 		seq_puts(seq, "Local:\n");
2563 	else if (tb->tb_id == RT_TABLE_MAIN)
2564 		seq_puts(seq, "Main:\n");
2565 	else
2566 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2567 }
2568 
2569 
2570 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2571 {
2572 	struct net *net = (struct net *)seq->private;
2573 	unsigned int h;
2574 
2575 	seq_printf(seq,
2576 		   "Basic info: size of leaf:"
2577 		   " %zd bytes, size of tnode: %zd bytes.\n",
2578 		   LEAF_SIZE, TNODE_SIZE(0));
2579 
2580 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2581 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2582 		struct fib_table *tb;
2583 
2584 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2585 			struct trie *t = (struct trie *) tb->tb_data;
2586 			struct trie_stat stat;
2587 
2588 			if (!t)
2589 				continue;
2590 
2591 			fib_table_print(seq, tb);
2592 
2593 			trie_collect_stats(t, &stat);
2594 			trie_show_stats(seq, &stat);
2595 #ifdef CONFIG_IP_FIB_TRIE_STATS
2596 			trie_show_usage(seq, t->stats);
2597 #endif
2598 		}
2599 	}
2600 
2601 	return 0;
2602 }
2603 
2604 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2605 {
2606 	struct fib_trie_iter *iter = seq->private;
2607 	struct net *net = seq_file_net(seq);
2608 	loff_t idx = 0;
2609 	unsigned int h;
2610 
2611 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2612 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2613 		struct fib_table *tb;
2614 
2615 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2616 			struct key_vector *n;
2617 
2618 			for (n = fib_trie_get_first(iter,
2619 						    (struct trie *) tb->tb_data);
2620 			     n; n = fib_trie_get_next(iter))
2621 				if (pos == idx++) {
2622 					iter->tb = tb;
2623 					return n;
2624 				}
2625 		}
2626 	}
2627 
2628 	return NULL;
2629 }
2630 
2631 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2632 	__acquires(RCU)
2633 {
2634 	rcu_read_lock();
2635 	return fib_trie_get_idx(seq, *pos);
2636 }
2637 
2638 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2639 {
2640 	struct fib_trie_iter *iter = seq->private;
2641 	struct net *net = seq_file_net(seq);
2642 	struct fib_table *tb = iter->tb;
2643 	struct hlist_node *tb_node;
2644 	unsigned int h;
2645 	struct key_vector *n;
2646 
2647 	++*pos;
2648 	/* next node in same table */
2649 	n = fib_trie_get_next(iter);
2650 	if (n)
2651 		return n;
2652 
2653 	/* walk rest of this hash chain */
2654 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2655 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2656 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2657 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2658 		if (n)
2659 			goto found;
2660 	}
2661 
2662 	/* new hash chain */
2663 	while (++h < FIB_TABLE_HASHSZ) {
2664 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2665 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2666 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2667 			if (n)
2668 				goto found;
2669 		}
2670 	}
2671 	return NULL;
2672 
2673 found:
2674 	iter->tb = tb;
2675 	return n;
2676 }
2677 
2678 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2679 	__releases(RCU)
2680 {
2681 	rcu_read_unlock();
2682 }
2683 
2684 static void seq_indent(struct seq_file *seq, int n)
2685 {
2686 	while (n-- > 0)
2687 		seq_puts(seq, "   ");
2688 }
2689 
2690 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2691 {
2692 	switch (s) {
2693 	case RT_SCOPE_UNIVERSE: return "universe";
2694 	case RT_SCOPE_SITE:	return "site";
2695 	case RT_SCOPE_LINK:	return "link";
2696 	case RT_SCOPE_HOST:	return "host";
2697 	case RT_SCOPE_NOWHERE:	return "nowhere";
2698 	default:
2699 		snprintf(buf, len, "scope=%d", s);
2700 		return buf;
2701 	}
2702 }
2703 
2704 static const char *const rtn_type_names[__RTN_MAX] = {
2705 	[RTN_UNSPEC] = "UNSPEC",
2706 	[RTN_UNICAST] = "UNICAST",
2707 	[RTN_LOCAL] = "LOCAL",
2708 	[RTN_BROADCAST] = "BROADCAST",
2709 	[RTN_ANYCAST] = "ANYCAST",
2710 	[RTN_MULTICAST] = "MULTICAST",
2711 	[RTN_BLACKHOLE] = "BLACKHOLE",
2712 	[RTN_UNREACHABLE] = "UNREACHABLE",
2713 	[RTN_PROHIBIT] = "PROHIBIT",
2714 	[RTN_THROW] = "THROW",
2715 	[RTN_NAT] = "NAT",
2716 	[RTN_XRESOLVE] = "XRESOLVE",
2717 };
2718 
2719 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2720 {
2721 	if (t < __RTN_MAX && rtn_type_names[t])
2722 		return rtn_type_names[t];
2723 	snprintf(buf, len, "type %u", t);
2724 	return buf;
2725 }
2726 
2727 /* Pretty print the trie */
2728 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2729 {
2730 	const struct fib_trie_iter *iter = seq->private;
2731 	struct key_vector *n = v;
2732 
2733 	if (IS_TRIE(node_parent_rcu(n)))
2734 		fib_table_print(seq, iter->tb);
2735 
2736 	if (IS_TNODE(n)) {
2737 		__be32 prf = htonl(n->key);
2738 
2739 		seq_indent(seq, iter->depth-1);
2740 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2741 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2742 			   tn_info(n)->full_children,
2743 			   tn_info(n)->empty_children);
2744 	} else {
2745 		__be32 val = htonl(n->key);
2746 		struct fib_alias *fa;
2747 
2748 		seq_indent(seq, iter->depth);
2749 		seq_printf(seq, "  |-- %pI4\n", &val);
2750 
2751 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2752 			char buf1[32], buf2[32];
2753 
2754 			seq_indent(seq, iter->depth + 1);
2755 			seq_printf(seq, "  /%zu %s %s",
2756 				   KEYLENGTH - fa->fa_slen,
2757 				   rtn_scope(buf1, sizeof(buf1),
2758 					     fa->fa_info->fib_scope),
2759 				   rtn_type(buf2, sizeof(buf2),
2760 					    fa->fa_type));
2761 			if (fa->fa_tos)
2762 				seq_printf(seq, " tos=%d", fa->fa_tos);
2763 			seq_putc(seq, '\n');
2764 		}
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static const struct seq_operations fib_trie_seq_ops = {
2771 	.start  = fib_trie_seq_start,
2772 	.next   = fib_trie_seq_next,
2773 	.stop   = fib_trie_seq_stop,
2774 	.show   = fib_trie_seq_show,
2775 };
2776 
2777 struct fib_route_iter {
2778 	struct seq_net_private p;
2779 	struct fib_table *main_tb;
2780 	struct key_vector *tnode;
2781 	loff_t	pos;
2782 	t_key	key;
2783 };
2784 
2785 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2786 					    loff_t pos)
2787 {
2788 	struct key_vector *l, **tp = &iter->tnode;
2789 	t_key key;
2790 
2791 	/* use cached location of previously found key */
2792 	if (iter->pos > 0 && pos >= iter->pos) {
2793 		key = iter->key;
2794 	} else {
2795 		iter->pos = 1;
2796 		key = 0;
2797 	}
2798 
2799 	pos -= iter->pos;
2800 
2801 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2802 		key = l->key + 1;
2803 		iter->pos++;
2804 		l = NULL;
2805 
2806 		/* handle unlikely case of a key wrap */
2807 		if (!key)
2808 			break;
2809 	}
2810 
2811 	if (l)
2812 		iter->key = l->key;	/* remember it */
2813 	else
2814 		iter->pos = 0;		/* forget it */
2815 
2816 	return l;
2817 }
2818 
2819 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2820 	__acquires(RCU)
2821 {
2822 	struct fib_route_iter *iter = seq->private;
2823 	struct fib_table *tb;
2824 	struct trie *t;
2825 
2826 	rcu_read_lock();
2827 
2828 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2829 	if (!tb)
2830 		return NULL;
2831 
2832 	iter->main_tb = tb;
2833 	t = (struct trie *)tb->tb_data;
2834 	iter->tnode = t->kv;
2835 
2836 	if (*pos != 0)
2837 		return fib_route_get_idx(iter, *pos);
2838 
2839 	iter->pos = 0;
2840 	iter->key = KEY_MAX;
2841 
2842 	return SEQ_START_TOKEN;
2843 }
2844 
2845 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2846 {
2847 	struct fib_route_iter *iter = seq->private;
2848 	struct key_vector *l = NULL;
2849 	t_key key = iter->key + 1;
2850 
2851 	++*pos;
2852 
2853 	/* only allow key of 0 for start of sequence */
2854 	if ((v == SEQ_START_TOKEN) || key)
2855 		l = leaf_walk_rcu(&iter->tnode, key);
2856 
2857 	if (l) {
2858 		iter->key = l->key;
2859 		iter->pos++;
2860 	} else {
2861 		iter->pos = 0;
2862 	}
2863 
2864 	return l;
2865 }
2866 
2867 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2868 	__releases(RCU)
2869 {
2870 	rcu_read_unlock();
2871 }
2872 
2873 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2874 {
2875 	unsigned int flags = 0;
2876 
2877 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2878 		flags = RTF_REJECT;
2879 	if (fi) {
2880 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2881 
2882 		if (nhc->nhc_gw.ipv4)
2883 			flags |= RTF_GATEWAY;
2884 	}
2885 	if (mask == htonl(0xFFFFFFFF))
2886 		flags |= RTF_HOST;
2887 	flags |= RTF_UP;
2888 	return flags;
2889 }
2890 
2891 /*
2892  *	This outputs /proc/net/route.
2893  *	The format of the file is not supposed to be changed
2894  *	and needs to be same as fib_hash output to avoid breaking
2895  *	legacy utilities
2896  */
2897 static int fib_route_seq_show(struct seq_file *seq, void *v)
2898 {
2899 	struct fib_route_iter *iter = seq->private;
2900 	struct fib_table *tb = iter->main_tb;
2901 	struct fib_alias *fa;
2902 	struct key_vector *l = v;
2903 	__be32 prefix;
2904 
2905 	if (v == SEQ_START_TOKEN) {
2906 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2907 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2908 			   "\tWindow\tIRTT");
2909 		return 0;
2910 	}
2911 
2912 	prefix = htonl(l->key);
2913 
2914 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2915 		struct fib_info *fi = fa->fa_info;
2916 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2917 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2918 
2919 		if ((fa->fa_type == RTN_BROADCAST) ||
2920 		    (fa->fa_type == RTN_MULTICAST))
2921 			continue;
2922 
2923 		if (fa->tb_id != tb->tb_id)
2924 			continue;
2925 
2926 		seq_setwidth(seq, 127);
2927 
2928 		if (fi) {
2929 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2930 			__be32 gw = 0;
2931 
2932 			if (nhc->nhc_gw_family == AF_INET)
2933 				gw = nhc->nhc_gw.ipv4;
2934 
2935 			seq_printf(seq,
2936 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2937 				   "%d\t%08X\t%d\t%u\t%u",
2938 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2939 				   prefix, gw, flags, 0, 0,
2940 				   fi->fib_priority,
2941 				   mask,
2942 				   (fi->fib_advmss ?
2943 				    fi->fib_advmss + 40 : 0),
2944 				   fi->fib_window,
2945 				   fi->fib_rtt >> 3);
2946 		} else {
2947 			seq_printf(seq,
2948 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2949 				   "%d\t%08X\t%d\t%u\t%u",
2950 				   prefix, 0, flags, 0, 0, 0,
2951 				   mask, 0, 0, 0);
2952 		}
2953 		seq_pad(seq, '\n');
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static const struct seq_operations fib_route_seq_ops = {
2960 	.start  = fib_route_seq_start,
2961 	.next   = fib_route_seq_next,
2962 	.stop   = fib_route_seq_stop,
2963 	.show   = fib_route_seq_show,
2964 };
2965 
2966 int __net_init fib_proc_init(struct net *net)
2967 {
2968 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2969 			sizeof(struct fib_trie_iter)))
2970 		goto out1;
2971 
2972 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2973 			fib_triestat_seq_show, NULL))
2974 		goto out2;
2975 
2976 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2977 			sizeof(struct fib_route_iter)))
2978 		goto out3;
2979 
2980 	return 0;
2981 
2982 out3:
2983 	remove_proc_entry("fib_triestat", net->proc_net);
2984 out2:
2985 	remove_proc_entry("fib_trie", net->proc_net);
2986 out1:
2987 	return -ENOMEM;
2988 }
2989 
2990 void __net_exit fib_proc_exit(struct net *net)
2991 {
2992 	remove_proc_entry("fib_trie", net->proc_net);
2993 	remove_proc_entry("fib_triestat", net->proc_net);
2994 	remove_proc_entry("route", net->proc_net);
2995 }
2996 
2997 #endif /* CONFIG_PROC_FS */
2998