1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <asm/system.h> 55 #include <linux/bitops.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/mm.h> 59 #include <linux/string.h> 60 #include <linux/socket.h> 61 #include <linux/sockios.h> 62 #include <linux/errno.h> 63 #include <linux/in.h> 64 #include <linux/inet.h> 65 #include <linux/inetdevice.h> 66 #include <linux/netdevice.h> 67 #include <linux/if_arp.h> 68 #include <linux/proc_fs.h> 69 #include <linux/rcupdate.h> 70 #include <linux/skbuff.h> 71 #include <linux/netlink.h> 72 #include <linux/init.h> 73 #include <linux/list.h> 74 #include <linux/slab.h> 75 #include <linux/prefetch.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include "fib_lookup.h" 84 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 89 typedef unsigned int t_key; 90 91 #define T_TNODE 0 92 #define T_LEAF 1 93 #define NODE_TYPE_MASK 0x1UL 94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 95 96 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 97 #define IS_LEAF(n) (n->parent & T_LEAF) 98 99 struct rt_trie_node { 100 unsigned long parent; 101 t_key key; 102 }; 103 104 struct leaf { 105 unsigned long parent; 106 t_key key; 107 struct hlist_head list; 108 struct rcu_head rcu; 109 }; 110 111 struct leaf_info { 112 struct hlist_node hlist; 113 struct rcu_head rcu; 114 int plen; 115 struct list_head falh; 116 }; 117 118 struct tnode { 119 unsigned long parent; 120 t_key key; 121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 123 unsigned int full_children; /* KEYLENGTH bits needed */ 124 unsigned int empty_children; /* KEYLENGTH bits needed */ 125 union { 126 struct rcu_head rcu; 127 struct work_struct work; 128 struct tnode *tnode_free; 129 }; 130 struct rt_trie_node __rcu *child[0]; 131 }; 132 133 #ifdef CONFIG_IP_FIB_TRIE_STATS 134 struct trie_use_stats { 135 unsigned int gets; 136 unsigned int backtrack; 137 unsigned int semantic_match_passed; 138 unsigned int semantic_match_miss; 139 unsigned int null_node_hit; 140 unsigned int resize_node_skipped; 141 }; 142 #endif 143 144 struct trie_stat { 145 unsigned int totdepth; 146 unsigned int maxdepth; 147 unsigned int tnodes; 148 unsigned int leaves; 149 unsigned int nullpointers; 150 unsigned int prefixes; 151 unsigned int nodesizes[MAX_STAT_DEPTH]; 152 }; 153 154 struct trie { 155 struct rt_trie_node __rcu *trie; 156 #ifdef CONFIG_IP_FIB_TRIE_STATS 157 struct trie_use_stats stats; 158 #endif 159 }; 160 161 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n); 162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 163 int wasfull); 164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 165 static struct tnode *inflate(struct trie *t, struct tnode *tn); 166 static struct tnode *halve(struct trie *t, struct tnode *tn); 167 /* tnodes to free after resize(); protected by RTNL */ 168 static struct tnode *tnode_free_head; 169 static size_t tnode_free_size; 170 171 /* 172 * synchronize_rcu after call_rcu for that many pages; it should be especially 173 * useful before resizing the root node with PREEMPT_NONE configs; the value was 174 * obtained experimentally, aiming to avoid visible slowdown. 175 */ 176 static const int sync_pages = 128; 177 178 static struct kmem_cache *fn_alias_kmem __read_mostly; 179 static struct kmem_cache *trie_leaf_kmem __read_mostly; 180 181 /* 182 * caller must hold RTNL 183 */ 184 static inline struct tnode *node_parent(const struct rt_trie_node *node) 185 { 186 unsigned long parent; 187 188 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 189 190 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 191 } 192 193 /* 194 * caller must hold RCU read lock or RTNL 195 */ 196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 197 { 198 unsigned long parent; 199 200 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 201 lockdep_rtnl_is_held()); 202 203 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 204 } 205 206 /* Same as rcu_assign_pointer 207 * but that macro() assumes that value is a pointer. 208 */ 209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 210 { 211 smp_wmb(); 212 node->parent = (unsigned long)ptr | NODE_TYPE(node); 213 } 214 215 /* 216 * caller must hold RTNL 217 */ 218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 219 { 220 BUG_ON(i >= 1U << tn->bits); 221 222 return rtnl_dereference(tn->child[i]); 223 } 224 225 /* 226 * caller must hold RCU read lock or RTNL 227 */ 228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 229 { 230 BUG_ON(i >= 1U << tn->bits); 231 232 return rcu_dereference_rtnl(tn->child[i]); 233 } 234 235 static inline int tnode_child_length(const struct tnode *tn) 236 { 237 return 1 << tn->bits; 238 } 239 240 static inline t_key mask_pfx(t_key k, unsigned int l) 241 { 242 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 243 } 244 245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 246 { 247 if (offset < KEYLENGTH) 248 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 249 else 250 return 0; 251 } 252 253 static inline int tkey_equals(t_key a, t_key b) 254 { 255 return a == b; 256 } 257 258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 259 { 260 if (bits == 0 || offset >= KEYLENGTH) 261 return 1; 262 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 263 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 264 } 265 266 static inline int tkey_mismatch(t_key a, int offset, t_key b) 267 { 268 t_key diff = a ^ b; 269 int i = offset; 270 271 if (!diff) 272 return 0; 273 while ((diff << i) >> (KEYLENGTH-1) == 0) 274 i++; 275 return i; 276 } 277 278 /* 279 To understand this stuff, an understanding of keys and all their bits is 280 necessary. Every node in the trie has a key associated with it, but not 281 all of the bits in that key are significant. 282 283 Consider a node 'n' and its parent 'tp'. 284 285 If n is a leaf, every bit in its key is significant. Its presence is 286 necessitated by path compression, since during a tree traversal (when 287 searching for a leaf - unless we are doing an insertion) we will completely 288 ignore all skipped bits we encounter. Thus we need to verify, at the end of 289 a potentially successful search, that we have indeed been walking the 290 correct key path. 291 292 Note that we can never "miss" the correct key in the tree if present by 293 following the wrong path. Path compression ensures that segments of the key 294 that are the same for all keys with a given prefix are skipped, but the 295 skipped part *is* identical for each node in the subtrie below the skipped 296 bit! trie_insert() in this implementation takes care of that - note the 297 call to tkey_sub_equals() in trie_insert(). 298 299 if n is an internal node - a 'tnode' here, the various parts of its key 300 have many different meanings. 301 302 Example: 303 _________________________________________________________________ 304 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 305 ----------------------------------------------------------------- 306 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 307 308 _________________________________________________________________ 309 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 310 ----------------------------------------------------------------- 311 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 312 313 tp->pos = 7 314 tp->bits = 3 315 n->pos = 15 316 n->bits = 4 317 318 First, let's just ignore the bits that come before the parent tp, that is 319 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 320 not use them for anything. 321 322 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 323 index into the parent's child array. That is, they will be used to find 324 'n' among tp's children. 325 326 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 327 for the node n. 328 329 All the bits we have seen so far are significant to the node n. The rest 330 of the bits are really not needed or indeed known in n->key. 331 332 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 333 n's child array, and will of course be different for each child. 334 335 336 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 337 at this point. 338 339 */ 340 341 static inline void check_tnode(const struct tnode *tn) 342 { 343 WARN_ON(tn && tn->pos+tn->bits > 32); 344 } 345 346 static const int halve_threshold = 25; 347 static const int inflate_threshold = 50; 348 static const int halve_threshold_root = 15; 349 static const int inflate_threshold_root = 30; 350 351 static void __alias_free_mem(struct rcu_head *head) 352 { 353 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 354 kmem_cache_free(fn_alias_kmem, fa); 355 } 356 357 static inline void alias_free_mem_rcu(struct fib_alias *fa) 358 { 359 call_rcu(&fa->rcu, __alias_free_mem); 360 } 361 362 static void __leaf_free_rcu(struct rcu_head *head) 363 { 364 struct leaf *l = container_of(head, struct leaf, rcu); 365 kmem_cache_free(trie_leaf_kmem, l); 366 } 367 368 static inline void free_leaf(struct leaf *l) 369 { 370 call_rcu_bh(&l->rcu, __leaf_free_rcu); 371 } 372 373 static inline void free_leaf_info(struct leaf_info *leaf) 374 { 375 kfree_rcu(leaf, rcu); 376 } 377 378 static struct tnode *tnode_alloc(size_t size) 379 { 380 if (size <= PAGE_SIZE) 381 return kzalloc(size, GFP_KERNEL); 382 else 383 return vzalloc(size); 384 } 385 386 static void __tnode_vfree(struct work_struct *arg) 387 { 388 struct tnode *tn = container_of(arg, struct tnode, work); 389 vfree(tn); 390 } 391 392 static void __tnode_free_rcu(struct rcu_head *head) 393 { 394 struct tnode *tn = container_of(head, struct tnode, rcu); 395 size_t size = sizeof(struct tnode) + 396 (sizeof(struct rt_trie_node *) << tn->bits); 397 398 if (size <= PAGE_SIZE) 399 kfree(tn); 400 else { 401 INIT_WORK(&tn->work, __tnode_vfree); 402 schedule_work(&tn->work); 403 } 404 } 405 406 static inline void tnode_free(struct tnode *tn) 407 { 408 if (IS_LEAF(tn)) 409 free_leaf((struct leaf *) tn); 410 else 411 call_rcu(&tn->rcu, __tnode_free_rcu); 412 } 413 414 static void tnode_free_safe(struct tnode *tn) 415 { 416 BUG_ON(IS_LEAF(tn)); 417 tn->tnode_free = tnode_free_head; 418 tnode_free_head = tn; 419 tnode_free_size += sizeof(struct tnode) + 420 (sizeof(struct rt_trie_node *) << tn->bits); 421 } 422 423 static void tnode_free_flush(void) 424 { 425 struct tnode *tn; 426 427 while ((tn = tnode_free_head)) { 428 tnode_free_head = tn->tnode_free; 429 tn->tnode_free = NULL; 430 tnode_free(tn); 431 } 432 433 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 434 tnode_free_size = 0; 435 synchronize_rcu(); 436 } 437 } 438 439 static struct leaf *leaf_new(void) 440 { 441 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 442 if (l) { 443 l->parent = T_LEAF; 444 INIT_HLIST_HEAD(&l->list); 445 } 446 return l; 447 } 448 449 static struct leaf_info *leaf_info_new(int plen) 450 { 451 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 452 if (li) { 453 li->plen = plen; 454 INIT_LIST_HEAD(&li->falh); 455 } 456 return li; 457 } 458 459 static struct tnode *tnode_new(t_key key, int pos, int bits) 460 { 461 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 462 struct tnode *tn = tnode_alloc(sz); 463 464 if (tn) { 465 tn->parent = T_TNODE; 466 tn->pos = pos; 467 tn->bits = bits; 468 tn->key = key; 469 tn->full_children = 0; 470 tn->empty_children = 1<<bits; 471 } 472 473 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 474 sizeof(struct rt_trie_node) << bits); 475 return tn; 476 } 477 478 /* 479 * Check whether a tnode 'n' is "full", i.e. it is an internal node 480 * and no bits are skipped. See discussion in dyntree paper p. 6 481 */ 482 483 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 484 { 485 if (n == NULL || IS_LEAF(n)) 486 return 0; 487 488 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 489 } 490 491 static inline void put_child(struct trie *t, struct tnode *tn, int i, 492 struct rt_trie_node *n) 493 { 494 tnode_put_child_reorg(tn, i, n, -1); 495 } 496 497 /* 498 * Add a child at position i overwriting the old value. 499 * Update the value of full_children and empty_children. 500 */ 501 502 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 503 int wasfull) 504 { 505 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 506 int isfull; 507 508 BUG_ON(i >= 1<<tn->bits); 509 510 /* update emptyChildren */ 511 if (n == NULL && chi != NULL) 512 tn->empty_children++; 513 else if (n != NULL && chi == NULL) 514 tn->empty_children--; 515 516 /* update fullChildren */ 517 if (wasfull == -1) 518 wasfull = tnode_full(tn, chi); 519 520 isfull = tnode_full(tn, n); 521 if (wasfull && !isfull) 522 tn->full_children--; 523 else if (!wasfull && isfull) 524 tn->full_children++; 525 526 if (n) 527 node_set_parent(n, tn); 528 529 rcu_assign_pointer(tn->child[i], n); 530 } 531 532 #define MAX_WORK 10 533 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 534 { 535 int i; 536 struct tnode *old_tn; 537 int inflate_threshold_use; 538 int halve_threshold_use; 539 int max_work; 540 541 if (!tn) 542 return NULL; 543 544 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 545 tn, inflate_threshold, halve_threshold); 546 547 /* No children */ 548 if (tn->empty_children == tnode_child_length(tn)) { 549 tnode_free_safe(tn); 550 return NULL; 551 } 552 /* One child */ 553 if (tn->empty_children == tnode_child_length(tn) - 1) 554 goto one_child; 555 /* 556 * Double as long as the resulting node has a number of 557 * nonempty nodes that are above the threshold. 558 */ 559 560 /* 561 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 562 * the Helsinki University of Technology and Matti Tikkanen of Nokia 563 * Telecommunications, page 6: 564 * "A node is doubled if the ratio of non-empty children to all 565 * children in the *doubled* node is at least 'high'." 566 * 567 * 'high' in this instance is the variable 'inflate_threshold'. It 568 * is expressed as a percentage, so we multiply it with 569 * tnode_child_length() and instead of multiplying by 2 (since the 570 * child array will be doubled by inflate()) and multiplying 571 * the left-hand side by 100 (to handle the percentage thing) we 572 * multiply the left-hand side by 50. 573 * 574 * The left-hand side may look a bit weird: tnode_child_length(tn) 575 * - tn->empty_children is of course the number of non-null children 576 * in the current node. tn->full_children is the number of "full" 577 * children, that is non-null tnodes with a skip value of 0. 578 * All of those will be doubled in the resulting inflated tnode, so 579 * we just count them one extra time here. 580 * 581 * A clearer way to write this would be: 582 * 583 * to_be_doubled = tn->full_children; 584 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 585 * tn->full_children; 586 * 587 * new_child_length = tnode_child_length(tn) * 2; 588 * 589 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 590 * new_child_length; 591 * if (new_fill_factor >= inflate_threshold) 592 * 593 * ...and so on, tho it would mess up the while () loop. 594 * 595 * anyway, 596 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 597 * inflate_threshold 598 * 599 * avoid a division: 600 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 601 * inflate_threshold * new_child_length 602 * 603 * expand not_to_be_doubled and to_be_doubled, and shorten: 604 * 100 * (tnode_child_length(tn) - tn->empty_children + 605 * tn->full_children) >= inflate_threshold * new_child_length 606 * 607 * expand new_child_length: 608 * 100 * (tnode_child_length(tn) - tn->empty_children + 609 * tn->full_children) >= 610 * inflate_threshold * tnode_child_length(tn) * 2 611 * 612 * shorten again: 613 * 50 * (tn->full_children + tnode_child_length(tn) - 614 * tn->empty_children) >= inflate_threshold * 615 * tnode_child_length(tn) 616 * 617 */ 618 619 check_tnode(tn); 620 621 /* Keep root node larger */ 622 623 if (!node_parent((struct rt_trie_node *)tn)) { 624 inflate_threshold_use = inflate_threshold_root; 625 halve_threshold_use = halve_threshold_root; 626 } else { 627 inflate_threshold_use = inflate_threshold; 628 halve_threshold_use = halve_threshold; 629 } 630 631 max_work = MAX_WORK; 632 while ((tn->full_children > 0 && max_work-- && 633 50 * (tn->full_children + tnode_child_length(tn) 634 - tn->empty_children) 635 >= inflate_threshold_use * tnode_child_length(tn))) { 636 637 old_tn = tn; 638 tn = inflate(t, tn); 639 640 if (IS_ERR(tn)) { 641 tn = old_tn; 642 #ifdef CONFIG_IP_FIB_TRIE_STATS 643 t->stats.resize_node_skipped++; 644 #endif 645 break; 646 } 647 } 648 649 check_tnode(tn); 650 651 /* Return if at least one inflate is run */ 652 if (max_work != MAX_WORK) 653 return (struct rt_trie_node *) tn; 654 655 /* 656 * Halve as long as the number of empty children in this 657 * node is above threshold. 658 */ 659 660 max_work = MAX_WORK; 661 while (tn->bits > 1 && max_work-- && 662 100 * (tnode_child_length(tn) - tn->empty_children) < 663 halve_threshold_use * tnode_child_length(tn)) { 664 665 old_tn = tn; 666 tn = halve(t, tn); 667 if (IS_ERR(tn)) { 668 tn = old_tn; 669 #ifdef CONFIG_IP_FIB_TRIE_STATS 670 t->stats.resize_node_skipped++; 671 #endif 672 break; 673 } 674 } 675 676 677 /* Only one child remains */ 678 if (tn->empty_children == tnode_child_length(tn) - 1) { 679 one_child: 680 for (i = 0; i < tnode_child_length(tn); i++) { 681 struct rt_trie_node *n; 682 683 n = rtnl_dereference(tn->child[i]); 684 if (!n) 685 continue; 686 687 /* compress one level */ 688 689 node_set_parent(n, NULL); 690 tnode_free_safe(tn); 691 return n; 692 } 693 } 694 return (struct rt_trie_node *) tn; 695 } 696 697 698 static void tnode_clean_free(struct tnode *tn) 699 { 700 int i; 701 struct tnode *tofree; 702 703 for (i = 0; i < tnode_child_length(tn); i++) { 704 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 705 if (tofree) 706 tnode_free(tofree); 707 } 708 tnode_free(tn); 709 } 710 711 static struct tnode *inflate(struct trie *t, struct tnode *tn) 712 { 713 struct tnode *oldtnode = tn; 714 int olen = tnode_child_length(tn); 715 int i; 716 717 pr_debug("In inflate\n"); 718 719 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 720 721 if (!tn) 722 return ERR_PTR(-ENOMEM); 723 724 /* 725 * Preallocate and store tnodes before the actual work so we 726 * don't get into an inconsistent state if memory allocation 727 * fails. In case of failure we return the oldnode and inflate 728 * of tnode is ignored. 729 */ 730 731 for (i = 0; i < olen; i++) { 732 struct tnode *inode; 733 734 inode = (struct tnode *) tnode_get_child(oldtnode, i); 735 if (inode && 736 IS_TNODE(inode) && 737 inode->pos == oldtnode->pos + oldtnode->bits && 738 inode->bits > 1) { 739 struct tnode *left, *right; 740 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 741 742 left = tnode_new(inode->key&(~m), inode->pos + 1, 743 inode->bits - 1); 744 if (!left) 745 goto nomem; 746 747 right = tnode_new(inode->key|m, inode->pos + 1, 748 inode->bits - 1); 749 750 if (!right) { 751 tnode_free(left); 752 goto nomem; 753 } 754 755 put_child(t, tn, 2*i, (struct rt_trie_node *) left); 756 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right); 757 } 758 } 759 760 for (i = 0; i < olen; i++) { 761 struct tnode *inode; 762 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 763 struct tnode *left, *right; 764 int size, j; 765 766 /* An empty child */ 767 if (node == NULL) 768 continue; 769 770 /* A leaf or an internal node with skipped bits */ 771 772 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 773 tn->pos + tn->bits - 1) { 774 if (tkey_extract_bits(node->key, 775 oldtnode->pos + oldtnode->bits, 776 1) == 0) 777 put_child(t, tn, 2*i, node); 778 else 779 put_child(t, tn, 2*i+1, node); 780 continue; 781 } 782 783 /* An internal node with two children */ 784 inode = (struct tnode *) node; 785 786 if (inode->bits == 1) { 787 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0])); 788 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1])); 789 790 tnode_free_safe(inode); 791 continue; 792 } 793 794 /* An internal node with more than two children */ 795 796 /* We will replace this node 'inode' with two new 797 * ones, 'left' and 'right', each with half of the 798 * original children. The two new nodes will have 799 * a position one bit further down the key and this 800 * means that the "significant" part of their keys 801 * (see the discussion near the top of this file) 802 * will differ by one bit, which will be "0" in 803 * left's key and "1" in right's key. Since we are 804 * moving the key position by one step, the bit that 805 * we are moving away from - the bit at position 806 * (inode->pos) - is the one that will differ between 807 * left and right. So... we synthesize that bit in the 808 * two new keys. 809 * The mask 'm' below will be a single "one" bit at 810 * the position (inode->pos) 811 */ 812 813 /* Use the old key, but set the new significant 814 * bit to zero. 815 */ 816 817 left = (struct tnode *) tnode_get_child(tn, 2*i); 818 put_child(t, tn, 2*i, NULL); 819 820 BUG_ON(!left); 821 822 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 823 put_child(t, tn, 2*i+1, NULL); 824 825 BUG_ON(!right); 826 827 size = tnode_child_length(left); 828 for (j = 0; j < size; j++) { 829 put_child(t, left, j, rtnl_dereference(inode->child[j])); 830 put_child(t, right, j, rtnl_dereference(inode->child[j + size])); 831 } 832 put_child(t, tn, 2*i, resize(t, left)); 833 put_child(t, tn, 2*i+1, resize(t, right)); 834 835 tnode_free_safe(inode); 836 } 837 tnode_free_safe(oldtnode); 838 return tn; 839 nomem: 840 tnode_clean_free(tn); 841 return ERR_PTR(-ENOMEM); 842 } 843 844 static struct tnode *halve(struct trie *t, struct tnode *tn) 845 { 846 struct tnode *oldtnode = tn; 847 struct rt_trie_node *left, *right; 848 int i; 849 int olen = tnode_child_length(tn); 850 851 pr_debug("In halve\n"); 852 853 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 854 855 if (!tn) 856 return ERR_PTR(-ENOMEM); 857 858 /* 859 * Preallocate and store tnodes before the actual work so we 860 * don't get into an inconsistent state if memory allocation 861 * fails. In case of failure we return the oldnode and halve 862 * of tnode is ignored. 863 */ 864 865 for (i = 0; i < olen; i += 2) { 866 left = tnode_get_child(oldtnode, i); 867 right = tnode_get_child(oldtnode, i+1); 868 869 /* Two nonempty children */ 870 if (left && right) { 871 struct tnode *newn; 872 873 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 874 875 if (!newn) 876 goto nomem; 877 878 put_child(t, tn, i/2, (struct rt_trie_node *)newn); 879 } 880 881 } 882 883 for (i = 0; i < olen; i += 2) { 884 struct tnode *newBinNode; 885 886 left = tnode_get_child(oldtnode, i); 887 right = tnode_get_child(oldtnode, i+1); 888 889 /* At least one of the children is empty */ 890 if (left == NULL) { 891 if (right == NULL) /* Both are empty */ 892 continue; 893 put_child(t, tn, i/2, right); 894 continue; 895 } 896 897 if (right == NULL) { 898 put_child(t, tn, i/2, left); 899 continue; 900 } 901 902 /* Two nonempty children */ 903 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 904 put_child(t, tn, i/2, NULL); 905 put_child(t, newBinNode, 0, left); 906 put_child(t, newBinNode, 1, right); 907 put_child(t, tn, i/2, resize(t, newBinNode)); 908 } 909 tnode_free_safe(oldtnode); 910 return tn; 911 nomem: 912 tnode_clean_free(tn); 913 return ERR_PTR(-ENOMEM); 914 } 915 916 /* readside must use rcu_read_lock currently dump routines 917 via get_fa_head and dump */ 918 919 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 920 { 921 struct hlist_head *head = &l->list; 922 struct hlist_node *node; 923 struct leaf_info *li; 924 925 hlist_for_each_entry_rcu(li, node, head, hlist) 926 if (li->plen == plen) 927 return li; 928 929 return NULL; 930 } 931 932 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 933 { 934 struct leaf_info *li = find_leaf_info(l, plen); 935 936 if (!li) 937 return NULL; 938 939 return &li->falh; 940 } 941 942 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 943 { 944 struct leaf_info *li = NULL, *last = NULL; 945 struct hlist_node *node; 946 947 if (hlist_empty(head)) { 948 hlist_add_head_rcu(&new->hlist, head); 949 } else { 950 hlist_for_each_entry(li, node, head, hlist) { 951 if (new->plen > li->plen) 952 break; 953 954 last = li; 955 } 956 if (last) 957 hlist_add_after_rcu(&last->hlist, &new->hlist); 958 else 959 hlist_add_before_rcu(&new->hlist, &li->hlist); 960 } 961 } 962 963 /* rcu_read_lock needs to be hold by caller from readside */ 964 965 static struct leaf * 966 fib_find_node(struct trie *t, u32 key) 967 { 968 int pos; 969 struct tnode *tn; 970 struct rt_trie_node *n; 971 972 pos = 0; 973 n = rcu_dereference_rtnl(t->trie); 974 975 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 976 tn = (struct tnode *) n; 977 978 check_tnode(tn); 979 980 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 981 pos = tn->pos + tn->bits; 982 n = tnode_get_child_rcu(tn, 983 tkey_extract_bits(key, 984 tn->pos, 985 tn->bits)); 986 } else 987 break; 988 } 989 /* Case we have found a leaf. Compare prefixes */ 990 991 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 992 return (struct leaf *)n; 993 994 return NULL; 995 } 996 997 static void trie_rebalance(struct trie *t, struct tnode *tn) 998 { 999 int wasfull; 1000 t_key cindex, key; 1001 struct tnode *tp; 1002 1003 key = tn->key; 1004 1005 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 1006 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1007 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 1008 tn = (struct tnode *) resize(t, (struct tnode *)tn); 1009 1010 tnode_put_child_reorg((struct tnode *)tp, cindex, 1011 (struct rt_trie_node *)tn, wasfull); 1012 1013 tp = node_parent((struct rt_trie_node *) tn); 1014 if (!tp) 1015 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1016 1017 tnode_free_flush(); 1018 if (!tp) 1019 break; 1020 tn = tp; 1021 } 1022 1023 /* Handle last (top) tnode */ 1024 if (IS_TNODE(tn)) 1025 tn = (struct tnode *)resize(t, (struct tnode *)tn); 1026 1027 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1028 tnode_free_flush(); 1029 } 1030 1031 /* only used from updater-side */ 1032 1033 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1034 { 1035 int pos, newpos; 1036 struct tnode *tp = NULL, *tn = NULL; 1037 struct rt_trie_node *n; 1038 struct leaf *l; 1039 int missbit; 1040 struct list_head *fa_head = NULL; 1041 struct leaf_info *li; 1042 t_key cindex; 1043 1044 pos = 0; 1045 n = rtnl_dereference(t->trie); 1046 1047 /* If we point to NULL, stop. Either the tree is empty and we should 1048 * just put a new leaf in if, or we have reached an empty child slot, 1049 * and we should just put our new leaf in that. 1050 * If we point to a T_TNODE, check if it matches our key. Note that 1051 * a T_TNODE might be skipping any number of bits - its 'pos' need 1052 * not be the parent's 'pos'+'bits'! 1053 * 1054 * If it does match the current key, get pos/bits from it, extract 1055 * the index from our key, push the T_TNODE and walk the tree. 1056 * 1057 * If it doesn't, we have to replace it with a new T_TNODE. 1058 * 1059 * If we point to a T_LEAF, it might or might not have the same key 1060 * as we do. If it does, just change the value, update the T_LEAF's 1061 * value, and return it. 1062 * If it doesn't, we need to replace it with a T_TNODE. 1063 */ 1064 1065 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1066 tn = (struct tnode *) n; 1067 1068 check_tnode(tn); 1069 1070 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1071 tp = tn; 1072 pos = tn->pos + tn->bits; 1073 n = tnode_get_child(tn, 1074 tkey_extract_bits(key, 1075 tn->pos, 1076 tn->bits)); 1077 1078 BUG_ON(n && node_parent(n) != tn); 1079 } else 1080 break; 1081 } 1082 1083 /* 1084 * n ----> NULL, LEAF or TNODE 1085 * 1086 * tp is n's (parent) ----> NULL or TNODE 1087 */ 1088 1089 BUG_ON(tp && IS_LEAF(tp)); 1090 1091 /* Case 1: n is a leaf. Compare prefixes */ 1092 1093 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1094 l = (struct leaf *) n; 1095 li = leaf_info_new(plen); 1096 1097 if (!li) 1098 return NULL; 1099 1100 fa_head = &li->falh; 1101 insert_leaf_info(&l->list, li); 1102 goto done; 1103 } 1104 l = leaf_new(); 1105 1106 if (!l) 1107 return NULL; 1108 1109 l->key = key; 1110 li = leaf_info_new(plen); 1111 1112 if (!li) { 1113 free_leaf(l); 1114 return NULL; 1115 } 1116 1117 fa_head = &li->falh; 1118 insert_leaf_info(&l->list, li); 1119 1120 if (t->trie && n == NULL) { 1121 /* Case 2: n is NULL, and will just insert a new leaf */ 1122 1123 node_set_parent((struct rt_trie_node *)l, tp); 1124 1125 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1126 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l); 1127 } else { 1128 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1129 /* 1130 * Add a new tnode here 1131 * first tnode need some special handling 1132 */ 1133 1134 if (tp) 1135 pos = tp->pos+tp->bits; 1136 else 1137 pos = 0; 1138 1139 if (n) { 1140 newpos = tkey_mismatch(key, pos, n->key); 1141 tn = tnode_new(n->key, newpos, 1); 1142 } else { 1143 newpos = 0; 1144 tn = tnode_new(key, newpos, 1); /* First tnode */ 1145 } 1146 1147 if (!tn) { 1148 free_leaf_info(li); 1149 free_leaf(l); 1150 return NULL; 1151 } 1152 1153 node_set_parent((struct rt_trie_node *)tn, tp); 1154 1155 missbit = tkey_extract_bits(key, newpos, 1); 1156 put_child(t, tn, missbit, (struct rt_trie_node *)l); 1157 put_child(t, tn, 1-missbit, n); 1158 1159 if (tp) { 1160 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1161 put_child(t, (struct tnode *)tp, cindex, 1162 (struct rt_trie_node *)tn); 1163 } else { 1164 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1165 tp = tn; 1166 } 1167 } 1168 1169 if (tp && tp->pos + tp->bits > 32) 1170 pr_warning("fib_trie" 1171 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1172 tp, tp->pos, tp->bits, key, plen); 1173 1174 /* Rebalance the trie */ 1175 1176 trie_rebalance(t, tp); 1177 done: 1178 return fa_head; 1179 } 1180 1181 /* 1182 * Caller must hold RTNL. 1183 */ 1184 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1185 { 1186 struct trie *t = (struct trie *) tb->tb_data; 1187 struct fib_alias *fa, *new_fa; 1188 struct list_head *fa_head = NULL; 1189 struct fib_info *fi; 1190 int plen = cfg->fc_dst_len; 1191 u8 tos = cfg->fc_tos; 1192 u32 key, mask; 1193 int err; 1194 struct leaf *l; 1195 1196 if (plen > 32) 1197 return -EINVAL; 1198 1199 key = ntohl(cfg->fc_dst); 1200 1201 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1202 1203 mask = ntohl(inet_make_mask(plen)); 1204 1205 if (key & ~mask) 1206 return -EINVAL; 1207 1208 key = key & mask; 1209 1210 fi = fib_create_info(cfg); 1211 if (IS_ERR(fi)) { 1212 err = PTR_ERR(fi); 1213 goto err; 1214 } 1215 1216 l = fib_find_node(t, key); 1217 fa = NULL; 1218 1219 if (l) { 1220 fa_head = get_fa_head(l, plen); 1221 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1222 } 1223 1224 /* Now fa, if non-NULL, points to the first fib alias 1225 * with the same keys [prefix,tos,priority], if such key already 1226 * exists or to the node before which we will insert new one. 1227 * 1228 * If fa is NULL, we will need to allocate a new one and 1229 * insert to the head of f. 1230 * 1231 * If f is NULL, no fib node matched the destination key 1232 * and we need to allocate a new one of those as well. 1233 */ 1234 1235 if (fa && fa->fa_tos == tos && 1236 fa->fa_info->fib_priority == fi->fib_priority) { 1237 struct fib_alias *fa_first, *fa_match; 1238 1239 err = -EEXIST; 1240 if (cfg->fc_nlflags & NLM_F_EXCL) 1241 goto out; 1242 1243 /* We have 2 goals: 1244 * 1. Find exact match for type, scope, fib_info to avoid 1245 * duplicate routes 1246 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1247 */ 1248 fa_match = NULL; 1249 fa_first = fa; 1250 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1251 list_for_each_entry_continue(fa, fa_head, fa_list) { 1252 if (fa->fa_tos != tos) 1253 break; 1254 if (fa->fa_info->fib_priority != fi->fib_priority) 1255 break; 1256 if (fa->fa_type == cfg->fc_type && 1257 fa->fa_info == fi) { 1258 fa_match = fa; 1259 break; 1260 } 1261 } 1262 1263 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1264 struct fib_info *fi_drop; 1265 u8 state; 1266 1267 fa = fa_first; 1268 if (fa_match) { 1269 if (fa == fa_match) 1270 err = 0; 1271 goto out; 1272 } 1273 err = -ENOBUFS; 1274 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1275 if (new_fa == NULL) 1276 goto out; 1277 1278 fi_drop = fa->fa_info; 1279 new_fa->fa_tos = fa->fa_tos; 1280 new_fa->fa_info = fi; 1281 new_fa->fa_type = cfg->fc_type; 1282 state = fa->fa_state; 1283 new_fa->fa_state = state & ~FA_S_ACCESSED; 1284 1285 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1286 alias_free_mem_rcu(fa); 1287 1288 fib_release_info(fi_drop); 1289 if (state & FA_S_ACCESSED) 1290 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1291 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1292 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1293 1294 goto succeeded; 1295 } 1296 /* Error if we find a perfect match which 1297 * uses the same scope, type, and nexthop 1298 * information. 1299 */ 1300 if (fa_match) 1301 goto out; 1302 1303 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1304 fa = fa_first; 1305 } 1306 err = -ENOENT; 1307 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1308 goto out; 1309 1310 err = -ENOBUFS; 1311 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1312 if (new_fa == NULL) 1313 goto out; 1314 1315 new_fa->fa_info = fi; 1316 new_fa->fa_tos = tos; 1317 new_fa->fa_type = cfg->fc_type; 1318 new_fa->fa_state = 0; 1319 /* 1320 * Insert new entry to the list. 1321 */ 1322 1323 if (!fa_head) { 1324 fa_head = fib_insert_node(t, key, plen); 1325 if (unlikely(!fa_head)) { 1326 err = -ENOMEM; 1327 goto out_free_new_fa; 1328 } 1329 } 1330 1331 if (!plen) 1332 tb->tb_num_default++; 1333 1334 list_add_tail_rcu(&new_fa->fa_list, 1335 (fa ? &fa->fa_list : fa_head)); 1336 1337 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1338 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1339 &cfg->fc_nlinfo, 0); 1340 succeeded: 1341 return 0; 1342 1343 out_free_new_fa: 1344 kmem_cache_free(fn_alias_kmem, new_fa); 1345 out: 1346 fib_release_info(fi); 1347 err: 1348 return err; 1349 } 1350 1351 /* should be called with rcu_read_lock */ 1352 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1353 t_key key, const struct flowi4 *flp, 1354 struct fib_result *res, int fib_flags) 1355 { 1356 struct leaf_info *li; 1357 struct hlist_head *hhead = &l->list; 1358 struct hlist_node *node; 1359 1360 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1361 struct fib_alias *fa; 1362 int plen = li->plen; 1363 __be32 mask = inet_make_mask(plen); 1364 1365 if (l->key != (key & ntohl(mask))) 1366 continue; 1367 1368 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1369 struct fib_info *fi = fa->fa_info; 1370 int nhsel, err; 1371 1372 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1373 continue; 1374 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1375 continue; 1376 fib_alias_accessed(fa); 1377 err = fib_props[fa->fa_type].error; 1378 if (err) { 1379 #ifdef CONFIG_IP_FIB_TRIE_STATS 1380 t->stats.semantic_match_passed++; 1381 #endif 1382 return err; 1383 } 1384 if (fi->fib_flags & RTNH_F_DEAD) 1385 continue; 1386 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1387 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1388 1389 if (nh->nh_flags & RTNH_F_DEAD) 1390 continue; 1391 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1392 continue; 1393 1394 #ifdef CONFIG_IP_FIB_TRIE_STATS 1395 t->stats.semantic_match_passed++; 1396 #endif 1397 res->prefixlen = plen; 1398 res->nh_sel = nhsel; 1399 res->type = fa->fa_type; 1400 res->scope = fa->fa_info->fib_scope; 1401 res->fi = fi; 1402 res->table = tb; 1403 res->fa_head = &li->falh; 1404 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1405 atomic_inc(&res->fi->fib_clntref); 1406 return 0; 1407 } 1408 } 1409 1410 #ifdef CONFIG_IP_FIB_TRIE_STATS 1411 t->stats.semantic_match_miss++; 1412 #endif 1413 } 1414 1415 return 1; 1416 } 1417 1418 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1419 struct fib_result *res, int fib_flags) 1420 { 1421 struct trie *t = (struct trie *) tb->tb_data; 1422 int ret; 1423 struct rt_trie_node *n; 1424 struct tnode *pn; 1425 unsigned int pos, bits; 1426 t_key key = ntohl(flp->daddr); 1427 unsigned int chopped_off; 1428 t_key cindex = 0; 1429 unsigned int current_prefix_length = KEYLENGTH; 1430 struct tnode *cn; 1431 t_key pref_mismatch; 1432 1433 rcu_read_lock(); 1434 1435 n = rcu_dereference(t->trie); 1436 if (!n) 1437 goto failed; 1438 1439 #ifdef CONFIG_IP_FIB_TRIE_STATS 1440 t->stats.gets++; 1441 #endif 1442 1443 /* Just a leaf? */ 1444 if (IS_LEAF(n)) { 1445 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1446 goto found; 1447 } 1448 1449 pn = (struct tnode *) n; 1450 chopped_off = 0; 1451 1452 while (pn) { 1453 pos = pn->pos; 1454 bits = pn->bits; 1455 1456 if (!chopped_off) 1457 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1458 pos, bits); 1459 1460 n = tnode_get_child_rcu(pn, cindex); 1461 1462 if (n == NULL) { 1463 #ifdef CONFIG_IP_FIB_TRIE_STATS 1464 t->stats.null_node_hit++; 1465 #endif 1466 goto backtrace; 1467 } 1468 1469 if (IS_LEAF(n)) { 1470 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1471 if (ret > 0) 1472 goto backtrace; 1473 goto found; 1474 } 1475 1476 cn = (struct tnode *)n; 1477 1478 /* 1479 * It's a tnode, and we can do some extra checks here if we 1480 * like, to avoid descending into a dead-end branch. 1481 * This tnode is in the parent's child array at index 1482 * key[p_pos..p_pos+p_bits] but potentially with some bits 1483 * chopped off, so in reality the index may be just a 1484 * subprefix, padded with zero at the end. 1485 * We can also take a look at any skipped bits in this 1486 * tnode - everything up to p_pos is supposed to be ok, 1487 * and the non-chopped bits of the index (se previous 1488 * paragraph) are also guaranteed ok, but the rest is 1489 * considered unknown. 1490 * 1491 * The skipped bits are key[pos+bits..cn->pos]. 1492 */ 1493 1494 /* If current_prefix_length < pos+bits, we are already doing 1495 * actual prefix matching, which means everything from 1496 * pos+(bits-chopped_off) onward must be zero along some 1497 * branch of this subtree - otherwise there is *no* valid 1498 * prefix present. Here we can only check the skipped 1499 * bits. Remember, since we have already indexed into the 1500 * parent's child array, we know that the bits we chopped of 1501 * *are* zero. 1502 */ 1503 1504 /* NOTA BENE: Checking only skipped bits 1505 for the new node here */ 1506 1507 if (current_prefix_length < pos+bits) { 1508 if (tkey_extract_bits(cn->key, current_prefix_length, 1509 cn->pos - current_prefix_length) 1510 || !(cn->child[0])) 1511 goto backtrace; 1512 } 1513 1514 /* 1515 * If chopped_off=0, the index is fully validated and we 1516 * only need to look at the skipped bits for this, the new, 1517 * tnode. What we actually want to do is to find out if 1518 * these skipped bits match our key perfectly, or if we will 1519 * have to count on finding a matching prefix further down, 1520 * because if we do, we would like to have some way of 1521 * verifying the existence of such a prefix at this point. 1522 */ 1523 1524 /* The only thing we can do at this point is to verify that 1525 * any such matching prefix can indeed be a prefix to our 1526 * key, and if the bits in the node we are inspecting that 1527 * do not match our key are not ZERO, this cannot be true. 1528 * Thus, find out where there is a mismatch (before cn->pos) 1529 * and verify that all the mismatching bits are zero in the 1530 * new tnode's key. 1531 */ 1532 1533 /* 1534 * Note: We aren't very concerned about the piece of 1535 * the key that precede pn->pos+pn->bits, since these 1536 * have already been checked. The bits after cn->pos 1537 * aren't checked since these are by definition 1538 * "unknown" at this point. Thus, what we want to see 1539 * is if we are about to enter the "prefix matching" 1540 * state, and in that case verify that the skipped 1541 * bits that will prevail throughout this subtree are 1542 * zero, as they have to be if we are to find a 1543 * matching prefix. 1544 */ 1545 1546 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1547 1548 /* 1549 * In short: If skipped bits in this node do not match 1550 * the search key, enter the "prefix matching" 1551 * state.directly. 1552 */ 1553 if (pref_mismatch) { 1554 int mp = KEYLENGTH - fls(pref_mismatch); 1555 1556 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1557 goto backtrace; 1558 1559 if (current_prefix_length >= cn->pos) 1560 current_prefix_length = mp; 1561 } 1562 1563 pn = (struct tnode *)n; /* Descend */ 1564 chopped_off = 0; 1565 continue; 1566 1567 backtrace: 1568 chopped_off++; 1569 1570 /* As zero don't change the child key (cindex) */ 1571 while ((chopped_off <= pn->bits) 1572 && !(cindex & (1<<(chopped_off-1)))) 1573 chopped_off++; 1574 1575 /* Decrease current_... with bits chopped off */ 1576 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1577 current_prefix_length = pn->pos + pn->bits 1578 - chopped_off; 1579 1580 /* 1581 * Either we do the actual chop off according or if we have 1582 * chopped off all bits in this tnode walk up to our parent. 1583 */ 1584 1585 if (chopped_off <= pn->bits) { 1586 cindex &= ~(1 << (chopped_off-1)); 1587 } else { 1588 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1589 if (!parent) 1590 goto failed; 1591 1592 /* Get Child's index */ 1593 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1594 pn = parent; 1595 chopped_off = 0; 1596 1597 #ifdef CONFIG_IP_FIB_TRIE_STATS 1598 t->stats.backtrack++; 1599 #endif 1600 goto backtrace; 1601 } 1602 } 1603 failed: 1604 ret = 1; 1605 found: 1606 rcu_read_unlock(); 1607 return ret; 1608 } 1609 1610 /* 1611 * Remove the leaf and return parent. 1612 */ 1613 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1614 { 1615 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1616 1617 pr_debug("entering trie_leaf_remove(%p)\n", l); 1618 1619 if (tp) { 1620 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1621 put_child(t, (struct tnode *)tp, cindex, NULL); 1622 trie_rebalance(t, tp); 1623 } else 1624 rcu_assign_pointer(t->trie, NULL); 1625 1626 free_leaf(l); 1627 } 1628 1629 /* 1630 * Caller must hold RTNL. 1631 */ 1632 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1633 { 1634 struct trie *t = (struct trie *) tb->tb_data; 1635 u32 key, mask; 1636 int plen = cfg->fc_dst_len; 1637 u8 tos = cfg->fc_tos; 1638 struct fib_alias *fa, *fa_to_delete; 1639 struct list_head *fa_head; 1640 struct leaf *l; 1641 struct leaf_info *li; 1642 1643 if (plen > 32) 1644 return -EINVAL; 1645 1646 key = ntohl(cfg->fc_dst); 1647 mask = ntohl(inet_make_mask(plen)); 1648 1649 if (key & ~mask) 1650 return -EINVAL; 1651 1652 key = key & mask; 1653 l = fib_find_node(t, key); 1654 1655 if (!l) 1656 return -ESRCH; 1657 1658 fa_head = get_fa_head(l, plen); 1659 fa = fib_find_alias(fa_head, tos, 0); 1660 1661 if (!fa) 1662 return -ESRCH; 1663 1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1665 1666 fa_to_delete = NULL; 1667 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1668 list_for_each_entry_continue(fa, fa_head, fa_list) { 1669 struct fib_info *fi = fa->fa_info; 1670 1671 if (fa->fa_tos != tos) 1672 break; 1673 1674 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1675 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1676 fa->fa_info->fib_scope == cfg->fc_scope) && 1677 (!cfg->fc_prefsrc || 1678 fi->fib_prefsrc == cfg->fc_prefsrc) && 1679 (!cfg->fc_protocol || 1680 fi->fib_protocol == cfg->fc_protocol) && 1681 fib_nh_match(cfg, fi) == 0) { 1682 fa_to_delete = fa; 1683 break; 1684 } 1685 } 1686 1687 if (!fa_to_delete) 1688 return -ESRCH; 1689 1690 fa = fa_to_delete; 1691 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1692 &cfg->fc_nlinfo, 0); 1693 1694 l = fib_find_node(t, key); 1695 li = find_leaf_info(l, plen); 1696 1697 list_del_rcu(&fa->fa_list); 1698 1699 if (!plen) 1700 tb->tb_num_default--; 1701 1702 if (list_empty(fa_head)) { 1703 hlist_del_rcu(&li->hlist); 1704 free_leaf_info(li); 1705 } 1706 1707 if (hlist_empty(&l->list)) 1708 trie_leaf_remove(t, l); 1709 1710 if (fa->fa_state & FA_S_ACCESSED) 1711 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); 1712 1713 fib_release_info(fa->fa_info); 1714 alias_free_mem_rcu(fa); 1715 return 0; 1716 } 1717 1718 static int trie_flush_list(struct list_head *head) 1719 { 1720 struct fib_alias *fa, *fa_node; 1721 int found = 0; 1722 1723 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1724 struct fib_info *fi = fa->fa_info; 1725 1726 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1727 list_del_rcu(&fa->fa_list); 1728 fib_release_info(fa->fa_info); 1729 alias_free_mem_rcu(fa); 1730 found++; 1731 } 1732 } 1733 return found; 1734 } 1735 1736 static int trie_flush_leaf(struct leaf *l) 1737 { 1738 int found = 0; 1739 struct hlist_head *lih = &l->list; 1740 struct hlist_node *node, *tmp; 1741 struct leaf_info *li = NULL; 1742 1743 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1744 found += trie_flush_list(&li->falh); 1745 1746 if (list_empty(&li->falh)) { 1747 hlist_del_rcu(&li->hlist); 1748 free_leaf_info(li); 1749 } 1750 } 1751 return found; 1752 } 1753 1754 /* 1755 * Scan for the next right leaf starting at node p->child[idx] 1756 * Since we have back pointer, no recursion necessary. 1757 */ 1758 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1759 { 1760 do { 1761 t_key idx; 1762 1763 if (c) 1764 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1765 else 1766 idx = 0; 1767 1768 while (idx < 1u << p->bits) { 1769 c = tnode_get_child_rcu(p, idx++); 1770 if (!c) 1771 continue; 1772 1773 if (IS_LEAF(c)) { 1774 prefetch(rcu_dereference_rtnl(p->child[idx])); 1775 return (struct leaf *) c; 1776 } 1777 1778 /* Rescan start scanning in new node */ 1779 p = (struct tnode *) c; 1780 idx = 0; 1781 } 1782 1783 /* Node empty, walk back up to parent */ 1784 c = (struct rt_trie_node *) p; 1785 } while ((p = node_parent_rcu(c)) != NULL); 1786 1787 return NULL; /* Root of trie */ 1788 } 1789 1790 static struct leaf *trie_firstleaf(struct trie *t) 1791 { 1792 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1793 1794 if (!n) 1795 return NULL; 1796 1797 if (IS_LEAF(n)) /* trie is just a leaf */ 1798 return (struct leaf *) n; 1799 1800 return leaf_walk_rcu(n, NULL); 1801 } 1802 1803 static struct leaf *trie_nextleaf(struct leaf *l) 1804 { 1805 struct rt_trie_node *c = (struct rt_trie_node *) l; 1806 struct tnode *p = node_parent_rcu(c); 1807 1808 if (!p) 1809 return NULL; /* trie with just one leaf */ 1810 1811 return leaf_walk_rcu(p, c); 1812 } 1813 1814 static struct leaf *trie_leafindex(struct trie *t, int index) 1815 { 1816 struct leaf *l = trie_firstleaf(t); 1817 1818 while (l && index-- > 0) 1819 l = trie_nextleaf(l); 1820 1821 return l; 1822 } 1823 1824 1825 /* 1826 * Caller must hold RTNL. 1827 */ 1828 int fib_table_flush(struct fib_table *tb) 1829 { 1830 struct trie *t = (struct trie *) tb->tb_data; 1831 struct leaf *l, *ll = NULL; 1832 int found = 0; 1833 1834 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1835 found += trie_flush_leaf(l); 1836 1837 if (ll && hlist_empty(&ll->list)) 1838 trie_leaf_remove(t, ll); 1839 ll = l; 1840 } 1841 1842 if (ll && hlist_empty(&ll->list)) 1843 trie_leaf_remove(t, ll); 1844 1845 pr_debug("trie_flush found=%d\n", found); 1846 return found; 1847 } 1848 1849 void fib_free_table(struct fib_table *tb) 1850 { 1851 kfree(tb); 1852 } 1853 1854 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1855 struct fib_table *tb, 1856 struct sk_buff *skb, struct netlink_callback *cb) 1857 { 1858 int i, s_i; 1859 struct fib_alias *fa; 1860 __be32 xkey = htonl(key); 1861 1862 s_i = cb->args[5]; 1863 i = 0; 1864 1865 /* rcu_read_lock is hold by caller */ 1866 1867 list_for_each_entry_rcu(fa, fah, fa_list) { 1868 if (i < s_i) { 1869 i++; 1870 continue; 1871 } 1872 1873 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, 1874 cb->nlh->nlmsg_seq, 1875 RTM_NEWROUTE, 1876 tb->tb_id, 1877 fa->fa_type, 1878 xkey, 1879 plen, 1880 fa->fa_tos, 1881 fa->fa_info, NLM_F_MULTI) < 0) { 1882 cb->args[5] = i; 1883 return -1; 1884 } 1885 i++; 1886 } 1887 cb->args[5] = i; 1888 return skb->len; 1889 } 1890 1891 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1892 struct sk_buff *skb, struct netlink_callback *cb) 1893 { 1894 struct leaf_info *li; 1895 struct hlist_node *node; 1896 int i, s_i; 1897 1898 s_i = cb->args[4]; 1899 i = 0; 1900 1901 /* rcu_read_lock is hold by caller */ 1902 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1903 if (i < s_i) { 1904 i++; 1905 continue; 1906 } 1907 1908 if (i > s_i) 1909 cb->args[5] = 0; 1910 1911 if (list_empty(&li->falh)) 1912 continue; 1913 1914 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1915 cb->args[4] = i; 1916 return -1; 1917 } 1918 i++; 1919 } 1920 1921 cb->args[4] = i; 1922 return skb->len; 1923 } 1924 1925 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1926 struct netlink_callback *cb) 1927 { 1928 struct leaf *l; 1929 struct trie *t = (struct trie *) tb->tb_data; 1930 t_key key = cb->args[2]; 1931 int count = cb->args[3]; 1932 1933 rcu_read_lock(); 1934 /* Dump starting at last key. 1935 * Note: 0.0.0.0/0 (ie default) is first key. 1936 */ 1937 if (count == 0) 1938 l = trie_firstleaf(t); 1939 else { 1940 /* Normally, continue from last key, but if that is missing 1941 * fallback to using slow rescan 1942 */ 1943 l = fib_find_node(t, key); 1944 if (!l) 1945 l = trie_leafindex(t, count); 1946 } 1947 1948 while (l) { 1949 cb->args[2] = l->key; 1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1951 cb->args[3] = count; 1952 rcu_read_unlock(); 1953 return -1; 1954 } 1955 1956 ++count; 1957 l = trie_nextleaf(l); 1958 memset(&cb->args[4], 0, 1959 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1960 } 1961 cb->args[3] = count; 1962 rcu_read_unlock(); 1963 1964 return skb->len; 1965 } 1966 1967 void __init fib_trie_init(void) 1968 { 1969 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1970 sizeof(struct fib_alias), 1971 0, SLAB_PANIC, NULL); 1972 1973 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1974 max(sizeof(struct leaf), 1975 sizeof(struct leaf_info)), 1976 0, SLAB_PANIC, NULL); 1977 } 1978 1979 1980 struct fib_table *fib_trie_table(u32 id) 1981 { 1982 struct fib_table *tb; 1983 struct trie *t; 1984 1985 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1986 GFP_KERNEL); 1987 if (tb == NULL) 1988 return NULL; 1989 1990 tb->tb_id = id; 1991 tb->tb_default = -1; 1992 tb->tb_num_default = 0; 1993 1994 t = (struct trie *) tb->tb_data; 1995 memset(t, 0, sizeof(*t)); 1996 1997 return tb; 1998 } 1999 2000 #ifdef CONFIG_PROC_FS 2001 /* Depth first Trie walk iterator */ 2002 struct fib_trie_iter { 2003 struct seq_net_private p; 2004 struct fib_table *tb; 2005 struct tnode *tnode; 2006 unsigned int index; 2007 unsigned int depth; 2008 }; 2009 2010 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2011 { 2012 struct tnode *tn = iter->tnode; 2013 unsigned int cindex = iter->index; 2014 struct tnode *p; 2015 2016 /* A single entry routing table */ 2017 if (!tn) 2018 return NULL; 2019 2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2021 iter->tnode, iter->index, iter->depth); 2022 rescan: 2023 while (cindex < (1<<tn->bits)) { 2024 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2025 2026 if (n) { 2027 if (IS_LEAF(n)) { 2028 iter->tnode = tn; 2029 iter->index = cindex + 1; 2030 } else { 2031 /* push down one level */ 2032 iter->tnode = (struct tnode *) n; 2033 iter->index = 0; 2034 ++iter->depth; 2035 } 2036 return n; 2037 } 2038 2039 ++cindex; 2040 } 2041 2042 /* Current node exhausted, pop back up */ 2043 p = node_parent_rcu((struct rt_trie_node *)tn); 2044 if (p) { 2045 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2046 tn = p; 2047 --iter->depth; 2048 goto rescan; 2049 } 2050 2051 /* got root? */ 2052 return NULL; 2053 } 2054 2055 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2056 struct trie *t) 2057 { 2058 struct rt_trie_node *n; 2059 2060 if (!t) 2061 return NULL; 2062 2063 n = rcu_dereference(t->trie); 2064 if (!n) 2065 return NULL; 2066 2067 if (IS_TNODE(n)) { 2068 iter->tnode = (struct tnode *) n; 2069 iter->index = 0; 2070 iter->depth = 1; 2071 } else { 2072 iter->tnode = NULL; 2073 iter->index = 0; 2074 iter->depth = 0; 2075 } 2076 2077 return n; 2078 } 2079 2080 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2081 { 2082 struct rt_trie_node *n; 2083 struct fib_trie_iter iter; 2084 2085 memset(s, 0, sizeof(*s)); 2086 2087 rcu_read_lock(); 2088 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2089 if (IS_LEAF(n)) { 2090 struct leaf *l = (struct leaf *)n; 2091 struct leaf_info *li; 2092 struct hlist_node *tmp; 2093 2094 s->leaves++; 2095 s->totdepth += iter.depth; 2096 if (iter.depth > s->maxdepth) 2097 s->maxdepth = iter.depth; 2098 2099 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2100 ++s->prefixes; 2101 } else { 2102 const struct tnode *tn = (const struct tnode *) n; 2103 int i; 2104 2105 s->tnodes++; 2106 if (tn->bits < MAX_STAT_DEPTH) 2107 s->nodesizes[tn->bits]++; 2108 2109 for (i = 0; i < (1<<tn->bits); i++) 2110 if (!tn->child[i]) 2111 s->nullpointers++; 2112 } 2113 } 2114 rcu_read_unlock(); 2115 } 2116 2117 /* 2118 * This outputs /proc/net/fib_triestats 2119 */ 2120 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2121 { 2122 unsigned int i, max, pointers, bytes, avdepth; 2123 2124 if (stat->leaves) 2125 avdepth = stat->totdepth*100 / stat->leaves; 2126 else 2127 avdepth = 0; 2128 2129 seq_printf(seq, "\tAver depth: %u.%02d\n", 2130 avdepth / 100, avdepth % 100); 2131 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2132 2133 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2134 bytes = sizeof(struct leaf) * stat->leaves; 2135 2136 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2137 bytes += sizeof(struct leaf_info) * stat->prefixes; 2138 2139 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2140 bytes += sizeof(struct tnode) * stat->tnodes; 2141 2142 max = MAX_STAT_DEPTH; 2143 while (max > 0 && stat->nodesizes[max-1] == 0) 2144 max--; 2145 2146 pointers = 0; 2147 for (i = 1; i <= max; i++) 2148 if (stat->nodesizes[i] != 0) { 2149 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2150 pointers += (1<<i) * stat->nodesizes[i]; 2151 } 2152 seq_putc(seq, '\n'); 2153 seq_printf(seq, "\tPointers: %u\n", pointers); 2154 2155 bytes += sizeof(struct rt_trie_node *) * pointers; 2156 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2157 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2158 } 2159 2160 #ifdef CONFIG_IP_FIB_TRIE_STATS 2161 static void trie_show_usage(struct seq_file *seq, 2162 const struct trie_use_stats *stats) 2163 { 2164 seq_printf(seq, "\nCounters:\n---------\n"); 2165 seq_printf(seq, "gets = %u\n", stats->gets); 2166 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2167 seq_printf(seq, "semantic match passed = %u\n", 2168 stats->semantic_match_passed); 2169 seq_printf(seq, "semantic match miss = %u\n", 2170 stats->semantic_match_miss); 2171 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2172 seq_printf(seq, "skipped node resize = %u\n\n", 2173 stats->resize_node_skipped); 2174 } 2175 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2176 2177 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2178 { 2179 if (tb->tb_id == RT_TABLE_LOCAL) 2180 seq_puts(seq, "Local:\n"); 2181 else if (tb->tb_id == RT_TABLE_MAIN) 2182 seq_puts(seq, "Main:\n"); 2183 else 2184 seq_printf(seq, "Id %d:\n", tb->tb_id); 2185 } 2186 2187 2188 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2189 { 2190 struct net *net = (struct net *)seq->private; 2191 unsigned int h; 2192 2193 seq_printf(seq, 2194 "Basic info: size of leaf:" 2195 " %Zd bytes, size of tnode: %Zd bytes.\n", 2196 sizeof(struct leaf), sizeof(struct tnode)); 2197 2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2200 struct hlist_node *node; 2201 struct fib_table *tb; 2202 2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2204 struct trie *t = (struct trie *) tb->tb_data; 2205 struct trie_stat stat; 2206 2207 if (!t) 2208 continue; 2209 2210 fib_table_print(seq, tb); 2211 2212 trie_collect_stats(t, &stat); 2213 trie_show_stats(seq, &stat); 2214 #ifdef CONFIG_IP_FIB_TRIE_STATS 2215 trie_show_usage(seq, &t->stats); 2216 #endif 2217 } 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2224 { 2225 return single_open_net(inode, file, fib_triestat_seq_show); 2226 } 2227 2228 static const struct file_operations fib_triestat_fops = { 2229 .owner = THIS_MODULE, 2230 .open = fib_triestat_seq_open, 2231 .read = seq_read, 2232 .llseek = seq_lseek, 2233 .release = single_release_net, 2234 }; 2235 2236 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2237 { 2238 struct fib_trie_iter *iter = seq->private; 2239 struct net *net = seq_file_net(seq); 2240 loff_t idx = 0; 2241 unsigned int h; 2242 2243 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2244 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2245 struct hlist_node *node; 2246 struct fib_table *tb; 2247 2248 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2249 struct rt_trie_node *n; 2250 2251 for (n = fib_trie_get_first(iter, 2252 (struct trie *) tb->tb_data); 2253 n; n = fib_trie_get_next(iter)) 2254 if (pos == idx++) { 2255 iter->tb = tb; 2256 return n; 2257 } 2258 } 2259 } 2260 2261 return NULL; 2262 } 2263 2264 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2265 __acquires(RCU) 2266 { 2267 rcu_read_lock(); 2268 return fib_trie_get_idx(seq, *pos); 2269 } 2270 2271 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2272 { 2273 struct fib_trie_iter *iter = seq->private; 2274 struct net *net = seq_file_net(seq); 2275 struct fib_table *tb = iter->tb; 2276 struct hlist_node *tb_node; 2277 unsigned int h; 2278 struct rt_trie_node *n; 2279 2280 ++*pos; 2281 /* next node in same table */ 2282 n = fib_trie_get_next(iter); 2283 if (n) 2284 return n; 2285 2286 /* walk rest of this hash chain */ 2287 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2288 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2289 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2290 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2291 if (n) 2292 goto found; 2293 } 2294 2295 /* new hash chain */ 2296 while (++h < FIB_TABLE_HASHSZ) { 2297 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2298 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2299 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2300 if (n) 2301 goto found; 2302 } 2303 } 2304 return NULL; 2305 2306 found: 2307 iter->tb = tb; 2308 return n; 2309 } 2310 2311 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2312 __releases(RCU) 2313 { 2314 rcu_read_unlock(); 2315 } 2316 2317 static void seq_indent(struct seq_file *seq, int n) 2318 { 2319 while (n-- > 0) 2320 seq_puts(seq, " "); 2321 } 2322 2323 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2324 { 2325 switch (s) { 2326 case RT_SCOPE_UNIVERSE: return "universe"; 2327 case RT_SCOPE_SITE: return "site"; 2328 case RT_SCOPE_LINK: return "link"; 2329 case RT_SCOPE_HOST: return "host"; 2330 case RT_SCOPE_NOWHERE: return "nowhere"; 2331 default: 2332 snprintf(buf, len, "scope=%d", s); 2333 return buf; 2334 } 2335 } 2336 2337 static const char *const rtn_type_names[__RTN_MAX] = { 2338 [RTN_UNSPEC] = "UNSPEC", 2339 [RTN_UNICAST] = "UNICAST", 2340 [RTN_LOCAL] = "LOCAL", 2341 [RTN_BROADCAST] = "BROADCAST", 2342 [RTN_ANYCAST] = "ANYCAST", 2343 [RTN_MULTICAST] = "MULTICAST", 2344 [RTN_BLACKHOLE] = "BLACKHOLE", 2345 [RTN_UNREACHABLE] = "UNREACHABLE", 2346 [RTN_PROHIBIT] = "PROHIBIT", 2347 [RTN_THROW] = "THROW", 2348 [RTN_NAT] = "NAT", 2349 [RTN_XRESOLVE] = "XRESOLVE", 2350 }; 2351 2352 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2353 { 2354 if (t < __RTN_MAX && rtn_type_names[t]) 2355 return rtn_type_names[t]; 2356 snprintf(buf, len, "type %u", t); 2357 return buf; 2358 } 2359 2360 /* Pretty print the trie */ 2361 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2362 { 2363 const struct fib_trie_iter *iter = seq->private; 2364 struct rt_trie_node *n = v; 2365 2366 if (!node_parent_rcu(n)) 2367 fib_table_print(seq, iter->tb); 2368 2369 if (IS_TNODE(n)) { 2370 struct tnode *tn = (struct tnode *) n; 2371 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2372 2373 seq_indent(seq, iter->depth-1); 2374 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2375 &prf, tn->pos, tn->bits, tn->full_children, 2376 tn->empty_children); 2377 2378 } else { 2379 struct leaf *l = (struct leaf *) n; 2380 struct leaf_info *li; 2381 struct hlist_node *node; 2382 __be32 val = htonl(l->key); 2383 2384 seq_indent(seq, iter->depth); 2385 seq_printf(seq, " |-- %pI4\n", &val); 2386 2387 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2388 struct fib_alias *fa; 2389 2390 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2391 char buf1[32], buf2[32]; 2392 2393 seq_indent(seq, iter->depth+1); 2394 seq_printf(seq, " /%d %s %s", li->plen, 2395 rtn_scope(buf1, sizeof(buf1), 2396 fa->fa_info->fib_scope), 2397 rtn_type(buf2, sizeof(buf2), 2398 fa->fa_type)); 2399 if (fa->fa_tos) 2400 seq_printf(seq, " tos=%d", fa->fa_tos); 2401 seq_putc(seq, '\n'); 2402 } 2403 } 2404 } 2405 2406 return 0; 2407 } 2408 2409 static const struct seq_operations fib_trie_seq_ops = { 2410 .start = fib_trie_seq_start, 2411 .next = fib_trie_seq_next, 2412 .stop = fib_trie_seq_stop, 2413 .show = fib_trie_seq_show, 2414 }; 2415 2416 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2417 { 2418 return seq_open_net(inode, file, &fib_trie_seq_ops, 2419 sizeof(struct fib_trie_iter)); 2420 } 2421 2422 static const struct file_operations fib_trie_fops = { 2423 .owner = THIS_MODULE, 2424 .open = fib_trie_seq_open, 2425 .read = seq_read, 2426 .llseek = seq_lseek, 2427 .release = seq_release_net, 2428 }; 2429 2430 struct fib_route_iter { 2431 struct seq_net_private p; 2432 struct trie *main_trie; 2433 loff_t pos; 2434 t_key key; 2435 }; 2436 2437 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2438 { 2439 struct leaf *l = NULL; 2440 struct trie *t = iter->main_trie; 2441 2442 /* use cache location of last found key */ 2443 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2444 pos -= iter->pos; 2445 else { 2446 iter->pos = 0; 2447 l = trie_firstleaf(t); 2448 } 2449 2450 while (l && pos-- > 0) { 2451 iter->pos++; 2452 l = trie_nextleaf(l); 2453 } 2454 2455 if (l) 2456 iter->key = pos; /* remember it */ 2457 else 2458 iter->pos = 0; /* forget it */ 2459 2460 return l; 2461 } 2462 2463 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2464 __acquires(RCU) 2465 { 2466 struct fib_route_iter *iter = seq->private; 2467 struct fib_table *tb; 2468 2469 rcu_read_lock(); 2470 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2471 if (!tb) 2472 return NULL; 2473 2474 iter->main_trie = (struct trie *) tb->tb_data; 2475 if (*pos == 0) 2476 return SEQ_START_TOKEN; 2477 else 2478 return fib_route_get_idx(iter, *pos - 1); 2479 } 2480 2481 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2482 { 2483 struct fib_route_iter *iter = seq->private; 2484 struct leaf *l = v; 2485 2486 ++*pos; 2487 if (v == SEQ_START_TOKEN) { 2488 iter->pos = 0; 2489 l = trie_firstleaf(iter->main_trie); 2490 } else { 2491 iter->pos++; 2492 l = trie_nextleaf(l); 2493 } 2494 2495 if (l) 2496 iter->key = l->key; 2497 else 2498 iter->pos = 0; 2499 return l; 2500 } 2501 2502 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2503 __releases(RCU) 2504 { 2505 rcu_read_unlock(); 2506 } 2507 2508 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2509 { 2510 unsigned int flags = 0; 2511 2512 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2513 flags = RTF_REJECT; 2514 if (fi && fi->fib_nh->nh_gw) 2515 flags |= RTF_GATEWAY; 2516 if (mask == htonl(0xFFFFFFFF)) 2517 flags |= RTF_HOST; 2518 flags |= RTF_UP; 2519 return flags; 2520 } 2521 2522 /* 2523 * This outputs /proc/net/route. 2524 * The format of the file is not supposed to be changed 2525 * and needs to be same as fib_hash output to avoid breaking 2526 * legacy utilities 2527 */ 2528 static int fib_route_seq_show(struct seq_file *seq, void *v) 2529 { 2530 struct leaf *l = v; 2531 struct leaf_info *li; 2532 struct hlist_node *node; 2533 2534 if (v == SEQ_START_TOKEN) { 2535 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2536 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2537 "\tWindow\tIRTT"); 2538 return 0; 2539 } 2540 2541 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2542 struct fib_alias *fa; 2543 __be32 mask, prefix; 2544 2545 mask = inet_make_mask(li->plen); 2546 prefix = htonl(l->key); 2547 2548 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2549 const struct fib_info *fi = fa->fa_info; 2550 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2551 int len; 2552 2553 if (fa->fa_type == RTN_BROADCAST 2554 || fa->fa_type == RTN_MULTICAST) 2555 continue; 2556 2557 if (fi) 2558 seq_printf(seq, 2559 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2560 "%d\t%08X\t%d\t%u\t%u%n", 2561 fi->fib_dev ? fi->fib_dev->name : "*", 2562 prefix, 2563 fi->fib_nh->nh_gw, flags, 0, 0, 2564 fi->fib_priority, 2565 mask, 2566 (fi->fib_advmss ? 2567 fi->fib_advmss + 40 : 0), 2568 fi->fib_window, 2569 fi->fib_rtt >> 3, &len); 2570 else 2571 seq_printf(seq, 2572 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2573 "%d\t%08X\t%d\t%u\t%u%n", 2574 prefix, 0, flags, 0, 0, 0, 2575 mask, 0, 0, 0, &len); 2576 2577 seq_printf(seq, "%*s\n", 127 - len, ""); 2578 } 2579 } 2580 2581 return 0; 2582 } 2583 2584 static const struct seq_operations fib_route_seq_ops = { 2585 .start = fib_route_seq_start, 2586 .next = fib_route_seq_next, 2587 .stop = fib_route_seq_stop, 2588 .show = fib_route_seq_show, 2589 }; 2590 2591 static int fib_route_seq_open(struct inode *inode, struct file *file) 2592 { 2593 return seq_open_net(inode, file, &fib_route_seq_ops, 2594 sizeof(struct fib_route_iter)); 2595 } 2596 2597 static const struct file_operations fib_route_fops = { 2598 .owner = THIS_MODULE, 2599 .open = fib_route_seq_open, 2600 .read = seq_read, 2601 .llseek = seq_lseek, 2602 .release = seq_release_net, 2603 }; 2604 2605 int __net_init fib_proc_init(struct net *net) 2606 { 2607 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2608 goto out1; 2609 2610 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2611 &fib_triestat_fops)) 2612 goto out2; 2613 2614 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2615 goto out3; 2616 2617 return 0; 2618 2619 out3: 2620 proc_net_remove(net, "fib_triestat"); 2621 out2: 2622 proc_net_remove(net, "fib_trie"); 2623 out1: 2624 return -ENOMEM; 2625 } 2626 2627 void __net_exit fib_proc_exit(struct net *net) 2628 { 2629 proc_net_remove(net, "fib_trie"); 2630 proc_net_remove(net, "fib_triestat"); 2631 proc_net_remove(net, "route"); 2632 } 2633 2634 #endif /* CONFIG_PROC_FS */ 2635