1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 39 #define VERSION "0.409" 40 41 #include <linux/cache.h> 42 #include <linux/uaccess.h> 43 #include <linux/bitops.h> 44 #include <linux/types.h> 45 #include <linux/kernel.h> 46 #include <linux/mm.h> 47 #include <linux/string.h> 48 #include <linux/socket.h> 49 #include <linux/sockios.h> 50 #include <linux/errno.h> 51 #include <linux/in.h> 52 #include <linux/inet.h> 53 #include <linux/inetdevice.h> 54 #include <linux/netdevice.h> 55 #include <linux/if_arp.h> 56 #include <linux/proc_fs.h> 57 #include <linux/rcupdate.h> 58 #include <linux/skbuff.h> 59 #include <linux/netlink.h> 60 #include <linux/init.h> 61 #include <linux/list.h> 62 #include <linux/slab.h> 63 #include <linux/export.h> 64 #include <linux/vmalloc.h> 65 #include <linux/notifier.h> 66 #include <net/net_namespace.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/tcp.h> 71 #include <net/sock.h> 72 #include <net/ip_fib.h> 73 #include <net/fib_notifier.h> 74 #include <trace/events/fib.h> 75 #include "fib_lookup.h" 76 77 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net, 78 enum fib_event_type event_type, u32 dst, 79 int dst_len, struct fib_alias *fa) 80 { 81 struct fib_entry_notifier_info info = { 82 .dst = dst, 83 .dst_len = dst_len, 84 .fi = fa->fa_info, 85 .tos = fa->fa_tos, 86 .type = fa->fa_type, 87 .tb_id = fa->tb_id, 88 }; 89 return call_fib4_notifier(nb, net, event_type, &info.info); 90 } 91 92 static int call_fib_entry_notifiers(struct net *net, 93 enum fib_event_type event_type, u32 dst, 94 int dst_len, struct fib_alias *fa, 95 struct netlink_ext_ack *extack) 96 { 97 struct fib_entry_notifier_info info = { 98 .info.extack = extack, 99 .dst = dst, 100 .dst_len = dst_len, 101 .fi = fa->fa_info, 102 .tos = fa->fa_tos, 103 .type = fa->fa_type, 104 .tb_id = fa->tb_id, 105 }; 106 return call_fib4_notifiers(net, event_type, &info.info); 107 } 108 109 #define MAX_STAT_DEPTH 32 110 111 #define KEYLENGTH (8*sizeof(t_key)) 112 #define KEY_MAX ((t_key)~0) 113 114 typedef unsigned int t_key; 115 116 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 117 #define IS_TNODE(n) ((n)->bits) 118 #define IS_LEAF(n) (!(n)->bits) 119 120 struct key_vector { 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned char slen; 125 union { 126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 127 struct hlist_head leaf; 128 /* This array is valid if (pos | bits) > 0 (TNODE) */ 129 struct key_vector __rcu *tnode[0]; 130 }; 131 }; 132 133 struct tnode { 134 struct rcu_head rcu; 135 t_key empty_children; /* KEYLENGTH bits needed */ 136 t_key full_children; /* KEYLENGTH bits needed */ 137 struct key_vector __rcu *parent; 138 struct key_vector kv[1]; 139 #define tn_bits kv[0].bits 140 }; 141 142 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 143 #define LEAF_SIZE TNODE_SIZE(1) 144 145 #ifdef CONFIG_IP_FIB_TRIE_STATS 146 struct trie_use_stats { 147 unsigned int gets; 148 unsigned int backtrack; 149 unsigned int semantic_match_passed; 150 unsigned int semantic_match_miss; 151 unsigned int null_node_hit; 152 unsigned int resize_node_skipped; 153 }; 154 #endif 155 156 struct trie_stat { 157 unsigned int totdepth; 158 unsigned int maxdepth; 159 unsigned int tnodes; 160 unsigned int leaves; 161 unsigned int nullpointers; 162 unsigned int prefixes; 163 unsigned int nodesizes[MAX_STAT_DEPTH]; 164 }; 165 166 struct trie { 167 struct key_vector kv[1]; 168 #ifdef CONFIG_IP_FIB_TRIE_STATS 169 struct trie_use_stats __percpu *stats; 170 #endif 171 }; 172 173 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 174 static unsigned int tnode_free_size; 175 176 /* 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 178 * especially useful before resizing the root node with PREEMPT_NONE configs; 179 * the value was obtained experimentally, aiming to avoid visible slowdown. 180 */ 181 unsigned int sysctl_fib_sync_mem = 512 * 1024; 182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 184 185 static struct kmem_cache *fn_alias_kmem __ro_after_init; 186 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 187 188 static inline struct tnode *tn_info(struct key_vector *kv) 189 { 190 return container_of(kv, struct tnode, kv[0]); 191 } 192 193 /* caller must hold RTNL */ 194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 196 197 /* caller must hold RCU read lock or RTNL */ 198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 200 201 /* wrapper for rcu_assign_pointer */ 202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 203 { 204 if (n) 205 rcu_assign_pointer(tn_info(n)->parent, tp); 206 } 207 208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 209 210 /* This provides us with the number of children in this node, in the case of a 211 * leaf this will return 0 meaning none of the children are accessible. 212 */ 213 static inline unsigned long child_length(const struct key_vector *tn) 214 { 215 return (1ul << tn->bits) & ~(1ul); 216 } 217 218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 219 220 static inline unsigned long get_index(t_key key, struct key_vector *kv) 221 { 222 unsigned long index = key ^ kv->key; 223 224 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 225 return 0; 226 227 return index >> kv->pos; 228 } 229 230 /* To understand this stuff, an understanding of keys and all their bits is 231 * necessary. Every node in the trie has a key associated with it, but not 232 * all of the bits in that key are significant. 233 * 234 * Consider a node 'n' and its parent 'tp'. 235 * 236 * If n is a leaf, every bit in its key is significant. Its presence is 237 * necessitated by path compression, since during a tree traversal (when 238 * searching for a leaf - unless we are doing an insertion) we will completely 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 240 * a potentially successful search, that we have indeed been walking the 241 * correct key path. 242 * 243 * Note that we can never "miss" the correct key in the tree if present by 244 * following the wrong path. Path compression ensures that segments of the key 245 * that are the same for all keys with a given prefix are skipped, but the 246 * skipped part *is* identical for each node in the subtrie below the skipped 247 * bit! trie_insert() in this implementation takes care of that. 248 * 249 * if n is an internal node - a 'tnode' here, the various parts of its key 250 * have many different meanings. 251 * 252 * Example: 253 * _________________________________________________________________ 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 255 * ----------------------------------------------------------------- 256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 257 * 258 * _________________________________________________________________ 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 260 * ----------------------------------------------------------------- 261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 262 * 263 * tp->pos = 22 264 * tp->bits = 3 265 * n->pos = 13 266 * n->bits = 4 267 * 268 * First, let's just ignore the bits that come before the parent tp, that is 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 270 * point we do not use them for anything. 271 * 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 273 * index into the parent's child array. That is, they will be used to find 274 * 'n' among tp's children. 275 * 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 277 * for the node n. 278 * 279 * All the bits we have seen so far are significant to the node n. The rest 280 * of the bits are really not needed or indeed known in n->key. 281 * 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 283 * n's child array, and will of course be different for each child. 284 * 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 286 * at this point. 287 */ 288 289 static const int halve_threshold = 25; 290 static const int inflate_threshold = 50; 291 static const int halve_threshold_root = 15; 292 static const int inflate_threshold_root = 30; 293 294 static void __alias_free_mem(struct rcu_head *head) 295 { 296 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 297 kmem_cache_free(fn_alias_kmem, fa); 298 } 299 300 static inline void alias_free_mem_rcu(struct fib_alias *fa) 301 { 302 call_rcu(&fa->rcu, __alias_free_mem); 303 } 304 305 #define TNODE_KMALLOC_MAX \ 306 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 307 #define TNODE_VMALLOC_MAX \ 308 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 309 310 static void __node_free_rcu(struct rcu_head *head) 311 { 312 struct tnode *n = container_of(head, struct tnode, rcu); 313 314 if (!n->tn_bits) 315 kmem_cache_free(trie_leaf_kmem, n); 316 else 317 kvfree(n); 318 } 319 320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 321 322 static struct tnode *tnode_alloc(int bits) 323 { 324 size_t size; 325 326 /* verify bits is within bounds */ 327 if (bits > TNODE_VMALLOC_MAX) 328 return NULL; 329 330 /* determine size and verify it is non-zero and didn't overflow */ 331 size = TNODE_SIZE(1ul << bits); 332 333 if (size <= PAGE_SIZE) 334 return kzalloc(size, GFP_KERNEL); 335 else 336 return vzalloc(size); 337 } 338 339 static inline void empty_child_inc(struct key_vector *n) 340 { 341 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 342 } 343 344 static inline void empty_child_dec(struct key_vector *n) 345 { 346 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 347 } 348 349 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 350 { 351 struct key_vector *l; 352 struct tnode *kv; 353 354 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 355 if (!kv) 356 return NULL; 357 358 /* initialize key vector */ 359 l = kv->kv; 360 l->key = key; 361 l->pos = 0; 362 l->bits = 0; 363 l->slen = fa->fa_slen; 364 365 /* link leaf to fib alias */ 366 INIT_HLIST_HEAD(&l->leaf); 367 hlist_add_head(&fa->fa_list, &l->leaf); 368 369 return l; 370 } 371 372 static struct key_vector *tnode_new(t_key key, int pos, int bits) 373 { 374 unsigned int shift = pos + bits; 375 struct key_vector *tn; 376 struct tnode *tnode; 377 378 /* verify bits and pos their msb bits clear and values are valid */ 379 BUG_ON(!bits || (shift > KEYLENGTH)); 380 381 tnode = tnode_alloc(bits); 382 if (!tnode) 383 return NULL; 384 385 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 386 sizeof(struct key_vector *) << bits); 387 388 if (bits == KEYLENGTH) 389 tnode->full_children = 1; 390 else 391 tnode->empty_children = 1ul << bits; 392 393 tn = tnode->kv; 394 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 395 tn->pos = pos; 396 tn->bits = bits; 397 tn->slen = pos; 398 399 return tn; 400 } 401 402 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 403 * and no bits are skipped. See discussion in dyntree paper p. 6 404 */ 405 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 406 { 407 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 408 } 409 410 /* Add a child at position i overwriting the old value. 411 * Update the value of full_children and empty_children. 412 */ 413 static void put_child(struct key_vector *tn, unsigned long i, 414 struct key_vector *n) 415 { 416 struct key_vector *chi = get_child(tn, i); 417 int isfull, wasfull; 418 419 BUG_ON(i >= child_length(tn)); 420 421 /* update emptyChildren, overflow into fullChildren */ 422 if (!n && chi) 423 empty_child_inc(tn); 424 if (n && !chi) 425 empty_child_dec(tn); 426 427 /* update fullChildren */ 428 wasfull = tnode_full(tn, chi); 429 isfull = tnode_full(tn, n); 430 431 if (wasfull && !isfull) 432 tn_info(tn)->full_children--; 433 else if (!wasfull && isfull) 434 tn_info(tn)->full_children++; 435 436 if (n && (tn->slen < n->slen)) 437 tn->slen = n->slen; 438 439 rcu_assign_pointer(tn->tnode[i], n); 440 } 441 442 static void update_children(struct key_vector *tn) 443 { 444 unsigned long i; 445 446 /* update all of the child parent pointers */ 447 for (i = child_length(tn); i;) { 448 struct key_vector *inode = get_child(tn, --i); 449 450 if (!inode) 451 continue; 452 453 /* Either update the children of a tnode that 454 * already belongs to us or update the child 455 * to point to ourselves. 456 */ 457 if (node_parent(inode) == tn) 458 update_children(inode); 459 else 460 node_set_parent(inode, tn); 461 } 462 } 463 464 static inline void put_child_root(struct key_vector *tp, t_key key, 465 struct key_vector *n) 466 { 467 if (IS_TRIE(tp)) 468 rcu_assign_pointer(tp->tnode[0], n); 469 else 470 put_child(tp, get_index(key, tp), n); 471 } 472 473 static inline void tnode_free_init(struct key_vector *tn) 474 { 475 tn_info(tn)->rcu.next = NULL; 476 } 477 478 static inline void tnode_free_append(struct key_vector *tn, 479 struct key_vector *n) 480 { 481 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 482 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 483 } 484 485 static void tnode_free(struct key_vector *tn) 486 { 487 struct callback_head *head = &tn_info(tn)->rcu; 488 489 while (head) { 490 head = head->next; 491 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 492 node_free(tn); 493 494 tn = container_of(head, struct tnode, rcu)->kv; 495 } 496 497 if (tnode_free_size >= sysctl_fib_sync_mem) { 498 tnode_free_size = 0; 499 synchronize_rcu(); 500 } 501 } 502 503 static struct key_vector *replace(struct trie *t, 504 struct key_vector *oldtnode, 505 struct key_vector *tn) 506 { 507 struct key_vector *tp = node_parent(oldtnode); 508 unsigned long i; 509 510 /* setup the parent pointer out of and back into this node */ 511 NODE_INIT_PARENT(tn, tp); 512 put_child_root(tp, tn->key, tn); 513 514 /* update all of the child parent pointers */ 515 update_children(tn); 516 517 /* all pointers should be clean so we are done */ 518 tnode_free(oldtnode); 519 520 /* resize children now that oldtnode is freed */ 521 for (i = child_length(tn); i;) { 522 struct key_vector *inode = get_child(tn, --i); 523 524 /* resize child node */ 525 if (tnode_full(tn, inode)) 526 tn = resize(t, inode); 527 } 528 529 return tp; 530 } 531 532 static struct key_vector *inflate(struct trie *t, 533 struct key_vector *oldtnode) 534 { 535 struct key_vector *tn; 536 unsigned long i; 537 t_key m; 538 539 pr_debug("In inflate\n"); 540 541 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 542 if (!tn) 543 goto notnode; 544 545 /* prepare oldtnode to be freed */ 546 tnode_free_init(oldtnode); 547 548 /* Assemble all of the pointers in our cluster, in this case that 549 * represents all of the pointers out of our allocated nodes that 550 * point to existing tnodes and the links between our allocated 551 * nodes. 552 */ 553 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 554 struct key_vector *inode = get_child(oldtnode, --i); 555 struct key_vector *node0, *node1; 556 unsigned long j, k; 557 558 /* An empty child */ 559 if (!inode) 560 continue; 561 562 /* A leaf or an internal node with skipped bits */ 563 if (!tnode_full(oldtnode, inode)) { 564 put_child(tn, get_index(inode->key, tn), inode); 565 continue; 566 } 567 568 /* drop the node in the old tnode free list */ 569 tnode_free_append(oldtnode, inode); 570 571 /* An internal node with two children */ 572 if (inode->bits == 1) { 573 put_child(tn, 2 * i + 1, get_child(inode, 1)); 574 put_child(tn, 2 * i, get_child(inode, 0)); 575 continue; 576 } 577 578 /* We will replace this node 'inode' with two new 579 * ones, 'node0' and 'node1', each with half of the 580 * original children. The two new nodes will have 581 * a position one bit further down the key and this 582 * means that the "significant" part of their keys 583 * (see the discussion near the top of this file) 584 * will differ by one bit, which will be "0" in 585 * node0's key and "1" in node1's key. Since we are 586 * moving the key position by one step, the bit that 587 * we are moving away from - the bit at position 588 * (tn->pos) - is the one that will differ between 589 * node0 and node1. So... we synthesize that bit in the 590 * two new keys. 591 */ 592 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 593 if (!node1) 594 goto nomem; 595 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 596 597 tnode_free_append(tn, node1); 598 if (!node0) 599 goto nomem; 600 tnode_free_append(tn, node0); 601 602 /* populate child pointers in new nodes */ 603 for (k = child_length(inode), j = k / 2; j;) { 604 put_child(node1, --j, get_child(inode, --k)); 605 put_child(node0, j, get_child(inode, j)); 606 put_child(node1, --j, get_child(inode, --k)); 607 put_child(node0, j, get_child(inode, j)); 608 } 609 610 /* link new nodes to parent */ 611 NODE_INIT_PARENT(node1, tn); 612 NODE_INIT_PARENT(node0, tn); 613 614 /* link parent to nodes */ 615 put_child(tn, 2 * i + 1, node1); 616 put_child(tn, 2 * i, node0); 617 } 618 619 /* setup the parent pointers into and out of this node */ 620 return replace(t, oldtnode, tn); 621 nomem: 622 /* all pointers should be clean so we are done */ 623 tnode_free(tn); 624 notnode: 625 return NULL; 626 } 627 628 static struct key_vector *halve(struct trie *t, 629 struct key_vector *oldtnode) 630 { 631 struct key_vector *tn; 632 unsigned long i; 633 634 pr_debug("In halve\n"); 635 636 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 637 if (!tn) 638 goto notnode; 639 640 /* prepare oldtnode to be freed */ 641 tnode_free_init(oldtnode); 642 643 /* Assemble all of the pointers in our cluster, in this case that 644 * represents all of the pointers out of our allocated nodes that 645 * point to existing tnodes and the links between our allocated 646 * nodes. 647 */ 648 for (i = child_length(oldtnode); i;) { 649 struct key_vector *node1 = get_child(oldtnode, --i); 650 struct key_vector *node0 = get_child(oldtnode, --i); 651 struct key_vector *inode; 652 653 /* At least one of the children is empty */ 654 if (!node1 || !node0) { 655 put_child(tn, i / 2, node1 ? : node0); 656 continue; 657 } 658 659 /* Two nonempty children */ 660 inode = tnode_new(node0->key, oldtnode->pos, 1); 661 if (!inode) 662 goto nomem; 663 tnode_free_append(tn, inode); 664 665 /* initialize pointers out of node */ 666 put_child(inode, 1, node1); 667 put_child(inode, 0, node0); 668 NODE_INIT_PARENT(inode, tn); 669 670 /* link parent to node */ 671 put_child(tn, i / 2, inode); 672 } 673 674 /* setup the parent pointers into and out of this node */ 675 return replace(t, oldtnode, tn); 676 nomem: 677 /* all pointers should be clean so we are done */ 678 tnode_free(tn); 679 notnode: 680 return NULL; 681 } 682 683 static struct key_vector *collapse(struct trie *t, 684 struct key_vector *oldtnode) 685 { 686 struct key_vector *n, *tp; 687 unsigned long i; 688 689 /* scan the tnode looking for that one child that might still exist */ 690 for (n = NULL, i = child_length(oldtnode); !n && i;) 691 n = get_child(oldtnode, --i); 692 693 /* compress one level */ 694 tp = node_parent(oldtnode); 695 put_child_root(tp, oldtnode->key, n); 696 node_set_parent(n, tp); 697 698 /* drop dead node */ 699 node_free(oldtnode); 700 701 return tp; 702 } 703 704 static unsigned char update_suffix(struct key_vector *tn) 705 { 706 unsigned char slen = tn->pos; 707 unsigned long stride, i; 708 unsigned char slen_max; 709 710 /* only vector 0 can have a suffix length greater than or equal to 711 * tn->pos + tn->bits, the second highest node will have a suffix 712 * length at most of tn->pos + tn->bits - 1 713 */ 714 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 715 716 /* search though the list of children looking for nodes that might 717 * have a suffix greater than the one we currently have. This is 718 * why we start with a stride of 2 since a stride of 1 would 719 * represent the nodes with suffix length equal to tn->pos 720 */ 721 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 722 struct key_vector *n = get_child(tn, i); 723 724 if (!n || (n->slen <= slen)) 725 continue; 726 727 /* update stride and slen based on new value */ 728 stride <<= (n->slen - slen); 729 slen = n->slen; 730 i &= ~(stride - 1); 731 732 /* stop searching if we have hit the maximum possible value */ 733 if (slen >= slen_max) 734 break; 735 } 736 737 tn->slen = slen; 738 739 return slen; 740 } 741 742 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 743 * the Helsinki University of Technology and Matti Tikkanen of Nokia 744 * Telecommunications, page 6: 745 * "A node is doubled if the ratio of non-empty children to all 746 * children in the *doubled* node is at least 'high'." 747 * 748 * 'high' in this instance is the variable 'inflate_threshold'. It 749 * is expressed as a percentage, so we multiply it with 750 * child_length() and instead of multiplying by 2 (since the 751 * child array will be doubled by inflate()) and multiplying 752 * the left-hand side by 100 (to handle the percentage thing) we 753 * multiply the left-hand side by 50. 754 * 755 * The left-hand side may look a bit weird: child_length(tn) 756 * - tn->empty_children is of course the number of non-null children 757 * in the current node. tn->full_children is the number of "full" 758 * children, that is non-null tnodes with a skip value of 0. 759 * All of those will be doubled in the resulting inflated tnode, so 760 * we just count them one extra time here. 761 * 762 * A clearer way to write this would be: 763 * 764 * to_be_doubled = tn->full_children; 765 * not_to_be_doubled = child_length(tn) - tn->empty_children - 766 * tn->full_children; 767 * 768 * new_child_length = child_length(tn) * 2; 769 * 770 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 771 * new_child_length; 772 * if (new_fill_factor >= inflate_threshold) 773 * 774 * ...and so on, tho it would mess up the while () loop. 775 * 776 * anyway, 777 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 778 * inflate_threshold 779 * 780 * avoid a division: 781 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 782 * inflate_threshold * new_child_length 783 * 784 * expand not_to_be_doubled and to_be_doubled, and shorten: 785 * 100 * (child_length(tn) - tn->empty_children + 786 * tn->full_children) >= inflate_threshold * new_child_length 787 * 788 * expand new_child_length: 789 * 100 * (child_length(tn) - tn->empty_children + 790 * tn->full_children) >= 791 * inflate_threshold * child_length(tn) * 2 792 * 793 * shorten again: 794 * 50 * (tn->full_children + child_length(tn) - 795 * tn->empty_children) >= inflate_threshold * 796 * child_length(tn) 797 * 798 */ 799 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 800 { 801 unsigned long used = child_length(tn); 802 unsigned long threshold = used; 803 804 /* Keep root node larger */ 805 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 806 used -= tn_info(tn)->empty_children; 807 used += tn_info(tn)->full_children; 808 809 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 810 811 return (used > 1) && tn->pos && ((50 * used) >= threshold); 812 } 813 814 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 815 { 816 unsigned long used = child_length(tn); 817 unsigned long threshold = used; 818 819 /* Keep root node larger */ 820 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 821 used -= tn_info(tn)->empty_children; 822 823 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 824 825 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 826 } 827 828 static inline bool should_collapse(struct key_vector *tn) 829 { 830 unsigned long used = child_length(tn); 831 832 used -= tn_info(tn)->empty_children; 833 834 /* account for bits == KEYLENGTH case */ 835 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 836 used -= KEY_MAX; 837 838 /* One child or none, time to drop us from the trie */ 839 return used < 2; 840 } 841 842 #define MAX_WORK 10 843 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 844 { 845 #ifdef CONFIG_IP_FIB_TRIE_STATS 846 struct trie_use_stats __percpu *stats = t->stats; 847 #endif 848 struct key_vector *tp = node_parent(tn); 849 unsigned long cindex = get_index(tn->key, tp); 850 int max_work = MAX_WORK; 851 852 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 853 tn, inflate_threshold, halve_threshold); 854 855 /* track the tnode via the pointer from the parent instead of 856 * doing it ourselves. This way we can let RCU fully do its 857 * thing without us interfering 858 */ 859 BUG_ON(tn != get_child(tp, cindex)); 860 861 /* Double as long as the resulting node has a number of 862 * nonempty nodes that are above the threshold. 863 */ 864 while (should_inflate(tp, tn) && max_work) { 865 tp = inflate(t, tn); 866 if (!tp) { 867 #ifdef CONFIG_IP_FIB_TRIE_STATS 868 this_cpu_inc(stats->resize_node_skipped); 869 #endif 870 break; 871 } 872 873 max_work--; 874 tn = get_child(tp, cindex); 875 } 876 877 /* update parent in case inflate failed */ 878 tp = node_parent(tn); 879 880 /* Return if at least one inflate is run */ 881 if (max_work != MAX_WORK) 882 return tp; 883 884 /* Halve as long as the number of empty children in this 885 * node is above threshold. 886 */ 887 while (should_halve(tp, tn) && max_work) { 888 tp = halve(t, tn); 889 if (!tp) { 890 #ifdef CONFIG_IP_FIB_TRIE_STATS 891 this_cpu_inc(stats->resize_node_skipped); 892 #endif 893 break; 894 } 895 896 max_work--; 897 tn = get_child(tp, cindex); 898 } 899 900 /* Only one child remains */ 901 if (should_collapse(tn)) 902 return collapse(t, tn); 903 904 /* update parent in case halve failed */ 905 return node_parent(tn); 906 } 907 908 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 909 { 910 unsigned char node_slen = tn->slen; 911 912 while ((node_slen > tn->pos) && (node_slen > slen)) { 913 slen = update_suffix(tn); 914 if (node_slen == slen) 915 break; 916 917 tn = node_parent(tn); 918 node_slen = tn->slen; 919 } 920 } 921 922 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 923 { 924 while (tn->slen < slen) { 925 tn->slen = slen; 926 tn = node_parent(tn); 927 } 928 } 929 930 /* rcu_read_lock needs to be hold by caller from readside */ 931 static struct key_vector *fib_find_node(struct trie *t, 932 struct key_vector **tp, u32 key) 933 { 934 struct key_vector *pn, *n = t->kv; 935 unsigned long index = 0; 936 937 do { 938 pn = n; 939 n = get_child_rcu(n, index); 940 941 if (!n) 942 break; 943 944 index = get_cindex(key, n); 945 946 /* This bit of code is a bit tricky but it combines multiple 947 * checks into a single check. The prefix consists of the 948 * prefix plus zeros for the bits in the cindex. The index 949 * is the difference between the key and this value. From 950 * this we can actually derive several pieces of data. 951 * if (index >= (1ul << bits)) 952 * we have a mismatch in skip bits and failed 953 * else 954 * we know the value is cindex 955 * 956 * This check is safe even if bits == KEYLENGTH due to the 957 * fact that we can only allocate a node with 32 bits if a 958 * long is greater than 32 bits. 959 */ 960 if (index >= (1ul << n->bits)) { 961 n = NULL; 962 break; 963 } 964 965 /* keep searching until we find a perfect match leaf or NULL */ 966 } while (IS_TNODE(n)); 967 968 *tp = pn; 969 970 return n; 971 } 972 973 /* Return the first fib alias matching TOS with 974 * priority less than or equal to PRIO. 975 */ 976 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 977 u8 tos, u32 prio, u32 tb_id) 978 { 979 struct fib_alias *fa; 980 981 if (!fah) 982 return NULL; 983 984 hlist_for_each_entry(fa, fah, fa_list) { 985 if (fa->fa_slen < slen) 986 continue; 987 if (fa->fa_slen != slen) 988 break; 989 if (fa->tb_id > tb_id) 990 continue; 991 if (fa->tb_id != tb_id) 992 break; 993 if (fa->fa_tos > tos) 994 continue; 995 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 996 return fa; 997 } 998 999 return NULL; 1000 } 1001 1002 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1003 { 1004 while (!IS_TRIE(tn)) 1005 tn = resize(t, tn); 1006 } 1007 1008 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1009 struct fib_alias *new, t_key key) 1010 { 1011 struct key_vector *n, *l; 1012 1013 l = leaf_new(key, new); 1014 if (!l) 1015 goto noleaf; 1016 1017 /* retrieve child from parent node */ 1018 n = get_child(tp, get_index(key, tp)); 1019 1020 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1021 * 1022 * Add a new tnode here 1023 * first tnode need some special handling 1024 * leaves us in position for handling as case 3 1025 */ 1026 if (n) { 1027 struct key_vector *tn; 1028 1029 tn = tnode_new(key, __fls(key ^ n->key), 1); 1030 if (!tn) 1031 goto notnode; 1032 1033 /* initialize routes out of node */ 1034 NODE_INIT_PARENT(tn, tp); 1035 put_child(tn, get_index(key, tn) ^ 1, n); 1036 1037 /* start adding routes into the node */ 1038 put_child_root(tp, key, tn); 1039 node_set_parent(n, tn); 1040 1041 /* parent now has a NULL spot where the leaf can go */ 1042 tp = tn; 1043 } 1044 1045 /* Case 3: n is NULL, and will just insert a new leaf */ 1046 node_push_suffix(tp, new->fa_slen); 1047 NODE_INIT_PARENT(l, tp); 1048 put_child_root(tp, key, l); 1049 trie_rebalance(t, tp); 1050 1051 return 0; 1052 notnode: 1053 node_free(l); 1054 noleaf: 1055 return -ENOMEM; 1056 } 1057 1058 /* fib notifier for ADD is sent before calling fib_insert_alias with 1059 * the expectation that the only possible failure ENOMEM 1060 */ 1061 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1062 struct key_vector *l, struct fib_alias *new, 1063 struct fib_alias *fa, t_key key) 1064 { 1065 if (!l) 1066 return fib_insert_node(t, tp, new, key); 1067 1068 if (fa) { 1069 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1070 } else { 1071 struct fib_alias *last; 1072 1073 hlist_for_each_entry(last, &l->leaf, fa_list) { 1074 if (new->fa_slen < last->fa_slen) 1075 break; 1076 if ((new->fa_slen == last->fa_slen) && 1077 (new->tb_id > last->tb_id)) 1078 break; 1079 fa = last; 1080 } 1081 1082 if (fa) 1083 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1084 else 1085 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1086 } 1087 1088 /* if we added to the tail node then we need to update slen */ 1089 if (l->slen < new->fa_slen) { 1090 l->slen = new->fa_slen; 1091 node_push_suffix(tp, new->fa_slen); 1092 } 1093 1094 return 0; 1095 } 1096 1097 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1098 { 1099 if (plen > KEYLENGTH) { 1100 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1101 return false; 1102 } 1103 1104 if ((plen < KEYLENGTH) && (key << plen)) { 1105 NL_SET_ERR_MSG(extack, 1106 "Invalid prefix for given prefix length"); 1107 return false; 1108 } 1109 1110 return true; 1111 } 1112 1113 /* Caller must hold RTNL. */ 1114 int fib_table_insert(struct net *net, struct fib_table *tb, 1115 struct fib_config *cfg, struct netlink_ext_ack *extack) 1116 { 1117 enum fib_event_type event = FIB_EVENT_ENTRY_ADD; 1118 struct trie *t = (struct trie *)tb->tb_data; 1119 struct fib_alias *fa, *new_fa; 1120 struct key_vector *l, *tp; 1121 u16 nlflags = NLM_F_EXCL; 1122 struct fib_info *fi; 1123 u8 plen = cfg->fc_dst_len; 1124 u8 slen = KEYLENGTH - plen; 1125 u8 tos = cfg->fc_tos; 1126 u32 key; 1127 int err; 1128 1129 key = ntohl(cfg->fc_dst); 1130 1131 if (!fib_valid_key_len(key, plen, extack)) 1132 return -EINVAL; 1133 1134 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1135 1136 fi = fib_create_info(cfg, extack); 1137 if (IS_ERR(fi)) { 1138 err = PTR_ERR(fi); 1139 goto err; 1140 } 1141 1142 l = fib_find_node(t, &tp, key); 1143 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1144 tb->tb_id) : NULL; 1145 1146 /* Now fa, if non-NULL, points to the first fib alias 1147 * with the same keys [prefix,tos,priority], if such key already 1148 * exists or to the node before which we will insert new one. 1149 * 1150 * If fa is NULL, we will need to allocate a new one and 1151 * insert to the tail of the section matching the suffix length 1152 * of the new alias. 1153 */ 1154 1155 if (fa && fa->fa_tos == tos && 1156 fa->fa_info->fib_priority == fi->fib_priority) { 1157 struct fib_alias *fa_first, *fa_match; 1158 1159 err = -EEXIST; 1160 if (cfg->fc_nlflags & NLM_F_EXCL) 1161 goto out; 1162 1163 nlflags &= ~NLM_F_EXCL; 1164 1165 /* We have 2 goals: 1166 * 1. Find exact match for type, scope, fib_info to avoid 1167 * duplicate routes 1168 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1169 */ 1170 fa_match = NULL; 1171 fa_first = fa; 1172 hlist_for_each_entry_from(fa, fa_list) { 1173 if ((fa->fa_slen != slen) || 1174 (fa->tb_id != tb->tb_id) || 1175 (fa->fa_tos != tos)) 1176 break; 1177 if (fa->fa_info->fib_priority != fi->fib_priority) 1178 break; 1179 if (fa->fa_type == cfg->fc_type && 1180 fa->fa_info == fi) { 1181 fa_match = fa; 1182 break; 1183 } 1184 } 1185 1186 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1187 struct fib_info *fi_drop; 1188 u8 state; 1189 1190 nlflags |= NLM_F_REPLACE; 1191 fa = fa_first; 1192 if (fa_match) { 1193 if (fa == fa_match) 1194 err = 0; 1195 goto out; 1196 } 1197 err = -ENOBUFS; 1198 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1199 if (!new_fa) 1200 goto out; 1201 1202 fi_drop = fa->fa_info; 1203 new_fa->fa_tos = fa->fa_tos; 1204 new_fa->fa_info = fi; 1205 new_fa->fa_type = cfg->fc_type; 1206 state = fa->fa_state; 1207 new_fa->fa_state = state & ~FA_S_ACCESSED; 1208 new_fa->fa_slen = fa->fa_slen; 1209 new_fa->tb_id = tb->tb_id; 1210 new_fa->fa_default = -1; 1211 1212 err = call_fib_entry_notifiers(net, 1213 FIB_EVENT_ENTRY_REPLACE, 1214 key, plen, new_fa, 1215 extack); 1216 if (err) 1217 goto out_free_new_fa; 1218 1219 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1220 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1221 1222 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1223 1224 alias_free_mem_rcu(fa); 1225 1226 fib_release_info(fi_drop); 1227 if (state & FA_S_ACCESSED) 1228 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1229 1230 goto succeeded; 1231 } 1232 /* Error if we find a perfect match which 1233 * uses the same scope, type, and nexthop 1234 * information. 1235 */ 1236 if (fa_match) 1237 goto out; 1238 1239 if (cfg->fc_nlflags & NLM_F_APPEND) { 1240 event = FIB_EVENT_ENTRY_APPEND; 1241 nlflags |= NLM_F_APPEND; 1242 } else { 1243 fa = fa_first; 1244 } 1245 } 1246 err = -ENOENT; 1247 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1248 goto out; 1249 1250 nlflags |= NLM_F_CREATE; 1251 err = -ENOBUFS; 1252 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1253 if (!new_fa) 1254 goto out; 1255 1256 new_fa->fa_info = fi; 1257 new_fa->fa_tos = tos; 1258 new_fa->fa_type = cfg->fc_type; 1259 new_fa->fa_state = 0; 1260 new_fa->fa_slen = slen; 1261 new_fa->tb_id = tb->tb_id; 1262 new_fa->fa_default = -1; 1263 1264 err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack); 1265 if (err) 1266 goto out_free_new_fa; 1267 1268 /* Insert new entry to the list. */ 1269 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1270 if (err) 1271 goto out_fib_notif; 1272 1273 if (!plen) 1274 tb->tb_num_default++; 1275 1276 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1278 &cfg->fc_nlinfo, nlflags); 1279 succeeded: 1280 return 0; 1281 1282 out_fib_notif: 1283 /* notifier was sent that entry would be added to trie, but 1284 * the add failed and need to recover. Only failure for 1285 * fib_insert_alias is ENOMEM. 1286 */ 1287 NL_SET_ERR_MSG(extack, "Failed to insert route into trie"); 1288 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, 1289 plen, new_fa, NULL); 1290 out_free_new_fa: 1291 kmem_cache_free(fn_alias_kmem, new_fa); 1292 out: 1293 fib_release_info(fi); 1294 err: 1295 return err; 1296 } 1297 1298 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1299 { 1300 t_key prefix = n->key; 1301 1302 return (key ^ prefix) & (prefix | -prefix); 1303 } 1304 1305 /* should be called with rcu_read_lock */ 1306 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1307 struct fib_result *res, int fib_flags) 1308 { 1309 struct trie *t = (struct trie *) tb->tb_data; 1310 #ifdef CONFIG_IP_FIB_TRIE_STATS 1311 struct trie_use_stats __percpu *stats = t->stats; 1312 #endif 1313 const t_key key = ntohl(flp->daddr); 1314 struct key_vector *n, *pn; 1315 struct fib_alias *fa; 1316 unsigned long index; 1317 t_key cindex; 1318 1319 pn = t->kv; 1320 cindex = 0; 1321 1322 n = get_child_rcu(pn, cindex); 1323 if (!n) { 1324 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1325 return -EAGAIN; 1326 } 1327 1328 #ifdef CONFIG_IP_FIB_TRIE_STATS 1329 this_cpu_inc(stats->gets); 1330 #endif 1331 1332 /* Step 1: Travel to the longest prefix match in the trie */ 1333 for (;;) { 1334 index = get_cindex(key, n); 1335 1336 /* This bit of code is a bit tricky but it combines multiple 1337 * checks into a single check. The prefix consists of the 1338 * prefix plus zeros for the "bits" in the prefix. The index 1339 * is the difference between the key and this value. From 1340 * this we can actually derive several pieces of data. 1341 * if (index >= (1ul << bits)) 1342 * we have a mismatch in skip bits and failed 1343 * else 1344 * we know the value is cindex 1345 * 1346 * This check is safe even if bits == KEYLENGTH due to the 1347 * fact that we can only allocate a node with 32 bits if a 1348 * long is greater than 32 bits. 1349 */ 1350 if (index >= (1ul << n->bits)) 1351 break; 1352 1353 /* we have found a leaf. Prefixes have already been compared */ 1354 if (IS_LEAF(n)) 1355 goto found; 1356 1357 /* only record pn and cindex if we are going to be chopping 1358 * bits later. Otherwise we are just wasting cycles. 1359 */ 1360 if (n->slen > n->pos) { 1361 pn = n; 1362 cindex = index; 1363 } 1364 1365 n = get_child_rcu(n, index); 1366 if (unlikely(!n)) 1367 goto backtrace; 1368 } 1369 1370 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1371 for (;;) { 1372 /* record the pointer where our next node pointer is stored */ 1373 struct key_vector __rcu **cptr = n->tnode; 1374 1375 /* This test verifies that none of the bits that differ 1376 * between the key and the prefix exist in the region of 1377 * the lsb and higher in the prefix. 1378 */ 1379 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1380 goto backtrace; 1381 1382 /* exit out and process leaf */ 1383 if (unlikely(IS_LEAF(n))) 1384 break; 1385 1386 /* Don't bother recording parent info. Since we are in 1387 * prefix match mode we will have to come back to wherever 1388 * we started this traversal anyway 1389 */ 1390 1391 while ((n = rcu_dereference(*cptr)) == NULL) { 1392 backtrace: 1393 #ifdef CONFIG_IP_FIB_TRIE_STATS 1394 if (!n) 1395 this_cpu_inc(stats->null_node_hit); 1396 #endif 1397 /* If we are at cindex 0 there are no more bits for 1398 * us to strip at this level so we must ascend back 1399 * up one level to see if there are any more bits to 1400 * be stripped there. 1401 */ 1402 while (!cindex) { 1403 t_key pkey = pn->key; 1404 1405 /* If we don't have a parent then there is 1406 * nothing for us to do as we do not have any 1407 * further nodes to parse. 1408 */ 1409 if (IS_TRIE(pn)) { 1410 trace_fib_table_lookup(tb->tb_id, flp, 1411 NULL, -EAGAIN); 1412 return -EAGAIN; 1413 } 1414 #ifdef CONFIG_IP_FIB_TRIE_STATS 1415 this_cpu_inc(stats->backtrack); 1416 #endif 1417 /* Get Child's index */ 1418 pn = node_parent_rcu(pn); 1419 cindex = get_index(pkey, pn); 1420 } 1421 1422 /* strip the least significant bit from the cindex */ 1423 cindex &= cindex - 1; 1424 1425 /* grab pointer for next child node */ 1426 cptr = &pn->tnode[cindex]; 1427 } 1428 } 1429 1430 found: 1431 /* this line carries forward the xor from earlier in the function */ 1432 index = key ^ n->key; 1433 1434 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1435 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1436 struct fib_info *fi = fa->fa_info; 1437 int nhsel, err; 1438 1439 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1440 if (index >= (1ul << fa->fa_slen)) 1441 continue; 1442 } 1443 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1444 continue; 1445 if (fi->fib_dead) 1446 continue; 1447 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1448 continue; 1449 fib_alias_accessed(fa); 1450 err = fib_props[fa->fa_type].error; 1451 if (unlikely(err < 0)) { 1452 out_reject: 1453 #ifdef CONFIG_IP_FIB_TRIE_STATS 1454 this_cpu_inc(stats->semantic_match_passed); 1455 #endif 1456 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1457 return err; 1458 } 1459 if (fi->fib_flags & RTNH_F_DEAD) 1460 continue; 1461 1462 if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) { 1463 err = fib_props[RTN_BLACKHOLE].error; 1464 goto out_reject; 1465 } 1466 1467 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1468 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel); 1469 1470 if (nhc->nhc_flags & RTNH_F_DEAD) 1471 continue; 1472 if (ip_ignore_linkdown(nhc->nhc_dev) && 1473 nhc->nhc_flags & RTNH_F_LINKDOWN && 1474 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1475 continue; 1476 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1477 if (flp->flowi4_oif && 1478 flp->flowi4_oif != nhc->nhc_oif) 1479 continue; 1480 } 1481 1482 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1483 refcount_inc(&fi->fib_clntref); 1484 1485 res->prefix = htonl(n->key); 1486 res->prefixlen = KEYLENGTH - fa->fa_slen; 1487 res->nh_sel = nhsel; 1488 res->nhc = nhc; 1489 res->type = fa->fa_type; 1490 res->scope = fi->fib_scope; 1491 res->fi = fi; 1492 res->table = tb; 1493 res->fa_head = &n->leaf; 1494 #ifdef CONFIG_IP_FIB_TRIE_STATS 1495 this_cpu_inc(stats->semantic_match_passed); 1496 #endif 1497 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1498 1499 return err; 1500 } 1501 } 1502 #ifdef CONFIG_IP_FIB_TRIE_STATS 1503 this_cpu_inc(stats->semantic_match_miss); 1504 #endif 1505 goto backtrace; 1506 } 1507 EXPORT_SYMBOL_GPL(fib_table_lookup); 1508 1509 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1510 struct key_vector *l, struct fib_alias *old) 1511 { 1512 /* record the location of the previous list_info entry */ 1513 struct hlist_node **pprev = old->fa_list.pprev; 1514 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1515 1516 /* remove the fib_alias from the list */ 1517 hlist_del_rcu(&old->fa_list); 1518 1519 /* if we emptied the list this leaf will be freed and we can sort 1520 * out parent suffix lengths as a part of trie_rebalance 1521 */ 1522 if (hlist_empty(&l->leaf)) { 1523 if (tp->slen == l->slen) 1524 node_pull_suffix(tp, tp->pos); 1525 put_child_root(tp, l->key, NULL); 1526 node_free(l); 1527 trie_rebalance(t, tp); 1528 return; 1529 } 1530 1531 /* only access fa if it is pointing at the last valid hlist_node */ 1532 if (*pprev) 1533 return; 1534 1535 /* update the trie with the latest suffix length */ 1536 l->slen = fa->fa_slen; 1537 node_pull_suffix(tp, fa->fa_slen); 1538 } 1539 1540 /* Caller must hold RTNL. */ 1541 int fib_table_delete(struct net *net, struct fib_table *tb, 1542 struct fib_config *cfg, struct netlink_ext_ack *extack) 1543 { 1544 struct trie *t = (struct trie *) tb->tb_data; 1545 struct fib_alias *fa, *fa_to_delete; 1546 struct key_vector *l, *tp; 1547 u8 plen = cfg->fc_dst_len; 1548 u8 slen = KEYLENGTH - plen; 1549 u8 tos = cfg->fc_tos; 1550 u32 key; 1551 1552 key = ntohl(cfg->fc_dst); 1553 1554 if (!fib_valid_key_len(key, plen, extack)) 1555 return -EINVAL; 1556 1557 l = fib_find_node(t, &tp, key); 1558 if (!l) 1559 return -ESRCH; 1560 1561 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1562 if (!fa) 1563 return -ESRCH; 1564 1565 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1566 1567 fa_to_delete = NULL; 1568 hlist_for_each_entry_from(fa, fa_list) { 1569 struct fib_info *fi = fa->fa_info; 1570 1571 if ((fa->fa_slen != slen) || 1572 (fa->tb_id != tb->tb_id) || 1573 (fa->fa_tos != tos)) 1574 break; 1575 1576 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1577 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1578 fa->fa_info->fib_scope == cfg->fc_scope) && 1579 (!cfg->fc_prefsrc || 1580 fi->fib_prefsrc == cfg->fc_prefsrc) && 1581 (!cfg->fc_protocol || 1582 fi->fib_protocol == cfg->fc_protocol) && 1583 fib_nh_match(cfg, fi, extack) == 0 && 1584 fib_metrics_match(cfg, fi)) { 1585 fa_to_delete = fa; 1586 break; 1587 } 1588 } 1589 1590 if (!fa_to_delete) 1591 return -ESRCH; 1592 1593 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen, 1594 fa_to_delete, extack); 1595 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1596 &cfg->fc_nlinfo, 0); 1597 1598 if (!plen) 1599 tb->tb_num_default--; 1600 1601 fib_remove_alias(t, tp, l, fa_to_delete); 1602 1603 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1604 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1605 1606 fib_release_info(fa_to_delete->fa_info); 1607 alias_free_mem_rcu(fa_to_delete); 1608 return 0; 1609 } 1610 1611 /* Scan for the next leaf starting at the provided key value */ 1612 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1613 { 1614 struct key_vector *pn, *n = *tn; 1615 unsigned long cindex; 1616 1617 /* this loop is meant to try and find the key in the trie */ 1618 do { 1619 /* record parent and next child index */ 1620 pn = n; 1621 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1622 1623 if (cindex >> pn->bits) 1624 break; 1625 1626 /* descend into the next child */ 1627 n = get_child_rcu(pn, cindex++); 1628 if (!n) 1629 break; 1630 1631 /* guarantee forward progress on the keys */ 1632 if (IS_LEAF(n) && (n->key >= key)) 1633 goto found; 1634 } while (IS_TNODE(n)); 1635 1636 /* this loop will search for the next leaf with a greater key */ 1637 while (!IS_TRIE(pn)) { 1638 /* if we exhausted the parent node we will need to climb */ 1639 if (cindex >= (1ul << pn->bits)) { 1640 t_key pkey = pn->key; 1641 1642 pn = node_parent_rcu(pn); 1643 cindex = get_index(pkey, pn) + 1; 1644 continue; 1645 } 1646 1647 /* grab the next available node */ 1648 n = get_child_rcu(pn, cindex++); 1649 if (!n) 1650 continue; 1651 1652 /* no need to compare keys since we bumped the index */ 1653 if (IS_LEAF(n)) 1654 goto found; 1655 1656 /* Rescan start scanning in new node */ 1657 pn = n; 1658 cindex = 0; 1659 } 1660 1661 *tn = pn; 1662 return NULL; /* Root of trie */ 1663 found: 1664 /* if we are at the limit for keys just return NULL for the tnode */ 1665 *tn = pn; 1666 return n; 1667 } 1668 1669 static void fib_trie_free(struct fib_table *tb) 1670 { 1671 struct trie *t = (struct trie *)tb->tb_data; 1672 struct key_vector *pn = t->kv; 1673 unsigned long cindex = 1; 1674 struct hlist_node *tmp; 1675 struct fib_alias *fa; 1676 1677 /* walk trie in reverse order and free everything */ 1678 for (;;) { 1679 struct key_vector *n; 1680 1681 if (!(cindex--)) { 1682 t_key pkey = pn->key; 1683 1684 if (IS_TRIE(pn)) 1685 break; 1686 1687 n = pn; 1688 pn = node_parent(pn); 1689 1690 /* drop emptied tnode */ 1691 put_child_root(pn, n->key, NULL); 1692 node_free(n); 1693 1694 cindex = get_index(pkey, pn); 1695 1696 continue; 1697 } 1698 1699 /* grab the next available node */ 1700 n = get_child(pn, cindex); 1701 if (!n) 1702 continue; 1703 1704 if (IS_TNODE(n)) { 1705 /* record pn and cindex for leaf walking */ 1706 pn = n; 1707 cindex = 1ul << n->bits; 1708 1709 continue; 1710 } 1711 1712 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1713 hlist_del_rcu(&fa->fa_list); 1714 alias_free_mem_rcu(fa); 1715 } 1716 1717 put_child_root(pn, n->key, NULL); 1718 node_free(n); 1719 } 1720 1721 #ifdef CONFIG_IP_FIB_TRIE_STATS 1722 free_percpu(t->stats); 1723 #endif 1724 kfree(tb); 1725 } 1726 1727 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1728 { 1729 struct trie *ot = (struct trie *)oldtb->tb_data; 1730 struct key_vector *l, *tp = ot->kv; 1731 struct fib_table *local_tb; 1732 struct fib_alias *fa; 1733 struct trie *lt; 1734 t_key key = 0; 1735 1736 if (oldtb->tb_data == oldtb->__data) 1737 return oldtb; 1738 1739 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1740 if (!local_tb) 1741 return NULL; 1742 1743 lt = (struct trie *)local_tb->tb_data; 1744 1745 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1746 struct key_vector *local_l = NULL, *local_tp; 1747 1748 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1749 struct fib_alias *new_fa; 1750 1751 if (local_tb->tb_id != fa->tb_id) 1752 continue; 1753 1754 /* clone fa for new local table */ 1755 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1756 if (!new_fa) 1757 goto out; 1758 1759 memcpy(new_fa, fa, sizeof(*fa)); 1760 1761 /* insert clone into table */ 1762 if (!local_l) 1763 local_l = fib_find_node(lt, &local_tp, l->key); 1764 1765 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1766 NULL, l->key)) { 1767 kmem_cache_free(fn_alias_kmem, new_fa); 1768 goto out; 1769 } 1770 } 1771 1772 /* stop loop if key wrapped back to 0 */ 1773 key = l->key + 1; 1774 if (key < l->key) 1775 break; 1776 } 1777 1778 return local_tb; 1779 out: 1780 fib_trie_free(local_tb); 1781 1782 return NULL; 1783 } 1784 1785 /* Caller must hold RTNL */ 1786 void fib_table_flush_external(struct fib_table *tb) 1787 { 1788 struct trie *t = (struct trie *)tb->tb_data; 1789 struct key_vector *pn = t->kv; 1790 unsigned long cindex = 1; 1791 struct hlist_node *tmp; 1792 struct fib_alias *fa; 1793 1794 /* walk trie in reverse order */ 1795 for (;;) { 1796 unsigned char slen = 0; 1797 struct key_vector *n; 1798 1799 if (!(cindex--)) { 1800 t_key pkey = pn->key; 1801 1802 /* cannot resize the trie vector */ 1803 if (IS_TRIE(pn)) 1804 break; 1805 1806 /* update the suffix to address pulled leaves */ 1807 if (pn->slen > pn->pos) 1808 update_suffix(pn); 1809 1810 /* resize completed node */ 1811 pn = resize(t, pn); 1812 cindex = get_index(pkey, pn); 1813 1814 continue; 1815 } 1816 1817 /* grab the next available node */ 1818 n = get_child(pn, cindex); 1819 if (!n) 1820 continue; 1821 1822 if (IS_TNODE(n)) { 1823 /* record pn and cindex for leaf walking */ 1824 pn = n; 1825 cindex = 1ul << n->bits; 1826 1827 continue; 1828 } 1829 1830 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1831 /* if alias was cloned to local then we just 1832 * need to remove the local copy from main 1833 */ 1834 if (tb->tb_id != fa->tb_id) { 1835 hlist_del_rcu(&fa->fa_list); 1836 alias_free_mem_rcu(fa); 1837 continue; 1838 } 1839 1840 /* record local slen */ 1841 slen = fa->fa_slen; 1842 } 1843 1844 /* update leaf slen */ 1845 n->slen = slen; 1846 1847 if (hlist_empty(&n->leaf)) { 1848 put_child_root(pn, n->key, NULL); 1849 node_free(n); 1850 } 1851 } 1852 } 1853 1854 /* Caller must hold RTNL. */ 1855 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 1856 { 1857 struct trie *t = (struct trie *)tb->tb_data; 1858 struct key_vector *pn = t->kv; 1859 unsigned long cindex = 1; 1860 struct hlist_node *tmp; 1861 struct fib_alias *fa; 1862 int found = 0; 1863 1864 /* walk trie in reverse order */ 1865 for (;;) { 1866 unsigned char slen = 0; 1867 struct key_vector *n; 1868 1869 if (!(cindex--)) { 1870 t_key pkey = pn->key; 1871 1872 /* cannot resize the trie vector */ 1873 if (IS_TRIE(pn)) 1874 break; 1875 1876 /* update the suffix to address pulled leaves */ 1877 if (pn->slen > pn->pos) 1878 update_suffix(pn); 1879 1880 /* resize completed node */ 1881 pn = resize(t, pn); 1882 cindex = get_index(pkey, pn); 1883 1884 continue; 1885 } 1886 1887 /* grab the next available node */ 1888 n = get_child(pn, cindex); 1889 if (!n) 1890 continue; 1891 1892 if (IS_TNODE(n)) { 1893 /* record pn and cindex for leaf walking */ 1894 pn = n; 1895 cindex = 1ul << n->bits; 1896 1897 continue; 1898 } 1899 1900 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1901 struct fib_info *fi = fa->fa_info; 1902 1903 if (!fi || tb->tb_id != fa->tb_id || 1904 (!(fi->fib_flags & RTNH_F_DEAD) && 1905 !fib_props[fa->fa_type].error)) { 1906 slen = fa->fa_slen; 1907 continue; 1908 } 1909 1910 /* Do not flush error routes if network namespace is 1911 * not being dismantled 1912 */ 1913 if (!flush_all && fib_props[fa->fa_type].error) { 1914 slen = fa->fa_slen; 1915 continue; 1916 } 1917 1918 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1919 n->key, 1920 KEYLENGTH - fa->fa_slen, fa, 1921 NULL); 1922 hlist_del_rcu(&fa->fa_list); 1923 fib_release_info(fa->fa_info); 1924 alias_free_mem_rcu(fa); 1925 found++; 1926 } 1927 1928 /* update leaf slen */ 1929 n->slen = slen; 1930 1931 if (hlist_empty(&n->leaf)) { 1932 put_child_root(pn, n->key, NULL); 1933 node_free(n); 1934 } 1935 } 1936 1937 pr_debug("trie_flush found=%d\n", found); 1938 return found; 1939 } 1940 1941 /* derived from fib_trie_free */ 1942 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 1943 struct nl_info *info) 1944 { 1945 struct trie *t = (struct trie *)tb->tb_data; 1946 struct key_vector *pn = t->kv; 1947 unsigned long cindex = 1; 1948 struct fib_alias *fa; 1949 1950 for (;;) { 1951 struct key_vector *n; 1952 1953 if (!(cindex--)) { 1954 t_key pkey = pn->key; 1955 1956 if (IS_TRIE(pn)) 1957 break; 1958 1959 pn = node_parent(pn); 1960 cindex = get_index(pkey, pn); 1961 continue; 1962 } 1963 1964 /* grab the next available node */ 1965 n = get_child(pn, cindex); 1966 if (!n) 1967 continue; 1968 1969 if (IS_TNODE(n)) { 1970 /* record pn and cindex for leaf walking */ 1971 pn = n; 1972 cindex = 1ul << n->bits; 1973 1974 continue; 1975 } 1976 1977 hlist_for_each_entry(fa, &n->leaf, fa_list) { 1978 struct fib_info *fi = fa->fa_info; 1979 1980 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 1981 continue; 1982 1983 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 1984 KEYLENGTH - fa->fa_slen, tb->tb_id, 1985 info, NLM_F_REPLACE); 1986 1987 /* call_fib_entry_notifiers will be removed when 1988 * in-kernel notifier is implemented and supported 1989 * for nexthop objects 1990 */ 1991 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1992 n->key, 1993 KEYLENGTH - fa->fa_slen, fa, 1994 NULL); 1995 } 1996 } 1997 } 1998 1999 void fib_info_notify_update(struct net *net, struct nl_info *info) 2000 { 2001 unsigned int h; 2002 2003 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2004 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2005 struct fib_table *tb; 2006 2007 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2008 __fib_info_notify_update(net, tb, info); 2009 } 2010 } 2011 2012 static void fib_leaf_notify(struct net *net, struct key_vector *l, 2013 struct fib_table *tb, struct notifier_block *nb) 2014 { 2015 struct fib_alias *fa; 2016 2017 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2018 struct fib_info *fi = fa->fa_info; 2019 2020 if (!fi) 2021 continue; 2022 2023 /* local and main table can share the same trie, 2024 * so don't notify twice for the same entry. 2025 */ 2026 if (tb->tb_id != fa->tb_id) 2027 continue; 2028 2029 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key, 2030 KEYLENGTH - fa->fa_slen, fa); 2031 } 2032 } 2033 2034 static void fib_table_notify(struct net *net, struct fib_table *tb, 2035 struct notifier_block *nb) 2036 { 2037 struct trie *t = (struct trie *)tb->tb_data; 2038 struct key_vector *l, *tp = t->kv; 2039 t_key key = 0; 2040 2041 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2042 fib_leaf_notify(net, l, tb, nb); 2043 2044 key = l->key + 1; 2045 /* stop in case of wrap around */ 2046 if (key < l->key) 2047 break; 2048 } 2049 } 2050 2051 void fib_notify(struct net *net, struct notifier_block *nb) 2052 { 2053 unsigned int h; 2054 2055 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2056 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2057 struct fib_table *tb; 2058 2059 hlist_for_each_entry_rcu(tb, head, tb_hlist) 2060 fib_table_notify(net, tb, nb); 2061 } 2062 } 2063 2064 static void __trie_free_rcu(struct rcu_head *head) 2065 { 2066 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2067 #ifdef CONFIG_IP_FIB_TRIE_STATS 2068 struct trie *t = (struct trie *)tb->tb_data; 2069 2070 if (tb->tb_data == tb->__data) 2071 free_percpu(t->stats); 2072 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2073 kfree(tb); 2074 } 2075 2076 void fib_free_table(struct fib_table *tb) 2077 { 2078 call_rcu(&tb->rcu, __trie_free_rcu); 2079 } 2080 2081 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2082 struct sk_buff *skb, struct netlink_callback *cb, 2083 struct fib_dump_filter *filter) 2084 { 2085 unsigned int flags = NLM_F_MULTI; 2086 __be32 xkey = htonl(l->key); 2087 struct fib_alias *fa; 2088 int i, s_i; 2089 2090 if (filter->filter_set) 2091 flags |= NLM_F_DUMP_FILTERED; 2092 2093 s_i = cb->args[4]; 2094 i = 0; 2095 2096 /* rcu_read_lock is hold by caller */ 2097 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2098 int err; 2099 2100 if (i < s_i) 2101 goto next; 2102 2103 if (tb->tb_id != fa->tb_id) 2104 goto next; 2105 2106 if (filter->filter_set) { 2107 if (filter->rt_type && fa->fa_type != filter->rt_type) 2108 goto next; 2109 2110 if ((filter->protocol && 2111 fa->fa_info->fib_protocol != filter->protocol)) 2112 goto next; 2113 2114 if (filter->dev && 2115 !fib_info_nh_uses_dev(fa->fa_info, filter->dev)) 2116 goto next; 2117 } 2118 2119 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 2120 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2121 tb->tb_id, fa->fa_type, 2122 xkey, KEYLENGTH - fa->fa_slen, 2123 fa->fa_tos, fa->fa_info, flags); 2124 if (err < 0) { 2125 cb->args[4] = i; 2126 return err; 2127 } 2128 next: 2129 i++; 2130 } 2131 2132 cb->args[4] = i; 2133 return skb->len; 2134 } 2135 2136 /* rcu_read_lock needs to be hold by caller from readside */ 2137 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2138 struct netlink_callback *cb, struct fib_dump_filter *filter) 2139 { 2140 struct trie *t = (struct trie *)tb->tb_data; 2141 struct key_vector *l, *tp = t->kv; 2142 /* Dump starting at last key. 2143 * Note: 0.0.0.0/0 (ie default) is first key. 2144 */ 2145 int count = cb->args[2]; 2146 t_key key = cb->args[3]; 2147 2148 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2149 int err; 2150 2151 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2152 if (err < 0) { 2153 cb->args[3] = key; 2154 cb->args[2] = count; 2155 return err; 2156 } 2157 2158 ++count; 2159 key = l->key + 1; 2160 2161 memset(&cb->args[4], 0, 2162 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2163 2164 /* stop loop if key wrapped back to 0 */ 2165 if (key < l->key) 2166 break; 2167 } 2168 2169 cb->args[3] = key; 2170 cb->args[2] = count; 2171 2172 return skb->len; 2173 } 2174 2175 void __init fib_trie_init(void) 2176 { 2177 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2178 sizeof(struct fib_alias), 2179 0, SLAB_PANIC, NULL); 2180 2181 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2182 LEAF_SIZE, 2183 0, SLAB_PANIC, NULL); 2184 } 2185 2186 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2187 { 2188 struct fib_table *tb; 2189 struct trie *t; 2190 size_t sz = sizeof(*tb); 2191 2192 if (!alias) 2193 sz += sizeof(struct trie); 2194 2195 tb = kzalloc(sz, GFP_KERNEL); 2196 if (!tb) 2197 return NULL; 2198 2199 tb->tb_id = id; 2200 tb->tb_num_default = 0; 2201 tb->tb_data = (alias ? alias->__data : tb->__data); 2202 2203 if (alias) 2204 return tb; 2205 2206 t = (struct trie *) tb->tb_data; 2207 t->kv[0].pos = KEYLENGTH; 2208 t->kv[0].slen = KEYLENGTH; 2209 #ifdef CONFIG_IP_FIB_TRIE_STATS 2210 t->stats = alloc_percpu(struct trie_use_stats); 2211 if (!t->stats) { 2212 kfree(tb); 2213 tb = NULL; 2214 } 2215 #endif 2216 2217 return tb; 2218 } 2219 2220 #ifdef CONFIG_PROC_FS 2221 /* Depth first Trie walk iterator */ 2222 struct fib_trie_iter { 2223 struct seq_net_private p; 2224 struct fib_table *tb; 2225 struct key_vector *tnode; 2226 unsigned int index; 2227 unsigned int depth; 2228 }; 2229 2230 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2231 { 2232 unsigned long cindex = iter->index; 2233 struct key_vector *pn = iter->tnode; 2234 t_key pkey; 2235 2236 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2237 iter->tnode, iter->index, iter->depth); 2238 2239 while (!IS_TRIE(pn)) { 2240 while (cindex < child_length(pn)) { 2241 struct key_vector *n = get_child_rcu(pn, cindex++); 2242 2243 if (!n) 2244 continue; 2245 2246 if (IS_LEAF(n)) { 2247 iter->tnode = pn; 2248 iter->index = cindex; 2249 } else { 2250 /* push down one level */ 2251 iter->tnode = n; 2252 iter->index = 0; 2253 ++iter->depth; 2254 } 2255 2256 return n; 2257 } 2258 2259 /* Current node exhausted, pop back up */ 2260 pkey = pn->key; 2261 pn = node_parent_rcu(pn); 2262 cindex = get_index(pkey, pn) + 1; 2263 --iter->depth; 2264 } 2265 2266 /* record root node so further searches know we are done */ 2267 iter->tnode = pn; 2268 iter->index = 0; 2269 2270 return NULL; 2271 } 2272 2273 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2274 struct trie *t) 2275 { 2276 struct key_vector *n, *pn; 2277 2278 if (!t) 2279 return NULL; 2280 2281 pn = t->kv; 2282 n = rcu_dereference(pn->tnode[0]); 2283 if (!n) 2284 return NULL; 2285 2286 if (IS_TNODE(n)) { 2287 iter->tnode = n; 2288 iter->index = 0; 2289 iter->depth = 1; 2290 } else { 2291 iter->tnode = pn; 2292 iter->index = 0; 2293 iter->depth = 0; 2294 } 2295 2296 return n; 2297 } 2298 2299 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2300 { 2301 struct key_vector *n; 2302 struct fib_trie_iter iter; 2303 2304 memset(s, 0, sizeof(*s)); 2305 2306 rcu_read_lock(); 2307 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2308 if (IS_LEAF(n)) { 2309 struct fib_alias *fa; 2310 2311 s->leaves++; 2312 s->totdepth += iter.depth; 2313 if (iter.depth > s->maxdepth) 2314 s->maxdepth = iter.depth; 2315 2316 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2317 ++s->prefixes; 2318 } else { 2319 s->tnodes++; 2320 if (n->bits < MAX_STAT_DEPTH) 2321 s->nodesizes[n->bits]++; 2322 s->nullpointers += tn_info(n)->empty_children; 2323 } 2324 } 2325 rcu_read_unlock(); 2326 } 2327 2328 /* 2329 * This outputs /proc/net/fib_triestats 2330 */ 2331 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2332 { 2333 unsigned int i, max, pointers, bytes, avdepth; 2334 2335 if (stat->leaves) 2336 avdepth = stat->totdepth*100 / stat->leaves; 2337 else 2338 avdepth = 0; 2339 2340 seq_printf(seq, "\tAver depth: %u.%02d\n", 2341 avdepth / 100, avdepth % 100); 2342 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2343 2344 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2345 bytes = LEAF_SIZE * stat->leaves; 2346 2347 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2348 bytes += sizeof(struct fib_alias) * stat->prefixes; 2349 2350 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2351 bytes += TNODE_SIZE(0) * stat->tnodes; 2352 2353 max = MAX_STAT_DEPTH; 2354 while (max > 0 && stat->nodesizes[max-1] == 0) 2355 max--; 2356 2357 pointers = 0; 2358 for (i = 1; i < max; i++) 2359 if (stat->nodesizes[i] != 0) { 2360 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2361 pointers += (1<<i) * stat->nodesizes[i]; 2362 } 2363 seq_putc(seq, '\n'); 2364 seq_printf(seq, "\tPointers: %u\n", pointers); 2365 2366 bytes += sizeof(struct key_vector *) * pointers; 2367 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2368 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2369 } 2370 2371 #ifdef CONFIG_IP_FIB_TRIE_STATS 2372 static void trie_show_usage(struct seq_file *seq, 2373 const struct trie_use_stats __percpu *stats) 2374 { 2375 struct trie_use_stats s = { 0 }; 2376 int cpu; 2377 2378 /* loop through all of the CPUs and gather up the stats */ 2379 for_each_possible_cpu(cpu) { 2380 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2381 2382 s.gets += pcpu->gets; 2383 s.backtrack += pcpu->backtrack; 2384 s.semantic_match_passed += pcpu->semantic_match_passed; 2385 s.semantic_match_miss += pcpu->semantic_match_miss; 2386 s.null_node_hit += pcpu->null_node_hit; 2387 s.resize_node_skipped += pcpu->resize_node_skipped; 2388 } 2389 2390 seq_printf(seq, "\nCounters:\n---------\n"); 2391 seq_printf(seq, "gets = %u\n", s.gets); 2392 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2393 seq_printf(seq, "semantic match passed = %u\n", 2394 s.semantic_match_passed); 2395 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2396 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2397 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2398 } 2399 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2400 2401 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2402 { 2403 if (tb->tb_id == RT_TABLE_LOCAL) 2404 seq_puts(seq, "Local:\n"); 2405 else if (tb->tb_id == RT_TABLE_MAIN) 2406 seq_puts(seq, "Main:\n"); 2407 else 2408 seq_printf(seq, "Id %d:\n", tb->tb_id); 2409 } 2410 2411 2412 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2413 { 2414 struct net *net = (struct net *)seq->private; 2415 unsigned int h; 2416 2417 seq_printf(seq, 2418 "Basic info: size of leaf:" 2419 " %zd bytes, size of tnode: %zd bytes.\n", 2420 LEAF_SIZE, TNODE_SIZE(0)); 2421 2422 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2423 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2424 struct fib_table *tb; 2425 2426 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2427 struct trie *t = (struct trie *) tb->tb_data; 2428 struct trie_stat stat; 2429 2430 if (!t) 2431 continue; 2432 2433 fib_table_print(seq, tb); 2434 2435 trie_collect_stats(t, &stat); 2436 trie_show_stats(seq, &stat); 2437 #ifdef CONFIG_IP_FIB_TRIE_STATS 2438 trie_show_usage(seq, t->stats); 2439 #endif 2440 } 2441 } 2442 2443 return 0; 2444 } 2445 2446 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2447 { 2448 struct fib_trie_iter *iter = seq->private; 2449 struct net *net = seq_file_net(seq); 2450 loff_t idx = 0; 2451 unsigned int h; 2452 2453 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2454 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2455 struct fib_table *tb; 2456 2457 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2458 struct key_vector *n; 2459 2460 for (n = fib_trie_get_first(iter, 2461 (struct trie *) tb->tb_data); 2462 n; n = fib_trie_get_next(iter)) 2463 if (pos == idx++) { 2464 iter->tb = tb; 2465 return n; 2466 } 2467 } 2468 } 2469 2470 return NULL; 2471 } 2472 2473 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2474 __acquires(RCU) 2475 { 2476 rcu_read_lock(); 2477 return fib_trie_get_idx(seq, *pos); 2478 } 2479 2480 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2481 { 2482 struct fib_trie_iter *iter = seq->private; 2483 struct net *net = seq_file_net(seq); 2484 struct fib_table *tb = iter->tb; 2485 struct hlist_node *tb_node; 2486 unsigned int h; 2487 struct key_vector *n; 2488 2489 ++*pos; 2490 /* next node in same table */ 2491 n = fib_trie_get_next(iter); 2492 if (n) 2493 return n; 2494 2495 /* walk rest of this hash chain */ 2496 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2497 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2498 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2499 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2500 if (n) 2501 goto found; 2502 } 2503 2504 /* new hash chain */ 2505 while (++h < FIB_TABLE_HASHSZ) { 2506 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2507 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2508 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2509 if (n) 2510 goto found; 2511 } 2512 } 2513 return NULL; 2514 2515 found: 2516 iter->tb = tb; 2517 return n; 2518 } 2519 2520 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2521 __releases(RCU) 2522 { 2523 rcu_read_unlock(); 2524 } 2525 2526 static void seq_indent(struct seq_file *seq, int n) 2527 { 2528 while (n-- > 0) 2529 seq_puts(seq, " "); 2530 } 2531 2532 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2533 { 2534 switch (s) { 2535 case RT_SCOPE_UNIVERSE: return "universe"; 2536 case RT_SCOPE_SITE: return "site"; 2537 case RT_SCOPE_LINK: return "link"; 2538 case RT_SCOPE_HOST: return "host"; 2539 case RT_SCOPE_NOWHERE: return "nowhere"; 2540 default: 2541 snprintf(buf, len, "scope=%d", s); 2542 return buf; 2543 } 2544 } 2545 2546 static const char *const rtn_type_names[__RTN_MAX] = { 2547 [RTN_UNSPEC] = "UNSPEC", 2548 [RTN_UNICAST] = "UNICAST", 2549 [RTN_LOCAL] = "LOCAL", 2550 [RTN_BROADCAST] = "BROADCAST", 2551 [RTN_ANYCAST] = "ANYCAST", 2552 [RTN_MULTICAST] = "MULTICAST", 2553 [RTN_BLACKHOLE] = "BLACKHOLE", 2554 [RTN_UNREACHABLE] = "UNREACHABLE", 2555 [RTN_PROHIBIT] = "PROHIBIT", 2556 [RTN_THROW] = "THROW", 2557 [RTN_NAT] = "NAT", 2558 [RTN_XRESOLVE] = "XRESOLVE", 2559 }; 2560 2561 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2562 { 2563 if (t < __RTN_MAX && rtn_type_names[t]) 2564 return rtn_type_names[t]; 2565 snprintf(buf, len, "type %u", t); 2566 return buf; 2567 } 2568 2569 /* Pretty print the trie */ 2570 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2571 { 2572 const struct fib_trie_iter *iter = seq->private; 2573 struct key_vector *n = v; 2574 2575 if (IS_TRIE(node_parent_rcu(n))) 2576 fib_table_print(seq, iter->tb); 2577 2578 if (IS_TNODE(n)) { 2579 __be32 prf = htonl(n->key); 2580 2581 seq_indent(seq, iter->depth-1); 2582 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2583 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2584 tn_info(n)->full_children, 2585 tn_info(n)->empty_children); 2586 } else { 2587 __be32 val = htonl(n->key); 2588 struct fib_alias *fa; 2589 2590 seq_indent(seq, iter->depth); 2591 seq_printf(seq, " |-- %pI4\n", &val); 2592 2593 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2594 char buf1[32], buf2[32]; 2595 2596 seq_indent(seq, iter->depth + 1); 2597 seq_printf(seq, " /%zu %s %s", 2598 KEYLENGTH - fa->fa_slen, 2599 rtn_scope(buf1, sizeof(buf1), 2600 fa->fa_info->fib_scope), 2601 rtn_type(buf2, sizeof(buf2), 2602 fa->fa_type)); 2603 if (fa->fa_tos) 2604 seq_printf(seq, " tos=%d", fa->fa_tos); 2605 seq_putc(seq, '\n'); 2606 } 2607 } 2608 2609 return 0; 2610 } 2611 2612 static const struct seq_operations fib_trie_seq_ops = { 2613 .start = fib_trie_seq_start, 2614 .next = fib_trie_seq_next, 2615 .stop = fib_trie_seq_stop, 2616 .show = fib_trie_seq_show, 2617 }; 2618 2619 struct fib_route_iter { 2620 struct seq_net_private p; 2621 struct fib_table *main_tb; 2622 struct key_vector *tnode; 2623 loff_t pos; 2624 t_key key; 2625 }; 2626 2627 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2628 loff_t pos) 2629 { 2630 struct key_vector *l, **tp = &iter->tnode; 2631 t_key key; 2632 2633 /* use cached location of previously found key */ 2634 if (iter->pos > 0 && pos >= iter->pos) { 2635 key = iter->key; 2636 } else { 2637 iter->pos = 1; 2638 key = 0; 2639 } 2640 2641 pos -= iter->pos; 2642 2643 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2644 key = l->key + 1; 2645 iter->pos++; 2646 l = NULL; 2647 2648 /* handle unlikely case of a key wrap */ 2649 if (!key) 2650 break; 2651 } 2652 2653 if (l) 2654 iter->key = l->key; /* remember it */ 2655 else 2656 iter->pos = 0; /* forget it */ 2657 2658 return l; 2659 } 2660 2661 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2662 __acquires(RCU) 2663 { 2664 struct fib_route_iter *iter = seq->private; 2665 struct fib_table *tb; 2666 struct trie *t; 2667 2668 rcu_read_lock(); 2669 2670 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2671 if (!tb) 2672 return NULL; 2673 2674 iter->main_tb = tb; 2675 t = (struct trie *)tb->tb_data; 2676 iter->tnode = t->kv; 2677 2678 if (*pos != 0) 2679 return fib_route_get_idx(iter, *pos); 2680 2681 iter->pos = 0; 2682 iter->key = KEY_MAX; 2683 2684 return SEQ_START_TOKEN; 2685 } 2686 2687 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2688 { 2689 struct fib_route_iter *iter = seq->private; 2690 struct key_vector *l = NULL; 2691 t_key key = iter->key + 1; 2692 2693 ++*pos; 2694 2695 /* only allow key of 0 for start of sequence */ 2696 if ((v == SEQ_START_TOKEN) || key) 2697 l = leaf_walk_rcu(&iter->tnode, key); 2698 2699 if (l) { 2700 iter->key = l->key; 2701 iter->pos++; 2702 } else { 2703 iter->pos = 0; 2704 } 2705 2706 return l; 2707 } 2708 2709 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2710 __releases(RCU) 2711 { 2712 rcu_read_unlock(); 2713 } 2714 2715 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2716 { 2717 unsigned int flags = 0; 2718 2719 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2720 flags = RTF_REJECT; 2721 if (fi) { 2722 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2723 2724 if (nhc->nhc_gw.ipv4) 2725 flags |= RTF_GATEWAY; 2726 } 2727 if (mask == htonl(0xFFFFFFFF)) 2728 flags |= RTF_HOST; 2729 flags |= RTF_UP; 2730 return flags; 2731 } 2732 2733 /* 2734 * This outputs /proc/net/route. 2735 * The format of the file is not supposed to be changed 2736 * and needs to be same as fib_hash output to avoid breaking 2737 * legacy utilities 2738 */ 2739 static int fib_route_seq_show(struct seq_file *seq, void *v) 2740 { 2741 struct fib_route_iter *iter = seq->private; 2742 struct fib_table *tb = iter->main_tb; 2743 struct fib_alias *fa; 2744 struct key_vector *l = v; 2745 __be32 prefix; 2746 2747 if (v == SEQ_START_TOKEN) { 2748 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2749 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2750 "\tWindow\tIRTT"); 2751 return 0; 2752 } 2753 2754 prefix = htonl(l->key); 2755 2756 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2757 struct fib_info *fi = fa->fa_info; 2758 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2759 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2760 2761 if ((fa->fa_type == RTN_BROADCAST) || 2762 (fa->fa_type == RTN_MULTICAST)) 2763 continue; 2764 2765 if (fa->tb_id != tb->tb_id) 2766 continue; 2767 2768 seq_setwidth(seq, 127); 2769 2770 if (fi) { 2771 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2772 __be32 gw = 0; 2773 2774 if (nhc->nhc_gw_family == AF_INET) 2775 gw = nhc->nhc_gw.ipv4; 2776 2777 seq_printf(seq, 2778 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2779 "%d\t%08X\t%d\t%u\t%u", 2780 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 2781 prefix, gw, flags, 0, 0, 2782 fi->fib_priority, 2783 mask, 2784 (fi->fib_advmss ? 2785 fi->fib_advmss + 40 : 0), 2786 fi->fib_window, 2787 fi->fib_rtt >> 3); 2788 } else { 2789 seq_printf(seq, 2790 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2791 "%d\t%08X\t%d\t%u\t%u", 2792 prefix, 0, flags, 0, 0, 0, 2793 mask, 0, 0, 0); 2794 } 2795 seq_pad(seq, '\n'); 2796 } 2797 2798 return 0; 2799 } 2800 2801 static const struct seq_operations fib_route_seq_ops = { 2802 .start = fib_route_seq_start, 2803 .next = fib_route_seq_next, 2804 .stop = fib_route_seq_stop, 2805 .show = fib_route_seq_show, 2806 }; 2807 2808 int __net_init fib_proc_init(struct net *net) 2809 { 2810 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 2811 sizeof(struct fib_trie_iter))) 2812 goto out1; 2813 2814 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 2815 fib_triestat_seq_show, NULL)) 2816 goto out2; 2817 2818 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 2819 sizeof(struct fib_route_iter))) 2820 goto out3; 2821 2822 return 0; 2823 2824 out3: 2825 remove_proc_entry("fib_triestat", net->proc_net); 2826 out2: 2827 remove_proc_entry("fib_trie", net->proc_net); 2828 out1: 2829 return -ENOMEM; 2830 } 2831 2832 void __net_exit fib_proc_exit(struct net *net) 2833 { 2834 remove_proc_entry("fib_trie", net->proc_net); 2835 remove_proc_entry("fib_triestat", net->proc_net); 2836 remove_proc_entry("route", net->proc_net); 2837 } 2838 2839 #endif /* CONFIG_PROC_FS */ 2840