1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/prefetch.h> 75 #include <linux/export.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include "fib_lookup.h" 84 85 #define MAX_STAT_DEPTH 32 86 87 #define KEYLENGTH (8*sizeof(t_key)) 88 89 typedef unsigned int t_key; 90 91 #define T_TNODE 0 92 #define T_LEAF 1 93 #define NODE_TYPE_MASK 0x1UL 94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) 95 96 #define IS_TNODE(n) (!(n->parent & T_LEAF)) 97 #define IS_LEAF(n) (n->parent & T_LEAF) 98 99 struct rt_trie_node { 100 unsigned long parent; 101 t_key key; 102 }; 103 104 struct leaf { 105 unsigned long parent; 106 t_key key; 107 struct hlist_head list; 108 struct rcu_head rcu; 109 }; 110 111 struct leaf_info { 112 struct hlist_node hlist; 113 int plen; 114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */ 115 struct list_head falh; 116 struct rcu_head rcu; 117 }; 118 119 struct tnode { 120 unsigned long parent; 121 t_key key; 122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 124 unsigned int full_children; /* KEYLENGTH bits needed */ 125 unsigned int empty_children; /* KEYLENGTH bits needed */ 126 union { 127 struct rcu_head rcu; 128 struct work_struct work; 129 struct tnode *tnode_free; 130 }; 131 struct rt_trie_node __rcu *child[0]; 132 }; 133 134 #ifdef CONFIG_IP_FIB_TRIE_STATS 135 struct trie_use_stats { 136 unsigned int gets; 137 unsigned int backtrack; 138 unsigned int semantic_match_passed; 139 unsigned int semantic_match_miss; 140 unsigned int null_node_hit; 141 unsigned int resize_node_skipped; 142 }; 143 #endif 144 145 struct trie_stat { 146 unsigned int totdepth; 147 unsigned int maxdepth; 148 unsigned int tnodes; 149 unsigned int leaves; 150 unsigned int nullpointers; 151 unsigned int prefixes; 152 unsigned int nodesizes[MAX_STAT_DEPTH]; 153 }; 154 155 struct trie { 156 struct rt_trie_node __rcu *trie; 157 #ifdef CONFIG_IP_FIB_TRIE_STATS 158 struct trie_use_stats stats; 159 #endif 160 }; 161 162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 163 int wasfull); 164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn); 165 static struct tnode *inflate(struct trie *t, struct tnode *tn); 166 static struct tnode *halve(struct trie *t, struct tnode *tn); 167 /* tnodes to free after resize(); protected by RTNL */ 168 static struct tnode *tnode_free_head; 169 static size_t tnode_free_size; 170 171 /* 172 * synchronize_rcu after call_rcu for that many pages; it should be especially 173 * useful before resizing the root node with PREEMPT_NONE configs; the value was 174 * obtained experimentally, aiming to avoid visible slowdown. 175 */ 176 static const int sync_pages = 128; 177 178 static struct kmem_cache *fn_alias_kmem __read_mostly; 179 static struct kmem_cache *trie_leaf_kmem __read_mostly; 180 181 /* 182 * caller must hold RTNL 183 */ 184 static inline struct tnode *node_parent(const struct rt_trie_node *node) 185 { 186 unsigned long parent; 187 188 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held()); 189 190 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 191 } 192 193 /* 194 * caller must hold RCU read lock or RTNL 195 */ 196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node) 197 { 198 unsigned long parent; 199 200 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() || 201 lockdep_rtnl_is_held()); 202 203 return (struct tnode *)(parent & ~NODE_TYPE_MASK); 204 } 205 206 /* Same as rcu_assign_pointer 207 * but that macro() assumes that value is a pointer. 208 */ 209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr) 210 { 211 smp_wmb(); 212 node->parent = (unsigned long)ptr | NODE_TYPE(node); 213 } 214 215 /* 216 * caller must hold RTNL 217 */ 218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i) 219 { 220 BUG_ON(i >= 1U << tn->bits); 221 222 return rtnl_dereference(tn->child[i]); 223 } 224 225 /* 226 * caller must hold RCU read lock or RTNL 227 */ 228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i) 229 { 230 BUG_ON(i >= 1U << tn->bits); 231 232 return rcu_dereference_rtnl(tn->child[i]); 233 } 234 235 static inline int tnode_child_length(const struct tnode *tn) 236 { 237 return 1 << tn->bits; 238 } 239 240 static inline t_key mask_pfx(t_key k, unsigned int l) 241 { 242 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); 243 } 244 245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits) 246 { 247 if (offset < KEYLENGTH) 248 return ((t_key)(a << offset)) >> (KEYLENGTH - bits); 249 else 250 return 0; 251 } 252 253 static inline int tkey_equals(t_key a, t_key b) 254 { 255 return a == b; 256 } 257 258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) 259 { 260 if (bits == 0 || offset >= KEYLENGTH) 261 return 1; 262 bits = bits > KEYLENGTH ? KEYLENGTH : bits; 263 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; 264 } 265 266 static inline int tkey_mismatch(t_key a, int offset, t_key b) 267 { 268 t_key diff = a ^ b; 269 int i = offset; 270 271 if (!diff) 272 return 0; 273 while ((diff << i) >> (KEYLENGTH-1) == 0) 274 i++; 275 return i; 276 } 277 278 /* 279 To understand this stuff, an understanding of keys and all their bits is 280 necessary. Every node in the trie has a key associated with it, but not 281 all of the bits in that key are significant. 282 283 Consider a node 'n' and its parent 'tp'. 284 285 If n is a leaf, every bit in its key is significant. Its presence is 286 necessitated by path compression, since during a tree traversal (when 287 searching for a leaf - unless we are doing an insertion) we will completely 288 ignore all skipped bits we encounter. Thus we need to verify, at the end of 289 a potentially successful search, that we have indeed been walking the 290 correct key path. 291 292 Note that we can never "miss" the correct key in the tree if present by 293 following the wrong path. Path compression ensures that segments of the key 294 that are the same for all keys with a given prefix are skipped, but the 295 skipped part *is* identical for each node in the subtrie below the skipped 296 bit! trie_insert() in this implementation takes care of that - note the 297 call to tkey_sub_equals() in trie_insert(). 298 299 if n is an internal node - a 'tnode' here, the various parts of its key 300 have many different meanings. 301 302 Example: 303 _________________________________________________________________ 304 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 305 ----------------------------------------------------------------- 306 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 307 308 _________________________________________________________________ 309 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 310 ----------------------------------------------------------------- 311 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 312 313 tp->pos = 7 314 tp->bits = 3 315 n->pos = 15 316 n->bits = 4 317 318 First, let's just ignore the bits that come before the parent tp, that is 319 the bits from 0 to (tp->pos-1). They are *known* but at this point we do 320 not use them for anything. 321 322 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 323 index into the parent's child array. That is, they will be used to find 324 'n' among tp's children. 325 326 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits 327 for the node n. 328 329 All the bits we have seen so far are significant to the node n. The rest 330 of the bits are really not needed or indeed known in n->key. 331 332 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 333 n's child array, and will of course be different for each child. 334 335 336 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown 337 at this point. 338 339 */ 340 341 static inline void check_tnode(const struct tnode *tn) 342 { 343 WARN_ON(tn && tn->pos+tn->bits > 32); 344 } 345 346 static const int halve_threshold = 25; 347 static const int inflate_threshold = 50; 348 static const int halve_threshold_root = 15; 349 static const int inflate_threshold_root = 30; 350 351 static void __alias_free_mem(struct rcu_head *head) 352 { 353 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 354 kmem_cache_free(fn_alias_kmem, fa); 355 } 356 357 static inline void alias_free_mem_rcu(struct fib_alias *fa) 358 { 359 call_rcu(&fa->rcu, __alias_free_mem); 360 } 361 362 static void __leaf_free_rcu(struct rcu_head *head) 363 { 364 struct leaf *l = container_of(head, struct leaf, rcu); 365 kmem_cache_free(trie_leaf_kmem, l); 366 } 367 368 static inline void free_leaf(struct leaf *l) 369 { 370 call_rcu(&l->rcu, __leaf_free_rcu); 371 } 372 373 static inline void free_leaf_info(struct leaf_info *leaf) 374 { 375 kfree_rcu(leaf, rcu); 376 } 377 378 static struct tnode *tnode_alloc(size_t size) 379 { 380 if (size <= PAGE_SIZE) 381 return kzalloc(size, GFP_KERNEL); 382 else 383 return vzalloc(size); 384 } 385 386 static void __tnode_vfree(struct work_struct *arg) 387 { 388 struct tnode *tn = container_of(arg, struct tnode, work); 389 vfree(tn); 390 } 391 392 static void __tnode_free_rcu(struct rcu_head *head) 393 { 394 struct tnode *tn = container_of(head, struct tnode, rcu); 395 size_t size = sizeof(struct tnode) + 396 (sizeof(struct rt_trie_node *) << tn->bits); 397 398 if (size <= PAGE_SIZE) 399 kfree(tn); 400 else { 401 INIT_WORK(&tn->work, __tnode_vfree); 402 schedule_work(&tn->work); 403 } 404 } 405 406 static inline void tnode_free(struct tnode *tn) 407 { 408 if (IS_LEAF(tn)) 409 free_leaf((struct leaf *) tn); 410 else 411 call_rcu(&tn->rcu, __tnode_free_rcu); 412 } 413 414 static void tnode_free_safe(struct tnode *tn) 415 { 416 BUG_ON(IS_LEAF(tn)); 417 tn->tnode_free = tnode_free_head; 418 tnode_free_head = tn; 419 tnode_free_size += sizeof(struct tnode) + 420 (sizeof(struct rt_trie_node *) << tn->bits); 421 } 422 423 static void tnode_free_flush(void) 424 { 425 struct tnode *tn; 426 427 while ((tn = tnode_free_head)) { 428 tnode_free_head = tn->tnode_free; 429 tn->tnode_free = NULL; 430 tnode_free(tn); 431 } 432 433 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 434 tnode_free_size = 0; 435 synchronize_rcu(); 436 } 437 } 438 439 static struct leaf *leaf_new(void) 440 { 441 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 442 if (l) { 443 l->parent = T_LEAF; 444 INIT_HLIST_HEAD(&l->list); 445 } 446 return l; 447 } 448 449 static struct leaf_info *leaf_info_new(int plen) 450 { 451 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); 452 if (li) { 453 li->plen = plen; 454 li->mask_plen = ntohl(inet_make_mask(plen)); 455 INIT_LIST_HEAD(&li->falh); 456 } 457 return li; 458 } 459 460 static struct tnode *tnode_new(t_key key, int pos, int bits) 461 { 462 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits); 463 struct tnode *tn = tnode_alloc(sz); 464 465 if (tn) { 466 tn->parent = T_TNODE; 467 tn->pos = pos; 468 tn->bits = bits; 469 tn->key = key; 470 tn->full_children = 0; 471 tn->empty_children = 1<<bits; 472 } 473 474 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), 475 sizeof(struct rt_trie_node *) << bits); 476 return tn; 477 } 478 479 /* 480 * Check whether a tnode 'n' is "full", i.e. it is an internal node 481 * and no bits are skipped. See discussion in dyntree paper p. 6 482 */ 483 484 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n) 485 { 486 if (n == NULL || IS_LEAF(n)) 487 return 0; 488 489 return ((struct tnode *) n)->pos == tn->pos + tn->bits; 490 } 491 492 static inline void put_child(struct tnode *tn, int i, 493 struct rt_trie_node *n) 494 { 495 tnode_put_child_reorg(tn, i, n, -1); 496 } 497 498 /* 499 * Add a child at position i overwriting the old value. 500 * Update the value of full_children and empty_children. 501 */ 502 503 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n, 504 int wasfull) 505 { 506 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]); 507 int isfull; 508 509 BUG_ON(i >= 1<<tn->bits); 510 511 /* update emptyChildren */ 512 if (n == NULL && chi != NULL) 513 tn->empty_children++; 514 else if (n != NULL && chi == NULL) 515 tn->empty_children--; 516 517 /* update fullChildren */ 518 if (wasfull == -1) 519 wasfull = tnode_full(tn, chi); 520 521 isfull = tnode_full(tn, n); 522 if (wasfull && !isfull) 523 tn->full_children--; 524 else if (!wasfull && isfull) 525 tn->full_children++; 526 527 if (n) 528 node_set_parent(n, tn); 529 530 rcu_assign_pointer(tn->child[i], n); 531 } 532 533 #define MAX_WORK 10 534 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn) 535 { 536 int i; 537 struct tnode *old_tn; 538 int inflate_threshold_use; 539 int halve_threshold_use; 540 int max_work; 541 542 if (!tn) 543 return NULL; 544 545 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 546 tn, inflate_threshold, halve_threshold); 547 548 /* No children */ 549 if (tn->empty_children == tnode_child_length(tn)) { 550 tnode_free_safe(tn); 551 return NULL; 552 } 553 /* One child */ 554 if (tn->empty_children == tnode_child_length(tn) - 1) 555 goto one_child; 556 /* 557 * Double as long as the resulting node has a number of 558 * nonempty nodes that are above the threshold. 559 */ 560 561 /* 562 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of 563 * the Helsinki University of Technology and Matti Tikkanen of Nokia 564 * Telecommunications, page 6: 565 * "A node is doubled if the ratio of non-empty children to all 566 * children in the *doubled* node is at least 'high'." 567 * 568 * 'high' in this instance is the variable 'inflate_threshold'. It 569 * is expressed as a percentage, so we multiply it with 570 * tnode_child_length() and instead of multiplying by 2 (since the 571 * child array will be doubled by inflate()) and multiplying 572 * the left-hand side by 100 (to handle the percentage thing) we 573 * multiply the left-hand side by 50. 574 * 575 * The left-hand side may look a bit weird: tnode_child_length(tn) 576 * - tn->empty_children is of course the number of non-null children 577 * in the current node. tn->full_children is the number of "full" 578 * children, that is non-null tnodes with a skip value of 0. 579 * All of those will be doubled in the resulting inflated tnode, so 580 * we just count them one extra time here. 581 * 582 * A clearer way to write this would be: 583 * 584 * to_be_doubled = tn->full_children; 585 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - 586 * tn->full_children; 587 * 588 * new_child_length = tnode_child_length(tn) * 2; 589 * 590 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 591 * new_child_length; 592 * if (new_fill_factor >= inflate_threshold) 593 * 594 * ...and so on, tho it would mess up the while () loop. 595 * 596 * anyway, 597 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 598 * inflate_threshold 599 * 600 * avoid a division: 601 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 602 * inflate_threshold * new_child_length 603 * 604 * expand not_to_be_doubled and to_be_doubled, and shorten: 605 * 100 * (tnode_child_length(tn) - tn->empty_children + 606 * tn->full_children) >= inflate_threshold * new_child_length 607 * 608 * expand new_child_length: 609 * 100 * (tnode_child_length(tn) - tn->empty_children + 610 * tn->full_children) >= 611 * inflate_threshold * tnode_child_length(tn) * 2 612 * 613 * shorten again: 614 * 50 * (tn->full_children + tnode_child_length(tn) - 615 * tn->empty_children) >= inflate_threshold * 616 * tnode_child_length(tn) 617 * 618 */ 619 620 check_tnode(tn); 621 622 /* Keep root node larger */ 623 624 if (!node_parent((struct rt_trie_node *)tn)) { 625 inflate_threshold_use = inflate_threshold_root; 626 halve_threshold_use = halve_threshold_root; 627 } else { 628 inflate_threshold_use = inflate_threshold; 629 halve_threshold_use = halve_threshold; 630 } 631 632 max_work = MAX_WORK; 633 while ((tn->full_children > 0 && max_work-- && 634 50 * (tn->full_children + tnode_child_length(tn) 635 - tn->empty_children) 636 >= inflate_threshold_use * tnode_child_length(tn))) { 637 638 old_tn = tn; 639 tn = inflate(t, tn); 640 641 if (IS_ERR(tn)) { 642 tn = old_tn; 643 #ifdef CONFIG_IP_FIB_TRIE_STATS 644 t->stats.resize_node_skipped++; 645 #endif 646 break; 647 } 648 } 649 650 check_tnode(tn); 651 652 /* Return if at least one inflate is run */ 653 if (max_work != MAX_WORK) 654 return (struct rt_trie_node *) tn; 655 656 /* 657 * Halve as long as the number of empty children in this 658 * node is above threshold. 659 */ 660 661 max_work = MAX_WORK; 662 while (tn->bits > 1 && max_work-- && 663 100 * (tnode_child_length(tn) - tn->empty_children) < 664 halve_threshold_use * tnode_child_length(tn)) { 665 666 old_tn = tn; 667 tn = halve(t, tn); 668 if (IS_ERR(tn)) { 669 tn = old_tn; 670 #ifdef CONFIG_IP_FIB_TRIE_STATS 671 t->stats.resize_node_skipped++; 672 #endif 673 break; 674 } 675 } 676 677 678 /* Only one child remains */ 679 if (tn->empty_children == tnode_child_length(tn) - 1) { 680 one_child: 681 for (i = 0; i < tnode_child_length(tn); i++) { 682 struct rt_trie_node *n; 683 684 n = rtnl_dereference(tn->child[i]); 685 if (!n) 686 continue; 687 688 /* compress one level */ 689 690 node_set_parent(n, NULL); 691 tnode_free_safe(tn); 692 return n; 693 } 694 } 695 return (struct rt_trie_node *) tn; 696 } 697 698 699 static void tnode_clean_free(struct tnode *tn) 700 { 701 int i; 702 struct tnode *tofree; 703 704 for (i = 0; i < tnode_child_length(tn); i++) { 705 tofree = (struct tnode *)rtnl_dereference(tn->child[i]); 706 if (tofree) 707 tnode_free(tofree); 708 } 709 tnode_free(tn); 710 } 711 712 static struct tnode *inflate(struct trie *t, struct tnode *tn) 713 { 714 struct tnode *oldtnode = tn; 715 int olen = tnode_child_length(tn); 716 int i; 717 718 pr_debug("In inflate\n"); 719 720 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); 721 722 if (!tn) 723 return ERR_PTR(-ENOMEM); 724 725 /* 726 * Preallocate and store tnodes before the actual work so we 727 * don't get into an inconsistent state if memory allocation 728 * fails. In case of failure we return the oldnode and inflate 729 * of tnode is ignored. 730 */ 731 732 for (i = 0; i < olen; i++) { 733 struct tnode *inode; 734 735 inode = (struct tnode *) tnode_get_child(oldtnode, i); 736 if (inode && 737 IS_TNODE(inode) && 738 inode->pos == oldtnode->pos + oldtnode->bits && 739 inode->bits > 1) { 740 struct tnode *left, *right; 741 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; 742 743 left = tnode_new(inode->key&(~m), inode->pos + 1, 744 inode->bits - 1); 745 if (!left) 746 goto nomem; 747 748 right = tnode_new(inode->key|m, inode->pos + 1, 749 inode->bits - 1); 750 751 if (!right) { 752 tnode_free(left); 753 goto nomem; 754 } 755 756 put_child(tn, 2*i, (struct rt_trie_node *) left); 757 put_child(tn, 2*i+1, (struct rt_trie_node *) right); 758 } 759 } 760 761 for (i = 0; i < olen; i++) { 762 struct tnode *inode; 763 struct rt_trie_node *node = tnode_get_child(oldtnode, i); 764 struct tnode *left, *right; 765 int size, j; 766 767 /* An empty child */ 768 if (node == NULL) 769 continue; 770 771 /* A leaf or an internal node with skipped bits */ 772 773 if (IS_LEAF(node) || ((struct tnode *) node)->pos > 774 tn->pos + tn->bits - 1) { 775 if (tkey_extract_bits(node->key, 776 oldtnode->pos + oldtnode->bits, 777 1) == 0) 778 put_child(tn, 2*i, node); 779 else 780 put_child(tn, 2*i+1, node); 781 continue; 782 } 783 784 /* An internal node with two children */ 785 inode = (struct tnode *) node; 786 787 if (inode->bits == 1) { 788 put_child(tn, 2*i, rtnl_dereference(inode->child[0])); 789 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1])); 790 791 tnode_free_safe(inode); 792 continue; 793 } 794 795 /* An internal node with more than two children */ 796 797 /* We will replace this node 'inode' with two new 798 * ones, 'left' and 'right', each with half of the 799 * original children. The two new nodes will have 800 * a position one bit further down the key and this 801 * means that the "significant" part of their keys 802 * (see the discussion near the top of this file) 803 * will differ by one bit, which will be "0" in 804 * left's key and "1" in right's key. Since we are 805 * moving the key position by one step, the bit that 806 * we are moving away from - the bit at position 807 * (inode->pos) - is the one that will differ between 808 * left and right. So... we synthesize that bit in the 809 * two new keys. 810 * The mask 'm' below will be a single "one" bit at 811 * the position (inode->pos) 812 */ 813 814 /* Use the old key, but set the new significant 815 * bit to zero. 816 */ 817 818 left = (struct tnode *) tnode_get_child(tn, 2*i); 819 put_child(tn, 2*i, NULL); 820 821 BUG_ON(!left); 822 823 right = (struct tnode *) tnode_get_child(tn, 2*i+1); 824 put_child(tn, 2*i+1, NULL); 825 826 BUG_ON(!right); 827 828 size = tnode_child_length(left); 829 for (j = 0; j < size; j++) { 830 put_child(left, j, rtnl_dereference(inode->child[j])); 831 put_child(right, j, rtnl_dereference(inode->child[j + size])); 832 } 833 put_child(tn, 2*i, resize(t, left)); 834 put_child(tn, 2*i+1, resize(t, right)); 835 836 tnode_free_safe(inode); 837 } 838 tnode_free_safe(oldtnode); 839 return tn; 840 nomem: 841 tnode_clean_free(tn); 842 return ERR_PTR(-ENOMEM); 843 } 844 845 static struct tnode *halve(struct trie *t, struct tnode *tn) 846 { 847 struct tnode *oldtnode = tn; 848 struct rt_trie_node *left, *right; 849 int i; 850 int olen = tnode_child_length(tn); 851 852 pr_debug("In halve\n"); 853 854 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); 855 856 if (!tn) 857 return ERR_PTR(-ENOMEM); 858 859 /* 860 * Preallocate and store tnodes before the actual work so we 861 * don't get into an inconsistent state if memory allocation 862 * fails. In case of failure we return the oldnode and halve 863 * of tnode is ignored. 864 */ 865 866 for (i = 0; i < olen; i += 2) { 867 left = tnode_get_child(oldtnode, i); 868 right = tnode_get_child(oldtnode, i+1); 869 870 /* Two nonempty children */ 871 if (left && right) { 872 struct tnode *newn; 873 874 newn = tnode_new(left->key, tn->pos + tn->bits, 1); 875 876 if (!newn) 877 goto nomem; 878 879 put_child(tn, i/2, (struct rt_trie_node *)newn); 880 } 881 882 } 883 884 for (i = 0; i < olen; i += 2) { 885 struct tnode *newBinNode; 886 887 left = tnode_get_child(oldtnode, i); 888 right = tnode_get_child(oldtnode, i+1); 889 890 /* At least one of the children is empty */ 891 if (left == NULL) { 892 if (right == NULL) /* Both are empty */ 893 continue; 894 put_child(tn, i/2, right); 895 continue; 896 } 897 898 if (right == NULL) { 899 put_child(tn, i/2, left); 900 continue; 901 } 902 903 /* Two nonempty children */ 904 newBinNode = (struct tnode *) tnode_get_child(tn, i/2); 905 put_child(tn, i/2, NULL); 906 put_child(newBinNode, 0, left); 907 put_child(newBinNode, 1, right); 908 put_child(tn, i/2, resize(t, newBinNode)); 909 } 910 tnode_free_safe(oldtnode); 911 return tn; 912 nomem: 913 tnode_clean_free(tn); 914 return ERR_PTR(-ENOMEM); 915 } 916 917 /* readside must use rcu_read_lock currently dump routines 918 via get_fa_head and dump */ 919 920 static struct leaf_info *find_leaf_info(struct leaf *l, int plen) 921 { 922 struct hlist_head *head = &l->list; 923 struct hlist_node *node; 924 struct leaf_info *li; 925 926 hlist_for_each_entry_rcu(li, node, head, hlist) 927 if (li->plen == plen) 928 return li; 929 930 return NULL; 931 } 932 933 static inline struct list_head *get_fa_head(struct leaf *l, int plen) 934 { 935 struct leaf_info *li = find_leaf_info(l, plen); 936 937 if (!li) 938 return NULL; 939 940 return &li->falh; 941 } 942 943 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) 944 { 945 struct leaf_info *li = NULL, *last = NULL; 946 struct hlist_node *node; 947 948 if (hlist_empty(head)) { 949 hlist_add_head_rcu(&new->hlist, head); 950 } else { 951 hlist_for_each_entry(li, node, head, hlist) { 952 if (new->plen > li->plen) 953 break; 954 955 last = li; 956 } 957 if (last) 958 hlist_add_after_rcu(&last->hlist, &new->hlist); 959 else 960 hlist_add_before_rcu(&new->hlist, &li->hlist); 961 } 962 } 963 964 /* rcu_read_lock needs to be hold by caller from readside */ 965 966 static struct leaf * 967 fib_find_node(struct trie *t, u32 key) 968 { 969 int pos; 970 struct tnode *tn; 971 struct rt_trie_node *n; 972 973 pos = 0; 974 n = rcu_dereference_rtnl(t->trie); 975 976 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 977 tn = (struct tnode *) n; 978 979 check_tnode(tn); 980 981 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 982 pos = tn->pos + tn->bits; 983 n = tnode_get_child_rcu(tn, 984 tkey_extract_bits(key, 985 tn->pos, 986 tn->bits)); 987 } else 988 break; 989 } 990 /* Case we have found a leaf. Compare prefixes */ 991 992 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) 993 return (struct leaf *)n; 994 995 return NULL; 996 } 997 998 static void trie_rebalance(struct trie *t, struct tnode *tn) 999 { 1000 int wasfull; 1001 t_key cindex, key; 1002 struct tnode *tp; 1003 1004 key = tn->key; 1005 1006 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) { 1007 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1008 wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); 1009 tn = (struct tnode *)resize(t, tn); 1010 1011 tnode_put_child_reorg(tp, cindex, 1012 (struct rt_trie_node *)tn, wasfull); 1013 1014 tp = node_parent((struct rt_trie_node *) tn); 1015 if (!tp) 1016 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1017 1018 tnode_free_flush(); 1019 if (!tp) 1020 break; 1021 tn = tp; 1022 } 1023 1024 /* Handle last (top) tnode */ 1025 if (IS_TNODE(tn)) 1026 tn = (struct tnode *)resize(t, tn); 1027 1028 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1029 tnode_free_flush(); 1030 } 1031 1032 /* only used from updater-side */ 1033 1034 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) 1035 { 1036 int pos, newpos; 1037 struct tnode *tp = NULL, *tn = NULL; 1038 struct rt_trie_node *n; 1039 struct leaf *l; 1040 int missbit; 1041 struct list_head *fa_head = NULL; 1042 struct leaf_info *li; 1043 t_key cindex; 1044 1045 pos = 0; 1046 n = rtnl_dereference(t->trie); 1047 1048 /* If we point to NULL, stop. Either the tree is empty and we should 1049 * just put a new leaf in if, or we have reached an empty child slot, 1050 * and we should just put our new leaf in that. 1051 * If we point to a T_TNODE, check if it matches our key. Note that 1052 * a T_TNODE might be skipping any number of bits - its 'pos' need 1053 * not be the parent's 'pos'+'bits'! 1054 * 1055 * If it does match the current key, get pos/bits from it, extract 1056 * the index from our key, push the T_TNODE and walk the tree. 1057 * 1058 * If it doesn't, we have to replace it with a new T_TNODE. 1059 * 1060 * If we point to a T_LEAF, it might or might not have the same key 1061 * as we do. If it does, just change the value, update the T_LEAF's 1062 * value, and return it. 1063 * If it doesn't, we need to replace it with a T_TNODE. 1064 */ 1065 1066 while (n != NULL && NODE_TYPE(n) == T_TNODE) { 1067 tn = (struct tnode *) n; 1068 1069 check_tnode(tn); 1070 1071 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { 1072 tp = tn; 1073 pos = tn->pos + tn->bits; 1074 n = tnode_get_child(tn, 1075 tkey_extract_bits(key, 1076 tn->pos, 1077 tn->bits)); 1078 1079 BUG_ON(n && node_parent(n) != tn); 1080 } else 1081 break; 1082 } 1083 1084 /* 1085 * n ----> NULL, LEAF or TNODE 1086 * 1087 * tp is n's (parent) ----> NULL or TNODE 1088 */ 1089 1090 BUG_ON(tp && IS_LEAF(tp)); 1091 1092 /* Case 1: n is a leaf. Compare prefixes */ 1093 1094 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { 1095 l = (struct leaf *) n; 1096 li = leaf_info_new(plen); 1097 1098 if (!li) 1099 return NULL; 1100 1101 fa_head = &li->falh; 1102 insert_leaf_info(&l->list, li); 1103 goto done; 1104 } 1105 l = leaf_new(); 1106 1107 if (!l) 1108 return NULL; 1109 1110 l->key = key; 1111 li = leaf_info_new(plen); 1112 1113 if (!li) { 1114 free_leaf(l); 1115 return NULL; 1116 } 1117 1118 fa_head = &li->falh; 1119 insert_leaf_info(&l->list, li); 1120 1121 if (t->trie && n == NULL) { 1122 /* Case 2: n is NULL, and will just insert a new leaf */ 1123 1124 node_set_parent((struct rt_trie_node *)l, tp); 1125 1126 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1127 put_child(tp, cindex, (struct rt_trie_node *)l); 1128 } else { 1129 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ 1130 /* 1131 * Add a new tnode here 1132 * first tnode need some special handling 1133 */ 1134 1135 if (tp) 1136 pos = tp->pos+tp->bits; 1137 else 1138 pos = 0; 1139 1140 if (n) { 1141 newpos = tkey_mismatch(key, pos, n->key); 1142 tn = tnode_new(n->key, newpos, 1); 1143 } else { 1144 newpos = 0; 1145 tn = tnode_new(key, newpos, 1); /* First tnode */ 1146 } 1147 1148 if (!tn) { 1149 free_leaf_info(li); 1150 free_leaf(l); 1151 return NULL; 1152 } 1153 1154 node_set_parent((struct rt_trie_node *)tn, tp); 1155 1156 missbit = tkey_extract_bits(key, newpos, 1); 1157 put_child(tn, missbit, (struct rt_trie_node *)l); 1158 put_child(tn, 1-missbit, n); 1159 1160 if (tp) { 1161 cindex = tkey_extract_bits(key, tp->pos, tp->bits); 1162 put_child(tp, cindex, (struct rt_trie_node *)tn); 1163 } else { 1164 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn); 1165 tp = tn; 1166 } 1167 } 1168 1169 if (tp && tp->pos + tp->bits > 32) 1170 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", 1171 tp, tp->pos, tp->bits, key, plen); 1172 1173 /* Rebalance the trie */ 1174 1175 trie_rebalance(t, tp); 1176 done: 1177 return fa_head; 1178 } 1179 1180 /* 1181 * Caller must hold RTNL. 1182 */ 1183 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1184 { 1185 struct trie *t = (struct trie *) tb->tb_data; 1186 struct fib_alias *fa, *new_fa; 1187 struct list_head *fa_head = NULL; 1188 struct fib_info *fi; 1189 int plen = cfg->fc_dst_len; 1190 u8 tos = cfg->fc_tos; 1191 u32 key, mask; 1192 int err; 1193 struct leaf *l; 1194 1195 if (plen > 32) 1196 return -EINVAL; 1197 1198 key = ntohl(cfg->fc_dst); 1199 1200 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1201 1202 mask = ntohl(inet_make_mask(plen)); 1203 1204 if (key & ~mask) 1205 return -EINVAL; 1206 1207 key = key & mask; 1208 1209 fi = fib_create_info(cfg); 1210 if (IS_ERR(fi)) { 1211 err = PTR_ERR(fi); 1212 goto err; 1213 } 1214 1215 l = fib_find_node(t, key); 1216 fa = NULL; 1217 1218 if (l) { 1219 fa_head = get_fa_head(l, plen); 1220 fa = fib_find_alias(fa_head, tos, fi->fib_priority); 1221 } 1222 1223 /* Now fa, if non-NULL, points to the first fib alias 1224 * with the same keys [prefix,tos,priority], if such key already 1225 * exists or to the node before which we will insert new one. 1226 * 1227 * If fa is NULL, we will need to allocate a new one and 1228 * insert to the head of f. 1229 * 1230 * If f is NULL, no fib node matched the destination key 1231 * and we need to allocate a new one of those as well. 1232 */ 1233 1234 if (fa && fa->fa_tos == tos && 1235 fa->fa_info->fib_priority == fi->fib_priority) { 1236 struct fib_alias *fa_first, *fa_match; 1237 1238 err = -EEXIST; 1239 if (cfg->fc_nlflags & NLM_F_EXCL) 1240 goto out; 1241 1242 /* We have 2 goals: 1243 * 1. Find exact match for type, scope, fib_info to avoid 1244 * duplicate routes 1245 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1246 */ 1247 fa_match = NULL; 1248 fa_first = fa; 1249 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1250 list_for_each_entry_continue(fa, fa_head, fa_list) { 1251 if (fa->fa_tos != tos) 1252 break; 1253 if (fa->fa_info->fib_priority != fi->fib_priority) 1254 break; 1255 if (fa->fa_type == cfg->fc_type && 1256 fa->fa_info == fi) { 1257 fa_match = fa; 1258 break; 1259 } 1260 } 1261 1262 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1263 struct fib_info *fi_drop; 1264 u8 state; 1265 1266 fa = fa_first; 1267 if (fa_match) { 1268 if (fa == fa_match) 1269 err = 0; 1270 goto out; 1271 } 1272 err = -ENOBUFS; 1273 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1274 if (new_fa == NULL) 1275 goto out; 1276 1277 fi_drop = fa->fa_info; 1278 new_fa->fa_tos = fa->fa_tos; 1279 new_fa->fa_info = fi; 1280 new_fa->fa_type = cfg->fc_type; 1281 state = fa->fa_state; 1282 new_fa->fa_state = state & ~FA_S_ACCESSED; 1283 1284 list_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1285 alias_free_mem_rcu(fa); 1286 1287 fib_release_info(fi_drop); 1288 if (state & FA_S_ACCESSED) 1289 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1290 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1291 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1292 1293 goto succeeded; 1294 } 1295 /* Error if we find a perfect match which 1296 * uses the same scope, type, and nexthop 1297 * information. 1298 */ 1299 if (fa_match) 1300 goto out; 1301 1302 if (!(cfg->fc_nlflags & NLM_F_APPEND)) 1303 fa = fa_first; 1304 } 1305 err = -ENOENT; 1306 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1307 goto out; 1308 1309 err = -ENOBUFS; 1310 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1311 if (new_fa == NULL) 1312 goto out; 1313 1314 new_fa->fa_info = fi; 1315 new_fa->fa_tos = tos; 1316 new_fa->fa_type = cfg->fc_type; 1317 new_fa->fa_state = 0; 1318 /* 1319 * Insert new entry to the list. 1320 */ 1321 1322 if (!fa_head) { 1323 fa_head = fib_insert_node(t, key, plen); 1324 if (unlikely(!fa_head)) { 1325 err = -ENOMEM; 1326 goto out_free_new_fa; 1327 } 1328 } 1329 1330 if (!plen) 1331 tb->tb_num_default++; 1332 1333 list_add_tail_rcu(&new_fa->fa_list, 1334 (fa ? &fa->fa_list : fa_head)); 1335 1336 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1337 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, 1338 &cfg->fc_nlinfo, 0); 1339 succeeded: 1340 return 0; 1341 1342 out_free_new_fa: 1343 kmem_cache_free(fn_alias_kmem, new_fa); 1344 out: 1345 fib_release_info(fi); 1346 err: 1347 return err; 1348 } 1349 1350 /* should be called with rcu_read_lock */ 1351 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l, 1352 t_key key, const struct flowi4 *flp, 1353 struct fib_result *res, int fib_flags) 1354 { 1355 struct leaf_info *li; 1356 struct hlist_head *hhead = &l->list; 1357 struct hlist_node *node; 1358 1359 hlist_for_each_entry_rcu(li, node, hhead, hlist) { 1360 struct fib_alias *fa; 1361 1362 if (l->key != (key & li->mask_plen)) 1363 continue; 1364 1365 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 1366 struct fib_info *fi = fa->fa_info; 1367 int nhsel, err; 1368 1369 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1370 continue; 1371 if (fi->fib_dead) 1372 continue; 1373 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1374 continue; 1375 fib_alias_accessed(fa); 1376 err = fib_props[fa->fa_type].error; 1377 if (err) { 1378 #ifdef CONFIG_IP_FIB_TRIE_STATS 1379 t->stats.semantic_match_passed++; 1380 #endif 1381 return err; 1382 } 1383 if (fi->fib_flags & RTNH_F_DEAD) 1384 continue; 1385 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1386 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1387 1388 if (nh->nh_flags & RTNH_F_DEAD) 1389 continue; 1390 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif) 1391 continue; 1392 1393 #ifdef CONFIG_IP_FIB_TRIE_STATS 1394 t->stats.semantic_match_passed++; 1395 #endif 1396 res->prefixlen = li->plen; 1397 res->nh_sel = nhsel; 1398 res->type = fa->fa_type; 1399 res->scope = fa->fa_info->fib_scope; 1400 res->fi = fi; 1401 res->table = tb; 1402 res->fa_head = &li->falh; 1403 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1404 atomic_inc(&fi->fib_clntref); 1405 return 0; 1406 } 1407 } 1408 1409 #ifdef CONFIG_IP_FIB_TRIE_STATS 1410 t->stats.semantic_match_miss++; 1411 #endif 1412 } 1413 1414 return 1; 1415 } 1416 1417 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1418 struct fib_result *res, int fib_flags) 1419 { 1420 struct trie *t = (struct trie *) tb->tb_data; 1421 int ret; 1422 struct rt_trie_node *n; 1423 struct tnode *pn; 1424 unsigned int pos, bits; 1425 t_key key = ntohl(flp->daddr); 1426 unsigned int chopped_off; 1427 t_key cindex = 0; 1428 unsigned int current_prefix_length = KEYLENGTH; 1429 struct tnode *cn; 1430 t_key pref_mismatch; 1431 1432 rcu_read_lock(); 1433 1434 n = rcu_dereference(t->trie); 1435 if (!n) 1436 goto failed; 1437 1438 #ifdef CONFIG_IP_FIB_TRIE_STATS 1439 t->stats.gets++; 1440 #endif 1441 1442 /* Just a leaf? */ 1443 if (IS_LEAF(n)) { 1444 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1445 goto found; 1446 } 1447 1448 pn = (struct tnode *) n; 1449 chopped_off = 0; 1450 1451 while (pn) { 1452 pos = pn->pos; 1453 bits = pn->bits; 1454 1455 if (!chopped_off) 1456 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), 1457 pos, bits); 1458 1459 n = tnode_get_child_rcu(pn, cindex); 1460 1461 if (n == NULL) { 1462 #ifdef CONFIG_IP_FIB_TRIE_STATS 1463 t->stats.null_node_hit++; 1464 #endif 1465 goto backtrace; 1466 } 1467 1468 if (IS_LEAF(n)) { 1469 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); 1470 if (ret > 0) 1471 goto backtrace; 1472 goto found; 1473 } 1474 1475 cn = (struct tnode *)n; 1476 1477 /* 1478 * It's a tnode, and we can do some extra checks here if we 1479 * like, to avoid descending into a dead-end branch. 1480 * This tnode is in the parent's child array at index 1481 * key[p_pos..p_pos+p_bits] but potentially with some bits 1482 * chopped off, so in reality the index may be just a 1483 * subprefix, padded with zero at the end. 1484 * We can also take a look at any skipped bits in this 1485 * tnode - everything up to p_pos is supposed to be ok, 1486 * and the non-chopped bits of the index (se previous 1487 * paragraph) are also guaranteed ok, but the rest is 1488 * considered unknown. 1489 * 1490 * The skipped bits are key[pos+bits..cn->pos]. 1491 */ 1492 1493 /* If current_prefix_length < pos+bits, we are already doing 1494 * actual prefix matching, which means everything from 1495 * pos+(bits-chopped_off) onward must be zero along some 1496 * branch of this subtree - otherwise there is *no* valid 1497 * prefix present. Here we can only check the skipped 1498 * bits. Remember, since we have already indexed into the 1499 * parent's child array, we know that the bits we chopped of 1500 * *are* zero. 1501 */ 1502 1503 /* NOTA BENE: Checking only skipped bits 1504 for the new node here */ 1505 1506 if (current_prefix_length < pos+bits) { 1507 if (tkey_extract_bits(cn->key, current_prefix_length, 1508 cn->pos - current_prefix_length) 1509 || !(cn->child[0])) 1510 goto backtrace; 1511 } 1512 1513 /* 1514 * If chopped_off=0, the index is fully validated and we 1515 * only need to look at the skipped bits for this, the new, 1516 * tnode. What we actually want to do is to find out if 1517 * these skipped bits match our key perfectly, or if we will 1518 * have to count on finding a matching prefix further down, 1519 * because if we do, we would like to have some way of 1520 * verifying the existence of such a prefix at this point. 1521 */ 1522 1523 /* The only thing we can do at this point is to verify that 1524 * any such matching prefix can indeed be a prefix to our 1525 * key, and if the bits in the node we are inspecting that 1526 * do not match our key are not ZERO, this cannot be true. 1527 * Thus, find out where there is a mismatch (before cn->pos) 1528 * and verify that all the mismatching bits are zero in the 1529 * new tnode's key. 1530 */ 1531 1532 /* 1533 * Note: We aren't very concerned about the piece of 1534 * the key that precede pn->pos+pn->bits, since these 1535 * have already been checked. The bits after cn->pos 1536 * aren't checked since these are by definition 1537 * "unknown" at this point. Thus, what we want to see 1538 * is if we are about to enter the "prefix matching" 1539 * state, and in that case verify that the skipped 1540 * bits that will prevail throughout this subtree are 1541 * zero, as they have to be if we are to find a 1542 * matching prefix. 1543 */ 1544 1545 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); 1546 1547 /* 1548 * In short: If skipped bits in this node do not match 1549 * the search key, enter the "prefix matching" 1550 * state.directly. 1551 */ 1552 if (pref_mismatch) { 1553 /* fls(x) = __fls(x) + 1 */ 1554 int mp = KEYLENGTH - __fls(pref_mismatch) - 1; 1555 1556 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) 1557 goto backtrace; 1558 1559 if (current_prefix_length >= cn->pos) 1560 current_prefix_length = mp; 1561 } 1562 1563 pn = (struct tnode *)n; /* Descend */ 1564 chopped_off = 0; 1565 continue; 1566 1567 backtrace: 1568 chopped_off++; 1569 1570 /* As zero don't change the child key (cindex) */ 1571 while ((chopped_off <= pn->bits) 1572 && !(cindex & (1<<(chopped_off-1)))) 1573 chopped_off++; 1574 1575 /* Decrease current_... with bits chopped off */ 1576 if (current_prefix_length > pn->pos + pn->bits - chopped_off) 1577 current_prefix_length = pn->pos + pn->bits 1578 - chopped_off; 1579 1580 /* 1581 * Either we do the actual chop off according or if we have 1582 * chopped off all bits in this tnode walk up to our parent. 1583 */ 1584 1585 if (chopped_off <= pn->bits) { 1586 cindex &= ~(1 << (chopped_off-1)); 1587 } else { 1588 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn); 1589 if (!parent) 1590 goto failed; 1591 1592 /* Get Child's index */ 1593 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); 1594 pn = parent; 1595 chopped_off = 0; 1596 1597 #ifdef CONFIG_IP_FIB_TRIE_STATS 1598 t->stats.backtrack++; 1599 #endif 1600 goto backtrace; 1601 } 1602 } 1603 failed: 1604 ret = 1; 1605 found: 1606 rcu_read_unlock(); 1607 return ret; 1608 } 1609 EXPORT_SYMBOL_GPL(fib_table_lookup); 1610 1611 /* 1612 * Remove the leaf and return parent. 1613 */ 1614 static void trie_leaf_remove(struct trie *t, struct leaf *l) 1615 { 1616 struct tnode *tp = node_parent((struct rt_trie_node *) l); 1617 1618 pr_debug("entering trie_leaf_remove(%p)\n", l); 1619 1620 if (tp) { 1621 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); 1622 put_child(tp, cindex, NULL); 1623 trie_rebalance(t, tp); 1624 } else 1625 RCU_INIT_POINTER(t->trie, NULL); 1626 1627 free_leaf(l); 1628 } 1629 1630 /* 1631 * Caller must hold RTNL. 1632 */ 1633 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1634 { 1635 struct trie *t = (struct trie *) tb->tb_data; 1636 u32 key, mask; 1637 int plen = cfg->fc_dst_len; 1638 u8 tos = cfg->fc_tos; 1639 struct fib_alias *fa, *fa_to_delete; 1640 struct list_head *fa_head; 1641 struct leaf *l; 1642 struct leaf_info *li; 1643 1644 if (plen > 32) 1645 return -EINVAL; 1646 1647 key = ntohl(cfg->fc_dst); 1648 mask = ntohl(inet_make_mask(plen)); 1649 1650 if (key & ~mask) 1651 return -EINVAL; 1652 1653 key = key & mask; 1654 l = fib_find_node(t, key); 1655 1656 if (!l) 1657 return -ESRCH; 1658 1659 li = find_leaf_info(l, plen); 1660 1661 if (!li) 1662 return -ESRCH; 1663 1664 fa_head = &li->falh; 1665 fa = fib_find_alias(fa_head, tos, 0); 1666 1667 if (!fa) 1668 return -ESRCH; 1669 1670 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1671 1672 fa_to_delete = NULL; 1673 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); 1674 list_for_each_entry_continue(fa, fa_head, fa_list) { 1675 struct fib_info *fi = fa->fa_info; 1676 1677 if (fa->fa_tos != tos) 1678 break; 1679 1680 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1681 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1682 fa->fa_info->fib_scope == cfg->fc_scope) && 1683 (!cfg->fc_prefsrc || 1684 fi->fib_prefsrc == cfg->fc_prefsrc) && 1685 (!cfg->fc_protocol || 1686 fi->fib_protocol == cfg->fc_protocol) && 1687 fib_nh_match(cfg, fi) == 0) { 1688 fa_to_delete = fa; 1689 break; 1690 } 1691 } 1692 1693 if (!fa_to_delete) 1694 return -ESRCH; 1695 1696 fa = fa_to_delete; 1697 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, 1698 &cfg->fc_nlinfo, 0); 1699 1700 list_del_rcu(&fa->fa_list); 1701 1702 if (!plen) 1703 tb->tb_num_default--; 1704 1705 if (list_empty(fa_head)) { 1706 hlist_del_rcu(&li->hlist); 1707 free_leaf_info(li); 1708 } 1709 1710 if (hlist_empty(&l->list)) 1711 trie_leaf_remove(t, l); 1712 1713 if (fa->fa_state & FA_S_ACCESSED) 1714 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1715 1716 fib_release_info(fa->fa_info); 1717 alias_free_mem_rcu(fa); 1718 return 0; 1719 } 1720 1721 static int trie_flush_list(struct list_head *head) 1722 { 1723 struct fib_alias *fa, *fa_node; 1724 int found = 0; 1725 1726 list_for_each_entry_safe(fa, fa_node, head, fa_list) { 1727 struct fib_info *fi = fa->fa_info; 1728 1729 if (fi && (fi->fib_flags & RTNH_F_DEAD)) { 1730 list_del_rcu(&fa->fa_list); 1731 fib_release_info(fa->fa_info); 1732 alias_free_mem_rcu(fa); 1733 found++; 1734 } 1735 } 1736 return found; 1737 } 1738 1739 static int trie_flush_leaf(struct leaf *l) 1740 { 1741 int found = 0; 1742 struct hlist_head *lih = &l->list; 1743 struct hlist_node *node, *tmp; 1744 struct leaf_info *li = NULL; 1745 1746 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { 1747 found += trie_flush_list(&li->falh); 1748 1749 if (list_empty(&li->falh)) { 1750 hlist_del_rcu(&li->hlist); 1751 free_leaf_info(li); 1752 } 1753 } 1754 return found; 1755 } 1756 1757 /* 1758 * Scan for the next right leaf starting at node p->child[idx] 1759 * Since we have back pointer, no recursion necessary. 1760 */ 1761 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c) 1762 { 1763 do { 1764 t_key idx; 1765 1766 if (c) 1767 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; 1768 else 1769 idx = 0; 1770 1771 while (idx < 1u << p->bits) { 1772 c = tnode_get_child_rcu(p, idx++); 1773 if (!c) 1774 continue; 1775 1776 if (IS_LEAF(c)) { 1777 prefetch(rcu_dereference_rtnl(p->child[idx])); 1778 return (struct leaf *) c; 1779 } 1780 1781 /* Rescan start scanning in new node */ 1782 p = (struct tnode *) c; 1783 idx = 0; 1784 } 1785 1786 /* Node empty, walk back up to parent */ 1787 c = (struct rt_trie_node *) p; 1788 } while ((p = node_parent_rcu(c)) != NULL); 1789 1790 return NULL; /* Root of trie */ 1791 } 1792 1793 static struct leaf *trie_firstleaf(struct trie *t) 1794 { 1795 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); 1796 1797 if (!n) 1798 return NULL; 1799 1800 if (IS_LEAF(n)) /* trie is just a leaf */ 1801 return (struct leaf *) n; 1802 1803 return leaf_walk_rcu(n, NULL); 1804 } 1805 1806 static struct leaf *trie_nextleaf(struct leaf *l) 1807 { 1808 struct rt_trie_node *c = (struct rt_trie_node *) l; 1809 struct tnode *p = node_parent_rcu(c); 1810 1811 if (!p) 1812 return NULL; /* trie with just one leaf */ 1813 1814 return leaf_walk_rcu(p, c); 1815 } 1816 1817 static struct leaf *trie_leafindex(struct trie *t, int index) 1818 { 1819 struct leaf *l = trie_firstleaf(t); 1820 1821 while (l && index-- > 0) 1822 l = trie_nextleaf(l); 1823 1824 return l; 1825 } 1826 1827 1828 /* 1829 * Caller must hold RTNL. 1830 */ 1831 int fib_table_flush(struct fib_table *tb) 1832 { 1833 struct trie *t = (struct trie *) tb->tb_data; 1834 struct leaf *l, *ll = NULL; 1835 int found = 0; 1836 1837 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { 1838 found += trie_flush_leaf(l); 1839 1840 if (ll && hlist_empty(&ll->list)) 1841 trie_leaf_remove(t, ll); 1842 ll = l; 1843 } 1844 1845 if (ll && hlist_empty(&ll->list)) 1846 trie_leaf_remove(t, ll); 1847 1848 pr_debug("trie_flush found=%d\n", found); 1849 return found; 1850 } 1851 1852 void fib_free_table(struct fib_table *tb) 1853 { 1854 kfree(tb); 1855 } 1856 1857 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, 1858 struct fib_table *tb, 1859 struct sk_buff *skb, struct netlink_callback *cb) 1860 { 1861 int i, s_i; 1862 struct fib_alias *fa; 1863 __be32 xkey = htonl(key); 1864 1865 s_i = cb->args[5]; 1866 i = 0; 1867 1868 /* rcu_read_lock is hold by caller */ 1869 1870 list_for_each_entry_rcu(fa, fah, fa_list) { 1871 if (i < s_i) { 1872 i++; 1873 continue; 1874 } 1875 1876 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1877 cb->nlh->nlmsg_seq, 1878 RTM_NEWROUTE, 1879 tb->tb_id, 1880 fa->fa_type, 1881 xkey, 1882 plen, 1883 fa->fa_tos, 1884 fa->fa_info, NLM_F_MULTI) < 0) { 1885 cb->args[5] = i; 1886 return -1; 1887 } 1888 i++; 1889 } 1890 cb->args[5] = i; 1891 return skb->len; 1892 } 1893 1894 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, 1895 struct sk_buff *skb, struct netlink_callback *cb) 1896 { 1897 struct leaf_info *li; 1898 struct hlist_node *node; 1899 int i, s_i; 1900 1901 s_i = cb->args[4]; 1902 i = 0; 1903 1904 /* rcu_read_lock is hold by caller */ 1905 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 1906 if (i < s_i) { 1907 i++; 1908 continue; 1909 } 1910 1911 if (i > s_i) 1912 cb->args[5] = 0; 1913 1914 if (list_empty(&li->falh)) 1915 continue; 1916 1917 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { 1918 cb->args[4] = i; 1919 return -1; 1920 } 1921 i++; 1922 } 1923 1924 cb->args[4] = i; 1925 return skb->len; 1926 } 1927 1928 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1929 struct netlink_callback *cb) 1930 { 1931 struct leaf *l; 1932 struct trie *t = (struct trie *) tb->tb_data; 1933 t_key key = cb->args[2]; 1934 int count = cb->args[3]; 1935 1936 rcu_read_lock(); 1937 /* Dump starting at last key. 1938 * Note: 0.0.0.0/0 (ie default) is first key. 1939 */ 1940 if (count == 0) 1941 l = trie_firstleaf(t); 1942 else { 1943 /* Normally, continue from last key, but if that is missing 1944 * fallback to using slow rescan 1945 */ 1946 l = fib_find_node(t, key); 1947 if (!l) 1948 l = trie_leafindex(t, count); 1949 } 1950 1951 while (l) { 1952 cb->args[2] = l->key; 1953 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1954 cb->args[3] = count; 1955 rcu_read_unlock(); 1956 return -1; 1957 } 1958 1959 ++count; 1960 l = trie_nextleaf(l); 1961 memset(&cb->args[4], 0, 1962 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1963 } 1964 cb->args[3] = count; 1965 rcu_read_unlock(); 1966 1967 return skb->len; 1968 } 1969 1970 void __init fib_trie_init(void) 1971 { 1972 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1973 sizeof(struct fib_alias), 1974 0, SLAB_PANIC, NULL); 1975 1976 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1977 max(sizeof(struct leaf), 1978 sizeof(struct leaf_info)), 1979 0, SLAB_PANIC, NULL); 1980 } 1981 1982 1983 struct fib_table *fib_trie_table(u32 id) 1984 { 1985 struct fib_table *tb; 1986 struct trie *t; 1987 1988 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), 1989 GFP_KERNEL); 1990 if (tb == NULL) 1991 return NULL; 1992 1993 tb->tb_id = id; 1994 tb->tb_default = -1; 1995 tb->tb_num_default = 0; 1996 1997 t = (struct trie *) tb->tb_data; 1998 memset(t, 0, sizeof(*t)); 1999 2000 return tb; 2001 } 2002 2003 #ifdef CONFIG_PROC_FS 2004 /* Depth first Trie walk iterator */ 2005 struct fib_trie_iter { 2006 struct seq_net_private p; 2007 struct fib_table *tb; 2008 struct tnode *tnode; 2009 unsigned int index; 2010 unsigned int depth; 2011 }; 2012 2013 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter) 2014 { 2015 struct tnode *tn = iter->tnode; 2016 unsigned int cindex = iter->index; 2017 struct tnode *p; 2018 2019 /* A single entry routing table */ 2020 if (!tn) 2021 return NULL; 2022 2023 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2024 iter->tnode, iter->index, iter->depth); 2025 rescan: 2026 while (cindex < (1<<tn->bits)) { 2027 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex); 2028 2029 if (n) { 2030 if (IS_LEAF(n)) { 2031 iter->tnode = tn; 2032 iter->index = cindex + 1; 2033 } else { 2034 /* push down one level */ 2035 iter->tnode = (struct tnode *) n; 2036 iter->index = 0; 2037 ++iter->depth; 2038 } 2039 return n; 2040 } 2041 2042 ++cindex; 2043 } 2044 2045 /* Current node exhausted, pop back up */ 2046 p = node_parent_rcu((struct rt_trie_node *)tn); 2047 if (p) { 2048 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; 2049 tn = p; 2050 --iter->depth; 2051 goto rescan; 2052 } 2053 2054 /* got root? */ 2055 return NULL; 2056 } 2057 2058 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter, 2059 struct trie *t) 2060 { 2061 struct rt_trie_node *n; 2062 2063 if (!t) 2064 return NULL; 2065 2066 n = rcu_dereference(t->trie); 2067 if (!n) 2068 return NULL; 2069 2070 if (IS_TNODE(n)) { 2071 iter->tnode = (struct tnode *) n; 2072 iter->index = 0; 2073 iter->depth = 1; 2074 } else { 2075 iter->tnode = NULL; 2076 iter->index = 0; 2077 iter->depth = 0; 2078 } 2079 2080 return n; 2081 } 2082 2083 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2084 { 2085 struct rt_trie_node *n; 2086 struct fib_trie_iter iter; 2087 2088 memset(s, 0, sizeof(*s)); 2089 2090 rcu_read_lock(); 2091 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2092 if (IS_LEAF(n)) { 2093 struct leaf *l = (struct leaf *)n; 2094 struct leaf_info *li; 2095 struct hlist_node *tmp; 2096 2097 s->leaves++; 2098 s->totdepth += iter.depth; 2099 if (iter.depth > s->maxdepth) 2100 s->maxdepth = iter.depth; 2101 2102 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) 2103 ++s->prefixes; 2104 } else { 2105 const struct tnode *tn = (const struct tnode *) n; 2106 int i; 2107 2108 s->tnodes++; 2109 if (tn->bits < MAX_STAT_DEPTH) 2110 s->nodesizes[tn->bits]++; 2111 2112 for (i = 0; i < (1<<tn->bits); i++) 2113 if (!tn->child[i]) 2114 s->nullpointers++; 2115 } 2116 } 2117 rcu_read_unlock(); 2118 } 2119 2120 /* 2121 * This outputs /proc/net/fib_triestats 2122 */ 2123 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2124 { 2125 unsigned int i, max, pointers, bytes, avdepth; 2126 2127 if (stat->leaves) 2128 avdepth = stat->totdepth*100 / stat->leaves; 2129 else 2130 avdepth = 0; 2131 2132 seq_printf(seq, "\tAver depth: %u.%02d\n", 2133 avdepth / 100, avdepth % 100); 2134 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2135 2136 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2137 bytes = sizeof(struct leaf) * stat->leaves; 2138 2139 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2140 bytes += sizeof(struct leaf_info) * stat->prefixes; 2141 2142 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2143 bytes += sizeof(struct tnode) * stat->tnodes; 2144 2145 max = MAX_STAT_DEPTH; 2146 while (max > 0 && stat->nodesizes[max-1] == 0) 2147 max--; 2148 2149 pointers = 0; 2150 for (i = 1; i <= max; i++) 2151 if (stat->nodesizes[i] != 0) { 2152 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2153 pointers += (1<<i) * stat->nodesizes[i]; 2154 } 2155 seq_putc(seq, '\n'); 2156 seq_printf(seq, "\tPointers: %u\n", pointers); 2157 2158 bytes += sizeof(struct rt_trie_node *) * pointers; 2159 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2160 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2161 } 2162 2163 #ifdef CONFIG_IP_FIB_TRIE_STATS 2164 static void trie_show_usage(struct seq_file *seq, 2165 const struct trie_use_stats *stats) 2166 { 2167 seq_printf(seq, "\nCounters:\n---------\n"); 2168 seq_printf(seq, "gets = %u\n", stats->gets); 2169 seq_printf(seq, "backtracks = %u\n", stats->backtrack); 2170 seq_printf(seq, "semantic match passed = %u\n", 2171 stats->semantic_match_passed); 2172 seq_printf(seq, "semantic match miss = %u\n", 2173 stats->semantic_match_miss); 2174 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); 2175 seq_printf(seq, "skipped node resize = %u\n\n", 2176 stats->resize_node_skipped); 2177 } 2178 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2179 2180 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2181 { 2182 if (tb->tb_id == RT_TABLE_LOCAL) 2183 seq_puts(seq, "Local:\n"); 2184 else if (tb->tb_id == RT_TABLE_MAIN) 2185 seq_puts(seq, "Main:\n"); 2186 else 2187 seq_printf(seq, "Id %d:\n", tb->tb_id); 2188 } 2189 2190 2191 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2192 { 2193 struct net *net = (struct net *)seq->private; 2194 unsigned int h; 2195 2196 seq_printf(seq, 2197 "Basic info: size of leaf:" 2198 " %Zd bytes, size of tnode: %Zd bytes.\n", 2199 sizeof(struct leaf), sizeof(struct tnode)); 2200 2201 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2202 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2203 struct hlist_node *node; 2204 struct fib_table *tb; 2205 2206 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2207 struct trie *t = (struct trie *) tb->tb_data; 2208 struct trie_stat stat; 2209 2210 if (!t) 2211 continue; 2212 2213 fib_table_print(seq, tb); 2214 2215 trie_collect_stats(t, &stat); 2216 trie_show_stats(seq, &stat); 2217 #ifdef CONFIG_IP_FIB_TRIE_STATS 2218 trie_show_usage(seq, &t->stats); 2219 #endif 2220 } 2221 } 2222 2223 return 0; 2224 } 2225 2226 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2227 { 2228 return single_open_net(inode, file, fib_triestat_seq_show); 2229 } 2230 2231 static const struct file_operations fib_triestat_fops = { 2232 .owner = THIS_MODULE, 2233 .open = fib_triestat_seq_open, 2234 .read = seq_read, 2235 .llseek = seq_lseek, 2236 .release = single_release_net, 2237 }; 2238 2239 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2240 { 2241 struct fib_trie_iter *iter = seq->private; 2242 struct net *net = seq_file_net(seq); 2243 loff_t idx = 0; 2244 unsigned int h; 2245 2246 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2247 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2248 struct hlist_node *node; 2249 struct fib_table *tb; 2250 2251 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { 2252 struct rt_trie_node *n; 2253 2254 for (n = fib_trie_get_first(iter, 2255 (struct trie *) tb->tb_data); 2256 n; n = fib_trie_get_next(iter)) 2257 if (pos == idx++) { 2258 iter->tb = tb; 2259 return n; 2260 } 2261 } 2262 } 2263 2264 return NULL; 2265 } 2266 2267 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2268 __acquires(RCU) 2269 { 2270 rcu_read_lock(); 2271 return fib_trie_get_idx(seq, *pos); 2272 } 2273 2274 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2275 { 2276 struct fib_trie_iter *iter = seq->private; 2277 struct net *net = seq_file_net(seq); 2278 struct fib_table *tb = iter->tb; 2279 struct hlist_node *tb_node; 2280 unsigned int h; 2281 struct rt_trie_node *n; 2282 2283 ++*pos; 2284 /* next node in same table */ 2285 n = fib_trie_get_next(iter); 2286 if (n) 2287 return n; 2288 2289 /* walk rest of this hash chain */ 2290 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2291 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2292 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2293 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2294 if (n) 2295 goto found; 2296 } 2297 2298 /* new hash chain */ 2299 while (++h < FIB_TABLE_HASHSZ) { 2300 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2301 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { 2302 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2303 if (n) 2304 goto found; 2305 } 2306 } 2307 return NULL; 2308 2309 found: 2310 iter->tb = tb; 2311 return n; 2312 } 2313 2314 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2315 __releases(RCU) 2316 { 2317 rcu_read_unlock(); 2318 } 2319 2320 static void seq_indent(struct seq_file *seq, int n) 2321 { 2322 while (n-- > 0) 2323 seq_puts(seq, " "); 2324 } 2325 2326 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2327 { 2328 switch (s) { 2329 case RT_SCOPE_UNIVERSE: return "universe"; 2330 case RT_SCOPE_SITE: return "site"; 2331 case RT_SCOPE_LINK: return "link"; 2332 case RT_SCOPE_HOST: return "host"; 2333 case RT_SCOPE_NOWHERE: return "nowhere"; 2334 default: 2335 snprintf(buf, len, "scope=%d", s); 2336 return buf; 2337 } 2338 } 2339 2340 static const char *const rtn_type_names[__RTN_MAX] = { 2341 [RTN_UNSPEC] = "UNSPEC", 2342 [RTN_UNICAST] = "UNICAST", 2343 [RTN_LOCAL] = "LOCAL", 2344 [RTN_BROADCAST] = "BROADCAST", 2345 [RTN_ANYCAST] = "ANYCAST", 2346 [RTN_MULTICAST] = "MULTICAST", 2347 [RTN_BLACKHOLE] = "BLACKHOLE", 2348 [RTN_UNREACHABLE] = "UNREACHABLE", 2349 [RTN_PROHIBIT] = "PROHIBIT", 2350 [RTN_THROW] = "THROW", 2351 [RTN_NAT] = "NAT", 2352 [RTN_XRESOLVE] = "XRESOLVE", 2353 }; 2354 2355 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2356 { 2357 if (t < __RTN_MAX && rtn_type_names[t]) 2358 return rtn_type_names[t]; 2359 snprintf(buf, len, "type %u", t); 2360 return buf; 2361 } 2362 2363 /* Pretty print the trie */ 2364 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2365 { 2366 const struct fib_trie_iter *iter = seq->private; 2367 struct rt_trie_node *n = v; 2368 2369 if (!node_parent_rcu(n)) 2370 fib_table_print(seq, iter->tb); 2371 2372 if (IS_TNODE(n)) { 2373 struct tnode *tn = (struct tnode *) n; 2374 __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); 2375 2376 seq_indent(seq, iter->depth-1); 2377 seq_printf(seq, " +-- %pI4/%d %d %d %d\n", 2378 &prf, tn->pos, tn->bits, tn->full_children, 2379 tn->empty_children); 2380 2381 } else { 2382 struct leaf *l = (struct leaf *) n; 2383 struct leaf_info *li; 2384 struct hlist_node *node; 2385 __be32 val = htonl(l->key); 2386 2387 seq_indent(seq, iter->depth); 2388 seq_printf(seq, " |-- %pI4\n", &val); 2389 2390 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2391 struct fib_alias *fa; 2392 2393 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2394 char buf1[32], buf2[32]; 2395 2396 seq_indent(seq, iter->depth+1); 2397 seq_printf(seq, " /%d %s %s", li->plen, 2398 rtn_scope(buf1, sizeof(buf1), 2399 fa->fa_info->fib_scope), 2400 rtn_type(buf2, sizeof(buf2), 2401 fa->fa_type)); 2402 if (fa->fa_tos) 2403 seq_printf(seq, " tos=%d", fa->fa_tos); 2404 seq_putc(seq, '\n'); 2405 } 2406 } 2407 } 2408 2409 return 0; 2410 } 2411 2412 static const struct seq_operations fib_trie_seq_ops = { 2413 .start = fib_trie_seq_start, 2414 .next = fib_trie_seq_next, 2415 .stop = fib_trie_seq_stop, 2416 .show = fib_trie_seq_show, 2417 }; 2418 2419 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2420 { 2421 return seq_open_net(inode, file, &fib_trie_seq_ops, 2422 sizeof(struct fib_trie_iter)); 2423 } 2424 2425 static const struct file_operations fib_trie_fops = { 2426 .owner = THIS_MODULE, 2427 .open = fib_trie_seq_open, 2428 .read = seq_read, 2429 .llseek = seq_lseek, 2430 .release = seq_release_net, 2431 }; 2432 2433 struct fib_route_iter { 2434 struct seq_net_private p; 2435 struct trie *main_trie; 2436 loff_t pos; 2437 t_key key; 2438 }; 2439 2440 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) 2441 { 2442 struct leaf *l = NULL; 2443 struct trie *t = iter->main_trie; 2444 2445 /* use cache location of last found key */ 2446 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) 2447 pos -= iter->pos; 2448 else { 2449 iter->pos = 0; 2450 l = trie_firstleaf(t); 2451 } 2452 2453 while (l && pos-- > 0) { 2454 iter->pos++; 2455 l = trie_nextleaf(l); 2456 } 2457 2458 if (l) 2459 iter->key = pos; /* remember it */ 2460 else 2461 iter->pos = 0; /* forget it */ 2462 2463 return l; 2464 } 2465 2466 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2467 __acquires(RCU) 2468 { 2469 struct fib_route_iter *iter = seq->private; 2470 struct fib_table *tb; 2471 2472 rcu_read_lock(); 2473 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2474 if (!tb) 2475 return NULL; 2476 2477 iter->main_trie = (struct trie *) tb->tb_data; 2478 if (*pos == 0) 2479 return SEQ_START_TOKEN; 2480 else 2481 return fib_route_get_idx(iter, *pos - 1); 2482 } 2483 2484 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2485 { 2486 struct fib_route_iter *iter = seq->private; 2487 struct leaf *l = v; 2488 2489 ++*pos; 2490 if (v == SEQ_START_TOKEN) { 2491 iter->pos = 0; 2492 l = trie_firstleaf(iter->main_trie); 2493 } else { 2494 iter->pos++; 2495 l = trie_nextleaf(l); 2496 } 2497 2498 if (l) 2499 iter->key = l->key; 2500 else 2501 iter->pos = 0; 2502 return l; 2503 } 2504 2505 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2506 __releases(RCU) 2507 { 2508 rcu_read_unlock(); 2509 } 2510 2511 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2512 { 2513 unsigned int flags = 0; 2514 2515 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2516 flags = RTF_REJECT; 2517 if (fi && fi->fib_nh->nh_gw) 2518 flags |= RTF_GATEWAY; 2519 if (mask == htonl(0xFFFFFFFF)) 2520 flags |= RTF_HOST; 2521 flags |= RTF_UP; 2522 return flags; 2523 } 2524 2525 /* 2526 * This outputs /proc/net/route. 2527 * The format of the file is not supposed to be changed 2528 * and needs to be same as fib_hash output to avoid breaking 2529 * legacy utilities 2530 */ 2531 static int fib_route_seq_show(struct seq_file *seq, void *v) 2532 { 2533 struct leaf *l = v; 2534 struct leaf_info *li; 2535 struct hlist_node *node; 2536 2537 if (v == SEQ_START_TOKEN) { 2538 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2539 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2540 "\tWindow\tIRTT"); 2541 return 0; 2542 } 2543 2544 hlist_for_each_entry_rcu(li, node, &l->list, hlist) { 2545 struct fib_alias *fa; 2546 __be32 mask, prefix; 2547 2548 mask = inet_make_mask(li->plen); 2549 prefix = htonl(l->key); 2550 2551 list_for_each_entry_rcu(fa, &li->falh, fa_list) { 2552 const struct fib_info *fi = fa->fa_info; 2553 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2554 int len; 2555 2556 if (fa->fa_type == RTN_BROADCAST 2557 || fa->fa_type == RTN_MULTICAST) 2558 continue; 2559 2560 if (fi) 2561 seq_printf(seq, 2562 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2563 "%d\t%08X\t%d\t%u\t%u%n", 2564 fi->fib_dev ? fi->fib_dev->name : "*", 2565 prefix, 2566 fi->fib_nh->nh_gw, flags, 0, 0, 2567 fi->fib_priority, 2568 mask, 2569 (fi->fib_advmss ? 2570 fi->fib_advmss + 40 : 0), 2571 fi->fib_window, 2572 fi->fib_rtt >> 3, &len); 2573 else 2574 seq_printf(seq, 2575 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2576 "%d\t%08X\t%d\t%u\t%u%n", 2577 prefix, 0, flags, 0, 0, 0, 2578 mask, 0, 0, 0, &len); 2579 2580 seq_printf(seq, "%*s\n", 127 - len, ""); 2581 } 2582 } 2583 2584 return 0; 2585 } 2586 2587 static const struct seq_operations fib_route_seq_ops = { 2588 .start = fib_route_seq_start, 2589 .next = fib_route_seq_next, 2590 .stop = fib_route_seq_stop, 2591 .show = fib_route_seq_show, 2592 }; 2593 2594 static int fib_route_seq_open(struct inode *inode, struct file *file) 2595 { 2596 return seq_open_net(inode, file, &fib_route_seq_ops, 2597 sizeof(struct fib_route_iter)); 2598 } 2599 2600 static const struct file_operations fib_route_fops = { 2601 .owner = THIS_MODULE, 2602 .open = fib_route_seq_open, 2603 .read = seq_read, 2604 .llseek = seq_lseek, 2605 .release = seq_release_net, 2606 }; 2607 2608 int __net_init fib_proc_init(struct net *net) 2609 { 2610 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) 2611 goto out1; 2612 2613 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, 2614 &fib_triestat_fops)) 2615 goto out2; 2616 2617 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) 2618 goto out3; 2619 2620 return 0; 2621 2622 out3: 2623 proc_net_remove(net, "fib_triestat"); 2624 out2: 2625 proc_net_remove(net, "fib_trie"); 2626 out1: 2627 return -ENOMEM; 2628 } 2629 2630 void __net_exit fib_proc_exit(struct net *net) 2631 { 2632 proc_net_remove(net, "fib_trie"); 2633 proc_net_remove(net, "fib_triestat"); 2634 proc_net_remove(net, "route"); 2635 } 2636 2637 #endif /* CONFIG_PROC_FS */ 2638