xref: /linux/net/ipv4/fib_trie.c (revision 13091aa30535b719e269f20a7bc34002bf5afae5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 
39 #define VERSION "0.409"
40 
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
46 #include <linux/mm.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
51 #include <linux/in.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/tcp.h>
71 #include <net/sock.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
76 
77 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
78 				   enum fib_event_type event_type, u32 dst,
79 				   int dst_len, struct fib_alias *fa)
80 {
81 	struct fib_entry_notifier_info info = {
82 		.dst = dst,
83 		.dst_len = dst_len,
84 		.fi = fa->fa_info,
85 		.tos = fa->fa_tos,
86 		.type = fa->fa_type,
87 		.tb_id = fa->tb_id,
88 	};
89 	return call_fib4_notifier(nb, net, event_type, &info.info);
90 }
91 
92 static int call_fib_entry_notifiers(struct net *net,
93 				    enum fib_event_type event_type, u32 dst,
94 				    int dst_len, struct fib_alias *fa,
95 				    struct netlink_ext_ack *extack)
96 {
97 	struct fib_entry_notifier_info info = {
98 		.info.extack = extack,
99 		.dst = dst,
100 		.dst_len = dst_len,
101 		.fi = fa->fa_info,
102 		.tos = fa->fa_tos,
103 		.type = fa->fa_type,
104 		.tb_id = fa->tb_id,
105 	};
106 	return call_fib4_notifiers(net, event_type, &info.info);
107 }
108 
109 #define MAX_STAT_DEPTH 32
110 
111 #define KEYLENGTH	(8*sizeof(t_key))
112 #define KEY_MAX		((t_key)~0)
113 
114 typedef unsigned int t_key;
115 
116 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
117 #define IS_TNODE(n)	((n)->bits)
118 #define IS_LEAF(n)	(!(n)->bits)
119 
120 struct key_vector {
121 	t_key key;
122 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
124 	unsigned char slen;
125 	union {
126 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127 		struct hlist_head leaf;
128 		/* This array is valid if (pos | bits) > 0 (TNODE) */
129 		struct key_vector __rcu *tnode[0];
130 	};
131 };
132 
133 struct tnode {
134 	struct rcu_head rcu;
135 	t_key empty_children;		/* KEYLENGTH bits needed */
136 	t_key full_children;		/* KEYLENGTH bits needed */
137 	struct key_vector __rcu *parent;
138 	struct key_vector kv[1];
139 #define tn_bits kv[0].bits
140 };
141 
142 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
143 #define LEAF_SIZE	TNODE_SIZE(1)
144 
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats {
147 	unsigned int gets;
148 	unsigned int backtrack;
149 	unsigned int semantic_match_passed;
150 	unsigned int semantic_match_miss;
151 	unsigned int null_node_hit;
152 	unsigned int resize_node_skipped;
153 };
154 #endif
155 
156 struct trie_stat {
157 	unsigned int totdepth;
158 	unsigned int maxdepth;
159 	unsigned int tnodes;
160 	unsigned int leaves;
161 	unsigned int nullpointers;
162 	unsigned int prefixes;
163 	unsigned int nodesizes[MAX_STAT_DEPTH];
164 };
165 
166 struct trie {
167 	struct key_vector kv[1];
168 #ifdef CONFIG_IP_FIB_TRIE_STATS
169 	struct trie_use_stats __percpu *stats;
170 #endif
171 };
172 
173 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
174 static unsigned int tnode_free_size;
175 
176 /*
177  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178  * especially useful before resizing the root node with PREEMPT_NONE configs;
179  * the value was obtained experimentally, aiming to avoid visible slowdown.
180  */
181 unsigned int sysctl_fib_sync_mem = 512 * 1024;
182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
184 
185 static struct kmem_cache *fn_alias_kmem __ro_after_init;
186 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
187 
188 static inline struct tnode *tn_info(struct key_vector *kv)
189 {
190 	return container_of(kv, struct tnode, kv[0]);
191 }
192 
193 /* caller must hold RTNL */
194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196 
197 /* caller must hold RCU read lock or RTNL */
198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200 
201 /* wrapper for rcu_assign_pointer */
202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
203 {
204 	if (n)
205 		rcu_assign_pointer(tn_info(n)->parent, tp);
206 }
207 
208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209 
210 /* This provides us with the number of children in this node, in the case of a
211  * leaf this will return 0 meaning none of the children are accessible.
212  */
213 static inline unsigned long child_length(const struct key_vector *tn)
214 {
215 	return (1ul << tn->bits) & ~(1ul);
216 }
217 
218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219 
220 static inline unsigned long get_index(t_key key, struct key_vector *kv)
221 {
222 	unsigned long index = key ^ kv->key;
223 
224 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
225 		return 0;
226 
227 	return index >> kv->pos;
228 }
229 
230 /* To understand this stuff, an understanding of keys and all their bits is
231  * necessary. Every node in the trie has a key associated with it, but not
232  * all of the bits in that key are significant.
233  *
234  * Consider a node 'n' and its parent 'tp'.
235  *
236  * If n is a leaf, every bit in its key is significant. Its presence is
237  * necessitated by path compression, since during a tree traversal (when
238  * searching for a leaf - unless we are doing an insertion) we will completely
239  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240  * a potentially successful search, that we have indeed been walking the
241  * correct key path.
242  *
243  * Note that we can never "miss" the correct key in the tree if present by
244  * following the wrong path. Path compression ensures that segments of the key
245  * that are the same for all keys with a given prefix are skipped, but the
246  * skipped part *is* identical for each node in the subtrie below the skipped
247  * bit! trie_insert() in this implementation takes care of that.
248  *
249  * if n is an internal node - a 'tnode' here, the various parts of its key
250  * have many different meanings.
251  *
252  * Example:
253  * _________________________________________________________________
254  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255  * -----------------------------------------------------------------
256  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
257  *
258  * _________________________________________________________________
259  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260  * -----------------------------------------------------------------
261  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
262  *
263  * tp->pos = 22
264  * tp->bits = 3
265  * n->pos = 13
266  * n->bits = 4
267  *
268  * First, let's just ignore the bits that come before the parent tp, that is
269  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270  * point we do not use them for anything.
271  *
272  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273  * index into the parent's child array. That is, they will be used to find
274  * 'n' among tp's children.
275  *
276  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
277  * for the node n.
278  *
279  * All the bits we have seen so far are significant to the node n. The rest
280  * of the bits are really not needed or indeed known in n->key.
281  *
282  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283  * n's child array, and will of course be different for each child.
284  *
285  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
286  * at this point.
287  */
288 
289 static const int halve_threshold = 25;
290 static const int inflate_threshold = 50;
291 static const int halve_threshold_root = 15;
292 static const int inflate_threshold_root = 30;
293 
294 static void __alias_free_mem(struct rcu_head *head)
295 {
296 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
297 	kmem_cache_free(fn_alias_kmem, fa);
298 }
299 
300 static inline void alias_free_mem_rcu(struct fib_alias *fa)
301 {
302 	call_rcu(&fa->rcu, __alias_free_mem);
303 }
304 
305 #define TNODE_KMALLOC_MAX \
306 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307 #define TNODE_VMALLOC_MAX \
308 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309 
310 static void __node_free_rcu(struct rcu_head *head)
311 {
312 	struct tnode *n = container_of(head, struct tnode, rcu);
313 
314 	if (!n->tn_bits)
315 		kmem_cache_free(trie_leaf_kmem, n);
316 	else
317 		kvfree(n);
318 }
319 
320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
321 
322 static struct tnode *tnode_alloc(int bits)
323 {
324 	size_t size;
325 
326 	/* verify bits is within bounds */
327 	if (bits > TNODE_VMALLOC_MAX)
328 		return NULL;
329 
330 	/* determine size and verify it is non-zero and didn't overflow */
331 	size = TNODE_SIZE(1ul << bits);
332 
333 	if (size <= PAGE_SIZE)
334 		return kzalloc(size, GFP_KERNEL);
335 	else
336 		return vzalloc(size);
337 }
338 
339 static inline void empty_child_inc(struct key_vector *n)
340 {
341 	++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
342 }
343 
344 static inline void empty_child_dec(struct key_vector *n)
345 {
346 	tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
347 }
348 
349 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
350 {
351 	struct key_vector *l;
352 	struct tnode *kv;
353 
354 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
355 	if (!kv)
356 		return NULL;
357 
358 	/* initialize key vector */
359 	l = kv->kv;
360 	l->key = key;
361 	l->pos = 0;
362 	l->bits = 0;
363 	l->slen = fa->fa_slen;
364 
365 	/* link leaf to fib alias */
366 	INIT_HLIST_HEAD(&l->leaf);
367 	hlist_add_head(&fa->fa_list, &l->leaf);
368 
369 	return l;
370 }
371 
372 static struct key_vector *tnode_new(t_key key, int pos, int bits)
373 {
374 	unsigned int shift = pos + bits;
375 	struct key_vector *tn;
376 	struct tnode *tnode;
377 
378 	/* verify bits and pos their msb bits clear and values are valid */
379 	BUG_ON(!bits || (shift > KEYLENGTH));
380 
381 	tnode = tnode_alloc(bits);
382 	if (!tnode)
383 		return NULL;
384 
385 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
386 		 sizeof(struct key_vector *) << bits);
387 
388 	if (bits == KEYLENGTH)
389 		tnode->full_children = 1;
390 	else
391 		tnode->empty_children = 1ul << bits;
392 
393 	tn = tnode->kv;
394 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
395 	tn->pos = pos;
396 	tn->bits = bits;
397 	tn->slen = pos;
398 
399 	return tn;
400 }
401 
402 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
403  * and no bits are skipped. See discussion in dyntree paper p. 6
404  */
405 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
406 {
407 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
408 }
409 
410 /* Add a child at position i overwriting the old value.
411  * Update the value of full_children and empty_children.
412  */
413 static void put_child(struct key_vector *tn, unsigned long i,
414 		      struct key_vector *n)
415 {
416 	struct key_vector *chi = get_child(tn, i);
417 	int isfull, wasfull;
418 
419 	BUG_ON(i >= child_length(tn));
420 
421 	/* update emptyChildren, overflow into fullChildren */
422 	if (!n && chi)
423 		empty_child_inc(tn);
424 	if (n && !chi)
425 		empty_child_dec(tn);
426 
427 	/* update fullChildren */
428 	wasfull = tnode_full(tn, chi);
429 	isfull = tnode_full(tn, n);
430 
431 	if (wasfull && !isfull)
432 		tn_info(tn)->full_children--;
433 	else if (!wasfull && isfull)
434 		tn_info(tn)->full_children++;
435 
436 	if (n && (tn->slen < n->slen))
437 		tn->slen = n->slen;
438 
439 	rcu_assign_pointer(tn->tnode[i], n);
440 }
441 
442 static void update_children(struct key_vector *tn)
443 {
444 	unsigned long i;
445 
446 	/* update all of the child parent pointers */
447 	for (i = child_length(tn); i;) {
448 		struct key_vector *inode = get_child(tn, --i);
449 
450 		if (!inode)
451 			continue;
452 
453 		/* Either update the children of a tnode that
454 		 * already belongs to us or update the child
455 		 * to point to ourselves.
456 		 */
457 		if (node_parent(inode) == tn)
458 			update_children(inode);
459 		else
460 			node_set_parent(inode, tn);
461 	}
462 }
463 
464 static inline void put_child_root(struct key_vector *tp, t_key key,
465 				  struct key_vector *n)
466 {
467 	if (IS_TRIE(tp))
468 		rcu_assign_pointer(tp->tnode[0], n);
469 	else
470 		put_child(tp, get_index(key, tp), n);
471 }
472 
473 static inline void tnode_free_init(struct key_vector *tn)
474 {
475 	tn_info(tn)->rcu.next = NULL;
476 }
477 
478 static inline void tnode_free_append(struct key_vector *tn,
479 				     struct key_vector *n)
480 {
481 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
482 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
483 }
484 
485 static void tnode_free(struct key_vector *tn)
486 {
487 	struct callback_head *head = &tn_info(tn)->rcu;
488 
489 	while (head) {
490 		head = head->next;
491 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
492 		node_free(tn);
493 
494 		tn = container_of(head, struct tnode, rcu)->kv;
495 	}
496 
497 	if (tnode_free_size >= sysctl_fib_sync_mem) {
498 		tnode_free_size = 0;
499 		synchronize_rcu();
500 	}
501 }
502 
503 static struct key_vector *replace(struct trie *t,
504 				  struct key_vector *oldtnode,
505 				  struct key_vector *tn)
506 {
507 	struct key_vector *tp = node_parent(oldtnode);
508 	unsigned long i;
509 
510 	/* setup the parent pointer out of and back into this node */
511 	NODE_INIT_PARENT(tn, tp);
512 	put_child_root(tp, tn->key, tn);
513 
514 	/* update all of the child parent pointers */
515 	update_children(tn);
516 
517 	/* all pointers should be clean so we are done */
518 	tnode_free(oldtnode);
519 
520 	/* resize children now that oldtnode is freed */
521 	for (i = child_length(tn); i;) {
522 		struct key_vector *inode = get_child(tn, --i);
523 
524 		/* resize child node */
525 		if (tnode_full(tn, inode))
526 			tn = resize(t, inode);
527 	}
528 
529 	return tp;
530 }
531 
532 static struct key_vector *inflate(struct trie *t,
533 				  struct key_vector *oldtnode)
534 {
535 	struct key_vector *tn;
536 	unsigned long i;
537 	t_key m;
538 
539 	pr_debug("In inflate\n");
540 
541 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
542 	if (!tn)
543 		goto notnode;
544 
545 	/* prepare oldtnode to be freed */
546 	tnode_free_init(oldtnode);
547 
548 	/* Assemble all of the pointers in our cluster, in this case that
549 	 * represents all of the pointers out of our allocated nodes that
550 	 * point to existing tnodes and the links between our allocated
551 	 * nodes.
552 	 */
553 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
554 		struct key_vector *inode = get_child(oldtnode, --i);
555 		struct key_vector *node0, *node1;
556 		unsigned long j, k;
557 
558 		/* An empty child */
559 		if (!inode)
560 			continue;
561 
562 		/* A leaf or an internal node with skipped bits */
563 		if (!tnode_full(oldtnode, inode)) {
564 			put_child(tn, get_index(inode->key, tn), inode);
565 			continue;
566 		}
567 
568 		/* drop the node in the old tnode free list */
569 		tnode_free_append(oldtnode, inode);
570 
571 		/* An internal node with two children */
572 		if (inode->bits == 1) {
573 			put_child(tn, 2 * i + 1, get_child(inode, 1));
574 			put_child(tn, 2 * i, get_child(inode, 0));
575 			continue;
576 		}
577 
578 		/* We will replace this node 'inode' with two new
579 		 * ones, 'node0' and 'node1', each with half of the
580 		 * original children. The two new nodes will have
581 		 * a position one bit further down the key and this
582 		 * means that the "significant" part of their keys
583 		 * (see the discussion near the top of this file)
584 		 * will differ by one bit, which will be "0" in
585 		 * node0's key and "1" in node1's key. Since we are
586 		 * moving the key position by one step, the bit that
587 		 * we are moving away from - the bit at position
588 		 * (tn->pos) - is the one that will differ between
589 		 * node0 and node1. So... we synthesize that bit in the
590 		 * two new keys.
591 		 */
592 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
593 		if (!node1)
594 			goto nomem;
595 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
596 
597 		tnode_free_append(tn, node1);
598 		if (!node0)
599 			goto nomem;
600 		tnode_free_append(tn, node0);
601 
602 		/* populate child pointers in new nodes */
603 		for (k = child_length(inode), j = k / 2; j;) {
604 			put_child(node1, --j, get_child(inode, --k));
605 			put_child(node0, j, get_child(inode, j));
606 			put_child(node1, --j, get_child(inode, --k));
607 			put_child(node0, j, get_child(inode, j));
608 		}
609 
610 		/* link new nodes to parent */
611 		NODE_INIT_PARENT(node1, tn);
612 		NODE_INIT_PARENT(node0, tn);
613 
614 		/* link parent to nodes */
615 		put_child(tn, 2 * i + 1, node1);
616 		put_child(tn, 2 * i, node0);
617 	}
618 
619 	/* setup the parent pointers into and out of this node */
620 	return replace(t, oldtnode, tn);
621 nomem:
622 	/* all pointers should be clean so we are done */
623 	tnode_free(tn);
624 notnode:
625 	return NULL;
626 }
627 
628 static struct key_vector *halve(struct trie *t,
629 				struct key_vector *oldtnode)
630 {
631 	struct key_vector *tn;
632 	unsigned long i;
633 
634 	pr_debug("In halve\n");
635 
636 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
637 	if (!tn)
638 		goto notnode;
639 
640 	/* prepare oldtnode to be freed */
641 	tnode_free_init(oldtnode);
642 
643 	/* Assemble all of the pointers in our cluster, in this case that
644 	 * represents all of the pointers out of our allocated nodes that
645 	 * point to existing tnodes and the links between our allocated
646 	 * nodes.
647 	 */
648 	for (i = child_length(oldtnode); i;) {
649 		struct key_vector *node1 = get_child(oldtnode, --i);
650 		struct key_vector *node0 = get_child(oldtnode, --i);
651 		struct key_vector *inode;
652 
653 		/* At least one of the children is empty */
654 		if (!node1 || !node0) {
655 			put_child(tn, i / 2, node1 ? : node0);
656 			continue;
657 		}
658 
659 		/* Two nonempty children */
660 		inode = tnode_new(node0->key, oldtnode->pos, 1);
661 		if (!inode)
662 			goto nomem;
663 		tnode_free_append(tn, inode);
664 
665 		/* initialize pointers out of node */
666 		put_child(inode, 1, node1);
667 		put_child(inode, 0, node0);
668 		NODE_INIT_PARENT(inode, tn);
669 
670 		/* link parent to node */
671 		put_child(tn, i / 2, inode);
672 	}
673 
674 	/* setup the parent pointers into and out of this node */
675 	return replace(t, oldtnode, tn);
676 nomem:
677 	/* all pointers should be clean so we are done */
678 	tnode_free(tn);
679 notnode:
680 	return NULL;
681 }
682 
683 static struct key_vector *collapse(struct trie *t,
684 				   struct key_vector *oldtnode)
685 {
686 	struct key_vector *n, *tp;
687 	unsigned long i;
688 
689 	/* scan the tnode looking for that one child that might still exist */
690 	for (n = NULL, i = child_length(oldtnode); !n && i;)
691 		n = get_child(oldtnode, --i);
692 
693 	/* compress one level */
694 	tp = node_parent(oldtnode);
695 	put_child_root(tp, oldtnode->key, n);
696 	node_set_parent(n, tp);
697 
698 	/* drop dead node */
699 	node_free(oldtnode);
700 
701 	return tp;
702 }
703 
704 static unsigned char update_suffix(struct key_vector *tn)
705 {
706 	unsigned char slen = tn->pos;
707 	unsigned long stride, i;
708 	unsigned char slen_max;
709 
710 	/* only vector 0 can have a suffix length greater than or equal to
711 	 * tn->pos + tn->bits, the second highest node will have a suffix
712 	 * length at most of tn->pos + tn->bits - 1
713 	 */
714 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
715 
716 	/* search though the list of children looking for nodes that might
717 	 * have a suffix greater than the one we currently have.  This is
718 	 * why we start with a stride of 2 since a stride of 1 would
719 	 * represent the nodes with suffix length equal to tn->pos
720 	 */
721 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
722 		struct key_vector *n = get_child(tn, i);
723 
724 		if (!n || (n->slen <= slen))
725 			continue;
726 
727 		/* update stride and slen based on new value */
728 		stride <<= (n->slen - slen);
729 		slen = n->slen;
730 		i &= ~(stride - 1);
731 
732 		/* stop searching if we have hit the maximum possible value */
733 		if (slen >= slen_max)
734 			break;
735 	}
736 
737 	tn->slen = slen;
738 
739 	return slen;
740 }
741 
742 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
743  * the Helsinki University of Technology and Matti Tikkanen of Nokia
744  * Telecommunications, page 6:
745  * "A node is doubled if the ratio of non-empty children to all
746  * children in the *doubled* node is at least 'high'."
747  *
748  * 'high' in this instance is the variable 'inflate_threshold'. It
749  * is expressed as a percentage, so we multiply it with
750  * child_length() and instead of multiplying by 2 (since the
751  * child array will be doubled by inflate()) and multiplying
752  * the left-hand side by 100 (to handle the percentage thing) we
753  * multiply the left-hand side by 50.
754  *
755  * The left-hand side may look a bit weird: child_length(tn)
756  * - tn->empty_children is of course the number of non-null children
757  * in the current node. tn->full_children is the number of "full"
758  * children, that is non-null tnodes with a skip value of 0.
759  * All of those will be doubled in the resulting inflated tnode, so
760  * we just count them one extra time here.
761  *
762  * A clearer way to write this would be:
763  *
764  * to_be_doubled = tn->full_children;
765  * not_to_be_doubled = child_length(tn) - tn->empty_children -
766  *     tn->full_children;
767  *
768  * new_child_length = child_length(tn) * 2;
769  *
770  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
771  *      new_child_length;
772  * if (new_fill_factor >= inflate_threshold)
773  *
774  * ...and so on, tho it would mess up the while () loop.
775  *
776  * anyway,
777  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
778  *      inflate_threshold
779  *
780  * avoid a division:
781  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
782  *      inflate_threshold * new_child_length
783  *
784  * expand not_to_be_doubled and to_be_doubled, and shorten:
785  * 100 * (child_length(tn) - tn->empty_children +
786  *    tn->full_children) >= inflate_threshold * new_child_length
787  *
788  * expand new_child_length:
789  * 100 * (child_length(tn) - tn->empty_children +
790  *    tn->full_children) >=
791  *      inflate_threshold * child_length(tn) * 2
792  *
793  * shorten again:
794  * 50 * (tn->full_children + child_length(tn) -
795  *    tn->empty_children) >= inflate_threshold *
796  *    child_length(tn)
797  *
798  */
799 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
800 {
801 	unsigned long used = child_length(tn);
802 	unsigned long threshold = used;
803 
804 	/* Keep root node larger */
805 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
806 	used -= tn_info(tn)->empty_children;
807 	used += tn_info(tn)->full_children;
808 
809 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
810 
811 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
812 }
813 
814 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
815 {
816 	unsigned long used = child_length(tn);
817 	unsigned long threshold = used;
818 
819 	/* Keep root node larger */
820 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
821 	used -= tn_info(tn)->empty_children;
822 
823 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
824 
825 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
826 }
827 
828 static inline bool should_collapse(struct key_vector *tn)
829 {
830 	unsigned long used = child_length(tn);
831 
832 	used -= tn_info(tn)->empty_children;
833 
834 	/* account for bits == KEYLENGTH case */
835 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
836 		used -= KEY_MAX;
837 
838 	/* One child or none, time to drop us from the trie */
839 	return used < 2;
840 }
841 
842 #define MAX_WORK 10
843 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
844 {
845 #ifdef CONFIG_IP_FIB_TRIE_STATS
846 	struct trie_use_stats __percpu *stats = t->stats;
847 #endif
848 	struct key_vector *tp = node_parent(tn);
849 	unsigned long cindex = get_index(tn->key, tp);
850 	int max_work = MAX_WORK;
851 
852 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
853 		 tn, inflate_threshold, halve_threshold);
854 
855 	/* track the tnode via the pointer from the parent instead of
856 	 * doing it ourselves.  This way we can let RCU fully do its
857 	 * thing without us interfering
858 	 */
859 	BUG_ON(tn != get_child(tp, cindex));
860 
861 	/* Double as long as the resulting node has a number of
862 	 * nonempty nodes that are above the threshold.
863 	 */
864 	while (should_inflate(tp, tn) && max_work) {
865 		tp = inflate(t, tn);
866 		if (!tp) {
867 #ifdef CONFIG_IP_FIB_TRIE_STATS
868 			this_cpu_inc(stats->resize_node_skipped);
869 #endif
870 			break;
871 		}
872 
873 		max_work--;
874 		tn = get_child(tp, cindex);
875 	}
876 
877 	/* update parent in case inflate failed */
878 	tp = node_parent(tn);
879 
880 	/* Return if at least one inflate is run */
881 	if (max_work != MAX_WORK)
882 		return tp;
883 
884 	/* Halve as long as the number of empty children in this
885 	 * node is above threshold.
886 	 */
887 	while (should_halve(tp, tn) && max_work) {
888 		tp = halve(t, tn);
889 		if (!tp) {
890 #ifdef CONFIG_IP_FIB_TRIE_STATS
891 			this_cpu_inc(stats->resize_node_skipped);
892 #endif
893 			break;
894 		}
895 
896 		max_work--;
897 		tn = get_child(tp, cindex);
898 	}
899 
900 	/* Only one child remains */
901 	if (should_collapse(tn))
902 		return collapse(t, tn);
903 
904 	/* update parent in case halve failed */
905 	return node_parent(tn);
906 }
907 
908 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
909 {
910 	unsigned char node_slen = tn->slen;
911 
912 	while ((node_slen > tn->pos) && (node_slen > slen)) {
913 		slen = update_suffix(tn);
914 		if (node_slen == slen)
915 			break;
916 
917 		tn = node_parent(tn);
918 		node_slen = tn->slen;
919 	}
920 }
921 
922 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
923 {
924 	while (tn->slen < slen) {
925 		tn->slen = slen;
926 		tn = node_parent(tn);
927 	}
928 }
929 
930 /* rcu_read_lock needs to be hold by caller from readside */
931 static struct key_vector *fib_find_node(struct trie *t,
932 					struct key_vector **tp, u32 key)
933 {
934 	struct key_vector *pn, *n = t->kv;
935 	unsigned long index = 0;
936 
937 	do {
938 		pn = n;
939 		n = get_child_rcu(n, index);
940 
941 		if (!n)
942 			break;
943 
944 		index = get_cindex(key, n);
945 
946 		/* This bit of code is a bit tricky but it combines multiple
947 		 * checks into a single check.  The prefix consists of the
948 		 * prefix plus zeros for the bits in the cindex. The index
949 		 * is the difference between the key and this value.  From
950 		 * this we can actually derive several pieces of data.
951 		 *   if (index >= (1ul << bits))
952 		 *     we have a mismatch in skip bits and failed
953 		 *   else
954 		 *     we know the value is cindex
955 		 *
956 		 * This check is safe even if bits == KEYLENGTH due to the
957 		 * fact that we can only allocate a node with 32 bits if a
958 		 * long is greater than 32 bits.
959 		 */
960 		if (index >= (1ul << n->bits)) {
961 			n = NULL;
962 			break;
963 		}
964 
965 		/* keep searching until we find a perfect match leaf or NULL */
966 	} while (IS_TNODE(n));
967 
968 	*tp = pn;
969 
970 	return n;
971 }
972 
973 /* Return the first fib alias matching TOS with
974  * priority less than or equal to PRIO.
975  */
976 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
977 					u8 tos, u32 prio, u32 tb_id)
978 {
979 	struct fib_alias *fa;
980 
981 	if (!fah)
982 		return NULL;
983 
984 	hlist_for_each_entry(fa, fah, fa_list) {
985 		if (fa->fa_slen < slen)
986 			continue;
987 		if (fa->fa_slen != slen)
988 			break;
989 		if (fa->tb_id > tb_id)
990 			continue;
991 		if (fa->tb_id != tb_id)
992 			break;
993 		if (fa->fa_tos > tos)
994 			continue;
995 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
996 			return fa;
997 	}
998 
999 	return NULL;
1000 }
1001 
1002 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1003 {
1004 	while (!IS_TRIE(tn))
1005 		tn = resize(t, tn);
1006 }
1007 
1008 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1009 			   struct fib_alias *new, t_key key)
1010 {
1011 	struct key_vector *n, *l;
1012 
1013 	l = leaf_new(key, new);
1014 	if (!l)
1015 		goto noleaf;
1016 
1017 	/* retrieve child from parent node */
1018 	n = get_child(tp, get_index(key, tp));
1019 
1020 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1021 	 *
1022 	 *  Add a new tnode here
1023 	 *  first tnode need some special handling
1024 	 *  leaves us in position for handling as case 3
1025 	 */
1026 	if (n) {
1027 		struct key_vector *tn;
1028 
1029 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1030 		if (!tn)
1031 			goto notnode;
1032 
1033 		/* initialize routes out of node */
1034 		NODE_INIT_PARENT(tn, tp);
1035 		put_child(tn, get_index(key, tn) ^ 1, n);
1036 
1037 		/* start adding routes into the node */
1038 		put_child_root(tp, key, tn);
1039 		node_set_parent(n, tn);
1040 
1041 		/* parent now has a NULL spot where the leaf can go */
1042 		tp = tn;
1043 	}
1044 
1045 	/* Case 3: n is NULL, and will just insert a new leaf */
1046 	node_push_suffix(tp, new->fa_slen);
1047 	NODE_INIT_PARENT(l, tp);
1048 	put_child_root(tp, key, l);
1049 	trie_rebalance(t, tp);
1050 
1051 	return 0;
1052 notnode:
1053 	node_free(l);
1054 noleaf:
1055 	return -ENOMEM;
1056 }
1057 
1058 /* fib notifier for ADD is sent before calling fib_insert_alias with
1059  * the expectation that the only possible failure ENOMEM
1060  */
1061 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1062 			    struct key_vector *l, struct fib_alias *new,
1063 			    struct fib_alias *fa, t_key key)
1064 {
1065 	if (!l)
1066 		return fib_insert_node(t, tp, new, key);
1067 
1068 	if (fa) {
1069 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1070 	} else {
1071 		struct fib_alias *last;
1072 
1073 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1074 			if (new->fa_slen < last->fa_slen)
1075 				break;
1076 			if ((new->fa_slen == last->fa_slen) &&
1077 			    (new->tb_id > last->tb_id))
1078 				break;
1079 			fa = last;
1080 		}
1081 
1082 		if (fa)
1083 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1084 		else
1085 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1086 	}
1087 
1088 	/* if we added to the tail node then we need to update slen */
1089 	if (l->slen < new->fa_slen) {
1090 		l->slen = new->fa_slen;
1091 		node_push_suffix(tp, new->fa_slen);
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1098 {
1099 	if (plen > KEYLENGTH) {
1100 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1101 		return false;
1102 	}
1103 
1104 	if ((plen < KEYLENGTH) && (key << plen)) {
1105 		NL_SET_ERR_MSG(extack,
1106 			       "Invalid prefix for given prefix length");
1107 		return false;
1108 	}
1109 
1110 	return true;
1111 }
1112 
1113 /* Caller must hold RTNL. */
1114 int fib_table_insert(struct net *net, struct fib_table *tb,
1115 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1116 {
1117 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1118 	struct trie *t = (struct trie *)tb->tb_data;
1119 	struct fib_alias *fa, *new_fa;
1120 	struct key_vector *l, *tp;
1121 	u16 nlflags = NLM_F_EXCL;
1122 	struct fib_info *fi;
1123 	u8 plen = cfg->fc_dst_len;
1124 	u8 slen = KEYLENGTH - plen;
1125 	u8 tos = cfg->fc_tos;
1126 	u32 key;
1127 	int err;
1128 
1129 	key = ntohl(cfg->fc_dst);
1130 
1131 	if (!fib_valid_key_len(key, plen, extack))
1132 		return -EINVAL;
1133 
1134 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1135 
1136 	fi = fib_create_info(cfg, extack);
1137 	if (IS_ERR(fi)) {
1138 		err = PTR_ERR(fi);
1139 		goto err;
1140 	}
1141 
1142 	l = fib_find_node(t, &tp, key);
1143 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1144 				tb->tb_id) : NULL;
1145 
1146 	/* Now fa, if non-NULL, points to the first fib alias
1147 	 * with the same keys [prefix,tos,priority], if such key already
1148 	 * exists or to the node before which we will insert new one.
1149 	 *
1150 	 * If fa is NULL, we will need to allocate a new one and
1151 	 * insert to the tail of the section matching the suffix length
1152 	 * of the new alias.
1153 	 */
1154 
1155 	if (fa && fa->fa_tos == tos &&
1156 	    fa->fa_info->fib_priority == fi->fib_priority) {
1157 		struct fib_alias *fa_first, *fa_match;
1158 
1159 		err = -EEXIST;
1160 		if (cfg->fc_nlflags & NLM_F_EXCL)
1161 			goto out;
1162 
1163 		nlflags &= ~NLM_F_EXCL;
1164 
1165 		/* We have 2 goals:
1166 		 * 1. Find exact match for type, scope, fib_info to avoid
1167 		 * duplicate routes
1168 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1169 		 */
1170 		fa_match = NULL;
1171 		fa_first = fa;
1172 		hlist_for_each_entry_from(fa, fa_list) {
1173 			if ((fa->fa_slen != slen) ||
1174 			    (fa->tb_id != tb->tb_id) ||
1175 			    (fa->fa_tos != tos))
1176 				break;
1177 			if (fa->fa_info->fib_priority != fi->fib_priority)
1178 				break;
1179 			if (fa->fa_type == cfg->fc_type &&
1180 			    fa->fa_info == fi) {
1181 				fa_match = fa;
1182 				break;
1183 			}
1184 		}
1185 
1186 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1187 			struct fib_info *fi_drop;
1188 			u8 state;
1189 
1190 			nlflags |= NLM_F_REPLACE;
1191 			fa = fa_first;
1192 			if (fa_match) {
1193 				if (fa == fa_match)
1194 					err = 0;
1195 				goto out;
1196 			}
1197 			err = -ENOBUFS;
1198 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1199 			if (!new_fa)
1200 				goto out;
1201 
1202 			fi_drop = fa->fa_info;
1203 			new_fa->fa_tos = fa->fa_tos;
1204 			new_fa->fa_info = fi;
1205 			new_fa->fa_type = cfg->fc_type;
1206 			state = fa->fa_state;
1207 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1208 			new_fa->fa_slen = fa->fa_slen;
1209 			new_fa->tb_id = tb->tb_id;
1210 			new_fa->fa_default = -1;
1211 
1212 			err = call_fib_entry_notifiers(net,
1213 						       FIB_EVENT_ENTRY_REPLACE,
1214 						       key, plen, new_fa,
1215 						       extack);
1216 			if (err)
1217 				goto out_free_new_fa;
1218 
1219 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1220 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1221 
1222 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1223 
1224 			alias_free_mem_rcu(fa);
1225 
1226 			fib_release_info(fi_drop);
1227 			if (state & FA_S_ACCESSED)
1228 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1229 
1230 			goto succeeded;
1231 		}
1232 		/* Error if we find a perfect match which
1233 		 * uses the same scope, type, and nexthop
1234 		 * information.
1235 		 */
1236 		if (fa_match)
1237 			goto out;
1238 
1239 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1240 			event = FIB_EVENT_ENTRY_APPEND;
1241 			nlflags |= NLM_F_APPEND;
1242 		} else {
1243 			fa = fa_first;
1244 		}
1245 	}
1246 	err = -ENOENT;
1247 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1248 		goto out;
1249 
1250 	nlflags |= NLM_F_CREATE;
1251 	err = -ENOBUFS;
1252 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1253 	if (!new_fa)
1254 		goto out;
1255 
1256 	new_fa->fa_info = fi;
1257 	new_fa->fa_tos = tos;
1258 	new_fa->fa_type = cfg->fc_type;
1259 	new_fa->fa_state = 0;
1260 	new_fa->fa_slen = slen;
1261 	new_fa->tb_id = tb->tb_id;
1262 	new_fa->fa_default = -1;
1263 
1264 	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1265 	if (err)
1266 		goto out_free_new_fa;
1267 
1268 	/* Insert new entry to the list. */
1269 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1270 	if (err)
1271 		goto out_fib_notif;
1272 
1273 	if (!plen)
1274 		tb->tb_num_default++;
1275 
1276 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1277 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1278 		  &cfg->fc_nlinfo, nlflags);
1279 succeeded:
1280 	return 0;
1281 
1282 out_fib_notif:
1283 	/* notifier was sent that entry would be added to trie, but
1284 	 * the add failed and need to recover. Only failure for
1285 	 * fib_insert_alias is ENOMEM.
1286 	 */
1287 	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1288 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1289 				 plen, new_fa, NULL);
1290 out_free_new_fa:
1291 	kmem_cache_free(fn_alias_kmem, new_fa);
1292 out:
1293 	fib_release_info(fi);
1294 err:
1295 	return err;
1296 }
1297 
1298 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1299 {
1300 	t_key prefix = n->key;
1301 
1302 	return (key ^ prefix) & (prefix | -prefix);
1303 }
1304 
1305 /* should be called with rcu_read_lock */
1306 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1307 		     struct fib_result *res, int fib_flags)
1308 {
1309 	struct trie *t = (struct trie *) tb->tb_data;
1310 #ifdef CONFIG_IP_FIB_TRIE_STATS
1311 	struct trie_use_stats __percpu *stats = t->stats;
1312 #endif
1313 	const t_key key = ntohl(flp->daddr);
1314 	struct key_vector *n, *pn;
1315 	struct fib_alias *fa;
1316 	unsigned long index;
1317 	t_key cindex;
1318 
1319 	pn = t->kv;
1320 	cindex = 0;
1321 
1322 	n = get_child_rcu(pn, cindex);
1323 	if (!n) {
1324 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1325 		return -EAGAIN;
1326 	}
1327 
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 	this_cpu_inc(stats->gets);
1330 #endif
1331 
1332 	/* Step 1: Travel to the longest prefix match in the trie */
1333 	for (;;) {
1334 		index = get_cindex(key, n);
1335 
1336 		/* This bit of code is a bit tricky but it combines multiple
1337 		 * checks into a single check.  The prefix consists of the
1338 		 * prefix plus zeros for the "bits" in the prefix. The index
1339 		 * is the difference between the key and this value.  From
1340 		 * this we can actually derive several pieces of data.
1341 		 *   if (index >= (1ul << bits))
1342 		 *     we have a mismatch in skip bits and failed
1343 		 *   else
1344 		 *     we know the value is cindex
1345 		 *
1346 		 * This check is safe even if bits == KEYLENGTH due to the
1347 		 * fact that we can only allocate a node with 32 bits if a
1348 		 * long is greater than 32 bits.
1349 		 */
1350 		if (index >= (1ul << n->bits))
1351 			break;
1352 
1353 		/* we have found a leaf. Prefixes have already been compared */
1354 		if (IS_LEAF(n))
1355 			goto found;
1356 
1357 		/* only record pn and cindex if we are going to be chopping
1358 		 * bits later.  Otherwise we are just wasting cycles.
1359 		 */
1360 		if (n->slen > n->pos) {
1361 			pn = n;
1362 			cindex = index;
1363 		}
1364 
1365 		n = get_child_rcu(n, index);
1366 		if (unlikely(!n))
1367 			goto backtrace;
1368 	}
1369 
1370 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1371 	for (;;) {
1372 		/* record the pointer where our next node pointer is stored */
1373 		struct key_vector __rcu **cptr = n->tnode;
1374 
1375 		/* This test verifies that none of the bits that differ
1376 		 * between the key and the prefix exist in the region of
1377 		 * the lsb and higher in the prefix.
1378 		 */
1379 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1380 			goto backtrace;
1381 
1382 		/* exit out and process leaf */
1383 		if (unlikely(IS_LEAF(n)))
1384 			break;
1385 
1386 		/* Don't bother recording parent info.  Since we are in
1387 		 * prefix match mode we will have to come back to wherever
1388 		 * we started this traversal anyway
1389 		 */
1390 
1391 		while ((n = rcu_dereference(*cptr)) == NULL) {
1392 backtrace:
1393 #ifdef CONFIG_IP_FIB_TRIE_STATS
1394 			if (!n)
1395 				this_cpu_inc(stats->null_node_hit);
1396 #endif
1397 			/* If we are at cindex 0 there are no more bits for
1398 			 * us to strip at this level so we must ascend back
1399 			 * up one level to see if there are any more bits to
1400 			 * be stripped there.
1401 			 */
1402 			while (!cindex) {
1403 				t_key pkey = pn->key;
1404 
1405 				/* If we don't have a parent then there is
1406 				 * nothing for us to do as we do not have any
1407 				 * further nodes to parse.
1408 				 */
1409 				if (IS_TRIE(pn)) {
1410 					trace_fib_table_lookup(tb->tb_id, flp,
1411 							       NULL, -EAGAIN);
1412 					return -EAGAIN;
1413 				}
1414 #ifdef CONFIG_IP_FIB_TRIE_STATS
1415 				this_cpu_inc(stats->backtrack);
1416 #endif
1417 				/* Get Child's index */
1418 				pn = node_parent_rcu(pn);
1419 				cindex = get_index(pkey, pn);
1420 			}
1421 
1422 			/* strip the least significant bit from the cindex */
1423 			cindex &= cindex - 1;
1424 
1425 			/* grab pointer for next child node */
1426 			cptr = &pn->tnode[cindex];
1427 		}
1428 	}
1429 
1430 found:
1431 	/* this line carries forward the xor from earlier in the function */
1432 	index = key ^ n->key;
1433 
1434 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1435 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1436 		struct fib_info *fi = fa->fa_info;
1437 		int nhsel, err;
1438 
1439 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1440 			if (index >= (1ul << fa->fa_slen))
1441 				continue;
1442 		}
1443 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1444 			continue;
1445 		if (fi->fib_dead)
1446 			continue;
1447 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1448 			continue;
1449 		fib_alias_accessed(fa);
1450 		err = fib_props[fa->fa_type].error;
1451 		if (unlikely(err < 0)) {
1452 out_reject:
1453 #ifdef CONFIG_IP_FIB_TRIE_STATS
1454 			this_cpu_inc(stats->semantic_match_passed);
1455 #endif
1456 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1457 			return err;
1458 		}
1459 		if (fi->fib_flags & RTNH_F_DEAD)
1460 			continue;
1461 
1462 		if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1463 			err = fib_props[RTN_BLACKHOLE].error;
1464 			goto out_reject;
1465 		}
1466 
1467 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1468 			struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1469 
1470 			if (nhc->nhc_flags & RTNH_F_DEAD)
1471 				continue;
1472 			if (ip_ignore_linkdown(nhc->nhc_dev) &&
1473 			    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1474 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1475 				continue;
1476 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1477 				if (flp->flowi4_oif &&
1478 				    flp->flowi4_oif != nhc->nhc_oif)
1479 					continue;
1480 			}
1481 
1482 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1483 				refcount_inc(&fi->fib_clntref);
1484 
1485 			res->prefix = htonl(n->key);
1486 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1487 			res->nh_sel = nhsel;
1488 			res->nhc = nhc;
1489 			res->type = fa->fa_type;
1490 			res->scope = fi->fib_scope;
1491 			res->fi = fi;
1492 			res->table = tb;
1493 			res->fa_head = &n->leaf;
1494 #ifdef CONFIG_IP_FIB_TRIE_STATS
1495 			this_cpu_inc(stats->semantic_match_passed);
1496 #endif
1497 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1498 
1499 			return err;
1500 		}
1501 	}
1502 #ifdef CONFIG_IP_FIB_TRIE_STATS
1503 	this_cpu_inc(stats->semantic_match_miss);
1504 #endif
1505 	goto backtrace;
1506 }
1507 EXPORT_SYMBOL_GPL(fib_table_lookup);
1508 
1509 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1510 			     struct key_vector *l, struct fib_alias *old)
1511 {
1512 	/* record the location of the previous list_info entry */
1513 	struct hlist_node **pprev = old->fa_list.pprev;
1514 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1515 
1516 	/* remove the fib_alias from the list */
1517 	hlist_del_rcu(&old->fa_list);
1518 
1519 	/* if we emptied the list this leaf will be freed and we can sort
1520 	 * out parent suffix lengths as a part of trie_rebalance
1521 	 */
1522 	if (hlist_empty(&l->leaf)) {
1523 		if (tp->slen == l->slen)
1524 			node_pull_suffix(tp, tp->pos);
1525 		put_child_root(tp, l->key, NULL);
1526 		node_free(l);
1527 		trie_rebalance(t, tp);
1528 		return;
1529 	}
1530 
1531 	/* only access fa if it is pointing at the last valid hlist_node */
1532 	if (*pprev)
1533 		return;
1534 
1535 	/* update the trie with the latest suffix length */
1536 	l->slen = fa->fa_slen;
1537 	node_pull_suffix(tp, fa->fa_slen);
1538 }
1539 
1540 /* Caller must hold RTNL. */
1541 int fib_table_delete(struct net *net, struct fib_table *tb,
1542 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1543 {
1544 	struct trie *t = (struct trie *) tb->tb_data;
1545 	struct fib_alias *fa, *fa_to_delete;
1546 	struct key_vector *l, *tp;
1547 	u8 plen = cfg->fc_dst_len;
1548 	u8 slen = KEYLENGTH - plen;
1549 	u8 tos = cfg->fc_tos;
1550 	u32 key;
1551 
1552 	key = ntohl(cfg->fc_dst);
1553 
1554 	if (!fib_valid_key_len(key, plen, extack))
1555 		return -EINVAL;
1556 
1557 	l = fib_find_node(t, &tp, key);
1558 	if (!l)
1559 		return -ESRCH;
1560 
1561 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1562 	if (!fa)
1563 		return -ESRCH;
1564 
1565 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1566 
1567 	fa_to_delete = NULL;
1568 	hlist_for_each_entry_from(fa, fa_list) {
1569 		struct fib_info *fi = fa->fa_info;
1570 
1571 		if ((fa->fa_slen != slen) ||
1572 		    (fa->tb_id != tb->tb_id) ||
1573 		    (fa->fa_tos != tos))
1574 			break;
1575 
1576 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1577 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1578 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1579 		    (!cfg->fc_prefsrc ||
1580 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1581 		    (!cfg->fc_protocol ||
1582 		     fi->fib_protocol == cfg->fc_protocol) &&
1583 		    fib_nh_match(cfg, fi, extack) == 0 &&
1584 		    fib_metrics_match(cfg, fi)) {
1585 			fa_to_delete = fa;
1586 			break;
1587 		}
1588 	}
1589 
1590 	if (!fa_to_delete)
1591 		return -ESRCH;
1592 
1593 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1594 				 fa_to_delete, extack);
1595 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1596 		  &cfg->fc_nlinfo, 0);
1597 
1598 	if (!plen)
1599 		tb->tb_num_default--;
1600 
1601 	fib_remove_alias(t, tp, l, fa_to_delete);
1602 
1603 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1604 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1605 
1606 	fib_release_info(fa_to_delete->fa_info);
1607 	alias_free_mem_rcu(fa_to_delete);
1608 	return 0;
1609 }
1610 
1611 /* Scan for the next leaf starting at the provided key value */
1612 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1613 {
1614 	struct key_vector *pn, *n = *tn;
1615 	unsigned long cindex;
1616 
1617 	/* this loop is meant to try and find the key in the trie */
1618 	do {
1619 		/* record parent and next child index */
1620 		pn = n;
1621 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1622 
1623 		if (cindex >> pn->bits)
1624 			break;
1625 
1626 		/* descend into the next child */
1627 		n = get_child_rcu(pn, cindex++);
1628 		if (!n)
1629 			break;
1630 
1631 		/* guarantee forward progress on the keys */
1632 		if (IS_LEAF(n) && (n->key >= key))
1633 			goto found;
1634 	} while (IS_TNODE(n));
1635 
1636 	/* this loop will search for the next leaf with a greater key */
1637 	while (!IS_TRIE(pn)) {
1638 		/* if we exhausted the parent node we will need to climb */
1639 		if (cindex >= (1ul << pn->bits)) {
1640 			t_key pkey = pn->key;
1641 
1642 			pn = node_parent_rcu(pn);
1643 			cindex = get_index(pkey, pn) + 1;
1644 			continue;
1645 		}
1646 
1647 		/* grab the next available node */
1648 		n = get_child_rcu(pn, cindex++);
1649 		if (!n)
1650 			continue;
1651 
1652 		/* no need to compare keys since we bumped the index */
1653 		if (IS_LEAF(n))
1654 			goto found;
1655 
1656 		/* Rescan start scanning in new node */
1657 		pn = n;
1658 		cindex = 0;
1659 	}
1660 
1661 	*tn = pn;
1662 	return NULL; /* Root of trie */
1663 found:
1664 	/* if we are at the limit for keys just return NULL for the tnode */
1665 	*tn = pn;
1666 	return n;
1667 }
1668 
1669 static void fib_trie_free(struct fib_table *tb)
1670 {
1671 	struct trie *t = (struct trie *)tb->tb_data;
1672 	struct key_vector *pn = t->kv;
1673 	unsigned long cindex = 1;
1674 	struct hlist_node *tmp;
1675 	struct fib_alias *fa;
1676 
1677 	/* walk trie in reverse order and free everything */
1678 	for (;;) {
1679 		struct key_vector *n;
1680 
1681 		if (!(cindex--)) {
1682 			t_key pkey = pn->key;
1683 
1684 			if (IS_TRIE(pn))
1685 				break;
1686 
1687 			n = pn;
1688 			pn = node_parent(pn);
1689 
1690 			/* drop emptied tnode */
1691 			put_child_root(pn, n->key, NULL);
1692 			node_free(n);
1693 
1694 			cindex = get_index(pkey, pn);
1695 
1696 			continue;
1697 		}
1698 
1699 		/* grab the next available node */
1700 		n = get_child(pn, cindex);
1701 		if (!n)
1702 			continue;
1703 
1704 		if (IS_TNODE(n)) {
1705 			/* record pn and cindex for leaf walking */
1706 			pn = n;
1707 			cindex = 1ul << n->bits;
1708 
1709 			continue;
1710 		}
1711 
1712 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1713 			hlist_del_rcu(&fa->fa_list);
1714 			alias_free_mem_rcu(fa);
1715 		}
1716 
1717 		put_child_root(pn, n->key, NULL);
1718 		node_free(n);
1719 	}
1720 
1721 #ifdef CONFIG_IP_FIB_TRIE_STATS
1722 	free_percpu(t->stats);
1723 #endif
1724 	kfree(tb);
1725 }
1726 
1727 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1728 {
1729 	struct trie *ot = (struct trie *)oldtb->tb_data;
1730 	struct key_vector *l, *tp = ot->kv;
1731 	struct fib_table *local_tb;
1732 	struct fib_alias *fa;
1733 	struct trie *lt;
1734 	t_key key = 0;
1735 
1736 	if (oldtb->tb_data == oldtb->__data)
1737 		return oldtb;
1738 
1739 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1740 	if (!local_tb)
1741 		return NULL;
1742 
1743 	lt = (struct trie *)local_tb->tb_data;
1744 
1745 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1746 		struct key_vector *local_l = NULL, *local_tp;
1747 
1748 		hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1749 			struct fib_alias *new_fa;
1750 
1751 			if (local_tb->tb_id != fa->tb_id)
1752 				continue;
1753 
1754 			/* clone fa for new local table */
1755 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1756 			if (!new_fa)
1757 				goto out;
1758 
1759 			memcpy(new_fa, fa, sizeof(*fa));
1760 
1761 			/* insert clone into table */
1762 			if (!local_l)
1763 				local_l = fib_find_node(lt, &local_tp, l->key);
1764 
1765 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1766 					     NULL, l->key)) {
1767 				kmem_cache_free(fn_alias_kmem, new_fa);
1768 				goto out;
1769 			}
1770 		}
1771 
1772 		/* stop loop if key wrapped back to 0 */
1773 		key = l->key + 1;
1774 		if (key < l->key)
1775 			break;
1776 	}
1777 
1778 	return local_tb;
1779 out:
1780 	fib_trie_free(local_tb);
1781 
1782 	return NULL;
1783 }
1784 
1785 /* Caller must hold RTNL */
1786 void fib_table_flush_external(struct fib_table *tb)
1787 {
1788 	struct trie *t = (struct trie *)tb->tb_data;
1789 	struct key_vector *pn = t->kv;
1790 	unsigned long cindex = 1;
1791 	struct hlist_node *tmp;
1792 	struct fib_alias *fa;
1793 
1794 	/* walk trie in reverse order */
1795 	for (;;) {
1796 		unsigned char slen = 0;
1797 		struct key_vector *n;
1798 
1799 		if (!(cindex--)) {
1800 			t_key pkey = pn->key;
1801 
1802 			/* cannot resize the trie vector */
1803 			if (IS_TRIE(pn))
1804 				break;
1805 
1806 			/* update the suffix to address pulled leaves */
1807 			if (pn->slen > pn->pos)
1808 				update_suffix(pn);
1809 
1810 			/* resize completed node */
1811 			pn = resize(t, pn);
1812 			cindex = get_index(pkey, pn);
1813 
1814 			continue;
1815 		}
1816 
1817 		/* grab the next available node */
1818 		n = get_child(pn, cindex);
1819 		if (!n)
1820 			continue;
1821 
1822 		if (IS_TNODE(n)) {
1823 			/* record pn and cindex for leaf walking */
1824 			pn = n;
1825 			cindex = 1ul << n->bits;
1826 
1827 			continue;
1828 		}
1829 
1830 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1831 			/* if alias was cloned to local then we just
1832 			 * need to remove the local copy from main
1833 			 */
1834 			if (tb->tb_id != fa->tb_id) {
1835 				hlist_del_rcu(&fa->fa_list);
1836 				alias_free_mem_rcu(fa);
1837 				continue;
1838 			}
1839 
1840 			/* record local slen */
1841 			slen = fa->fa_slen;
1842 		}
1843 
1844 		/* update leaf slen */
1845 		n->slen = slen;
1846 
1847 		if (hlist_empty(&n->leaf)) {
1848 			put_child_root(pn, n->key, NULL);
1849 			node_free(n);
1850 		}
1851 	}
1852 }
1853 
1854 /* Caller must hold RTNL. */
1855 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1856 {
1857 	struct trie *t = (struct trie *)tb->tb_data;
1858 	struct key_vector *pn = t->kv;
1859 	unsigned long cindex = 1;
1860 	struct hlist_node *tmp;
1861 	struct fib_alias *fa;
1862 	int found = 0;
1863 
1864 	/* walk trie in reverse order */
1865 	for (;;) {
1866 		unsigned char slen = 0;
1867 		struct key_vector *n;
1868 
1869 		if (!(cindex--)) {
1870 			t_key pkey = pn->key;
1871 
1872 			/* cannot resize the trie vector */
1873 			if (IS_TRIE(pn))
1874 				break;
1875 
1876 			/* update the suffix to address pulled leaves */
1877 			if (pn->slen > pn->pos)
1878 				update_suffix(pn);
1879 
1880 			/* resize completed node */
1881 			pn = resize(t, pn);
1882 			cindex = get_index(pkey, pn);
1883 
1884 			continue;
1885 		}
1886 
1887 		/* grab the next available node */
1888 		n = get_child(pn, cindex);
1889 		if (!n)
1890 			continue;
1891 
1892 		if (IS_TNODE(n)) {
1893 			/* record pn and cindex for leaf walking */
1894 			pn = n;
1895 			cindex = 1ul << n->bits;
1896 
1897 			continue;
1898 		}
1899 
1900 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1901 			struct fib_info *fi = fa->fa_info;
1902 
1903 			if (!fi || tb->tb_id != fa->tb_id ||
1904 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
1905 			     !fib_props[fa->fa_type].error)) {
1906 				slen = fa->fa_slen;
1907 				continue;
1908 			}
1909 
1910 			/* Do not flush error routes if network namespace is
1911 			 * not being dismantled
1912 			 */
1913 			if (!flush_all && fib_props[fa->fa_type].error) {
1914 				slen = fa->fa_slen;
1915 				continue;
1916 			}
1917 
1918 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1919 						 n->key,
1920 						 KEYLENGTH - fa->fa_slen, fa,
1921 						 NULL);
1922 			hlist_del_rcu(&fa->fa_list);
1923 			fib_release_info(fa->fa_info);
1924 			alias_free_mem_rcu(fa);
1925 			found++;
1926 		}
1927 
1928 		/* update leaf slen */
1929 		n->slen = slen;
1930 
1931 		if (hlist_empty(&n->leaf)) {
1932 			put_child_root(pn, n->key, NULL);
1933 			node_free(n);
1934 		}
1935 	}
1936 
1937 	pr_debug("trie_flush found=%d\n", found);
1938 	return found;
1939 }
1940 
1941 /* derived from fib_trie_free */
1942 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1943 				     struct nl_info *info)
1944 {
1945 	struct trie *t = (struct trie *)tb->tb_data;
1946 	struct key_vector *pn = t->kv;
1947 	unsigned long cindex = 1;
1948 	struct fib_alias *fa;
1949 
1950 	for (;;) {
1951 		struct key_vector *n;
1952 
1953 		if (!(cindex--)) {
1954 			t_key pkey = pn->key;
1955 
1956 			if (IS_TRIE(pn))
1957 				break;
1958 
1959 			pn = node_parent(pn);
1960 			cindex = get_index(pkey, pn);
1961 			continue;
1962 		}
1963 
1964 		/* grab the next available node */
1965 		n = get_child(pn, cindex);
1966 		if (!n)
1967 			continue;
1968 
1969 		if (IS_TNODE(n)) {
1970 			/* record pn and cindex for leaf walking */
1971 			pn = n;
1972 			cindex = 1ul << n->bits;
1973 
1974 			continue;
1975 		}
1976 
1977 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
1978 			struct fib_info *fi = fa->fa_info;
1979 
1980 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1981 				continue;
1982 
1983 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1984 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
1985 				  info, NLM_F_REPLACE);
1986 
1987 			/* call_fib_entry_notifiers will be removed when
1988 			 * in-kernel notifier is implemented and supported
1989 			 * for nexthop objects
1990 			 */
1991 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1992 						 n->key,
1993 						 KEYLENGTH - fa->fa_slen, fa,
1994 						 NULL);
1995 		}
1996 	}
1997 }
1998 
1999 void fib_info_notify_update(struct net *net, struct nl_info *info)
2000 {
2001 	unsigned int h;
2002 
2003 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2004 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2005 		struct fib_table *tb;
2006 
2007 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2008 			__fib_info_notify_update(net, tb, info);
2009 	}
2010 }
2011 
2012 static void fib_leaf_notify(struct net *net, struct key_vector *l,
2013 			    struct fib_table *tb, struct notifier_block *nb)
2014 {
2015 	struct fib_alias *fa;
2016 
2017 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2018 		struct fib_info *fi = fa->fa_info;
2019 
2020 		if (!fi)
2021 			continue;
2022 
2023 		/* local and main table can share the same trie,
2024 		 * so don't notify twice for the same entry.
2025 		 */
2026 		if (tb->tb_id != fa->tb_id)
2027 			continue;
2028 
2029 		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
2030 					KEYLENGTH - fa->fa_slen, fa);
2031 	}
2032 }
2033 
2034 static void fib_table_notify(struct net *net, struct fib_table *tb,
2035 			     struct notifier_block *nb)
2036 {
2037 	struct trie *t = (struct trie *)tb->tb_data;
2038 	struct key_vector *l, *tp = t->kv;
2039 	t_key key = 0;
2040 
2041 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2042 		fib_leaf_notify(net, l, tb, nb);
2043 
2044 		key = l->key + 1;
2045 		/* stop in case of wrap around */
2046 		if (key < l->key)
2047 			break;
2048 	}
2049 }
2050 
2051 void fib_notify(struct net *net, struct notifier_block *nb)
2052 {
2053 	unsigned int h;
2054 
2055 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2056 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2057 		struct fib_table *tb;
2058 
2059 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2060 			fib_table_notify(net, tb, nb);
2061 	}
2062 }
2063 
2064 static void __trie_free_rcu(struct rcu_head *head)
2065 {
2066 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2067 #ifdef CONFIG_IP_FIB_TRIE_STATS
2068 	struct trie *t = (struct trie *)tb->tb_data;
2069 
2070 	if (tb->tb_data == tb->__data)
2071 		free_percpu(t->stats);
2072 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2073 	kfree(tb);
2074 }
2075 
2076 void fib_free_table(struct fib_table *tb)
2077 {
2078 	call_rcu(&tb->rcu, __trie_free_rcu);
2079 }
2080 
2081 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2082 			     struct sk_buff *skb, struct netlink_callback *cb,
2083 			     struct fib_dump_filter *filter)
2084 {
2085 	unsigned int flags = NLM_F_MULTI;
2086 	__be32 xkey = htonl(l->key);
2087 	struct fib_alias *fa;
2088 	int i, s_i;
2089 
2090 	if (filter->filter_set)
2091 		flags |= NLM_F_DUMP_FILTERED;
2092 
2093 	s_i = cb->args[4];
2094 	i = 0;
2095 
2096 	/* rcu_read_lock is hold by caller */
2097 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2098 		int err;
2099 
2100 		if (i < s_i)
2101 			goto next;
2102 
2103 		if (tb->tb_id != fa->tb_id)
2104 			goto next;
2105 
2106 		if (filter->filter_set) {
2107 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2108 				goto next;
2109 
2110 			if ((filter->protocol &&
2111 			     fa->fa_info->fib_protocol != filter->protocol))
2112 				goto next;
2113 
2114 			if (filter->dev &&
2115 			    !fib_info_nh_uses_dev(fa->fa_info, filter->dev))
2116 				goto next;
2117 		}
2118 
2119 		err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2120 				    cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2121 				    tb->tb_id, fa->fa_type,
2122 				    xkey, KEYLENGTH - fa->fa_slen,
2123 				    fa->fa_tos, fa->fa_info, flags);
2124 		if (err < 0) {
2125 			cb->args[4] = i;
2126 			return err;
2127 		}
2128 next:
2129 		i++;
2130 	}
2131 
2132 	cb->args[4] = i;
2133 	return skb->len;
2134 }
2135 
2136 /* rcu_read_lock needs to be hold by caller from readside */
2137 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2138 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2139 {
2140 	struct trie *t = (struct trie *)tb->tb_data;
2141 	struct key_vector *l, *tp = t->kv;
2142 	/* Dump starting at last key.
2143 	 * Note: 0.0.0.0/0 (ie default) is first key.
2144 	 */
2145 	int count = cb->args[2];
2146 	t_key key = cb->args[3];
2147 
2148 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2149 		int err;
2150 
2151 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2152 		if (err < 0) {
2153 			cb->args[3] = key;
2154 			cb->args[2] = count;
2155 			return err;
2156 		}
2157 
2158 		++count;
2159 		key = l->key + 1;
2160 
2161 		memset(&cb->args[4], 0,
2162 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2163 
2164 		/* stop loop if key wrapped back to 0 */
2165 		if (key < l->key)
2166 			break;
2167 	}
2168 
2169 	cb->args[3] = key;
2170 	cb->args[2] = count;
2171 
2172 	return skb->len;
2173 }
2174 
2175 void __init fib_trie_init(void)
2176 {
2177 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2178 					  sizeof(struct fib_alias),
2179 					  0, SLAB_PANIC, NULL);
2180 
2181 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2182 					   LEAF_SIZE,
2183 					   0, SLAB_PANIC, NULL);
2184 }
2185 
2186 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2187 {
2188 	struct fib_table *tb;
2189 	struct trie *t;
2190 	size_t sz = sizeof(*tb);
2191 
2192 	if (!alias)
2193 		sz += sizeof(struct trie);
2194 
2195 	tb = kzalloc(sz, GFP_KERNEL);
2196 	if (!tb)
2197 		return NULL;
2198 
2199 	tb->tb_id = id;
2200 	tb->tb_num_default = 0;
2201 	tb->tb_data = (alias ? alias->__data : tb->__data);
2202 
2203 	if (alias)
2204 		return tb;
2205 
2206 	t = (struct trie *) tb->tb_data;
2207 	t->kv[0].pos = KEYLENGTH;
2208 	t->kv[0].slen = KEYLENGTH;
2209 #ifdef CONFIG_IP_FIB_TRIE_STATS
2210 	t->stats = alloc_percpu(struct trie_use_stats);
2211 	if (!t->stats) {
2212 		kfree(tb);
2213 		tb = NULL;
2214 	}
2215 #endif
2216 
2217 	return tb;
2218 }
2219 
2220 #ifdef CONFIG_PROC_FS
2221 /* Depth first Trie walk iterator */
2222 struct fib_trie_iter {
2223 	struct seq_net_private p;
2224 	struct fib_table *tb;
2225 	struct key_vector *tnode;
2226 	unsigned int index;
2227 	unsigned int depth;
2228 };
2229 
2230 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2231 {
2232 	unsigned long cindex = iter->index;
2233 	struct key_vector *pn = iter->tnode;
2234 	t_key pkey;
2235 
2236 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2237 		 iter->tnode, iter->index, iter->depth);
2238 
2239 	while (!IS_TRIE(pn)) {
2240 		while (cindex < child_length(pn)) {
2241 			struct key_vector *n = get_child_rcu(pn, cindex++);
2242 
2243 			if (!n)
2244 				continue;
2245 
2246 			if (IS_LEAF(n)) {
2247 				iter->tnode = pn;
2248 				iter->index = cindex;
2249 			} else {
2250 				/* push down one level */
2251 				iter->tnode = n;
2252 				iter->index = 0;
2253 				++iter->depth;
2254 			}
2255 
2256 			return n;
2257 		}
2258 
2259 		/* Current node exhausted, pop back up */
2260 		pkey = pn->key;
2261 		pn = node_parent_rcu(pn);
2262 		cindex = get_index(pkey, pn) + 1;
2263 		--iter->depth;
2264 	}
2265 
2266 	/* record root node so further searches know we are done */
2267 	iter->tnode = pn;
2268 	iter->index = 0;
2269 
2270 	return NULL;
2271 }
2272 
2273 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2274 					     struct trie *t)
2275 {
2276 	struct key_vector *n, *pn;
2277 
2278 	if (!t)
2279 		return NULL;
2280 
2281 	pn = t->kv;
2282 	n = rcu_dereference(pn->tnode[0]);
2283 	if (!n)
2284 		return NULL;
2285 
2286 	if (IS_TNODE(n)) {
2287 		iter->tnode = n;
2288 		iter->index = 0;
2289 		iter->depth = 1;
2290 	} else {
2291 		iter->tnode = pn;
2292 		iter->index = 0;
2293 		iter->depth = 0;
2294 	}
2295 
2296 	return n;
2297 }
2298 
2299 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2300 {
2301 	struct key_vector *n;
2302 	struct fib_trie_iter iter;
2303 
2304 	memset(s, 0, sizeof(*s));
2305 
2306 	rcu_read_lock();
2307 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2308 		if (IS_LEAF(n)) {
2309 			struct fib_alias *fa;
2310 
2311 			s->leaves++;
2312 			s->totdepth += iter.depth;
2313 			if (iter.depth > s->maxdepth)
2314 				s->maxdepth = iter.depth;
2315 
2316 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2317 				++s->prefixes;
2318 		} else {
2319 			s->tnodes++;
2320 			if (n->bits < MAX_STAT_DEPTH)
2321 				s->nodesizes[n->bits]++;
2322 			s->nullpointers += tn_info(n)->empty_children;
2323 		}
2324 	}
2325 	rcu_read_unlock();
2326 }
2327 
2328 /*
2329  *	This outputs /proc/net/fib_triestats
2330  */
2331 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2332 {
2333 	unsigned int i, max, pointers, bytes, avdepth;
2334 
2335 	if (stat->leaves)
2336 		avdepth = stat->totdepth*100 / stat->leaves;
2337 	else
2338 		avdepth = 0;
2339 
2340 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2341 		   avdepth / 100, avdepth % 100);
2342 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2343 
2344 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2345 	bytes = LEAF_SIZE * stat->leaves;
2346 
2347 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2348 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2349 
2350 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2351 	bytes += TNODE_SIZE(0) * stat->tnodes;
2352 
2353 	max = MAX_STAT_DEPTH;
2354 	while (max > 0 && stat->nodesizes[max-1] == 0)
2355 		max--;
2356 
2357 	pointers = 0;
2358 	for (i = 1; i < max; i++)
2359 		if (stat->nodesizes[i] != 0) {
2360 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2361 			pointers += (1<<i) * stat->nodesizes[i];
2362 		}
2363 	seq_putc(seq, '\n');
2364 	seq_printf(seq, "\tPointers: %u\n", pointers);
2365 
2366 	bytes += sizeof(struct key_vector *) * pointers;
2367 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2368 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2369 }
2370 
2371 #ifdef CONFIG_IP_FIB_TRIE_STATS
2372 static void trie_show_usage(struct seq_file *seq,
2373 			    const struct trie_use_stats __percpu *stats)
2374 {
2375 	struct trie_use_stats s = { 0 };
2376 	int cpu;
2377 
2378 	/* loop through all of the CPUs and gather up the stats */
2379 	for_each_possible_cpu(cpu) {
2380 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2381 
2382 		s.gets += pcpu->gets;
2383 		s.backtrack += pcpu->backtrack;
2384 		s.semantic_match_passed += pcpu->semantic_match_passed;
2385 		s.semantic_match_miss += pcpu->semantic_match_miss;
2386 		s.null_node_hit += pcpu->null_node_hit;
2387 		s.resize_node_skipped += pcpu->resize_node_skipped;
2388 	}
2389 
2390 	seq_printf(seq, "\nCounters:\n---------\n");
2391 	seq_printf(seq, "gets = %u\n", s.gets);
2392 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2393 	seq_printf(seq, "semantic match passed = %u\n",
2394 		   s.semantic_match_passed);
2395 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2396 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2397 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2398 }
2399 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2400 
2401 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2402 {
2403 	if (tb->tb_id == RT_TABLE_LOCAL)
2404 		seq_puts(seq, "Local:\n");
2405 	else if (tb->tb_id == RT_TABLE_MAIN)
2406 		seq_puts(seq, "Main:\n");
2407 	else
2408 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2409 }
2410 
2411 
2412 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2413 {
2414 	struct net *net = (struct net *)seq->private;
2415 	unsigned int h;
2416 
2417 	seq_printf(seq,
2418 		   "Basic info: size of leaf:"
2419 		   " %zd bytes, size of tnode: %zd bytes.\n",
2420 		   LEAF_SIZE, TNODE_SIZE(0));
2421 
2422 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2423 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2424 		struct fib_table *tb;
2425 
2426 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2427 			struct trie *t = (struct trie *) tb->tb_data;
2428 			struct trie_stat stat;
2429 
2430 			if (!t)
2431 				continue;
2432 
2433 			fib_table_print(seq, tb);
2434 
2435 			trie_collect_stats(t, &stat);
2436 			trie_show_stats(seq, &stat);
2437 #ifdef CONFIG_IP_FIB_TRIE_STATS
2438 			trie_show_usage(seq, t->stats);
2439 #endif
2440 		}
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2447 {
2448 	struct fib_trie_iter *iter = seq->private;
2449 	struct net *net = seq_file_net(seq);
2450 	loff_t idx = 0;
2451 	unsigned int h;
2452 
2453 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2454 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2455 		struct fib_table *tb;
2456 
2457 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2458 			struct key_vector *n;
2459 
2460 			for (n = fib_trie_get_first(iter,
2461 						    (struct trie *) tb->tb_data);
2462 			     n; n = fib_trie_get_next(iter))
2463 				if (pos == idx++) {
2464 					iter->tb = tb;
2465 					return n;
2466 				}
2467 		}
2468 	}
2469 
2470 	return NULL;
2471 }
2472 
2473 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2474 	__acquires(RCU)
2475 {
2476 	rcu_read_lock();
2477 	return fib_trie_get_idx(seq, *pos);
2478 }
2479 
2480 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2481 {
2482 	struct fib_trie_iter *iter = seq->private;
2483 	struct net *net = seq_file_net(seq);
2484 	struct fib_table *tb = iter->tb;
2485 	struct hlist_node *tb_node;
2486 	unsigned int h;
2487 	struct key_vector *n;
2488 
2489 	++*pos;
2490 	/* next node in same table */
2491 	n = fib_trie_get_next(iter);
2492 	if (n)
2493 		return n;
2494 
2495 	/* walk rest of this hash chain */
2496 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2497 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2498 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2499 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2500 		if (n)
2501 			goto found;
2502 	}
2503 
2504 	/* new hash chain */
2505 	while (++h < FIB_TABLE_HASHSZ) {
2506 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2507 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2508 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2509 			if (n)
2510 				goto found;
2511 		}
2512 	}
2513 	return NULL;
2514 
2515 found:
2516 	iter->tb = tb;
2517 	return n;
2518 }
2519 
2520 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2521 	__releases(RCU)
2522 {
2523 	rcu_read_unlock();
2524 }
2525 
2526 static void seq_indent(struct seq_file *seq, int n)
2527 {
2528 	while (n-- > 0)
2529 		seq_puts(seq, "   ");
2530 }
2531 
2532 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2533 {
2534 	switch (s) {
2535 	case RT_SCOPE_UNIVERSE: return "universe";
2536 	case RT_SCOPE_SITE:	return "site";
2537 	case RT_SCOPE_LINK:	return "link";
2538 	case RT_SCOPE_HOST:	return "host";
2539 	case RT_SCOPE_NOWHERE:	return "nowhere";
2540 	default:
2541 		snprintf(buf, len, "scope=%d", s);
2542 		return buf;
2543 	}
2544 }
2545 
2546 static const char *const rtn_type_names[__RTN_MAX] = {
2547 	[RTN_UNSPEC] = "UNSPEC",
2548 	[RTN_UNICAST] = "UNICAST",
2549 	[RTN_LOCAL] = "LOCAL",
2550 	[RTN_BROADCAST] = "BROADCAST",
2551 	[RTN_ANYCAST] = "ANYCAST",
2552 	[RTN_MULTICAST] = "MULTICAST",
2553 	[RTN_BLACKHOLE] = "BLACKHOLE",
2554 	[RTN_UNREACHABLE] = "UNREACHABLE",
2555 	[RTN_PROHIBIT] = "PROHIBIT",
2556 	[RTN_THROW] = "THROW",
2557 	[RTN_NAT] = "NAT",
2558 	[RTN_XRESOLVE] = "XRESOLVE",
2559 };
2560 
2561 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2562 {
2563 	if (t < __RTN_MAX && rtn_type_names[t])
2564 		return rtn_type_names[t];
2565 	snprintf(buf, len, "type %u", t);
2566 	return buf;
2567 }
2568 
2569 /* Pretty print the trie */
2570 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2571 {
2572 	const struct fib_trie_iter *iter = seq->private;
2573 	struct key_vector *n = v;
2574 
2575 	if (IS_TRIE(node_parent_rcu(n)))
2576 		fib_table_print(seq, iter->tb);
2577 
2578 	if (IS_TNODE(n)) {
2579 		__be32 prf = htonl(n->key);
2580 
2581 		seq_indent(seq, iter->depth-1);
2582 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2583 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2584 			   tn_info(n)->full_children,
2585 			   tn_info(n)->empty_children);
2586 	} else {
2587 		__be32 val = htonl(n->key);
2588 		struct fib_alias *fa;
2589 
2590 		seq_indent(seq, iter->depth);
2591 		seq_printf(seq, "  |-- %pI4\n", &val);
2592 
2593 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2594 			char buf1[32], buf2[32];
2595 
2596 			seq_indent(seq, iter->depth + 1);
2597 			seq_printf(seq, "  /%zu %s %s",
2598 				   KEYLENGTH - fa->fa_slen,
2599 				   rtn_scope(buf1, sizeof(buf1),
2600 					     fa->fa_info->fib_scope),
2601 				   rtn_type(buf2, sizeof(buf2),
2602 					    fa->fa_type));
2603 			if (fa->fa_tos)
2604 				seq_printf(seq, " tos=%d", fa->fa_tos);
2605 			seq_putc(seq, '\n');
2606 		}
2607 	}
2608 
2609 	return 0;
2610 }
2611 
2612 static const struct seq_operations fib_trie_seq_ops = {
2613 	.start  = fib_trie_seq_start,
2614 	.next   = fib_trie_seq_next,
2615 	.stop   = fib_trie_seq_stop,
2616 	.show   = fib_trie_seq_show,
2617 };
2618 
2619 struct fib_route_iter {
2620 	struct seq_net_private p;
2621 	struct fib_table *main_tb;
2622 	struct key_vector *tnode;
2623 	loff_t	pos;
2624 	t_key	key;
2625 };
2626 
2627 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2628 					    loff_t pos)
2629 {
2630 	struct key_vector *l, **tp = &iter->tnode;
2631 	t_key key;
2632 
2633 	/* use cached location of previously found key */
2634 	if (iter->pos > 0 && pos >= iter->pos) {
2635 		key = iter->key;
2636 	} else {
2637 		iter->pos = 1;
2638 		key = 0;
2639 	}
2640 
2641 	pos -= iter->pos;
2642 
2643 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2644 		key = l->key + 1;
2645 		iter->pos++;
2646 		l = NULL;
2647 
2648 		/* handle unlikely case of a key wrap */
2649 		if (!key)
2650 			break;
2651 	}
2652 
2653 	if (l)
2654 		iter->key = l->key;	/* remember it */
2655 	else
2656 		iter->pos = 0;		/* forget it */
2657 
2658 	return l;
2659 }
2660 
2661 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2662 	__acquires(RCU)
2663 {
2664 	struct fib_route_iter *iter = seq->private;
2665 	struct fib_table *tb;
2666 	struct trie *t;
2667 
2668 	rcu_read_lock();
2669 
2670 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2671 	if (!tb)
2672 		return NULL;
2673 
2674 	iter->main_tb = tb;
2675 	t = (struct trie *)tb->tb_data;
2676 	iter->tnode = t->kv;
2677 
2678 	if (*pos != 0)
2679 		return fib_route_get_idx(iter, *pos);
2680 
2681 	iter->pos = 0;
2682 	iter->key = KEY_MAX;
2683 
2684 	return SEQ_START_TOKEN;
2685 }
2686 
2687 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2688 {
2689 	struct fib_route_iter *iter = seq->private;
2690 	struct key_vector *l = NULL;
2691 	t_key key = iter->key + 1;
2692 
2693 	++*pos;
2694 
2695 	/* only allow key of 0 for start of sequence */
2696 	if ((v == SEQ_START_TOKEN) || key)
2697 		l = leaf_walk_rcu(&iter->tnode, key);
2698 
2699 	if (l) {
2700 		iter->key = l->key;
2701 		iter->pos++;
2702 	} else {
2703 		iter->pos = 0;
2704 	}
2705 
2706 	return l;
2707 }
2708 
2709 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2710 	__releases(RCU)
2711 {
2712 	rcu_read_unlock();
2713 }
2714 
2715 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2716 {
2717 	unsigned int flags = 0;
2718 
2719 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2720 		flags = RTF_REJECT;
2721 	if (fi) {
2722 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2723 
2724 		if (nhc->nhc_gw.ipv4)
2725 			flags |= RTF_GATEWAY;
2726 	}
2727 	if (mask == htonl(0xFFFFFFFF))
2728 		flags |= RTF_HOST;
2729 	flags |= RTF_UP;
2730 	return flags;
2731 }
2732 
2733 /*
2734  *	This outputs /proc/net/route.
2735  *	The format of the file is not supposed to be changed
2736  *	and needs to be same as fib_hash output to avoid breaking
2737  *	legacy utilities
2738  */
2739 static int fib_route_seq_show(struct seq_file *seq, void *v)
2740 {
2741 	struct fib_route_iter *iter = seq->private;
2742 	struct fib_table *tb = iter->main_tb;
2743 	struct fib_alias *fa;
2744 	struct key_vector *l = v;
2745 	__be32 prefix;
2746 
2747 	if (v == SEQ_START_TOKEN) {
2748 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2749 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2750 			   "\tWindow\tIRTT");
2751 		return 0;
2752 	}
2753 
2754 	prefix = htonl(l->key);
2755 
2756 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2757 		struct fib_info *fi = fa->fa_info;
2758 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2759 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2760 
2761 		if ((fa->fa_type == RTN_BROADCAST) ||
2762 		    (fa->fa_type == RTN_MULTICAST))
2763 			continue;
2764 
2765 		if (fa->tb_id != tb->tb_id)
2766 			continue;
2767 
2768 		seq_setwidth(seq, 127);
2769 
2770 		if (fi) {
2771 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2772 			__be32 gw = 0;
2773 
2774 			if (nhc->nhc_gw_family == AF_INET)
2775 				gw = nhc->nhc_gw.ipv4;
2776 
2777 			seq_printf(seq,
2778 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2779 				   "%d\t%08X\t%d\t%u\t%u",
2780 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2781 				   prefix, gw, flags, 0, 0,
2782 				   fi->fib_priority,
2783 				   mask,
2784 				   (fi->fib_advmss ?
2785 				    fi->fib_advmss + 40 : 0),
2786 				   fi->fib_window,
2787 				   fi->fib_rtt >> 3);
2788 		} else {
2789 			seq_printf(seq,
2790 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2791 				   "%d\t%08X\t%d\t%u\t%u",
2792 				   prefix, 0, flags, 0, 0, 0,
2793 				   mask, 0, 0, 0);
2794 		}
2795 		seq_pad(seq, '\n');
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static const struct seq_operations fib_route_seq_ops = {
2802 	.start  = fib_route_seq_start,
2803 	.next   = fib_route_seq_next,
2804 	.stop   = fib_route_seq_stop,
2805 	.show   = fib_route_seq_show,
2806 };
2807 
2808 int __net_init fib_proc_init(struct net *net)
2809 {
2810 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2811 			sizeof(struct fib_trie_iter)))
2812 		goto out1;
2813 
2814 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2815 			fib_triestat_seq_show, NULL))
2816 		goto out2;
2817 
2818 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2819 			sizeof(struct fib_route_iter)))
2820 		goto out3;
2821 
2822 	return 0;
2823 
2824 out3:
2825 	remove_proc_entry("fib_triestat", net->proc_net);
2826 out2:
2827 	remove_proc_entry("fib_trie", net->proc_net);
2828 out1:
2829 	return -ENOMEM;
2830 }
2831 
2832 void __net_exit fib_proc_exit(struct net *net)
2833 {
2834 	remove_proc_entry("fib_trie", net->proc_net);
2835 	remove_proc_entry("fib_triestat", net->proc_net);
2836 	remove_proc_entry("route", net->proc_net);
2837 }
2838 
2839 #endif /* CONFIG_PROC_FS */
2840