xref: /linux/net/ipv4/fib_trie.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <linux/prefetch.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84 
85 #define MAX_STAT_DEPTH 32
86 
87 #define KEYLENGTH (8*sizeof(t_key))
88 
89 typedef unsigned int t_key;
90 
91 #define T_TNODE 0
92 #define T_LEAF  1
93 #define NODE_TYPE_MASK	0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98 
99 struct rt_trie_node {
100 	unsigned long parent;
101 	t_key key;
102 };
103 
104 struct leaf {
105 	unsigned long parent;
106 	t_key key;
107 	struct hlist_head list;
108 	struct rcu_head rcu;
109 };
110 
111 struct leaf_info {
112 	struct hlist_node hlist;
113 	struct rcu_head rcu;
114 	int plen;
115 	struct list_head falh;
116 };
117 
118 struct tnode {
119 	unsigned long parent;
120 	t_key key;
121 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned int full_children;	/* KEYLENGTH bits needed */
124 	unsigned int empty_children;	/* KEYLENGTH bits needed */
125 	union {
126 		struct rcu_head rcu;
127 		struct work_struct work;
128 		struct tnode *tnode_free;
129 	};
130 	struct rt_trie_node __rcu *child[0];
131 };
132 
133 #ifdef CONFIG_IP_FIB_TRIE_STATS
134 struct trie_use_stats {
135 	unsigned int gets;
136 	unsigned int backtrack;
137 	unsigned int semantic_match_passed;
138 	unsigned int semantic_match_miss;
139 	unsigned int null_node_hit;
140 	unsigned int resize_node_skipped;
141 };
142 #endif
143 
144 struct trie_stat {
145 	unsigned int totdepth;
146 	unsigned int maxdepth;
147 	unsigned int tnodes;
148 	unsigned int leaves;
149 	unsigned int nullpointers;
150 	unsigned int prefixes;
151 	unsigned int nodesizes[MAX_STAT_DEPTH];
152 };
153 
154 struct trie {
155 	struct rt_trie_node __rcu *trie;
156 #ifdef CONFIG_IP_FIB_TRIE_STATS
157 	struct trie_use_stats stats;
158 #endif
159 };
160 
161 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
163 				  int wasfull);
164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
165 static struct tnode *inflate(struct trie *t, struct tnode *tn);
166 static struct tnode *halve(struct trie *t, struct tnode *tn);
167 /* tnodes to free after resize(); protected by RTNL */
168 static struct tnode *tnode_free_head;
169 static size_t tnode_free_size;
170 
171 /*
172  * synchronize_rcu after call_rcu for that many pages; it should be especially
173  * useful before resizing the root node with PREEMPT_NONE configs; the value was
174  * obtained experimentally, aiming to avoid visible slowdown.
175  */
176 static const int sync_pages = 128;
177 
178 static struct kmem_cache *fn_alias_kmem __read_mostly;
179 static struct kmem_cache *trie_leaf_kmem __read_mostly;
180 
181 /*
182  * caller must hold RTNL
183  */
184 static inline struct tnode *node_parent(const struct rt_trie_node *node)
185 {
186 	unsigned long parent;
187 
188 	parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189 
190 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
191 }
192 
193 /*
194  * caller must hold RCU read lock or RTNL
195  */
196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
197 {
198 	unsigned long parent;
199 
200 	parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201 							   lockdep_rtnl_is_held());
202 
203 	return (struct tnode *)(parent & ~NODE_TYPE_MASK);
204 }
205 
206 /* Same as rcu_assign_pointer
207  * but that macro() assumes that value is a pointer.
208  */
209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
210 {
211 	smp_wmb();
212 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
213 }
214 
215 /*
216  * caller must hold RTNL
217  */
218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
219 {
220 	BUG_ON(i >= 1U << tn->bits);
221 
222 	return rtnl_dereference(tn->child[i]);
223 }
224 
225 /*
226  * caller must hold RCU read lock or RTNL
227  */
228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
229 {
230 	BUG_ON(i >= 1U << tn->bits);
231 
232 	return rcu_dereference_rtnl(tn->child[i]);
233 }
234 
235 static inline int tnode_child_length(const struct tnode *tn)
236 {
237 	return 1 << tn->bits;
238 }
239 
240 static inline t_key mask_pfx(t_key k, unsigned int l)
241 {
242 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243 }
244 
245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
246 {
247 	if (offset < KEYLENGTH)
248 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
249 	else
250 		return 0;
251 }
252 
253 static inline int tkey_equals(t_key a, t_key b)
254 {
255 	return a == b;
256 }
257 
258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259 {
260 	if (bits == 0 || offset >= KEYLENGTH)
261 		return 1;
262 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
264 }
265 
266 static inline int tkey_mismatch(t_key a, int offset, t_key b)
267 {
268 	t_key diff = a ^ b;
269 	int i = offset;
270 
271 	if (!diff)
272 		return 0;
273 	while ((diff << i) >> (KEYLENGTH-1) == 0)
274 		i++;
275 	return i;
276 }
277 
278 /*
279   To understand this stuff, an understanding of keys and all their bits is
280   necessary. Every node in the trie has a key associated with it, but not
281   all of the bits in that key are significant.
282 
283   Consider a node 'n' and its parent 'tp'.
284 
285   If n is a leaf, every bit in its key is significant. Its presence is
286   necessitated by path compression, since during a tree traversal (when
287   searching for a leaf - unless we are doing an insertion) we will completely
288   ignore all skipped bits we encounter. Thus we need to verify, at the end of
289   a potentially successful search, that we have indeed been walking the
290   correct key path.
291 
292   Note that we can never "miss" the correct key in the tree if present by
293   following the wrong path. Path compression ensures that segments of the key
294   that are the same for all keys with a given prefix are skipped, but the
295   skipped part *is* identical for each node in the subtrie below the skipped
296   bit! trie_insert() in this implementation takes care of that - note the
297   call to tkey_sub_equals() in trie_insert().
298 
299   if n is an internal node - a 'tnode' here, the various parts of its key
300   have many different meanings.
301 
302   Example:
303   _________________________________________________________________
304   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305   -----------------------------------------------------------------
306     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
307 
308   _________________________________________________________________
309   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310   -----------------------------------------------------------------
311    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
312 
313   tp->pos = 7
314   tp->bits = 3
315   n->pos = 15
316   n->bits = 4
317 
318   First, let's just ignore the bits that come before the parent tp, that is
319   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
320   not use them for anything.
321 
322   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
323   index into the parent's child array. That is, they will be used to find
324   'n' among tp's children.
325 
326   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327   for the node n.
328 
329   All the bits we have seen so far are significant to the node n. The rest
330   of the bits are really not needed or indeed known in n->key.
331 
332   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
333   n's child array, and will of course be different for each child.
334 
335 
336   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337   at this point.
338 
339 */
340 
341 static inline void check_tnode(const struct tnode *tn)
342 {
343 	WARN_ON(tn && tn->pos+tn->bits > 32);
344 }
345 
346 static const int halve_threshold = 25;
347 static const int inflate_threshold = 50;
348 static const int halve_threshold_root = 15;
349 static const int inflate_threshold_root = 30;
350 
351 static void __alias_free_mem(struct rcu_head *head)
352 {
353 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354 	kmem_cache_free(fn_alias_kmem, fa);
355 }
356 
357 static inline void alias_free_mem_rcu(struct fib_alias *fa)
358 {
359 	call_rcu(&fa->rcu, __alias_free_mem);
360 }
361 
362 static void __leaf_free_rcu(struct rcu_head *head)
363 {
364 	struct leaf *l = container_of(head, struct leaf, rcu);
365 	kmem_cache_free(trie_leaf_kmem, l);
366 }
367 
368 static inline void free_leaf(struct leaf *l)
369 {
370 	call_rcu_bh(&l->rcu, __leaf_free_rcu);
371 }
372 
373 static inline void free_leaf_info(struct leaf_info *leaf)
374 {
375 	kfree_rcu(leaf, rcu);
376 }
377 
378 static struct tnode *tnode_alloc(size_t size)
379 {
380 	if (size <= PAGE_SIZE)
381 		return kzalloc(size, GFP_KERNEL);
382 	else
383 		return vzalloc(size);
384 }
385 
386 static void __tnode_vfree(struct work_struct *arg)
387 {
388 	struct tnode *tn = container_of(arg, struct tnode, work);
389 	vfree(tn);
390 }
391 
392 static void __tnode_free_rcu(struct rcu_head *head)
393 {
394 	struct tnode *tn = container_of(head, struct tnode, rcu);
395 	size_t size = sizeof(struct tnode) +
396 		      (sizeof(struct rt_trie_node *) << tn->bits);
397 
398 	if (size <= PAGE_SIZE)
399 		kfree(tn);
400 	else {
401 		INIT_WORK(&tn->work, __tnode_vfree);
402 		schedule_work(&tn->work);
403 	}
404 }
405 
406 static inline void tnode_free(struct tnode *tn)
407 {
408 	if (IS_LEAF(tn))
409 		free_leaf((struct leaf *) tn);
410 	else
411 		call_rcu(&tn->rcu, __tnode_free_rcu);
412 }
413 
414 static void tnode_free_safe(struct tnode *tn)
415 {
416 	BUG_ON(IS_LEAF(tn));
417 	tn->tnode_free = tnode_free_head;
418 	tnode_free_head = tn;
419 	tnode_free_size += sizeof(struct tnode) +
420 			   (sizeof(struct rt_trie_node *) << tn->bits);
421 }
422 
423 static void tnode_free_flush(void)
424 {
425 	struct tnode *tn;
426 
427 	while ((tn = tnode_free_head)) {
428 		tnode_free_head = tn->tnode_free;
429 		tn->tnode_free = NULL;
430 		tnode_free(tn);
431 	}
432 
433 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434 		tnode_free_size = 0;
435 		synchronize_rcu();
436 	}
437 }
438 
439 static struct leaf *leaf_new(void)
440 {
441 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
442 	if (l) {
443 		l->parent = T_LEAF;
444 		INIT_HLIST_HEAD(&l->list);
445 	}
446 	return l;
447 }
448 
449 static struct leaf_info *leaf_info_new(int plen)
450 {
451 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
452 	if (li) {
453 		li->plen = plen;
454 		INIT_LIST_HEAD(&li->falh);
455 	}
456 	return li;
457 }
458 
459 static struct tnode *tnode_new(t_key key, int pos, int bits)
460 {
461 	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
462 	struct tnode *tn = tnode_alloc(sz);
463 
464 	if (tn) {
465 		tn->parent = T_TNODE;
466 		tn->pos = pos;
467 		tn->bits = bits;
468 		tn->key = key;
469 		tn->full_children = 0;
470 		tn->empty_children = 1<<bits;
471 	}
472 
473 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
474 		 sizeof(struct rt_trie_node) << bits);
475 	return tn;
476 }
477 
478 /*
479  * Check whether a tnode 'n' is "full", i.e. it is an internal node
480  * and no bits are skipped. See discussion in dyntree paper p. 6
481  */
482 
483 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
484 {
485 	if (n == NULL || IS_LEAF(n))
486 		return 0;
487 
488 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
489 }
490 
491 static inline void put_child(struct trie *t, struct tnode *tn, int i,
492 			     struct rt_trie_node *n)
493 {
494 	tnode_put_child_reorg(tn, i, n, -1);
495 }
496 
497  /*
498   * Add a child at position i overwriting the old value.
499   * Update the value of full_children and empty_children.
500   */
501 
502 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
503 				  int wasfull)
504 {
505 	struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
506 	int isfull;
507 
508 	BUG_ON(i >= 1<<tn->bits);
509 
510 	/* update emptyChildren */
511 	if (n == NULL && chi != NULL)
512 		tn->empty_children++;
513 	else if (n != NULL && chi == NULL)
514 		tn->empty_children--;
515 
516 	/* update fullChildren */
517 	if (wasfull == -1)
518 		wasfull = tnode_full(tn, chi);
519 
520 	isfull = tnode_full(tn, n);
521 	if (wasfull && !isfull)
522 		tn->full_children--;
523 	else if (!wasfull && isfull)
524 		tn->full_children++;
525 
526 	if (n)
527 		node_set_parent(n, tn);
528 
529 	rcu_assign_pointer(tn->child[i], n);
530 }
531 
532 #define MAX_WORK 10
533 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
534 {
535 	int i;
536 	struct tnode *old_tn;
537 	int inflate_threshold_use;
538 	int halve_threshold_use;
539 	int max_work;
540 
541 	if (!tn)
542 		return NULL;
543 
544 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
545 		 tn, inflate_threshold, halve_threshold);
546 
547 	/* No children */
548 	if (tn->empty_children == tnode_child_length(tn)) {
549 		tnode_free_safe(tn);
550 		return NULL;
551 	}
552 	/* One child */
553 	if (tn->empty_children == tnode_child_length(tn) - 1)
554 		goto one_child;
555 	/*
556 	 * Double as long as the resulting node has a number of
557 	 * nonempty nodes that are above the threshold.
558 	 */
559 
560 	/*
561 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
562 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
563 	 * Telecommunications, page 6:
564 	 * "A node is doubled if the ratio of non-empty children to all
565 	 * children in the *doubled* node is at least 'high'."
566 	 *
567 	 * 'high' in this instance is the variable 'inflate_threshold'. It
568 	 * is expressed as a percentage, so we multiply it with
569 	 * tnode_child_length() and instead of multiplying by 2 (since the
570 	 * child array will be doubled by inflate()) and multiplying
571 	 * the left-hand side by 100 (to handle the percentage thing) we
572 	 * multiply the left-hand side by 50.
573 	 *
574 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
575 	 * - tn->empty_children is of course the number of non-null children
576 	 * in the current node. tn->full_children is the number of "full"
577 	 * children, that is non-null tnodes with a skip value of 0.
578 	 * All of those will be doubled in the resulting inflated tnode, so
579 	 * we just count them one extra time here.
580 	 *
581 	 * A clearer way to write this would be:
582 	 *
583 	 * to_be_doubled = tn->full_children;
584 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
585 	 *     tn->full_children;
586 	 *
587 	 * new_child_length = tnode_child_length(tn) * 2;
588 	 *
589 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
590 	 *      new_child_length;
591 	 * if (new_fill_factor >= inflate_threshold)
592 	 *
593 	 * ...and so on, tho it would mess up the while () loop.
594 	 *
595 	 * anyway,
596 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
597 	 *      inflate_threshold
598 	 *
599 	 * avoid a division:
600 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
601 	 *      inflate_threshold * new_child_length
602 	 *
603 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
604 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
605 	 *    tn->full_children) >= inflate_threshold * new_child_length
606 	 *
607 	 * expand new_child_length:
608 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
609 	 *    tn->full_children) >=
610 	 *      inflate_threshold * tnode_child_length(tn) * 2
611 	 *
612 	 * shorten again:
613 	 * 50 * (tn->full_children + tnode_child_length(tn) -
614 	 *    tn->empty_children) >= inflate_threshold *
615 	 *    tnode_child_length(tn)
616 	 *
617 	 */
618 
619 	check_tnode(tn);
620 
621 	/* Keep root node larger  */
622 
623 	if (!node_parent((struct rt_trie_node *)tn)) {
624 		inflate_threshold_use = inflate_threshold_root;
625 		halve_threshold_use = halve_threshold_root;
626 	} else {
627 		inflate_threshold_use = inflate_threshold;
628 		halve_threshold_use = halve_threshold;
629 	}
630 
631 	max_work = MAX_WORK;
632 	while ((tn->full_children > 0 &&  max_work-- &&
633 		50 * (tn->full_children + tnode_child_length(tn)
634 		      - tn->empty_children)
635 		>= inflate_threshold_use * tnode_child_length(tn))) {
636 
637 		old_tn = tn;
638 		tn = inflate(t, tn);
639 
640 		if (IS_ERR(tn)) {
641 			tn = old_tn;
642 #ifdef CONFIG_IP_FIB_TRIE_STATS
643 			t->stats.resize_node_skipped++;
644 #endif
645 			break;
646 		}
647 	}
648 
649 	check_tnode(tn);
650 
651 	/* Return if at least one inflate is run */
652 	if (max_work != MAX_WORK)
653 		return (struct rt_trie_node *) tn;
654 
655 	/*
656 	 * Halve as long as the number of empty children in this
657 	 * node is above threshold.
658 	 */
659 
660 	max_work = MAX_WORK;
661 	while (tn->bits > 1 &&  max_work-- &&
662 	       100 * (tnode_child_length(tn) - tn->empty_children) <
663 	       halve_threshold_use * tnode_child_length(tn)) {
664 
665 		old_tn = tn;
666 		tn = halve(t, tn);
667 		if (IS_ERR(tn)) {
668 			tn = old_tn;
669 #ifdef CONFIG_IP_FIB_TRIE_STATS
670 			t->stats.resize_node_skipped++;
671 #endif
672 			break;
673 		}
674 	}
675 
676 
677 	/* Only one child remains */
678 	if (tn->empty_children == tnode_child_length(tn) - 1) {
679 one_child:
680 		for (i = 0; i < tnode_child_length(tn); i++) {
681 			struct rt_trie_node *n;
682 
683 			n = rtnl_dereference(tn->child[i]);
684 			if (!n)
685 				continue;
686 
687 			/* compress one level */
688 
689 			node_set_parent(n, NULL);
690 			tnode_free_safe(tn);
691 			return n;
692 		}
693 	}
694 	return (struct rt_trie_node *) tn;
695 }
696 
697 
698 static void tnode_clean_free(struct tnode *tn)
699 {
700 	int i;
701 	struct tnode *tofree;
702 
703 	for (i = 0; i < tnode_child_length(tn); i++) {
704 		tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
705 		if (tofree)
706 			tnode_free(tofree);
707 	}
708 	tnode_free(tn);
709 }
710 
711 static struct tnode *inflate(struct trie *t, struct tnode *tn)
712 {
713 	struct tnode *oldtnode = tn;
714 	int olen = tnode_child_length(tn);
715 	int i;
716 
717 	pr_debug("In inflate\n");
718 
719 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
720 
721 	if (!tn)
722 		return ERR_PTR(-ENOMEM);
723 
724 	/*
725 	 * Preallocate and store tnodes before the actual work so we
726 	 * don't get into an inconsistent state if memory allocation
727 	 * fails. In case of failure we return the oldnode and  inflate
728 	 * of tnode is ignored.
729 	 */
730 
731 	for (i = 0; i < olen; i++) {
732 		struct tnode *inode;
733 
734 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
735 		if (inode &&
736 		    IS_TNODE(inode) &&
737 		    inode->pos == oldtnode->pos + oldtnode->bits &&
738 		    inode->bits > 1) {
739 			struct tnode *left, *right;
740 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
741 
742 			left = tnode_new(inode->key&(~m), inode->pos + 1,
743 					 inode->bits - 1);
744 			if (!left)
745 				goto nomem;
746 
747 			right = tnode_new(inode->key|m, inode->pos + 1,
748 					  inode->bits - 1);
749 
750 			if (!right) {
751 				tnode_free(left);
752 				goto nomem;
753 			}
754 
755 			put_child(t, tn, 2*i, (struct rt_trie_node *) left);
756 			put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
757 		}
758 	}
759 
760 	for (i = 0; i < olen; i++) {
761 		struct tnode *inode;
762 		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
763 		struct tnode *left, *right;
764 		int size, j;
765 
766 		/* An empty child */
767 		if (node == NULL)
768 			continue;
769 
770 		/* A leaf or an internal node with skipped bits */
771 
772 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
773 		   tn->pos + tn->bits - 1) {
774 			if (tkey_extract_bits(node->key,
775 					      oldtnode->pos + oldtnode->bits,
776 					      1) == 0)
777 				put_child(t, tn, 2*i, node);
778 			else
779 				put_child(t, tn, 2*i+1, node);
780 			continue;
781 		}
782 
783 		/* An internal node with two children */
784 		inode = (struct tnode *) node;
785 
786 		if (inode->bits == 1) {
787 			put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
788 			put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
789 
790 			tnode_free_safe(inode);
791 			continue;
792 		}
793 
794 		/* An internal node with more than two children */
795 
796 		/* We will replace this node 'inode' with two new
797 		 * ones, 'left' and 'right', each with half of the
798 		 * original children. The two new nodes will have
799 		 * a position one bit further down the key and this
800 		 * means that the "significant" part of their keys
801 		 * (see the discussion near the top of this file)
802 		 * will differ by one bit, which will be "0" in
803 		 * left's key and "1" in right's key. Since we are
804 		 * moving the key position by one step, the bit that
805 		 * we are moving away from - the bit at position
806 		 * (inode->pos) - is the one that will differ between
807 		 * left and right. So... we synthesize that bit in the
808 		 * two  new keys.
809 		 * The mask 'm' below will be a single "one" bit at
810 		 * the position (inode->pos)
811 		 */
812 
813 		/* Use the old key, but set the new significant
814 		 *   bit to zero.
815 		 */
816 
817 		left = (struct tnode *) tnode_get_child(tn, 2*i);
818 		put_child(t, tn, 2*i, NULL);
819 
820 		BUG_ON(!left);
821 
822 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
823 		put_child(t, tn, 2*i+1, NULL);
824 
825 		BUG_ON(!right);
826 
827 		size = tnode_child_length(left);
828 		for (j = 0; j < size; j++) {
829 			put_child(t, left, j, rtnl_dereference(inode->child[j]));
830 			put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
831 		}
832 		put_child(t, tn, 2*i, resize(t, left));
833 		put_child(t, tn, 2*i+1, resize(t, right));
834 
835 		tnode_free_safe(inode);
836 	}
837 	tnode_free_safe(oldtnode);
838 	return tn;
839 nomem:
840 	tnode_clean_free(tn);
841 	return ERR_PTR(-ENOMEM);
842 }
843 
844 static struct tnode *halve(struct trie *t, struct tnode *tn)
845 {
846 	struct tnode *oldtnode = tn;
847 	struct rt_trie_node *left, *right;
848 	int i;
849 	int olen = tnode_child_length(tn);
850 
851 	pr_debug("In halve\n");
852 
853 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
854 
855 	if (!tn)
856 		return ERR_PTR(-ENOMEM);
857 
858 	/*
859 	 * Preallocate and store tnodes before the actual work so we
860 	 * don't get into an inconsistent state if memory allocation
861 	 * fails. In case of failure we return the oldnode and halve
862 	 * of tnode is ignored.
863 	 */
864 
865 	for (i = 0; i < olen; i += 2) {
866 		left = tnode_get_child(oldtnode, i);
867 		right = tnode_get_child(oldtnode, i+1);
868 
869 		/* Two nonempty children */
870 		if (left && right) {
871 			struct tnode *newn;
872 
873 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
874 
875 			if (!newn)
876 				goto nomem;
877 
878 			put_child(t, tn, i/2, (struct rt_trie_node *)newn);
879 		}
880 
881 	}
882 
883 	for (i = 0; i < olen; i += 2) {
884 		struct tnode *newBinNode;
885 
886 		left = tnode_get_child(oldtnode, i);
887 		right = tnode_get_child(oldtnode, i+1);
888 
889 		/* At least one of the children is empty */
890 		if (left == NULL) {
891 			if (right == NULL)    /* Both are empty */
892 				continue;
893 			put_child(t, tn, i/2, right);
894 			continue;
895 		}
896 
897 		if (right == NULL) {
898 			put_child(t, tn, i/2, left);
899 			continue;
900 		}
901 
902 		/* Two nonempty children */
903 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
904 		put_child(t, tn, i/2, NULL);
905 		put_child(t, newBinNode, 0, left);
906 		put_child(t, newBinNode, 1, right);
907 		put_child(t, tn, i/2, resize(t, newBinNode));
908 	}
909 	tnode_free_safe(oldtnode);
910 	return tn;
911 nomem:
912 	tnode_clean_free(tn);
913 	return ERR_PTR(-ENOMEM);
914 }
915 
916 /* readside must use rcu_read_lock currently dump routines
917  via get_fa_head and dump */
918 
919 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
920 {
921 	struct hlist_head *head = &l->list;
922 	struct hlist_node *node;
923 	struct leaf_info *li;
924 
925 	hlist_for_each_entry_rcu(li, node, head, hlist)
926 		if (li->plen == plen)
927 			return li;
928 
929 	return NULL;
930 }
931 
932 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
933 {
934 	struct leaf_info *li = find_leaf_info(l, plen);
935 
936 	if (!li)
937 		return NULL;
938 
939 	return &li->falh;
940 }
941 
942 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
943 {
944 	struct leaf_info *li = NULL, *last = NULL;
945 	struct hlist_node *node;
946 
947 	if (hlist_empty(head)) {
948 		hlist_add_head_rcu(&new->hlist, head);
949 	} else {
950 		hlist_for_each_entry(li, node, head, hlist) {
951 			if (new->plen > li->plen)
952 				break;
953 
954 			last = li;
955 		}
956 		if (last)
957 			hlist_add_after_rcu(&last->hlist, &new->hlist);
958 		else
959 			hlist_add_before_rcu(&new->hlist, &li->hlist);
960 	}
961 }
962 
963 /* rcu_read_lock needs to be hold by caller from readside */
964 
965 static struct leaf *
966 fib_find_node(struct trie *t, u32 key)
967 {
968 	int pos;
969 	struct tnode *tn;
970 	struct rt_trie_node *n;
971 
972 	pos = 0;
973 	n = rcu_dereference_rtnl(t->trie);
974 
975 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
976 		tn = (struct tnode *) n;
977 
978 		check_tnode(tn);
979 
980 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
981 			pos = tn->pos + tn->bits;
982 			n = tnode_get_child_rcu(tn,
983 						tkey_extract_bits(key,
984 								  tn->pos,
985 								  tn->bits));
986 		} else
987 			break;
988 	}
989 	/* Case we have found a leaf. Compare prefixes */
990 
991 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
992 		return (struct leaf *)n;
993 
994 	return NULL;
995 }
996 
997 static void trie_rebalance(struct trie *t, struct tnode *tn)
998 {
999 	int wasfull;
1000 	t_key cindex, key;
1001 	struct tnode *tp;
1002 
1003 	key = tn->key;
1004 
1005 	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1006 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1007 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1008 		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1009 
1010 		tnode_put_child_reorg((struct tnode *)tp, cindex,
1011 				      (struct rt_trie_node *)tn, wasfull);
1012 
1013 		tp = node_parent((struct rt_trie_node *) tn);
1014 		if (!tp)
1015 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1016 
1017 		tnode_free_flush();
1018 		if (!tp)
1019 			break;
1020 		tn = tp;
1021 	}
1022 
1023 	/* Handle last (top) tnode */
1024 	if (IS_TNODE(tn))
1025 		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1026 
1027 	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1028 	tnode_free_flush();
1029 }
1030 
1031 /* only used from updater-side */
1032 
1033 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1034 {
1035 	int pos, newpos;
1036 	struct tnode *tp = NULL, *tn = NULL;
1037 	struct rt_trie_node *n;
1038 	struct leaf *l;
1039 	int missbit;
1040 	struct list_head *fa_head = NULL;
1041 	struct leaf_info *li;
1042 	t_key cindex;
1043 
1044 	pos = 0;
1045 	n = rtnl_dereference(t->trie);
1046 
1047 	/* If we point to NULL, stop. Either the tree is empty and we should
1048 	 * just put a new leaf in if, or we have reached an empty child slot,
1049 	 * and we should just put our new leaf in that.
1050 	 * If we point to a T_TNODE, check if it matches our key. Note that
1051 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1052 	 * not be the parent's 'pos'+'bits'!
1053 	 *
1054 	 * If it does match the current key, get pos/bits from it, extract
1055 	 * the index from our key, push the T_TNODE and walk the tree.
1056 	 *
1057 	 * If it doesn't, we have to replace it with a new T_TNODE.
1058 	 *
1059 	 * If we point to a T_LEAF, it might or might not have the same key
1060 	 * as we do. If it does, just change the value, update the T_LEAF's
1061 	 * value, and return it.
1062 	 * If it doesn't, we need to replace it with a T_TNODE.
1063 	 */
1064 
1065 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1066 		tn = (struct tnode *) n;
1067 
1068 		check_tnode(tn);
1069 
1070 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1071 			tp = tn;
1072 			pos = tn->pos + tn->bits;
1073 			n = tnode_get_child(tn,
1074 					    tkey_extract_bits(key,
1075 							      tn->pos,
1076 							      tn->bits));
1077 
1078 			BUG_ON(n && node_parent(n) != tn);
1079 		} else
1080 			break;
1081 	}
1082 
1083 	/*
1084 	 * n  ----> NULL, LEAF or TNODE
1085 	 *
1086 	 * tp is n's (parent) ----> NULL or TNODE
1087 	 */
1088 
1089 	BUG_ON(tp && IS_LEAF(tp));
1090 
1091 	/* Case 1: n is a leaf. Compare prefixes */
1092 
1093 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1094 		l = (struct leaf *) n;
1095 		li = leaf_info_new(plen);
1096 
1097 		if (!li)
1098 			return NULL;
1099 
1100 		fa_head = &li->falh;
1101 		insert_leaf_info(&l->list, li);
1102 		goto done;
1103 	}
1104 	l = leaf_new();
1105 
1106 	if (!l)
1107 		return NULL;
1108 
1109 	l->key = key;
1110 	li = leaf_info_new(plen);
1111 
1112 	if (!li) {
1113 		free_leaf(l);
1114 		return NULL;
1115 	}
1116 
1117 	fa_head = &li->falh;
1118 	insert_leaf_info(&l->list, li);
1119 
1120 	if (t->trie && n == NULL) {
1121 		/* Case 2: n is NULL, and will just insert a new leaf */
1122 
1123 		node_set_parent((struct rt_trie_node *)l, tp);
1124 
1125 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1126 		put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1127 	} else {
1128 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1129 		/*
1130 		 *  Add a new tnode here
1131 		 *  first tnode need some special handling
1132 		 */
1133 
1134 		if (tp)
1135 			pos = tp->pos+tp->bits;
1136 		else
1137 			pos = 0;
1138 
1139 		if (n) {
1140 			newpos = tkey_mismatch(key, pos, n->key);
1141 			tn = tnode_new(n->key, newpos, 1);
1142 		} else {
1143 			newpos = 0;
1144 			tn = tnode_new(key, newpos, 1); /* First tnode */
1145 		}
1146 
1147 		if (!tn) {
1148 			free_leaf_info(li);
1149 			free_leaf(l);
1150 			return NULL;
1151 		}
1152 
1153 		node_set_parent((struct rt_trie_node *)tn, tp);
1154 
1155 		missbit = tkey_extract_bits(key, newpos, 1);
1156 		put_child(t, tn, missbit, (struct rt_trie_node *)l);
1157 		put_child(t, tn, 1-missbit, n);
1158 
1159 		if (tp) {
1160 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1161 			put_child(t, (struct tnode *)tp, cindex,
1162 				  (struct rt_trie_node *)tn);
1163 		} else {
1164 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1165 			tp = tn;
1166 		}
1167 	}
1168 
1169 	if (tp && tp->pos + tp->bits > 32)
1170 		pr_warning("fib_trie"
1171 			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1172 			   tp, tp->pos, tp->bits, key, plen);
1173 
1174 	/* Rebalance the trie */
1175 
1176 	trie_rebalance(t, tp);
1177 done:
1178 	return fa_head;
1179 }
1180 
1181 /*
1182  * Caller must hold RTNL.
1183  */
1184 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1185 {
1186 	struct trie *t = (struct trie *) tb->tb_data;
1187 	struct fib_alias *fa, *new_fa;
1188 	struct list_head *fa_head = NULL;
1189 	struct fib_info *fi;
1190 	int plen = cfg->fc_dst_len;
1191 	u8 tos = cfg->fc_tos;
1192 	u32 key, mask;
1193 	int err;
1194 	struct leaf *l;
1195 
1196 	if (plen > 32)
1197 		return -EINVAL;
1198 
1199 	key = ntohl(cfg->fc_dst);
1200 
1201 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1202 
1203 	mask = ntohl(inet_make_mask(plen));
1204 
1205 	if (key & ~mask)
1206 		return -EINVAL;
1207 
1208 	key = key & mask;
1209 
1210 	fi = fib_create_info(cfg);
1211 	if (IS_ERR(fi)) {
1212 		err = PTR_ERR(fi);
1213 		goto err;
1214 	}
1215 
1216 	l = fib_find_node(t, key);
1217 	fa = NULL;
1218 
1219 	if (l) {
1220 		fa_head = get_fa_head(l, plen);
1221 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1222 	}
1223 
1224 	/* Now fa, if non-NULL, points to the first fib alias
1225 	 * with the same keys [prefix,tos,priority], if such key already
1226 	 * exists or to the node before which we will insert new one.
1227 	 *
1228 	 * If fa is NULL, we will need to allocate a new one and
1229 	 * insert to the head of f.
1230 	 *
1231 	 * If f is NULL, no fib node matched the destination key
1232 	 * and we need to allocate a new one of those as well.
1233 	 */
1234 
1235 	if (fa && fa->fa_tos == tos &&
1236 	    fa->fa_info->fib_priority == fi->fib_priority) {
1237 		struct fib_alias *fa_first, *fa_match;
1238 
1239 		err = -EEXIST;
1240 		if (cfg->fc_nlflags & NLM_F_EXCL)
1241 			goto out;
1242 
1243 		/* We have 2 goals:
1244 		 * 1. Find exact match for type, scope, fib_info to avoid
1245 		 * duplicate routes
1246 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1247 		 */
1248 		fa_match = NULL;
1249 		fa_first = fa;
1250 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1251 		list_for_each_entry_continue(fa, fa_head, fa_list) {
1252 			if (fa->fa_tos != tos)
1253 				break;
1254 			if (fa->fa_info->fib_priority != fi->fib_priority)
1255 				break;
1256 			if (fa->fa_type == cfg->fc_type &&
1257 			    fa->fa_info == fi) {
1258 				fa_match = fa;
1259 				break;
1260 			}
1261 		}
1262 
1263 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1264 			struct fib_info *fi_drop;
1265 			u8 state;
1266 
1267 			fa = fa_first;
1268 			if (fa_match) {
1269 				if (fa == fa_match)
1270 					err = 0;
1271 				goto out;
1272 			}
1273 			err = -ENOBUFS;
1274 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1275 			if (new_fa == NULL)
1276 				goto out;
1277 
1278 			fi_drop = fa->fa_info;
1279 			new_fa->fa_tos = fa->fa_tos;
1280 			new_fa->fa_info = fi;
1281 			new_fa->fa_type = cfg->fc_type;
1282 			state = fa->fa_state;
1283 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1284 
1285 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1286 			alias_free_mem_rcu(fa);
1287 
1288 			fib_release_info(fi_drop);
1289 			if (state & FA_S_ACCESSED)
1290 				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1291 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1292 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1293 
1294 			goto succeeded;
1295 		}
1296 		/* Error if we find a perfect match which
1297 		 * uses the same scope, type, and nexthop
1298 		 * information.
1299 		 */
1300 		if (fa_match)
1301 			goto out;
1302 
1303 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1304 			fa = fa_first;
1305 	}
1306 	err = -ENOENT;
1307 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1308 		goto out;
1309 
1310 	err = -ENOBUFS;
1311 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1312 	if (new_fa == NULL)
1313 		goto out;
1314 
1315 	new_fa->fa_info = fi;
1316 	new_fa->fa_tos = tos;
1317 	new_fa->fa_type = cfg->fc_type;
1318 	new_fa->fa_state = 0;
1319 	/*
1320 	 * Insert new entry to the list.
1321 	 */
1322 
1323 	if (!fa_head) {
1324 		fa_head = fib_insert_node(t, key, plen);
1325 		if (unlikely(!fa_head)) {
1326 			err = -ENOMEM;
1327 			goto out_free_new_fa;
1328 		}
1329 	}
1330 
1331 	if (!plen)
1332 		tb->tb_num_default++;
1333 
1334 	list_add_tail_rcu(&new_fa->fa_list,
1335 			  (fa ? &fa->fa_list : fa_head));
1336 
1337 	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1338 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1339 		  &cfg->fc_nlinfo, 0);
1340 succeeded:
1341 	return 0;
1342 
1343 out_free_new_fa:
1344 	kmem_cache_free(fn_alias_kmem, new_fa);
1345 out:
1346 	fib_release_info(fi);
1347 err:
1348 	return err;
1349 }
1350 
1351 /* should be called with rcu_read_lock */
1352 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1353 		      t_key key,  const struct flowi4 *flp,
1354 		      struct fib_result *res, int fib_flags)
1355 {
1356 	struct leaf_info *li;
1357 	struct hlist_head *hhead = &l->list;
1358 	struct hlist_node *node;
1359 
1360 	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1361 		struct fib_alias *fa;
1362 		int plen = li->plen;
1363 		__be32 mask = inet_make_mask(plen);
1364 
1365 		if (l->key != (key & ntohl(mask)))
1366 			continue;
1367 
1368 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1369 			struct fib_info *fi = fa->fa_info;
1370 			int nhsel, err;
1371 
1372 			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1373 				continue;
1374 			if (fa->fa_info->fib_scope < flp->flowi4_scope)
1375 				continue;
1376 			fib_alias_accessed(fa);
1377 			err = fib_props[fa->fa_type].error;
1378 			if (err) {
1379 #ifdef CONFIG_IP_FIB_TRIE_STATS
1380 				t->stats.semantic_match_passed++;
1381 #endif
1382 				return err;
1383 			}
1384 			if (fi->fib_flags & RTNH_F_DEAD)
1385 				continue;
1386 			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387 				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388 
1389 				if (nh->nh_flags & RTNH_F_DEAD)
1390 					continue;
1391 				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1392 					continue;
1393 
1394 #ifdef CONFIG_IP_FIB_TRIE_STATS
1395 				t->stats.semantic_match_passed++;
1396 #endif
1397 				res->prefixlen = plen;
1398 				res->nh_sel = nhsel;
1399 				res->type = fa->fa_type;
1400 				res->scope = fa->fa_info->fib_scope;
1401 				res->fi = fi;
1402 				res->table = tb;
1403 				res->fa_head = &li->falh;
1404 				if (!(fib_flags & FIB_LOOKUP_NOREF))
1405 					atomic_inc(&res->fi->fib_clntref);
1406 				return 0;
1407 			}
1408 		}
1409 
1410 #ifdef CONFIG_IP_FIB_TRIE_STATS
1411 		t->stats.semantic_match_miss++;
1412 #endif
1413 	}
1414 
1415 	return 1;
1416 }
1417 
1418 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1419 		     struct fib_result *res, int fib_flags)
1420 {
1421 	struct trie *t = (struct trie *) tb->tb_data;
1422 	int ret;
1423 	struct rt_trie_node *n;
1424 	struct tnode *pn;
1425 	unsigned int pos, bits;
1426 	t_key key = ntohl(flp->daddr);
1427 	unsigned int chopped_off;
1428 	t_key cindex = 0;
1429 	unsigned int current_prefix_length = KEYLENGTH;
1430 	struct tnode *cn;
1431 	t_key pref_mismatch;
1432 
1433 	rcu_read_lock();
1434 
1435 	n = rcu_dereference(t->trie);
1436 	if (!n)
1437 		goto failed;
1438 
1439 #ifdef CONFIG_IP_FIB_TRIE_STATS
1440 	t->stats.gets++;
1441 #endif
1442 
1443 	/* Just a leaf? */
1444 	if (IS_LEAF(n)) {
1445 		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1446 		goto found;
1447 	}
1448 
1449 	pn = (struct tnode *) n;
1450 	chopped_off = 0;
1451 
1452 	while (pn) {
1453 		pos = pn->pos;
1454 		bits = pn->bits;
1455 
1456 		if (!chopped_off)
1457 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458 						   pos, bits);
1459 
1460 		n = tnode_get_child_rcu(pn, cindex);
1461 
1462 		if (n == NULL) {
1463 #ifdef CONFIG_IP_FIB_TRIE_STATS
1464 			t->stats.null_node_hit++;
1465 #endif
1466 			goto backtrace;
1467 		}
1468 
1469 		if (IS_LEAF(n)) {
1470 			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1471 			if (ret > 0)
1472 				goto backtrace;
1473 			goto found;
1474 		}
1475 
1476 		cn = (struct tnode *)n;
1477 
1478 		/*
1479 		 * It's a tnode, and we can do some extra checks here if we
1480 		 * like, to avoid descending into a dead-end branch.
1481 		 * This tnode is in the parent's child array at index
1482 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1483 		 * chopped off, so in reality the index may be just a
1484 		 * subprefix, padded with zero at the end.
1485 		 * We can also take a look at any skipped bits in this
1486 		 * tnode - everything up to p_pos is supposed to be ok,
1487 		 * and the non-chopped bits of the index (se previous
1488 		 * paragraph) are also guaranteed ok, but the rest is
1489 		 * considered unknown.
1490 		 *
1491 		 * The skipped bits are key[pos+bits..cn->pos].
1492 		 */
1493 
1494 		/* If current_prefix_length < pos+bits, we are already doing
1495 		 * actual prefix  matching, which means everything from
1496 		 * pos+(bits-chopped_off) onward must be zero along some
1497 		 * branch of this subtree - otherwise there is *no* valid
1498 		 * prefix present. Here we can only check the skipped
1499 		 * bits. Remember, since we have already indexed into the
1500 		 * parent's child array, we know that the bits we chopped of
1501 		 * *are* zero.
1502 		 */
1503 
1504 		/* NOTA BENE: Checking only skipped bits
1505 		   for the new node here */
1506 
1507 		if (current_prefix_length < pos+bits) {
1508 			if (tkey_extract_bits(cn->key, current_prefix_length,
1509 						cn->pos - current_prefix_length)
1510 			    || !(cn->child[0]))
1511 				goto backtrace;
1512 		}
1513 
1514 		/*
1515 		 * If chopped_off=0, the index is fully validated and we
1516 		 * only need to look at the skipped bits for this, the new,
1517 		 * tnode. What we actually want to do is to find out if
1518 		 * these skipped bits match our key perfectly, or if we will
1519 		 * have to count on finding a matching prefix further down,
1520 		 * because if we do, we would like to have some way of
1521 		 * verifying the existence of such a prefix at this point.
1522 		 */
1523 
1524 		/* The only thing we can do at this point is to verify that
1525 		 * any such matching prefix can indeed be a prefix to our
1526 		 * key, and if the bits in the node we are inspecting that
1527 		 * do not match our key are not ZERO, this cannot be true.
1528 		 * Thus, find out where there is a mismatch (before cn->pos)
1529 		 * and verify that all the mismatching bits are zero in the
1530 		 * new tnode's key.
1531 		 */
1532 
1533 		/*
1534 		 * Note: We aren't very concerned about the piece of
1535 		 * the key that precede pn->pos+pn->bits, since these
1536 		 * have already been checked. The bits after cn->pos
1537 		 * aren't checked since these are by definition
1538 		 * "unknown" at this point. Thus, what we want to see
1539 		 * is if we are about to enter the "prefix matching"
1540 		 * state, and in that case verify that the skipped
1541 		 * bits that will prevail throughout this subtree are
1542 		 * zero, as they have to be if we are to find a
1543 		 * matching prefix.
1544 		 */
1545 
1546 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1547 
1548 		/*
1549 		 * In short: If skipped bits in this node do not match
1550 		 * the search key, enter the "prefix matching"
1551 		 * state.directly.
1552 		 */
1553 		if (pref_mismatch) {
1554 			int mp = KEYLENGTH - fls(pref_mismatch);
1555 
1556 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1557 				goto backtrace;
1558 
1559 			if (current_prefix_length >= cn->pos)
1560 				current_prefix_length = mp;
1561 		}
1562 
1563 		pn = (struct tnode *)n; /* Descend */
1564 		chopped_off = 0;
1565 		continue;
1566 
1567 backtrace:
1568 		chopped_off++;
1569 
1570 		/* As zero don't change the child key (cindex) */
1571 		while ((chopped_off <= pn->bits)
1572 		       && !(cindex & (1<<(chopped_off-1))))
1573 			chopped_off++;
1574 
1575 		/* Decrease current_... with bits chopped off */
1576 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1577 			current_prefix_length = pn->pos + pn->bits
1578 				- chopped_off;
1579 
1580 		/*
1581 		 * Either we do the actual chop off according or if we have
1582 		 * chopped off all bits in this tnode walk up to our parent.
1583 		 */
1584 
1585 		if (chopped_off <= pn->bits) {
1586 			cindex &= ~(1 << (chopped_off-1));
1587 		} else {
1588 			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1589 			if (!parent)
1590 				goto failed;
1591 
1592 			/* Get Child's index */
1593 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594 			pn = parent;
1595 			chopped_off = 0;
1596 
1597 #ifdef CONFIG_IP_FIB_TRIE_STATS
1598 			t->stats.backtrack++;
1599 #endif
1600 			goto backtrace;
1601 		}
1602 	}
1603 failed:
1604 	ret = 1;
1605 found:
1606 	rcu_read_unlock();
1607 	return ret;
1608 }
1609 
1610 /*
1611  * Remove the leaf and return parent.
1612  */
1613 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1614 {
1615 	struct tnode *tp = node_parent((struct rt_trie_node *) l);
1616 
1617 	pr_debug("entering trie_leaf_remove(%p)\n", l);
1618 
1619 	if (tp) {
1620 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1621 		put_child(t, (struct tnode *)tp, cindex, NULL);
1622 		trie_rebalance(t, tp);
1623 	} else
1624 		rcu_assign_pointer(t->trie, NULL);
1625 
1626 	free_leaf(l);
1627 }
1628 
1629 /*
1630  * Caller must hold RTNL.
1631  */
1632 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1633 {
1634 	struct trie *t = (struct trie *) tb->tb_data;
1635 	u32 key, mask;
1636 	int plen = cfg->fc_dst_len;
1637 	u8 tos = cfg->fc_tos;
1638 	struct fib_alias *fa, *fa_to_delete;
1639 	struct list_head *fa_head;
1640 	struct leaf *l;
1641 	struct leaf_info *li;
1642 
1643 	if (plen > 32)
1644 		return -EINVAL;
1645 
1646 	key = ntohl(cfg->fc_dst);
1647 	mask = ntohl(inet_make_mask(plen));
1648 
1649 	if (key & ~mask)
1650 		return -EINVAL;
1651 
1652 	key = key & mask;
1653 	l = fib_find_node(t, key);
1654 
1655 	if (!l)
1656 		return -ESRCH;
1657 
1658 	fa_head = get_fa_head(l, plen);
1659 	fa = fib_find_alias(fa_head, tos, 0);
1660 
1661 	if (!fa)
1662 		return -ESRCH;
1663 
1664 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1665 
1666 	fa_to_delete = NULL;
1667 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1668 	list_for_each_entry_continue(fa, fa_head, fa_list) {
1669 		struct fib_info *fi = fa->fa_info;
1670 
1671 		if (fa->fa_tos != tos)
1672 			break;
1673 
1674 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1675 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1676 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1677 		    (!cfg->fc_prefsrc ||
1678 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1679 		    (!cfg->fc_protocol ||
1680 		     fi->fib_protocol == cfg->fc_protocol) &&
1681 		    fib_nh_match(cfg, fi) == 0) {
1682 			fa_to_delete = fa;
1683 			break;
1684 		}
1685 	}
1686 
1687 	if (!fa_to_delete)
1688 		return -ESRCH;
1689 
1690 	fa = fa_to_delete;
1691 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1692 		  &cfg->fc_nlinfo, 0);
1693 
1694 	l = fib_find_node(t, key);
1695 	li = find_leaf_info(l, plen);
1696 
1697 	list_del_rcu(&fa->fa_list);
1698 
1699 	if (!plen)
1700 		tb->tb_num_default--;
1701 
1702 	if (list_empty(fa_head)) {
1703 		hlist_del_rcu(&li->hlist);
1704 		free_leaf_info(li);
1705 	}
1706 
1707 	if (hlist_empty(&l->list))
1708 		trie_leaf_remove(t, l);
1709 
1710 	if (fa->fa_state & FA_S_ACCESSED)
1711 		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1712 
1713 	fib_release_info(fa->fa_info);
1714 	alias_free_mem_rcu(fa);
1715 	return 0;
1716 }
1717 
1718 static int trie_flush_list(struct list_head *head)
1719 {
1720 	struct fib_alias *fa, *fa_node;
1721 	int found = 0;
1722 
1723 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724 		struct fib_info *fi = fa->fa_info;
1725 
1726 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727 			list_del_rcu(&fa->fa_list);
1728 			fib_release_info(fa->fa_info);
1729 			alias_free_mem_rcu(fa);
1730 			found++;
1731 		}
1732 	}
1733 	return found;
1734 }
1735 
1736 static int trie_flush_leaf(struct leaf *l)
1737 {
1738 	int found = 0;
1739 	struct hlist_head *lih = &l->list;
1740 	struct hlist_node *node, *tmp;
1741 	struct leaf_info *li = NULL;
1742 
1743 	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1744 		found += trie_flush_list(&li->falh);
1745 
1746 		if (list_empty(&li->falh)) {
1747 			hlist_del_rcu(&li->hlist);
1748 			free_leaf_info(li);
1749 		}
1750 	}
1751 	return found;
1752 }
1753 
1754 /*
1755  * Scan for the next right leaf starting at node p->child[idx]
1756  * Since we have back pointer, no recursion necessary.
1757  */
1758 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1759 {
1760 	do {
1761 		t_key idx;
1762 
1763 		if (c)
1764 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1765 		else
1766 			idx = 0;
1767 
1768 		while (idx < 1u << p->bits) {
1769 			c = tnode_get_child_rcu(p, idx++);
1770 			if (!c)
1771 				continue;
1772 
1773 			if (IS_LEAF(c)) {
1774 				prefetch(rcu_dereference_rtnl(p->child[idx]));
1775 				return (struct leaf *) c;
1776 			}
1777 
1778 			/* Rescan start scanning in new node */
1779 			p = (struct tnode *) c;
1780 			idx = 0;
1781 		}
1782 
1783 		/* Node empty, walk back up to parent */
1784 		c = (struct rt_trie_node *) p;
1785 	} while ((p = node_parent_rcu(c)) != NULL);
1786 
1787 	return NULL; /* Root of trie */
1788 }
1789 
1790 static struct leaf *trie_firstleaf(struct trie *t)
1791 {
1792 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1793 
1794 	if (!n)
1795 		return NULL;
1796 
1797 	if (IS_LEAF(n))          /* trie is just a leaf */
1798 		return (struct leaf *) n;
1799 
1800 	return leaf_walk_rcu(n, NULL);
1801 }
1802 
1803 static struct leaf *trie_nextleaf(struct leaf *l)
1804 {
1805 	struct rt_trie_node *c = (struct rt_trie_node *) l;
1806 	struct tnode *p = node_parent_rcu(c);
1807 
1808 	if (!p)
1809 		return NULL;	/* trie with just one leaf */
1810 
1811 	return leaf_walk_rcu(p, c);
1812 }
1813 
1814 static struct leaf *trie_leafindex(struct trie *t, int index)
1815 {
1816 	struct leaf *l = trie_firstleaf(t);
1817 
1818 	while (l && index-- > 0)
1819 		l = trie_nextleaf(l);
1820 
1821 	return l;
1822 }
1823 
1824 
1825 /*
1826  * Caller must hold RTNL.
1827  */
1828 int fib_table_flush(struct fib_table *tb)
1829 {
1830 	struct trie *t = (struct trie *) tb->tb_data;
1831 	struct leaf *l, *ll = NULL;
1832 	int found = 0;
1833 
1834 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1835 		found += trie_flush_leaf(l);
1836 
1837 		if (ll && hlist_empty(&ll->list))
1838 			trie_leaf_remove(t, ll);
1839 		ll = l;
1840 	}
1841 
1842 	if (ll && hlist_empty(&ll->list))
1843 		trie_leaf_remove(t, ll);
1844 
1845 	pr_debug("trie_flush found=%d\n", found);
1846 	return found;
1847 }
1848 
1849 void fib_free_table(struct fib_table *tb)
1850 {
1851 	kfree(tb);
1852 }
1853 
1854 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855 			   struct fib_table *tb,
1856 			   struct sk_buff *skb, struct netlink_callback *cb)
1857 {
1858 	int i, s_i;
1859 	struct fib_alias *fa;
1860 	__be32 xkey = htonl(key);
1861 
1862 	s_i = cb->args[5];
1863 	i = 0;
1864 
1865 	/* rcu_read_lock is hold by caller */
1866 
1867 	list_for_each_entry_rcu(fa, fah, fa_list) {
1868 		if (i < s_i) {
1869 			i++;
1870 			continue;
1871 		}
1872 
1873 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1874 				  cb->nlh->nlmsg_seq,
1875 				  RTM_NEWROUTE,
1876 				  tb->tb_id,
1877 				  fa->fa_type,
1878 				  xkey,
1879 				  plen,
1880 				  fa->fa_tos,
1881 				  fa->fa_info, NLM_F_MULTI) < 0) {
1882 			cb->args[5] = i;
1883 			return -1;
1884 		}
1885 		i++;
1886 	}
1887 	cb->args[5] = i;
1888 	return skb->len;
1889 }
1890 
1891 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892 			struct sk_buff *skb, struct netlink_callback *cb)
1893 {
1894 	struct leaf_info *li;
1895 	struct hlist_node *node;
1896 	int i, s_i;
1897 
1898 	s_i = cb->args[4];
1899 	i = 0;
1900 
1901 	/* rcu_read_lock is hold by caller */
1902 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1903 		if (i < s_i) {
1904 			i++;
1905 			continue;
1906 		}
1907 
1908 		if (i > s_i)
1909 			cb->args[5] = 0;
1910 
1911 		if (list_empty(&li->falh))
1912 			continue;
1913 
1914 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1915 			cb->args[4] = i;
1916 			return -1;
1917 		}
1918 		i++;
1919 	}
1920 
1921 	cb->args[4] = i;
1922 	return skb->len;
1923 }
1924 
1925 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1926 		   struct netlink_callback *cb)
1927 {
1928 	struct leaf *l;
1929 	struct trie *t = (struct trie *) tb->tb_data;
1930 	t_key key = cb->args[2];
1931 	int count = cb->args[3];
1932 
1933 	rcu_read_lock();
1934 	/* Dump starting at last key.
1935 	 * Note: 0.0.0.0/0 (ie default) is first key.
1936 	 */
1937 	if (count == 0)
1938 		l = trie_firstleaf(t);
1939 	else {
1940 		/* Normally, continue from last key, but if that is missing
1941 		 * fallback to using slow rescan
1942 		 */
1943 		l = fib_find_node(t, key);
1944 		if (!l)
1945 			l = trie_leafindex(t, count);
1946 	}
1947 
1948 	while (l) {
1949 		cb->args[2] = l->key;
1950 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1951 			cb->args[3] = count;
1952 			rcu_read_unlock();
1953 			return -1;
1954 		}
1955 
1956 		++count;
1957 		l = trie_nextleaf(l);
1958 		memset(&cb->args[4], 0,
1959 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1960 	}
1961 	cb->args[3] = count;
1962 	rcu_read_unlock();
1963 
1964 	return skb->len;
1965 }
1966 
1967 void __init fib_trie_init(void)
1968 {
1969 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1970 					  sizeof(struct fib_alias),
1971 					  0, SLAB_PANIC, NULL);
1972 
1973 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1974 					   max(sizeof(struct leaf),
1975 					       sizeof(struct leaf_info)),
1976 					   0, SLAB_PANIC, NULL);
1977 }
1978 
1979 
1980 struct fib_table *fib_trie_table(u32 id)
1981 {
1982 	struct fib_table *tb;
1983 	struct trie *t;
1984 
1985 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1986 		     GFP_KERNEL);
1987 	if (tb == NULL)
1988 		return NULL;
1989 
1990 	tb->tb_id = id;
1991 	tb->tb_default = -1;
1992 	tb->tb_num_default = 0;
1993 
1994 	t = (struct trie *) tb->tb_data;
1995 	memset(t, 0, sizeof(*t));
1996 
1997 	return tb;
1998 }
1999 
2000 #ifdef CONFIG_PROC_FS
2001 /* Depth first Trie walk iterator */
2002 struct fib_trie_iter {
2003 	struct seq_net_private p;
2004 	struct fib_table *tb;
2005 	struct tnode *tnode;
2006 	unsigned int index;
2007 	unsigned int depth;
2008 };
2009 
2010 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2011 {
2012 	struct tnode *tn = iter->tnode;
2013 	unsigned int cindex = iter->index;
2014 	struct tnode *p;
2015 
2016 	/* A single entry routing table */
2017 	if (!tn)
2018 		return NULL;
2019 
2020 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021 		 iter->tnode, iter->index, iter->depth);
2022 rescan:
2023 	while (cindex < (1<<tn->bits)) {
2024 		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2025 
2026 		if (n) {
2027 			if (IS_LEAF(n)) {
2028 				iter->tnode = tn;
2029 				iter->index = cindex + 1;
2030 			} else {
2031 				/* push down one level */
2032 				iter->tnode = (struct tnode *) n;
2033 				iter->index = 0;
2034 				++iter->depth;
2035 			}
2036 			return n;
2037 		}
2038 
2039 		++cindex;
2040 	}
2041 
2042 	/* Current node exhausted, pop back up */
2043 	p = node_parent_rcu((struct rt_trie_node *)tn);
2044 	if (p) {
2045 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2046 		tn = p;
2047 		--iter->depth;
2048 		goto rescan;
2049 	}
2050 
2051 	/* got root? */
2052 	return NULL;
2053 }
2054 
2055 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2056 				       struct trie *t)
2057 {
2058 	struct rt_trie_node *n;
2059 
2060 	if (!t)
2061 		return NULL;
2062 
2063 	n = rcu_dereference(t->trie);
2064 	if (!n)
2065 		return NULL;
2066 
2067 	if (IS_TNODE(n)) {
2068 		iter->tnode = (struct tnode *) n;
2069 		iter->index = 0;
2070 		iter->depth = 1;
2071 	} else {
2072 		iter->tnode = NULL;
2073 		iter->index = 0;
2074 		iter->depth = 0;
2075 	}
2076 
2077 	return n;
2078 }
2079 
2080 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2081 {
2082 	struct rt_trie_node *n;
2083 	struct fib_trie_iter iter;
2084 
2085 	memset(s, 0, sizeof(*s));
2086 
2087 	rcu_read_lock();
2088 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2089 		if (IS_LEAF(n)) {
2090 			struct leaf *l = (struct leaf *)n;
2091 			struct leaf_info *li;
2092 			struct hlist_node *tmp;
2093 
2094 			s->leaves++;
2095 			s->totdepth += iter.depth;
2096 			if (iter.depth > s->maxdepth)
2097 				s->maxdepth = iter.depth;
2098 
2099 			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2100 				++s->prefixes;
2101 		} else {
2102 			const struct tnode *tn = (const struct tnode *) n;
2103 			int i;
2104 
2105 			s->tnodes++;
2106 			if (tn->bits < MAX_STAT_DEPTH)
2107 				s->nodesizes[tn->bits]++;
2108 
2109 			for (i = 0; i < (1<<tn->bits); i++)
2110 				if (!tn->child[i])
2111 					s->nullpointers++;
2112 		}
2113 	}
2114 	rcu_read_unlock();
2115 }
2116 
2117 /*
2118  *	This outputs /proc/net/fib_triestats
2119  */
2120 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2121 {
2122 	unsigned int i, max, pointers, bytes, avdepth;
2123 
2124 	if (stat->leaves)
2125 		avdepth = stat->totdepth*100 / stat->leaves;
2126 	else
2127 		avdepth = 0;
2128 
2129 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2130 		   avdepth / 100, avdepth % 100);
2131 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2132 
2133 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2134 	bytes = sizeof(struct leaf) * stat->leaves;
2135 
2136 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2137 	bytes += sizeof(struct leaf_info) * stat->prefixes;
2138 
2139 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2140 	bytes += sizeof(struct tnode) * stat->tnodes;
2141 
2142 	max = MAX_STAT_DEPTH;
2143 	while (max > 0 && stat->nodesizes[max-1] == 0)
2144 		max--;
2145 
2146 	pointers = 0;
2147 	for (i = 1; i <= max; i++)
2148 		if (stat->nodesizes[i] != 0) {
2149 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2150 			pointers += (1<<i) * stat->nodesizes[i];
2151 		}
2152 	seq_putc(seq, '\n');
2153 	seq_printf(seq, "\tPointers: %u\n", pointers);
2154 
2155 	bytes += sizeof(struct rt_trie_node *) * pointers;
2156 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2157 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2158 }
2159 
2160 #ifdef CONFIG_IP_FIB_TRIE_STATS
2161 static void trie_show_usage(struct seq_file *seq,
2162 			    const struct trie_use_stats *stats)
2163 {
2164 	seq_printf(seq, "\nCounters:\n---------\n");
2165 	seq_printf(seq, "gets = %u\n", stats->gets);
2166 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2167 	seq_printf(seq, "semantic match passed = %u\n",
2168 		   stats->semantic_match_passed);
2169 	seq_printf(seq, "semantic match miss = %u\n",
2170 		   stats->semantic_match_miss);
2171 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2172 	seq_printf(seq, "skipped node resize = %u\n\n",
2173 		   stats->resize_node_skipped);
2174 }
2175 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2176 
2177 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2178 {
2179 	if (tb->tb_id == RT_TABLE_LOCAL)
2180 		seq_puts(seq, "Local:\n");
2181 	else if (tb->tb_id == RT_TABLE_MAIN)
2182 		seq_puts(seq, "Main:\n");
2183 	else
2184 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2185 }
2186 
2187 
2188 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2189 {
2190 	struct net *net = (struct net *)seq->private;
2191 	unsigned int h;
2192 
2193 	seq_printf(seq,
2194 		   "Basic info: size of leaf:"
2195 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2196 		   sizeof(struct leaf), sizeof(struct tnode));
2197 
2198 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200 		struct hlist_node *node;
2201 		struct fib_table *tb;
2202 
2203 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204 			struct trie *t = (struct trie *) tb->tb_data;
2205 			struct trie_stat stat;
2206 
2207 			if (!t)
2208 				continue;
2209 
2210 			fib_table_print(seq, tb);
2211 
2212 			trie_collect_stats(t, &stat);
2213 			trie_show_stats(seq, &stat);
2214 #ifdef CONFIG_IP_FIB_TRIE_STATS
2215 			trie_show_usage(seq, &t->stats);
2216 #endif
2217 		}
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2224 {
2225 	return single_open_net(inode, file, fib_triestat_seq_show);
2226 }
2227 
2228 static const struct file_operations fib_triestat_fops = {
2229 	.owner	= THIS_MODULE,
2230 	.open	= fib_triestat_seq_open,
2231 	.read	= seq_read,
2232 	.llseek	= seq_lseek,
2233 	.release = single_release_net,
2234 };
2235 
2236 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2237 {
2238 	struct fib_trie_iter *iter = seq->private;
2239 	struct net *net = seq_file_net(seq);
2240 	loff_t idx = 0;
2241 	unsigned int h;
2242 
2243 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2244 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2245 		struct hlist_node *node;
2246 		struct fib_table *tb;
2247 
2248 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2249 			struct rt_trie_node *n;
2250 
2251 			for (n = fib_trie_get_first(iter,
2252 						    (struct trie *) tb->tb_data);
2253 			     n; n = fib_trie_get_next(iter))
2254 				if (pos == idx++) {
2255 					iter->tb = tb;
2256 					return n;
2257 				}
2258 		}
2259 	}
2260 
2261 	return NULL;
2262 }
2263 
2264 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2265 	__acquires(RCU)
2266 {
2267 	rcu_read_lock();
2268 	return fib_trie_get_idx(seq, *pos);
2269 }
2270 
2271 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2272 {
2273 	struct fib_trie_iter *iter = seq->private;
2274 	struct net *net = seq_file_net(seq);
2275 	struct fib_table *tb = iter->tb;
2276 	struct hlist_node *tb_node;
2277 	unsigned int h;
2278 	struct rt_trie_node *n;
2279 
2280 	++*pos;
2281 	/* next node in same table */
2282 	n = fib_trie_get_next(iter);
2283 	if (n)
2284 		return n;
2285 
2286 	/* walk rest of this hash chain */
2287 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2288 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2289 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2290 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2291 		if (n)
2292 			goto found;
2293 	}
2294 
2295 	/* new hash chain */
2296 	while (++h < FIB_TABLE_HASHSZ) {
2297 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2298 		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2299 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2300 			if (n)
2301 				goto found;
2302 		}
2303 	}
2304 	return NULL;
2305 
2306 found:
2307 	iter->tb = tb;
2308 	return n;
2309 }
2310 
2311 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2312 	__releases(RCU)
2313 {
2314 	rcu_read_unlock();
2315 }
2316 
2317 static void seq_indent(struct seq_file *seq, int n)
2318 {
2319 	while (n-- > 0)
2320 		seq_puts(seq, "   ");
2321 }
2322 
2323 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2324 {
2325 	switch (s) {
2326 	case RT_SCOPE_UNIVERSE: return "universe";
2327 	case RT_SCOPE_SITE:	return "site";
2328 	case RT_SCOPE_LINK:	return "link";
2329 	case RT_SCOPE_HOST:	return "host";
2330 	case RT_SCOPE_NOWHERE:	return "nowhere";
2331 	default:
2332 		snprintf(buf, len, "scope=%d", s);
2333 		return buf;
2334 	}
2335 }
2336 
2337 static const char *const rtn_type_names[__RTN_MAX] = {
2338 	[RTN_UNSPEC] = "UNSPEC",
2339 	[RTN_UNICAST] = "UNICAST",
2340 	[RTN_LOCAL] = "LOCAL",
2341 	[RTN_BROADCAST] = "BROADCAST",
2342 	[RTN_ANYCAST] = "ANYCAST",
2343 	[RTN_MULTICAST] = "MULTICAST",
2344 	[RTN_BLACKHOLE] = "BLACKHOLE",
2345 	[RTN_UNREACHABLE] = "UNREACHABLE",
2346 	[RTN_PROHIBIT] = "PROHIBIT",
2347 	[RTN_THROW] = "THROW",
2348 	[RTN_NAT] = "NAT",
2349 	[RTN_XRESOLVE] = "XRESOLVE",
2350 };
2351 
2352 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2353 {
2354 	if (t < __RTN_MAX && rtn_type_names[t])
2355 		return rtn_type_names[t];
2356 	snprintf(buf, len, "type %u", t);
2357 	return buf;
2358 }
2359 
2360 /* Pretty print the trie */
2361 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2362 {
2363 	const struct fib_trie_iter *iter = seq->private;
2364 	struct rt_trie_node *n = v;
2365 
2366 	if (!node_parent_rcu(n))
2367 		fib_table_print(seq, iter->tb);
2368 
2369 	if (IS_TNODE(n)) {
2370 		struct tnode *tn = (struct tnode *) n;
2371 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2372 
2373 		seq_indent(seq, iter->depth-1);
2374 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2375 			   &prf, tn->pos, tn->bits, tn->full_children,
2376 			   tn->empty_children);
2377 
2378 	} else {
2379 		struct leaf *l = (struct leaf *) n;
2380 		struct leaf_info *li;
2381 		struct hlist_node *node;
2382 		__be32 val = htonl(l->key);
2383 
2384 		seq_indent(seq, iter->depth);
2385 		seq_printf(seq, "  |-- %pI4\n", &val);
2386 
2387 		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2388 			struct fib_alias *fa;
2389 
2390 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2391 				char buf1[32], buf2[32];
2392 
2393 				seq_indent(seq, iter->depth+1);
2394 				seq_printf(seq, "  /%d %s %s", li->plen,
2395 					   rtn_scope(buf1, sizeof(buf1),
2396 						     fa->fa_info->fib_scope),
2397 					   rtn_type(buf2, sizeof(buf2),
2398 						    fa->fa_type));
2399 				if (fa->fa_tos)
2400 					seq_printf(seq, " tos=%d", fa->fa_tos);
2401 				seq_putc(seq, '\n');
2402 			}
2403 		}
2404 	}
2405 
2406 	return 0;
2407 }
2408 
2409 static const struct seq_operations fib_trie_seq_ops = {
2410 	.start  = fib_trie_seq_start,
2411 	.next   = fib_trie_seq_next,
2412 	.stop   = fib_trie_seq_stop,
2413 	.show   = fib_trie_seq_show,
2414 };
2415 
2416 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2417 {
2418 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2419 			    sizeof(struct fib_trie_iter));
2420 }
2421 
2422 static const struct file_operations fib_trie_fops = {
2423 	.owner  = THIS_MODULE,
2424 	.open   = fib_trie_seq_open,
2425 	.read   = seq_read,
2426 	.llseek = seq_lseek,
2427 	.release = seq_release_net,
2428 };
2429 
2430 struct fib_route_iter {
2431 	struct seq_net_private p;
2432 	struct trie *main_trie;
2433 	loff_t	pos;
2434 	t_key	key;
2435 };
2436 
2437 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2438 {
2439 	struct leaf *l = NULL;
2440 	struct trie *t = iter->main_trie;
2441 
2442 	/* use cache location of last found key */
2443 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2444 		pos -= iter->pos;
2445 	else {
2446 		iter->pos = 0;
2447 		l = trie_firstleaf(t);
2448 	}
2449 
2450 	while (l && pos-- > 0) {
2451 		iter->pos++;
2452 		l = trie_nextleaf(l);
2453 	}
2454 
2455 	if (l)
2456 		iter->key = pos;	/* remember it */
2457 	else
2458 		iter->pos = 0;		/* forget it */
2459 
2460 	return l;
2461 }
2462 
2463 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2464 	__acquires(RCU)
2465 {
2466 	struct fib_route_iter *iter = seq->private;
2467 	struct fib_table *tb;
2468 
2469 	rcu_read_lock();
2470 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2471 	if (!tb)
2472 		return NULL;
2473 
2474 	iter->main_trie = (struct trie *) tb->tb_data;
2475 	if (*pos == 0)
2476 		return SEQ_START_TOKEN;
2477 	else
2478 		return fib_route_get_idx(iter, *pos - 1);
2479 }
2480 
2481 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2482 {
2483 	struct fib_route_iter *iter = seq->private;
2484 	struct leaf *l = v;
2485 
2486 	++*pos;
2487 	if (v == SEQ_START_TOKEN) {
2488 		iter->pos = 0;
2489 		l = trie_firstleaf(iter->main_trie);
2490 	} else {
2491 		iter->pos++;
2492 		l = trie_nextleaf(l);
2493 	}
2494 
2495 	if (l)
2496 		iter->key = l->key;
2497 	else
2498 		iter->pos = 0;
2499 	return l;
2500 }
2501 
2502 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2503 	__releases(RCU)
2504 {
2505 	rcu_read_unlock();
2506 }
2507 
2508 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2509 {
2510 	unsigned int flags = 0;
2511 
2512 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2513 		flags = RTF_REJECT;
2514 	if (fi && fi->fib_nh->nh_gw)
2515 		flags |= RTF_GATEWAY;
2516 	if (mask == htonl(0xFFFFFFFF))
2517 		flags |= RTF_HOST;
2518 	flags |= RTF_UP;
2519 	return flags;
2520 }
2521 
2522 /*
2523  *	This outputs /proc/net/route.
2524  *	The format of the file is not supposed to be changed
2525  *	and needs to be same as fib_hash output to avoid breaking
2526  *	legacy utilities
2527  */
2528 static int fib_route_seq_show(struct seq_file *seq, void *v)
2529 {
2530 	struct leaf *l = v;
2531 	struct leaf_info *li;
2532 	struct hlist_node *node;
2533 
2534 	if (v == SEQ_START_TOKEN) {
2535 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2536 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2537 			   "\tWindow\tIRTT");
2538 		return 0;
2539 	}
2540 
2541 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2542 		struct fib_alias *fa;
2543 		__be32 mask, prefix;
2544 
2545 		mask = inet_make_mask(li->plen);
2546 		prefix = htonl(l->key);
2547 
2548 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2549 			const struct fib_info *fi = fa->fa_info;
2550 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2551 			int len;
2552 
2553 			if (fa->fa_type == RTN_BROADCAST
2554 			    || fa->fa_type == RTN_MULTICAST)
2555 				continue;
2556 
2557 			if (fi)
2558 				seq_printf(seq,
2559 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2560 					 "%d\t%08X\t%d\t%u\t%u%n",
2561 					 fi->fib_dev ? fi->fib_dev->name : "*",
2562 					 prefix,
2563 					 fi->fib_nh->nh_gw, flags, 0, 0,
2564 					 fi->fib_priority,
2565 					 mask,
2566 					 (fi->fib_advmss ?
2567 					  fi->fib_advmss + 40 : 0),
2568 					 fi->fib_window,
2569 					 fi->fib_rtt >> 3, &len);
2570 			else
2571 				seq_printf(seq,
2572 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2573 					 "%d\t%08X\t%d\t%u\t%u%n",
2574 					 prefix, 0, flags, 0, 0, 0,
2575 					 mask, 0, 0, 0, &len);
2576 
2577 			seq_printf(seq, "%*s\n", 127 - len, "");
2578 		}
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static const struct seq_operations fib_route_seq_ops = {
2585 	.start  = fib_route_seq_start,
2586 	.next   = fib_route_seq_next,
2587 	.stop   = fib_route_seq_stop,
2588 	.show   = fib_route_seq_show,
2589 };
2590 
2591 static int fib_route_seq_open(struct inode *inode, struct file *file)
2592 {
2593 	return seq_open_net(inode, file, &fib_route_seq_ops,
2594 			    sizeof(struct fib_route_iter));
2595 }
2596 
2597 static const struct file_operations fib_route_fops = {
2598 	.owner  = THIS_MODULE,
2599 	.open   = fib_route_seq_open,
2600 	.read   = seq_read,
2601 	.llseek = seq_lseek,
2602 	.release = seq_release_net,
2603 };
2604 
2605 int __net_init fib_proc_init(struct net *net)
2606 {
2607 	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2608 		goto out1;
2609 
2610 	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2611 				  &fib_triestat_fops))
2612 		goto out2;
2613 
2614 	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2615 		goto out3;
2616 
2617 	return 0;
2618 
2619 out3:
2620 	proc_net_remove(net, "fib_triestat");
2621 out2:
2622 	proc_net_remove(net, "fib_trie");
2623 out1:
2624 	return -ENOMEM;
2625 }
2626 
2627 void __net_exit fib_proc_exit(struct net *net)
2628 {
2629 	proc_net_remove(net, "fib_trie");
2630 	proc_net_remove(net, "fib_triestat");
2631 	proc_net_remove(net, "route");
2632 }
2633 
2634 #endif /* CONFIG_PROC_FS */
2635