1 /* 2 * This program is free software; you can redistribute it and/or 3 * modify it under the terms of the GNU General Public License 4 * as published by the Free Software Foundation; either version 5 * 2 of the License, or (at your option) any later version. 6 * 7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 8 * & Swedish University of Agricultural Sciences. 9 * 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of 11 * Agricultural Sciences. 12 * 13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 14 * 15 * This work is based on the LPC-trie which is originally described in: 16 * 17 * An experimental study of compression methods for dynamic tries 18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/ 20 * 21 * 22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 24 * 25 * 26 * Code from fib_hash has been reused which includes the following header: 27 * 28 * 29 * INET An implementation of the TCP/IP protocol suite for the LINUX 30 * operating system. INET is implemented using the BSD Socket 31 * interface as the means of communication with the user level. 32 * 33 * IPv4 FIB: lookup engine and maintenance routines. 34 * 35 * 36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 37 * 38 * This program is free software; you can redistribute it and/or 39 * modify it under the terms of the GNU General Public License 40 * as published by the Free Software Foundation; either version 41 * 2 of the License, or (at your option) any later version. 42 * 43 * Substantial contributions to this work comes from: 44 * 45 * David S. Miller, <davem@davemloft.net> 46 * Stephen Hemminger <shemminger@osdl.org> 47 * Paul E. McKenney <paulmck@us.ibm.com> 48 * Patrick McHardy <kaber@trash.net> 49 */ 50 51 #define VERSION "0.409" 52 53 #include <asm/uaccess.h> 54 #include <linux/bitops.h> 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/mm.h> 58 #include <linux/string.h> 59 #include <linux/socket.h> 60 #include <linux/sockios.h> 61 #include <linux/errno.h> 62 #include <linux/in.h> 63 #include <linux/inet.h> 64 #include <linux/inetdevice.h> 65 #include <linux/netdevice.h> 66 #include <linux/if_arp.h> 67 #include <linux/proc_fs.h> 68 #include <linux/rcupdate.h> 69 #include <linux/skbuff.h> 70 #include <linux/netlink.h> 71 #include <linux/init.h> 72 #include <linux/list.h> 73 #include <linux/slab.h> 74 #include <linux/export.h> 75 #include <linux/vmalloc.h> 76 #include <net/net_namespace.h> 77 #include <net/ip.h> 78 #include <net/protocol.h> 79 #include <net/route.h> 80 #include <net/tcp.h> 81 #include <net/sock.h> 82 #include <net/ip_fib.h> 83 #include <net/switchdev.h> 84 #include <trace/events/fib.h> 85 #include "fib_lookup.h" 86 87 #define MAX_STAT_DEPTH 32 88 89 #define KEYLENGTH (8*sizeof(t_key)) 90 #define KEY_MAX ((t_key)~0) 91 92 typedef unsigned int t_key; 93 94 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 95 #define IS_TNODE(n) ((n)->bits) 96 #define IS_LEAF(n) (!(n)->bits) 97 98 struct key_vector { 99 t_key key; 100 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 101 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 102 unsigned char slen; 103 union { 104 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 105 struct hlist_head leaf; 106 /* This array is valid if (pos | bits) > 0 (TNODE) */ 107 struct key_vector __rcu *tnode[0]; 108 }; 109 }; 110 111 struct tnode { 112 struct rcu_head rcu; 113 t_key empty_children; /* KEYLENGTH bits needed */ 114 t_key full_children; /* KEYLENGTH bits needed */ 115 struct key_vector __rcu *parent; 116 struct key_vector kv[1]; 117 #define tn_bits kv[0].bits 118 }; 119 120 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 121 #define LEAF_SIZE TNODE_SIZE(1) 122 123 #ifdef CONFIG_IP_FIB_TRIE_STATS 124 struct trie_use_stats { 125 unsigned int gets; 126 unsigned int backtrack; 127 unsigned int semantic_match_passed; 128 unsigned int semantic_match_miss; 129 unsigned int null_node_hit; 130 unsigned int resize_node_skipped; 131 }; 132 #endif 133 134 struct trie_stat { 135 unsigned int totdepth; 136 unsigned int maxdepth; 137 unsigned int tnodes; 138 unsigned int leaves; 139 unsigned int nullpointers; 140 unsigned int prefixes; 141 unsigned int nodesizes[MAX_STAT_DEPTH]; 142 }; 143 144 struct trie { 145 struct key_vector kv[1]; 146 #ifdef CONFIG_IP_FIB_TRIE_STATS 147 struct trie_use_stats __percpu *stats; 148 #endif 149 }; 150 151 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 152 static size_t tnode_free_size; 153 154 /* 155 * synchronize_rcu after call_rcu for that many pages; it should be especially 156 * useful before resizing the root node with PREEMPT_NONE configs; the value was 157 * obtained experimentally, aiming to avoid visible slowdown. 158 */ 159 static const int sync_pages = 128; 160 161 static struct kmem_cache *fn_alias_kmem __read_mostly; 162 static struct kmem_cache *trie_leaf_kmem __read_mostly; 163 164 static inline struct tnode *tn_info(struct key_vector *kv) 165 { 166 return container_of(kv, struct tnode, kv[0]); 167 } 168 169 /* caller must hold RTNL */ 170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 172 173 /* caller must hold RCU read lock or RTNL */ 174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 176 177 /* wrapper for rcu_assign_pointer */ 178 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 179 { 180 if (n) 181 rcu_assign_pointer(tn_info(n)->parent, tp); 182 } 183 184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 185 186 /* This provides us with the number of children in this node, in the case of a 187 * leaf this will return 0 meaning none of the children are accessible. 188 */ 189 static inline unsigned long child_length(const struct key_vector *tn) 190 { 191 return (1ul << tn->bits) & ~(1ul); 192 } 193 194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 195 196 static inline unsigned long get_index(t_key key, struct key_vector *kv) 197 { 198 unsigned long index = key ^ kv->key; 199 200 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 201 return 0; 202 203 return index >> kv->pos; 204 } 205 206 /* To understand this stuff, an understanding of keys and all their bits is 207 * necessary. Every node in the trie has a key associated with it, but not 208 * all of the bits in that key are significant. 209 * 210 * Consider a node 'n' and its parent 'tp'. 211 * 212 * If n is a leaf, every bit in its key is significant. Its presence is 213 * necessitated by path compression, since during a tree traversal (when 214 * searching for a leaf - unless we are doing an insertion) we will completely 215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 216 * a potentially successful search, that we have indeed been walking the 217 * correct key path. 218 * 219 * Note that we can never "miss" the correct key in the tree if present by 220 * following the wrong path. Path compression ensures that segments of the key 221 * that are the same for all keys with a given prefix are skipped, but the 222 * skipped part *is* identical for each node in the subtrie below the skipped 223 * bit! trie_insert() in this implementation takes care of that. 224 * 225 * if n is an internal node - a 'tnode' here, the various parts of its key 226 * have many different meanings. 227 * 228 * Example: 229 * _________________________________________________________________ 230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 231 * ----------------------------------------------------------------- 232 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 233 * 234 * _________________________________________________________________ 235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 236 * ----------------------------------------------------------------- 237 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 238 * 239 * tp->pos = 22 240 * tp->bits = 3 241 * n->pos = 13 242 * n->bits = 4 243 * 244 * First, let's just ignore the bits that come before the parent tp, that is 245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 246 * point we do not use them for anything. 247 * 248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 249 * index into the parent's child array. That is, they will be used to find 250 * 'n' among tp's children. 251 * 252 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits 253 * for the node n. 254 * 255 * All the bits we have seen so far are significant to the node n. The rest 256 * of the bits are really not needed or indeed known in n->key. 257 * 258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 259 * n's child array, and will of course be different for each child. 260 * 261 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown 262 * at this point. 263 */ 264 265 static const int halve_threshold = 25; 266 static const int inflate_threshold = 50; 267 static const int halve_threshold_root = 15; 268 static const int inflate_threshold_root = 30; 269 270 static void __alias_free_mem(struct rcu_head *head) 271 { 272 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 273 kmem_cache_free(fn_alias_kmem, fa); 274 } 275 276 static inline void alias_free_mem_rcu(struct fib_alias *fa) 277 { 278 call_rcu(&fa->rcu, __alias_free_mem); 279 } 280 281 #define TNODE_KMALLOC_MAX \ 282 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 283 #define TNODE_VMALLOC_MAX \ 284 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 285 286 static void __node_free_rcu(struct rcu_head *head) 287 { 288 struct tnode *n = container_of(head, struct tnode, rcu); 289 290 if (!n->tn_bits) 291 kmem_cache_free(trie_leaf_kmem, n); 292 else 293 kvfree(n); 294 } 295 296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 297 298 static struct tnode *tnode_alloc(int bits) 299 { 300 size_t size; 301 302 /* verify bits is within bounds */ 303 if (bits > TNODE_VMALLOC_MAX) 304 return NULL; 305 306 /* determine size and verify it is non-zero and didn't overflow */ 307 size = TNODE_SIZE(1ul << bits); 308 309 if (size <= PAGE_SIZE) 310 return kzalloc(size, GFP_KERNEL); 311 else 312 return vzalloc(size); 313 } 314 315 static inline void empty_child_inc(struct key_vector *n) 316 { 317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children; 318 } 319 320 static inline void empty_child_dec(struct key_vector *n) 321 { 322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--; 323 } 324 325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 326 { 327 struct key_vector *l; 328 struct tnode *kv; 329 330 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 331 if (!kv) 332 return NULL; 333 334 /* initialize key vector */ 335 l = kv->kv; 336 l->key = key; 337 l->pos = 0; 338 l->bits = 0; 339 l->slen = fa->fa_slen; 340 341 /* link leaf to fib alias */ 342 INIT_HLIST_HEAD(&l->leaf); 343 hlist_add_head(&fa->fa_list, &l->leaf); 344 345 return l; 346 } 347 348 static struct key_vector *tnode_new(t_key key, int pos, int bits) 349 { 350 unsigned int shift = pos + bits; 351 struct key_vector *tn; 352 struct tnode *tnode; 353 354 /* verify bits and pos their msb bits clear and values are valid */ 355 BUG_ON(!bits || (shift > KEYLENGTH)); 356 357 tnode = tnode_alloc(bits); 358 if (!tnode) 359 return NULL; 360 361 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 362 sizeof(struct key_vector *) << bits); 363 364 if (bits == KEYLENGTH) 365 tnode->full_children = 1; 366 else 367 tnode->empty_children = 1ul << bits; 368 369 tn = tnode->kv; 370 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 371 tn->pos = pos; 372 tn->bits = bits; 373 tn->slen = pos; 374 375 return tn; 376 } 377 378 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 379 * and no bits are skipped. See discussion in dyntree paper p. 6 380 */ 381 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 382 { 383 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 384 } 385 386 /* Add a child at position i overwriting the old value. 387 * Update the value of full_children and empty_children. 388 */ 389 static void put_child(struct key_vector *tn, unsigned long i, 390 struct key_vector *n) 391 { 392 struct key_vector *chi = get_child(tn, i); 393 int isfull, wasfull; 394 395 BUG_ON(i >= child_length(tn)); 396 397 /* update emptyChildren, overflow into fullChildren */ 398 if (!n && chi) 399 empty_child_inc(tn); 400 if (n && !chi) 401 empty_child_dec(tn); 402 403 /* update fullChildren */ 404 wasfull = tnode_full(tn, chi); 405 isfull = tnode_full(tn, n); 406 407 if (wasfull && !isfull) 408 tn_info(tn)->full_children--; 409 else if (!wasfull && isfull) 410 tn_info(tn)->full_children++; 411 412 if (n && (tn->slen < n->slen)) 413 tn->slen = n->slen; 414 415 rcu_assign_pointer(tn->tnode[i], n); 416 } 417 418 static void update_children(struct key_vector *tn) 419 { 420 unsigned long i; 421 422 /* update all of the child parent pointers */ 423 for (i = child_length(tn); i;) { 424 struct key_vector *inode = get_child(tn, --i); 425 426 if (!inode) 427 continue; 428 429 /* Either update the children of a tnode that 430 * already belongs to us or update the child 431 * to point to ourselves. 432 */ 433 if (node_parent(inode) == tn) 434 update_children(inode); 435 else 436 node_set_parent(inode, tn); 437 } 438 } 439 440 static inline void put_child_root(struct key_vector *tp, t_key key, 441 struct key_vector *n) 442 { 443 if (IS_TRIE(tp)) 444 rcu_assign_pointer(tp->tnode[0], n); 445 else 446 put_child(tp, get_index(key, tp), n); 447 } 448 449 static inline void tnode_free_init(struct key_vector *tn) 450 { 451 tn_info(tn)->rcu.next = NULL; 452 } 453 454 static inline void tnode_free_append(struct key_vector *tn, 455 struct key_vector *n) 456 { 457 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 458 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 459 } 460 461 static void tnode_free(struct key_vector *tn) 462 { 463 struct callback_head *head = &tn_info(tn)->rcu; 464 465 while (head) { 466 head = head->next; 467 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 468 node_free(tn); 469 470 tn = container_of(head, struct tnode, rcu)->kv; 471 } 472 473 if (tnode_free_size >= PAGE_SIZE * sync_pages) { 474 tnode_free_size = 0; 475 synchronize_rcu(); 476 } 477 } 478 479 static struct key_vector *replace(struct trie *t, 480 struct key_vector *oldtnode, 481 struct key_vector *tn) 482 { 483 struct key_vector *tp = node_parent(oldtnode); 484 unsigned long i; 485 486 /* setup the parent pointer out of and back into this node */ 487 NODE_INIT_PARENT(tn, tp); 488 put_child_root(tp, tn->key, tn); 489 490 /* update all of the child parent pointers */ 491 update_children(tn); 492 493 /* all pointers should be clean so we are done */ 494 tnode_free(oldtnode); 495 496 /* resize children now that oldtnode is freed */ 497 for (i = child_length(tn); i;) { 498 struct key_vector *inode = get_child(tn, --i); 499 500 /* resize child node */ 501 if (tnode_full(tn, inode)) 502 tn = resize(t, inode); 503 } 504 505 return tp; 506 } 507 508 static struct key_vector *inflate(struct trie *t, 509 struct key_vector *oldtnode) 510 { 511 struct key_vector *tn; 512 unsigned long i; 513 t_key m; 514 515 pr_debug("In inflate\n"); 516 517 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 518 if (!tn) 519 goto notnode; 520 521 /* prepare oldtnode to be freed */ 522 tnode_free_init(oldtnode); 523 524 /* Assemble all of the pointers in our cluster, in this case that 525 * represents all of the pointers out of our allocated nodes that 526 * point to existing tnodes and the links between our allocated 527 * nodes. 528 */ 529 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 530 struct key_vector *inode = get_child(oldtnode, --i); 531 struct key_vector *node0, *node1; 532 unsigned long j, k; 533 534 /* An empty child */ 535 if (!inode) 536 continue; 537 538 /* A leaf or an internal node with skipped bits */ 539 if (!tnode_full(oldtnode, inode)) { 540 put_child(tn, get_index(inode->key, tn), inode); 541 continue; 542 } 543 544 /* drop the node in the old tnode free list */ 545 tnode_free_append(oldtnode, inode); 546 547 /* An internal node with two children */ 548 if (inode->bits == 1) { 549 put_child(tn, 2 * i + 1, get_child(inode, 1)); 550 put_child(tn, 2 * i, get_child(inode, 0)); 551 continue; 552 } 553 554 /* We will replace this node 'inode' with two new 555 * ones, 'node0' and 'node1', each with half of the 556 * original children. The two new nodes will have 557 * a position one bit further down the key and this 558 * means that the "significant" part of their keys 559 * (see the discussion near the top of this file) 560 * will differ by one bit, which will be "0" in 561 * node0's key and "1" in node1's key. Since we are 562 * moving the key position by one step, the bit that 563 * we are moving away from - the bit at position 564 * (tn->pos) - is the one that will differ between 565 * node0 and node1. So... we synthesize that bit in the 566 * two new keys. 567 */ 568 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 569 if (!node1) 570 goto nomem; 571 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 572 573 tnode_free_append(tn, node1); 574 if (!node0) 575 goto nomem; 576 tnode_free_append(tn, node0); 577 578 /* populate child pointers in new nodes */ 579 for (k = child_length(inode), j = k / 2; j;) { 580 put_child(node1, --j, get_child(inode, --k)); 581 put_child(node0, j, get_child(inode, j)); 582 put_child(node1, --j, get_child(inode, --k)); 583 put_child(node0, j, get_child(inode, j)); 584 } 585 586 /* link new nodes to parent */ 587 NODE_INIT_PARENT(node1, tn); 588 NODE_INIT_PARENT(node0, tn); 589 590 /* link parent to nodes */ 591 put_child(tn, 2 * i + 1, node1); 592 put_child(tn, 2 * i, node0); 593 } 594 595 /* setup the parent pointers into and out of this node */ 596 return replace(t, oldtnode, tn); 597 nomem: 598 /* all pointers should be clean so we are done */ 599 tnode_free(tn); 600 notnode: 601 return NULL; 602 } 603 604 static struct key_vector *halve(struct trie *t, 605 struct key_vector *oldtnode) 606 { 607 struct key_vector *tn; 608 unsigned long i; 609 610 pr_debug("In halve\n"); 611 612 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 613 if (!tn) 614 goto notnode; 615 616 /* prepare oldtnode to be freed */ 617 tnode_free_init(oldtnode); 618 619 /* Assemble all of the pointers in our cluster, in this case that 620 * represents all of the pointers out of our allocated nodes that 621 * point to existing tnodes and the links between our allocated 622 * nodes. 623 */ 624 for (i = child_length(oldtnode); i;) { 625 struct key_vector *node1 = get_child(oldtnode, --i); 626 struct key_vector *node0 = get_child(oldtnode, --i); 627 struct key_vector *inode; 628 629 /* At least one of the children is empty */ 630 if (!node1 || !node0) { 631 put_child(tn, i / 2, node1 ? : node0); 632 continue; 633 } 634 635 /* Two nonempty children */ 636 inode = tnode_new(node0->key, oldtnode->pos, 1); 637 if (!inode) 638 goto nomem; 639 tnode_free_append(tn, inode); 640 641 /* initialize pointers out of node */ 642 put_child(inode, 1, node1); 643 put_child(inode, 0, node0); 644 NODE_INIT_PARENT(inode, tn); 645 646 /* link parent to node */ 647 put_child(tn, i / 2, inode); 648 } 649 650 /* setup the parent pointers into and out of this node */ 651 return replace(t, oldtnode, tn); 652 nomem: 653 /* all pointers should be clean so we are done */ 654 tnode_free(tn); 655 notnode: 656 return NULL; 657 } 658 659 static struct key_vector *collapse(struct trie *t, 660 struct key_vector *oldtnode) 661 { 662 struct key_vector *n, *tp; 663 unsigned long i; 664 665 /* scan the tnode looking for that one child that might still exist */ 666 for (n = NULL, i = child_length(oldtnode); !n && i;) 667 n = get_child(oldtnode, --i); 668 669 /* compress one level */ 670 tp = node_parent(oldtnode); 671 put_child_root(tp, oldtnode->key, n); 672 node_set_parent(n, tp); 673 674 /* drop dead node */ 675 node_free(oldtnode); 676 677 return tp; 678 } 679 680 static unsigned char update_suffix(struct key_vector *tn) 681 { 682 unsigned char slen = tn->pos; 683 unsigned long stride, i; 684 685 /* search though the list of children looking for nodes that might 686 * have a suffix greater than the one we currently have. This is 687 * why we start with a stride of 2 since a stride of 1 would 688 * represent the nodes with suffix length equal to tn->pos 689 */ 690 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 691 struct key_vector *n = get_child(tn, i); 692 693 if (!n || (n->slen <= slen)) 694 continue; 695 696 /* update stride and slen based on new value */ 697 stride <<= (n->slen - slen); 698 slen = n->slen; 699 i &= ~(stride - 1); 700 701 /* if slen covers all but the last bit we can stop here 702 * there will be nothing longer than that since only node 703 * 0 and 1 << (bits - 1) could have that as their suffix 704 * length. 705 */ 706 if ((slen + 1) >= (tn->pos + tn->bits)) 707 break; 708 } 709 710 tn->slen = slen; 711 712 return slen; 713 } 714 715 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 716 * the Helsinki University of Technology and Matti Tikkanen of Nokia 717 * Telecommunications, page 6: 718 * "A node is doubled if the ratio of non-empty children to all 719 * children in the *doubled* node is at least 'high'." 720 * 721 * 'high' in this instance is the variable 'inflate_threshold'. It 722 * is expressed as a percentage, so we multiply it with 723 * child_length() and instead of multiplying by 2 (since the 724 * child array will be doubled by inflate()) and multiplying 725 * the left-hand side by 100 (to handle the percentage thing) we 726 * multiply the left-hand side by 50. 727 * 728 * The left-hand side may look a bit weird: child_length(tn) 729 * - tn->empty_children is of course the number of non-null children 730 * in the current node. tn->full_children is the number of "full" 731 * children, that is non-null tnodes with a skip value of 0. 732 * All of those will be doubled in the resulting inflated tnode, so 733 * we just count them one extra time here. 734 * 735 * A clearer way to write this would be: 736 * 737 * to_be_doubled = tn->full_children; 738 * not_to_be_doubled = child_length(tn) - tn->empty_children - 739 * tn->full_children; 740 * 741 * new_child_length = child_length(tn) * 2; 742 * 743 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 744 * new_child_length; 745 * if (new_fill_factor >= inflate_threshold) 746 * 747 * ...and so on, tho it would mess up the while () loop. 748 * 749 * anyway, 750 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 751 * inflate_threshold 752 * 753 * avoid a division: 754 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 755 * inflate_threshold * new_child_length 756 * 757 * expand not_to_be_doubled and to_be_doubled, and shorten: 758 * 100 * (child_length(tn) - tn->empty_children + 759 * tn->full_children) >= inflate_threshold * new_child_length 760 * 761 * expand new_child_length: 762 * 100 * (child_length(tn) - tn->empty_children + 763 * tn->full_children) >= 764 * inflate_threshold * child_length(tn) * 2 765 * 766 * shorten again: 767 * 50 * (tn->full_children + child_length(tn) - 768 * tn->empty_children) >= inflate_threshold * 769 * child_length(tn) 770 * 771 */ 772 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 773 { 774 unsigned long used = child_length(tn); 775 unsigned long threshold = used; 776 777 /* Keep root node larger */ 778 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 779 used -= tn_info(tn)->empty_children; 780 used += tn_info(tn)->full_children; 781 782 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 783 784 return (used > 1) && tn->pos && ((50 * used) >= threshold); 785 } 786 787 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 788 { 789 unsigned long used = child_length(tn); 790 unsigned long threshold = used; 791 792 /* Keep root node larger */ 793 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 794 used -= tn_info(tn)->empty_children; 795 796 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 797 798 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 799 } 800 801 static inline bool should_collapse(struct key_vector *tn) 802 { 803 unsigned long used = child_length(tn); 804 805 used -= tn_info(tn)->empty_children; 806 807 /* account for bits == KEYLENGTH case */ 808 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 809 used -= KEY_MAX; 810 811 /* One child or none, time to drop us from the trie */ 812 return used < 2; 813 } 814 815 #define MAX_WORK 10 816 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 817 { 818 #ifdef CONFIG_IP_FIB_TRIE_STATS 819 struct trie_use_stats __percpu *stats = t->stats; 820 #endif 821 struct key_vector *tp = node_parent(tn); 822 unsigned long cindex = get_index(tn->key, tp); 823 int max_work = MAX_WORK; 824 825 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 826 tn, inflate_threshold, halve_threshold); 827 828 /* track the tnode via the pointer from the parent instead of 829 * doing it ourselves. This way we can let RCU fully do its 830 * thing without us interfering 831 */ 832 BUG_ON(tn != get_child(tp, cindex)); 833 834 /* Double as long as the resulting node has a number of 835 * nonempty nodes that are above the threshold. 836 */ 837 while (should_inflate(tp, tn) && max_work) { 838 tp = inflate(t, tn); 839 if (!tp) { 840 #ifdef CONFIG_IP_FIB_TRIE_STATS 841 this_cpu_inc(stats->resize_node_skipped); 842 #endif 843 break; 844 } 845 846 max_work--; 847 tn = get_child(tp, cindex); 848 } 849 850 /* update parent in case inflate failed */ 851 tp = node_parent(tn); 852 853 /* Return if at least one inflate is run */ 854 if (max_work != MAX_WORK) 855 return tp; 856 857 /* Halve as long as the number of empty children in this 858 * node is above threshold. 859 */ 860 while (should_halve(tp, tn) && max_work) { 861 tp = halve(t, tn); 862 if (!tp) { 863 #ifdef CONFIG_IP_FIB_TRIE_STATS 864 this_cpu_inc(stats->resize_node_skipped); 865 #endif 866 break; 867 } 868 869 max_work--; 870 tn = get_child(tp, cindex); 871 } 872 873 /* Only one child remains */ 874 if (should_collapse(tn)) 875 return collapse(t, tn); 876 877 /* update parent in case halve failed */ 878 tp = node_parent(tn); 879 880 /* Return if at least one deflate was run */ 881 if (max_work != MAX_WORK) 882 return tp; 883 884 /* push the suffix length to the parent node */ 885 if (tn->slen > tn->pos) { 886 unsigned char slen = update_suffix(tn); 887 888 if (slen > tp->slen) 889 tp->slen = slen; 890 } 891 892 return tp; 893 } 894 895 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l) 896 { 897 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) { 898 if (update_suffix(tp) > l->slen) 899 break; 900 tp = node_parent(tp); 901 } 902 } 903 904 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l) 905 { 906 /* if this is a new leaf then tn will be NULL and we can sort 907 * out parent suffix lengths as a part of trie_rebalance 908 */ 909 while (tn->slen < l->slen) { 910 tn->slen = l->slen; 911 tn = node_parent(tn); 912 } 913 } 914 915 /* rcu_read_lock needs to be hold by caller from readside */ 916 static struct key_vector *fib_find_node(struct trie *t, 917 struct key_vector **tp, u32 key) 918 { 919 struct key_vector *pn, *n = t->kv; 920 unsigned long index = 0; 921 922 do { 923 pn = n; 924 n = get_child_rcu(n, index); 925 926 if (!n) 927 break; 928 929 index = get_cindex(key, n); 930 931 /* This bit of code is a bit tricky but it combines multiple 932 * checks into a single check. The prefix consists of the 933 * prefix plus zeros for the bits in the cindex. The index 934 * is the difference between the key and this value. From 935 * this we can actually derive several pieces of data. 936 * if (index >= (1ul << bits)) 937 * we have a mismatch in skip bits and failed 938 * else 939 * we know the value is cindex 940 * 941 * This check is safe even if bits == KEYLENGTH due to the 942 * fact that we can only allocate a node with 32 bits if a 943 * long is greater than 32 bits. 944 */ 945 if (index >= (1ul << n->bits)) { 946 n = NULL; 947 break; 948 } 949 950 /* keep searching until we find a perfect match leaf or NULL */ 951 } while (IS_TNODE(n)); 952 953 *tp = pn; 954 955 return n; 956 } 957 958 /* Return the first fib alias matching TOS with 959 * priority less than or equal to PRIO. 960 */ 961 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 962 u8 tos, u32 prio, u32 tb_id) 963 { 964 struct fib_alias *fa; 965 966 if (!fah) 967 return NULL; 968 969 hlist_for_each_entry(fa, fah, fa_list) { 970 if (fa->fa_slen < slen) 971 continue; 972 if (fa->fa_slen != slen) 973 break; 974 if (fa->tb_id > tb_id) 975 continue; 976 if (fa->tb_id != tb_id) 977 break; 978 if (fa->fa_tos > tos) 979 continue; 980 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos) 981 return fa; 982 } 983 984 return NULL; 985 } 986 987 static void trie_rebalance(struct trie *t, struct key_vector *tn) 988 { 989 while (!IS_TRIE(tn)) 990 tn = resize(t, tn); 991 } 992 993 static int fib_insert_node(struct trie *t, struct key_vector *tp, 994 struct fib_alias *new, t_key key) 995 { 996 struct key_vector *n, *l; 997 998 l = leaf_new(key, new); 999 if (!l) 1000 goto noleaf; 1001 1002 /* retrieve child from parent node */ 1003 n = get_child(tp, get_index(key, tp)); 1004 1005 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1006 * 1007 * Add a new tnode here 1008 * first tnode need some special handling 1009 * leaves us in position for handling as case 3 1010 */ 1011 if (n) { 1012 struct key_vector *tn; 1013 1014 tn = tnode_new(key, __fls(key ^ n->key), 1); 1015 if (!tn) 1016 goto notnode; 1017 1018 /* initialize routes out of node */ 1019 NODE_INIT_PARENT(tn, tp); 1020 put_child(tn, get_index(key, tn) ^ 1, n); 1021 1022 /* start adding routes into the node */ 1023 put_child_root(tp, key, tn); 1024 node_set_parent(n, tn); 1025 1026 /* parent now has a NULL spot where the leaf can go */ 1027 tp = tn; 1028 } 1029 1030 /* Case 3: n is NULL, and will just insert a new leaf */ 1031 NODE_INIT_PARENT(l, tp); 1032 put_child_root(tp, key, l); 1033 trie_rebalance(t, tp); 1034 1035 return 0; 1036 notnode: 1037 node_free(l); 1038 noleaf: 1039 return -ENOMEM; 1040 } 1041 1042 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1043 struct key_vector *l, struct fib_alias *new, 1044 struct fib_alias *fa, t_key key) 1045 { 1046 if (!l) 1047 return fib_insert_node(t, tp, new, key); 1048 1049 if (fa) { 1050 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1051 } else { 1052 struct fib_alias *last; 1053 1054 hlist_for_each_entry(last, &l->leaf, fa_list) { 1055 if (new->fa_slen < last->fa_slen) 1056 break; 1057 if ((new->fa_slen == last->fa_slen) && 1058 (new->tb_id > last->tb_id)) 1059 break; 1060 fa = last; 1061 } 1062 1063 if (fa) 1064 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1065 else 1066 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1067 } 1068 1069 /* if we added to the tail node then we need to update slen */ 1070 if (l->slen < new->fa_slen) { 1071 l->slen = new->fa_slen; 1072 leaf_push_suffix(tp, l); 1073 } 1074 1075 return 0; 1076 } 1077 1078 /* Caller must hold RTNL. */ 1079 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) 1080 { 1081 struct trie *t = (struct trie *)tb->tb_data; 1082 struct fib_alias *fa, *new_fa; 1083 struct key_vector *l, *tp; 1084 unsigned int nlflags = 0; 1085 struct fib_info *fi; 1086 u8 plen = cfg->fc_dst_len; 1087 u8 slen = KEYLENGTH - plen; 1088 u8 tos = cfg->fc_tos; 1089 u32 key; 1090 int err; 1091 1092 if (plen > KEYLENGTH) 1093 return -EINVAL; 1094 1095 key = ntohl(cfg->fc_dst); 1096 1097 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1098 1099 if ((plen < KEYLENGTH) && (key << plen)) 1100 return -EINVAL; 1101 1102 fi = fib_create_info(cfg); 1103 if (IS_ERR(fi)) { 1104 err = PTR_ERR(fi); 1105 goto err; 1106 } 1107 1108 l = fib_find_node(t, &tp, key); 1109 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority, 1110 tb->tb_id) : NULL; 1111 1112 /* Now fa, if non-NULL, points to the first fib alias 1113 * with the same keys [prefix,tos,priority], if such key already 1114 * exists or to the node before which we will insert new one. 1115 * 1116 * If fa is NULL, we will need to allocate a new one and 1117 * insert to the tail of the section matching the suffix length 1118 * of the new alias. 1119 */ 1120 1121 if (fa && fa->fa_tos == tos && 1122 fa->fa_info->fib_priority == fi->fib_priority) { 1123 struct fib_alias *fa_first, *fa_match; 1124 1125 err = -EEXIST; 1126 if (cfg->fc_nlflags & NLM_F_EXCL) 1127 goto out; 1128 1129 /* We have 2 goals: 1130 * 1. Find exact match for type, scope, fib_info to avoid 1131 * duplicate routes 1132 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1133 */ 1134 fa_match = NULL; 1135 fa_first = fa; 1136 hlist_for_each_entry_from(fa, fa_list) { 1137 if ((fa->fa_slen != slen) || 1138 (fa->tb_id != tb->tb_id) || 1139 (fa->fa_tos != tos)) 1140 break; 1141 if (fa->fa_info->fib_priority != fi->fib_priority) 1142 break; 1143 if (fa->fa_type == cfg->fc_type && 1144 fa->fa_info == fi) { 1145 fa_match = fa; 1146 break; 1147 } 1148 } 1149 1150 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1151 struct fib_info *fi_drop; 1152 u8 state; 1153 1154 fa = fa_first; 1155 if (fa_match) { 1156 if (fa == fa_match) 1157 err = 0; 1158 goto out; 1159 } 1160 err = -ENOBUFS; 1161 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1162 if (!new_fa) 1163 goto out; 1164 1165 fi_drop = fa->fa_info; 1166 new_fa->fa_tos = fa->fa_tos; 1167 new_fa->fa_info = fi; 1168 new_fa->fa_type = cfg->fc_type; 1169 state = fa->fa_state; 1170 new_fa->fa_state = state & ~FA_S_ACCESSED; 1171 new_fa->fa_slen = fa->fa_slen; 1172 new_fa->tb_id = tb->tb_id; 1173 new_fa->fa_default = -1; 1174 1175 err = switchdev_fib_ipv4_add(key, plen, fi, 1176 new_fa->fa_tos, 1177 cfg->fc_type, 1178 cfg->fc_nlflags, 1179 tb->tb_id); 1180 if (err) { 1181 switchdev_fib_ipv4_abort(fi); 1182 kmem_cache_free(fn_alias_kmem, new_fa); 1183 goto out; 1184 } 1185 1186 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1187 1188 alias_free_mem_rcu(fa); 1189 1190 fib_release_info(fi_drop); 1191 if (state & FA_S_ACCESSED) 1192 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1193 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1194 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); 1195 1196 goto succeeded; 1197 } 1198 /* Error if we find a perfect match which 1199 * uses the same scope, type, and nexthop 1200 * information. 1201 */ 1202 if (fa_match) 1203 goto out; 1204 1205 if (cfg->fc_nlflags & NLM_F_APPEND) 1206 nlflags = NLM_F_APPEND; 1207 else 1208 fa = fa_first; 1209 } 1210 err = -ENOENT; 1211 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1212 goto out; 1213 1214 err = -ENOBUFS; 1215 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1216 if (!new_fa) 1217 goto out; 1218 1219 new_fa->fa_info = fi; 1220 new_fa->fa_tos = tos; 1221 new_fa->fa_type = cfg->fc_type; 1222 new_fa->fa_state = 0; 1223 new_fa->fa_slen = slen; 1224 new_fa->tb_id = tb->tb_id; 1225 new_fa->fa_default = -1; 1226 1227 /* (Optionally) offload fib entry to switch hardware. */ 1228 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type, 1229 cfg->fc_nlflags, tb->tb_id); 1230 if (err) { 1231 switchdev_fib_ipv4_abort(fi); 1232 goto out_free_new_fa; 1233 } 1234 1235 /* Insert new entry to the list. */ 1236 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1237 if (err) 1238 goto out_sw_fib_del; 1239 1240 if (!plen) 1241 tb->tb_num_default++; 1242 1243 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1244 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1245 &cfg->fc_nlinfo, nlflags); 1246 succeeded: 1247 return 0; 1248 1249 out_sw_fib_del: 1250 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id); 1251 out_free_new_fa: 1252 kmem_cache_free(fn_alias_kmem, new_fa); 1253 out: 1254 fib_release_info(fi); 1255 err: 1256 return err; 1257 } 1258 1259 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1260 { 1261 t_key prefix = n->key; 1262 1263 return (key ^ prefix) & (prefix | -prefix); 1264 } 1265 1266 /* should be called with rcu_read_lock */ 1267 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1268 struct fib_result *res, int fib_flags) 1269 { 1270 struct trie *t = (struct trie *) tb->tb_data; 1271 #ifdef CONFIG_IP_FIB_TRIE_STATS 1272 struct trie_use_stats __percpu *stats = t->stats; 1273 #endif 1274 const t_key key = ntohl(flp->daddr); 1275 struct key_vector *n, *pn; 1276 struct fib_alias *fa; 1277 unsigned long index; 1278 t_key cindex; 1279 1280 trace_fib_table_lookup(tb->tb_id, flp); 1281 1282 pn = t->kv; 1283 cindex = 0; 1284 1285 n = get_child_rcu(pn, cindex); 1286 if (!n) 1287 return -EAGAIN; 1288 1289 #ifdef CONFIG_IP_FIB_TRIE_STATS 1290 this_cpu_inc(stats->gets); 1291 #endif 1292 1293 /* Step 1: Travel to the longest prefix match in the trie */ 1294 for (;;) { 1295 index = get_cindex(key, n); 1296 1297 /* This bit of code is a bit tricky but it combines multiple 1298 * checks into a single check. The prefix consists of the 1299 * prefix plus zeros for the "bits" in the prefix. The index 1300 * is the difference between the key and this value. From 1301 * this we can actually derive several pieces of data. 1302 * if (index >= (1ul << bits)) 1303 * we have a mismatch in skip bits and failed 1304 * else 1305 * we know the value is cindex 1306 * 1307 * This check is safe even if bits == KEYLENGTH due to the 1308 * fact that we can only allocate a node with 32 bits if a 1309 * long is greater than 32 bits. 1310 */ 1311 if (index >= (1ul << n->bits)) 1312 break; 1313 1314 /* we have found a leaf. Prefixes have already been compared */ 1315 if (IS_LEAF(n)) 1316 goto found; 1317 1318 /* only record pn and cindex if we are going to be chopping 1319 * bits later. Otherwise we are just wasting cycles. 1320 */ 1321 if (n->slen > n->pos) { 1322 pn = n; 1323 cindex = index; 1324 } 1325 1326 n = get_child_rcu(n, index); 1327 if (unlikely(!n)) 1328 goto backtrace; 1329 } 1330 1331 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1332 for (;;) { 1333 /* record the pointer where our next node pointer is stored */ 1334 struct key_vector __rcu **cptr = n->tnode; 1335 1336 /* This test verifies that none of the bits that differ 1337 * between the key and the prefix exist in the region of 1338 * the lsb and higher in the prefix. 1339 */ 1340 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1341 goto backtrace; 1342 1343 /* exit out and process leaf */ 1344 if (unlikely(IS_LEAF(n))) 1345 break; 1346 1347 /* Don't bother recording parent info. Since we are in 1348 * prefix match mode we will have to come back to wherever 1349 * we started this traversal anyway 1350 */ 1351 1352 while ((n = rcu_dereference(*cptr)) == NULL) { 1353 backtrace: 1354 #ifdef CONFIG_IP_FIB_TRIE_STATS 1355 if (!n) 1356 this_cpu_inc(stats->null_node_hit); 1357 #endif 1358 /* If we are at cindex 0 there are no more bits for 1359 * us to strip at this level so we must ascend back 1360 * up one level to see if there are any more bits to 1361 * be stripped there. 1362 */ 1363 while (!cindex) { 1364 t_key pkey = pn->key; 1365 1366 /* If we don't have a parent then there is 1367 * nothing for us to do as we do not have any 1368 * further nodes to parse. 1369 */ 1370 if (IS_TRIE(pn)) 1371 return -EAGAIN; 1372 #ifdef CONFIG_IP_FIB_TRIE_STATS 1373 this_cpu_inc(stats->backtrack); 1374 #endif 1375 /* Get Child's index */ 1376 pn = node_parent_rcu(pn); 1377 cindex = get_index(pkey, pn); 1378 } 1379 1380 /* strip the least significant bit from the cindex */ 1381 cindex &= cindex - 1; 1382 1383 /* grab pointer for next child node */ 1384 cptr = &pn->tnode[cindex]; 1385 } 1386 } 1387 1388 found: 1389 /* this line carries forward the xor from earlier in the function */ 1390 index = key ^ n->key; 1391 1392 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1393 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1394 struct fib_info *fi = fa->fa_info; 1395 int nhsel, err; 1396 1397 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1398 if (index >= (1ul << fa->fa_slen)) 1399 continue; 1400 } 1401 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos) 1402 continue; 1403 if (fi->fib_dead) 1404 continue; 1405 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1406 continue; 1407 fib_alias_accessed(fa); 1408 err = fib_props[fa->fa_type].error; 1409 if (unlikely(err < 0)) { 1410 #ifdef CONFIG_IP_FIB_TRIE_STATS 1411 this_cpu_inc(stats->semantic_match_passed); 1412 #endif 1413 return err; 1414 } 1415 if (fi->fib_flags & RTNH_F_DEAD) 1416 continue; 1417 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) { 1418 const struct fib_nh *nh = &fi->fib_nh[nhsel]; 1419 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev); 1420 1421 if (nh->nh_flags & RTNH_F_DEAD) 1422 continue; 1423 if (in_dev && 1424 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) && 1425 nh->nh_flags & RTNH_F_LINKDOWN && 1426 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1427 continue; 1428 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) { 1429 if (flp->flowi4_oif && 1430 flp->flowi4_oif != nh->nh_oif) 1431 continue; 1432 } 1433 1434 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1435 atomic_inc(&fi->fib_clntref); 1436 1437 res->prefixlen = KEYLENGTH - fa->fa_slen; 1438 res->nh_sel = nhsel; 1439 res->type = fa->fa_type; 1440 res->scope = fi->fib_scope; 1441 res->fi = fi; 1442 res->table = tb; 1443 res->fa_head = &n->leaf; 1444 #ifdef CONFIG_IP_FIB_TRIE_STATS 1445 this_cpu_inc(stats->semantic_match_passed); 1446 #endif 1447 trace_fib_table_lookup_nh(nh); 1448 1449 return err; 1450 } 1451 } 1452 #ifdef CONFIG_IP_FIB_TRIE_STATS 1453 this_cpu_inc(stats->semantic_match_miss); 1454 #endif 1455 goto backtrace; 1456 } 1457 EXPORT_SYMBOL_GPL(fib_table_lookup); 1458 1459 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1460 struct key_vector *l, struct fib_alias *old) 1461 { 1462 /* record the location of the previous list_info entry */ 1463 struct hlist_node **pprev = old->fa_list.pprev; 1464 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1465 1466 /* remove the fib_alias from the list */ 1467 hlist_del_rcu(&old->fa_list); 1468 1469 /* if we emptied the list this leaf will be freed and we can sort 1470 * out parent suffix lengths as a part of trie_rebalance 1471 */ 1472 if (hlist_empty(&l->leaf)) { 1473 put_child_root(tp, l->key, NULL); 1474 node_free(l); 1475 trie_rebalance(t, tp); 1476 return; 1477 } 1478 1479 /* only access fa if it is pointing at the last valid hlist_node */ 1480 if (*pprev) 1481 return; 1482 1483 /* update the trie with the latest suffix length */ 1484 l->slen = fa->fa_slen; 1485 leaf_pull_suffix(tp, l); 1486 } 1487 1488 /* Caller must hold RTNL. */ 1489 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) 1490 { 1491 struct trie *t = (struct trie *) tb->tb_data; 1492 struct fib_alias *fa, *fa_to_delete; 1493 struct key_vector *l, *tp; 1494 u8 plen = cfg->fc_dst_len; 1495 u8 slen = KEYLENGTH - plen; 1496 u8 tos = cfg->fc_tos; 1497 u32 key; 1498 1499 if (plen > KEYLENGTH) 1500 return -EINVAL; 1501 1502 key = ntohl(cfg->fc_dst); 1503 1504 if ((plen < KEYLENGTH) && (key << plen)) 1505 return -EINVAL; 1506 1507 l = fib_find_node(t, &tp, key); 1508 if (!l) 1509 return -ESRCH; 1510 1511 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id); 1512 if (!fa) 1513 return -ESRCH; 1514 1515 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); 1516 1517 fa_to_delete = NULL; 1518 hlist_for_each_entry_from(fa, fa_list) { 1519 struct fib_info *fi = fa->fa_info; 1520 1521 if ((fa->fa_slen != slen) || 1522 (fa->tb_id != tb->tb_id) || 1523 (fa->fa_tos != tos)) 1524 break; 1525 1526 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1527 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1528 fa->fa_info->fib_scope == cfg->fc_scope) && 1529 (!cfg->fc_prefsrc || 1530 fi->fib_prefsrc == cfg->fc_prefsrc) && 1531 (!cfg->fc_protocol || 1532 fi->fib_protocol == cfg->fc_protocol) && 1533 fib_nh_match(cfg, fi) == 0) { 1534 fa_to_delete = fa; 1535 break; 1536 } 1537 } 1538 1539 if (!fa_to_delete) 1540 return -ESRCH; 1541 1542 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos, 1543 cfg->fc_type, tb->tb_id); 1544 1545 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1546 &cfg->fc_nlinfo, 0); 1547 1548 if (!plen) 1549 tb->tb_num_default--; 1550 1551 fib_remove_alias(t, tp, l, fa_to_delete); 1552 1553 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1554 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1555 1556 fib_release_info(fa_to_delete->fa_info); 1557 alias_free_mem_rcu(fa_to_delete); 1558 return 0; 1559 } 1560 1561 /* Scan for the next leaf starting at the provided key value */ 1562 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1563 { 1564 struct key_vector *pn, *n = *tn; 1565 unsigned long cindex; 1566 1567 /* this loop is meant to try and find the key in the trie */ 1568 do { 1569 /* record parent and next child index */ 1570 pn = n; 1571 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1572 1573 if (cindex >> pn->bits) 1574 break; 1575 1576 /* descend into the next child */ 1577 n = get_child_rcu(pn, cindex++); 1578 if (!n) 1579 break; 1580 1581 /* guarantee forward progress on the keys */ 1582 if (IS_LEAF(n) && (n->key >= key)) 1583 goto found; 1584 } while (IS_TNODE(n)); 1585 1586 /* this loop will search for the next leaf with a greater key */ 1587 while (!IS_TRIE(pn)) { 1588 /* if we exhausted the parent node we will need to climb */ 1589 if (cindex >= (1ul << pn->bits)) { 1590 t_key pkey = pn->key; 1591 1592 pn = node_parent_rcu(pn); 1593 cindex = get_index(pkey, pn) + 1; 1594 continue; 1595 } 1596 1597 /* grab the next available node */ 1598 n = get_child_rcu(pn, cindex++); 1599 if (!n) 1600 continue; 1601 1602 /* no need to compare keys since we bumped the index */ 1603 if (IS_LEAF(n)) 1604 goto found; 1605 1606 /* Rescan start scanning in new node */ 1607 pn = n; 1608 cindex = 0; 1609 } 1610 1611 *tn = pn; 1612 return NULL; /* Root of trie */ 1613 found: 1614 /* if we are at the limit for keys just return NULL for the tnode */ 1615 *tn = pn; 1616 return n; 1617 } 1618 1619 static void fib_trie_free(struct fib_table *tb) 1620 { 1621 struct trie *t = (struct trie *)tb->tb_data; 1622 struct key_vector *pn = t->kv; 1623 unsigned long cindex = 1; 1624 struct hlist_node *tmp; 1625 struct fib_alias *fa; 1626 1627 /* walk trie in reverse order and free everything */ 1628 for (;;) { 1629 struct key_vector *n; 1630 1631 if (!(cindex--)) { 1632 t_key pkey = pn->key; 1633 1634 if (IS_TRIE(pn)) 1635 break; 1636 1637 n = pn; 1638 pn = node_parent(pn); 1639 1640 /* drop emptied tnode */ 1641 put_child_root(pn, n->key, NULL); 1642 node_free(n); 1643 1644 cindex = get_index(pkey, pn); 1645 1646 continue; 1647 } 1648 1649 /* grab the next available node */ 1650 n = get_child(pn, cindex); 1651 if (!n) 1652 continue; 1653 1654 if (IS_TNODE(n)) { 1655 /* record pn and cindex for leaf walking */ 1656 pn = n; 1657 cindex = 1ul << n->bits; 1658 1659 continue; 1660 } 1661 1662 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1663 hlist_del_rcu(&fa->fa_list); 1664 alias_free_mem_rcu(fa); 1665 } 1666 1667 put_child_root(pn, n->key, NULL); 1668 node_free(n); 1669 } 1670 1671 #ifdef CONFIG_IP_FIB_TRIE_STATS 1672 free_percpu(t->stats); 1673 #endif 1674 kfree(tb); 1675 } 1676 1677 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1678 { 1679 struct trie *ot = (struct trie *)oldtb->tb_data; 1680 struct key_vector *l, *tp = ot->kv; 1681 struct fib_table *local_tb; 1682 struct fib_alias *fa; 1683 struct trie *lt; 1684 t_key key = 0; 1685 1686 if (oldtb->tb_data == oldtb->__data) 1687 return oldtb; 1688 1689 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1690 if (!local_tb) 1691 return NULL; 1692 1693 lt = (struct trie *)local_tb->tb_data; 1694 1695 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1696 struct key_vector *local_l = NULL, *local_tp; 1697 1698 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1699 struct fib_alias *new_fa; 1700 1701 if (local_tb->tb_id != fa->tb_id) 1702 continue; 1703 1704 /* clone fa for new local table */ 1705 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1706 if (!new_fa) 1707 goto out; 1708 1709 memcpy(new_fa, fa, sizeof(*fa)); 1710 1711 /* insert clone into table */ 1712 if (!local_l) 1713 local_l = fib_find_node(lt, &local_tp, l->key); 1714 1715 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1716 NULL, l->key)) 1717 goto out; 1718 } 1719 1720 /* stop loop if key wrapped back to 0 */ 1721 key = l->key + 1; 1722 if (key < l->key) 1723 break; 1724 } 1725 1726 return local_tb; 1727 out: 1728 fib_trie_free(local_tb); 1729 1730 return NULL; 1731 } 1732 1733 /* Caller must hold RTNL */ 1734 void fib_table_flush_external(struct fib_table *tb) 1735 { 1736 struct trie *t = (struct trie *)tb->tb_data; 1737 struct key_vector *pn = t->kv; 1738 unsigned long cindex = 1; 1739 struct hlist_node *tmp; 1740 struct fib_alias *fa; 1741 1742 /* walk trie in reverse order */ 1743 for (;;) { 1744 unsigned char slen = 0; 1745 struct key_vector *n; 1746 1747 if (!(cindex--)) { 1748 t_key pkey = pn->key; 1749 1750 /* cannot resize the trie vector */ 1751 if (IS_TRIE(pn)) 1752 break; 1753 1754 /* resize completed node */ 1755 pn = resize(t, pn); 1756 cindex = get_index(pkey, pn); 1757 1758 continue; 1759 } 1760 1761 /* grab the next available node */ 1762 n = get_child(pn, cindex); 1763 if (!n) 1764 continue; 1765 1766 if (IS_TNODE(n)) { 1767 /* record pn and cindex for leaf walking */ 1768 pn = n; 1769 cindex = 1ul << n->bits; 1770 1771 continue; 1772 } 1773 1774 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1775 struct fib_info *fi = fa->fa_info; 1776 1777 /* if alias was cloned to local then we just 1778 * need to remove the local copy from main 1779 */ 1780 if (tb->tb_id != fa->tb_id) { 1781 hlist_del_rcu(&fa->fa_list); 1782 alias_free_mem_rcu(fa); 1783 continue; 1784 } 1785 1786 /* record local slen */ 1787 slen = fa->fa_slen; 1788 1789 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD)) 1790 continue; 1791 1792 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, 1793 fi, fa->fa_tos, fa->fa_type, 1794 tb->tb_id); 1795 } 1796 1797 /* update leaf slen */ 1798 n->slen = slen; 1799 1800 if (hlist_empty(&n->leaf)) { 1801 put_child_root(pn, n->key, NULL); 1802 node_free(n); 1803 } 1804 } 1805 } 1806 1807 /* Caller must hold RTNL. */ 1808 int fib_table_flush(struct fib_table *tb) 1809 { 1810 struct trie *t = (struct trie *)tb->tb_data; 1811 struct key_vector *pn = t->kv; 1812 unsigned long cindex = 1; 1813 struct hlist_node *tmp; 1814 struct fib_alias *fa; 1815 int found = 0; 1816 1817 /* walk trie in reverse order */ 1818 for (;;) { 1819 unsigned char slen = 0; 1820 struct key_vector *n; 1821 1822 if (!(cindex--)) { 1823 t_key pkey = pn->key; 1824 1825 /* cannot resize the trie vector */ 1826 if (IS_TRIE(pn)) 1827 break; 1828 1829 /* resize completed node */ 1830 pn = resize(t, pn); 1831 cindex = get_index(pkey, pn); 1832 1833 continue; 1834 } 1835 1836 /* grab the next available node */ 1837 n = get_child(pn, cindex); 1838 if (!n) 1839 continue; 1840 1841 if (IS_TNODE(n)) { 1842 /* record pn and cindex for leaf walking */ 1843 pn = n; 1844 cindex = 1ul << n->bits; 1845 1846 continue; 1847 } 1848 1849 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1850 struct fib_info *fi = fa->fa_info; 1851 1852 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) { 1853 slen = fa->fa_slen; 1854 continue; 1855 } 1856 1857 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen, 1858 fi, fa->fa_tos, fa->fa_type, 1859 tb->tb_id); 1860 hlist_del_rcu(&fa->fa_list); 1861 fib_release_info(fa->fa_info); 1862 alias_free_mem_rcu(fa); 1863 found++; 1864 } 1865 1866 /* update leaf slen */ 1867 n->slen = slen; 1868 1869 if (hlist_empty(&n->leaf)) { 1870 put_child_root(pn, n->key, NULL); 1871 node_free(n); 1872 } 1873 } 1874 1875 pr_debug("trie_flush found=%d\n", found); 1876 return found; 1877 } 1878 1879 static void __trie_free_rcu(struct rcu_head *head) 1880 { 1881 struct fib_table *tb = container_of(head, struct fib_table, rcu); 1882 #ifdef CONFIG_IP_FIB_TRIE_STATS 1883 struct trie *t = (struct trie *)tb->tb_data; 1884 1885 if (tb->tb_data == tb->__data) 1886 free_percpu(t->stats); 1887 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 1888 kfree(tb); 1889 } 1890 1891 void fib_free_table(struct fib_table *tb) 1892 { 1893 call_rcu(&tb->rcu, __trie_free_rcu); 1894 } 1895 1896 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 1897 struct sk_buff *skb, struct netlink_callback *cb) 1898 { 1899 __be32 xkey = htonl(l->key); 1900 struct fib_alias *fa; 1901 int i, s_i; 1902 1903 s_i = cb->args[4]; 1904 i = 0; 1905 1906 /* rcu_read_lock is hold by caller */ 1907 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1908 if (i < s_i) { 1909 i++; 1910 continue; 1911 } 1912 1913 if (tb->tb_id != fa->tb_id) { 1914 i++; 1915 continue; 1916 } 1917 1918 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid, 1919 cb->nlh->nlmsg_seq, 1920 RTM_NEWROUTE, 1921 tb->tb_id, 1922 fa->fa_type, 1923 xkey, 1924 KEYLENGTH - fa->fa_slen, 1925 fa->fa_tos, 1926 fa->fa_info, NLM_F_MULTI) < 0) { 1927 cb->args[4] = i; 1928 return -1; 1929 } 1930 i++; 1931 } 1932 1933 cb->args[4] = i; 1934 return skb->len; 1935 } 1936 1937 /* rcu_read_lock needs to be hold by caller from readside */ 1938 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 1939 struct netlink_callback *cb) 1940 { 1941 struct trie *t = (struct trie *)tb->tb_data; 1942 struct key_vector *l, *tp = t->kv; 1943 /* Dump starting at last key. 1944 * Note: 0.0.0.0/0 (ie default) is first key. 1945 */ 1946 int count = cb->args[2]; 1947 t_key key = cb->args[3]; 1948 1949 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { 1951 cb->args[3] = key; 1952 cb->args[2] = count; 1953 return -1; 1954 } 1955 1956 ++count; 1957 key = l->key + 1; 1958 1959 memset(&cb->args[4], 0, 1960 sizeof(cb->args) - 4*sizeof(cb->args[0])); 1961 1962 /* stop loop if key wrapped back to 0 */ 1963 if (key < l->key) 1964 break; 1965 } 1966 1967 cb->args[3] = key; 1968 cb->args[2] = count; 1969 1970 return skb->len; 1971 } 1972 1973 void __init fib_trie_init(void) 1974 { 1975 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 1976 sizeof(struct fib_alias), 1977 0, SLAB_PANIC, NULL); 1978 1979 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 1980 LEAF_SIZE, 1981 0, SLAB_PANIC, NULL); 1982 } 1983 1984 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 1985 { 1986 struct fib_table *tb; 1987 struct trie *t; 1988 size_t sz = sizeof(*tb); 1989 1990 if (!alias) 1991 sz += sizeof(struct trie); 1992 1993 tb = kzalloc(sz, GFP_KERNEL); 1994 if (!tb) 1995 return NULL; 1996 1997 tb->tb_id = id; 1998 tb->tb_num_default = 0; 1999 tb->tb_data = (alias ? alias->__data : tb->__data); 2000 2001 if (alias) 2002 return tb; 2003 2004 t = (struct trie *) tb->tb_data; 2005 t->kv[0].pos = KEYLENGTH; 2006 t->kv[0].slen = KEYLENGTH; 2007 #ifdef CONFIG_IP_FIB_TRIE_STATS 2008 t->stats = alloc_percpu(struct trie_use_stats); 2009 if (!t->stats) { 2010 kfree(tb); 2011 tb = NULL; 2012 } 2013 #endif 2014 2015 return tb; 2016 } 2017 2018 #ifdef CONFIG_PROC_FS 2019 /* Depth first Trie walk iterator */ 2020 struct fib_trie_iter { 2021 struct seq_net_private p; 2022 struct fib_table *tb; 2023 struct key_vector *tnode; 2024 unsigned int index; 2025 unsigned int depth; 2026 }; 2027 2028 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2029 { 2030 unsigned long cindex = iter->index; 2031 struct key_vector *pn = iter->tnode; 2032 t_key pkey; 2033 2034 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2035 iter->tnode, iter->index, iter->depth); 2036 2037 while (!IS_TRIE(pn)) { 2038 while (cindex < child_length(pn)) { 2039 struct key_vector *n = get_child_rcu(pn, cindex++); 2040 2041 if (!n) 2042 continue; 2043 2044 if (IS_LEAF(n)) { 2045 iter->tnode = pn; 2046 iter->index = cindex; 2047 } else { 2048 /* push down one level */ 2049 iter->tnode = n; 2050 iter->index = 0; 2051 ++iter->depth; 2052 } 2053 2054 return n; 2055 } 2056 2057 /* Current node exhausted, pop back up */ 2058 pkey = pn->key; 2059 pn = node_parent_rcu(pn); 2060 cindex = get_index(pkey, pn) + 1; 2061 --iter->depth; 2062 } 2063 2064 /* record root node so further searches know we are done */ 2065 iter->tnode = pn; 2066 iter->index = 0; 2067 2068 return NULL; 2069 } 2070 2071 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2072 struct trie *t) 2073 { 2074 struct key_vector *n, *pn; 2075 2076 if (!t) 2077 return NULL; 2078 2079 pn = t->kv; 2080 n = rcu_dereference(pn->tnode[0]); 2081 if (!n) 2082 return NULL; 2083 2084 if (IS_TNODE(n)) { 2085 iter->tnode = n; 2086 iter->index = 0; 2087 iter->depth = 1; 2088 } else { 2089 iter->tnode = pn; 2090 iter->index = 0; 2091 iter->depth = 0; 2092 } 2093 2094 return n; 2095 } 2096 2097 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2098 { 2099 struct key_vector *n; 2100 struct fib_trie_iter iter; 2101 2102 memset(s, 0, sizeof(*s)); 2103 2104 rcu_read_lock(); 2105 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2106 if (IS_LEAF(n)) { 2107 struct fib_alias *fa; 2108 2109 s->leaves++; 2110 s->totdepth += iter.depth; 2111 if (iter.depth > s->maxdepth) 2112 s->maxdepth = iter.depth; 2113 2114 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2115 ++s->prefixes; 2116 } else { 2117 s->tnodes++; 2118 if (n->bits < MAX_STAT_DEPTH) 2119 s->nodesizes[n->bits]++; 2120 s->nullpointers += tn_info(n)->empty_children; 2121 } 2122 } 2123 rcu_read_unlock(); 2124 } 2125 2126 /* 2127 * This outputs /proc/net/fib_triestats 2128 */ 2129 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2130 { 2131 unsigned int i, max, pointers, bytes, avdepth; 2132 2133 if (stat->leaves) 2134 avdepth = stat->totdepth*100 / stat->leaves; 2135 else 2136 avdepth = 0; 2137 2138 seq_printf(seq, "\tAver depth: %u.%02d\n", 2139 avdepth / 100, avdepth % 100); 2140 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2141 2142 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2143 bytes = LEAF_SIZE * stat->leaves; 2144 2145 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2146 bytes += sizeof(struct fib_alias) * stat->prefixes; 2147 2148 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2149 bytes += TNODE_SIZE(0) * stat->tnodes; 2150 2151 max = MAX_STAT_DEPTH; 2152 while (max > 0 && stat->nodesizes[max-1] == 0) 2153 max--; 2154 2155 pointers = 0; 2156 for (i = 1; i < max; i++) 2157 if (stat->nodesizes[i] != 0) { 2158 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2159 pointers += (1<<i) * stat->nodesizes[i]; 2160 } 2161 seq_putc(seq, '\n'); 2162 seq_printf(seq, "\tPointers: %u\n", pointers); 2163 2164 bytes += sizeof(struct key_vector *) * pointers; 2165 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2166 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2167 } 2168 2169 #ifdef CONFIG_IP_FIB_TRIE_STATS 2170 static void trie_show_usage(struct seq_file *seq, 2171 const struct trie_use_stats __percpu *stats) 2172 { 2173 struct trie_use_stats s = { 0 }; 2174 int cpu; 2175 2176 /* loop through all of the CPUs and gather up the stats */ 2177 for_each_possible_cpu(cpu) { 2178 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2179 2180 s.gets += pcpu->gets; 2181 s.backtrack += pcpu->backtrack; 2182 s.semantic_match_passed += pcpu->semantic_match_passed; 2183 s.semantic_match_miss += pcpu->semantic_match_miss; 2184 s.null_node_hit += pcpu->null_node_hit; 2185 s.resize_node_skipped += pcpu->resize_node_skipped; 2186 } 2187 2188 seq_printf(seq, "\nCounters:\n---------\n"); 2189 seq_printf(seq, "gets = %u\n", s.gets); 2190 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2191 seq_printf(seq, "semantic match passed = %u\n", 2192 s.semantic_match_passed); 2193 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2194 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2195 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2196 } 2197 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2198 2199 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2200 { 2201 if (tb->tb_id == RT_TABLE_LOCAL) 2202 seq_puts(seq, "Local:\n"); 2203 else if (tb->tb_id == RT_TABLE_MAIN) 2204 seq_puts(seq, "Main:\n"); 2205 else 2206 seq_printf(seq, "Id %d:\n", tb->tb_id); 2207 } 2208 2209 2210 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2211 { 2212 struct net *net = (struct net *)seq->private; 2213 unsigned int h; 2214 2215 seq_printf(seq, 2216 "Basic info: size of leaf:" 2217 " %Zd bytes, size of tnode: %Zd bytes.\n", 2218 LEAF_SIZE, TNODE_SIZE(0)); 2219 2220 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2221 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2222 struct fib_table *tb; 2223 2224 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2225 struct trie *t = (struct trie *) tb->tb_data; 2226 struct trie_stat stat; 2227 2228 if (!t) 2229 continue; 2230 2231 fib_table_print(seq, tb); 2232 2233 trie_collect_stats(t, &stat); 2234 trie_show_stats(seq, &stat); 2235 #ifdef CONFIG_IP_FIB_TRIE_STATS 2236 trie_show_usage(seq, t->stats); 2237 #endif 2238 } 2239 } 2240 2241 return 0; 2242 } 2243 2244 static int fib_triestat_seq_open(struct inode *inode, struct file *file) 2245 { 2246 return single_open_net(inode, file, fib_triestat_seq_show); 2247 } 2248 2249 static const struct file_operations fib_triestat_fops = { 2250 .owner = THIS_MODULE, 2251 .open = fib_triestat_seq_open, 2252 .read = seq_read, 2253 .llseek = seq_lseek, 2254 .release = single_release_net, 2255 }; 2256 2257 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2258 { 2259 struct fib_trie_iter *iter = seq->private; 2260 struct net *net = seq_file_net(seq); 2261 loff_t idx = 0; 2262 unsigned int h; 2263 2264 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2265 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2266 struct fib_table *tb; 2267 2268 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2269 struct key_vector *n; 2270 2271 for (n = fib_trie_get_first(iter, 2272 (struct trie *) tb->tb_data); 2273 n; n = fib_trie_get_next(iter)) 2274 if (pos == idx++) { 2275 iter->tb = tb; 2276 return n; 2277 } 2278 } 2279 } 2280 2281 return NULL; 2282 } 2283 2284 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2285 __acquires(RCU) 2286 { 2287 rcu_read_lock(); 2288 return fib_trie_get_idx(seq, *pos); 2289 } 2290 2291 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2292 { 2293 struct fib_trie_iter *iter = seq->private; 2294 struct net *net = seq_file_net(seq); 2295 struct fib_table *tb = iter->tb; 2296 struct hlist_node *tb_node; 2297 unsigned int h; 2298 struct key_vector *n; 2299 2300 ++*pos; 2301 /* next node in same table */ 2302 n = fib_trie_get_next(iter); 2303 if (n) 2304 return n; 2305 2306 /* walk rest of this hash chain */ 2307 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2308 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2309 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2310 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2311 if (n) 2312 goto found; 2313 } 2314 2315 /* new hash chain */ 2316 while (++h < FIB_TABLE_HASHSZ) { 2317 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2318 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2319 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2320 if (n) 2321 goto found; 2322 } 2323 } 2324 return NULL; 2325 2326 found: 2327 iter->tb = tb; 2328 return n; 2329 } 2330 2331 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2332 __releases(RCU) 2333 { 2334 rcu_read_unlock(); 2335 } 2336 2337 static void seq_indent(struct seq_file *seq, int n) 2338 { 2339 while (n-- > 0) 2340 seq_puts(seq, " "); 2341 } 2342 2343 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2344 { 2345 switch (s) { 2346 case RT_SCOPE_UNIVERSE: return "universe"; 2347 case RT_SCOPE_SITE: return "site"; 2348 case RT_SCOPE_LINK: return "link"; 2349 case RT_SCOPE_HOST: return "host"; 2350 case RT_SCOPE_NOWHERE: return "nowhere"; 2351 default: 2352 snprintf(buf, len, "scope=%d", s); 2353 return buf; 2354 } 2355 } 2356 2357 static const char *const rtn_type_names[__RTN_MAX] = { 2358 [RTN_UNSPEC] = "UNSPEC", 2359 [RTN_UNICAST] = "UNICAST", 2360 [RTN_LOCAL] = "LOCAL", 2361 [RTN_BROADCAST] = "BROADCAST", 2362 [RTN_ANYCAST] = "ANYCAST", 2363 [RTN_MULTICAST] = "MULTICAST", 2364 [RTN_BLACKHOLE] = "BLACKHOLE", 2365 [RTN_UNREACHABLE] = "UNREACHABLE", 2366 [RTN_PROHIBIT] = "PROHIBIT", 2367 [RTN_THROW] = "THROW", 2368 [RTN_NAT] = "NAT", 2369 [RTN_XRESOLVE] = "XRESOLVE", 2370 }; 2371 2372 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2373 { 2374 if (t < __RTN_MAX && rtn_type_names[t]) 2375 return rtn_type_names[t]; 2376 snprintf(buf, len, "type %u", t); 2377 return buf; 2378 } 2379 2380 /* Pretty print the trie */ 2381 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2382 { 2383 const struct fib_trie_iter *iter = seq->private; 2384 struct key_vector *n = v; 2385 2386 if (IS_TRIE(node_parent_rcu(n))) 2387 fib_table_print(seq, iter->tb); 2388 2389 if (IS_TNODE(n)) { 2390 __be32 prf = htonl(n->key); 2391 2392 seq_indent(seq, iter->depth-1); 2393 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2394 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2395 tn_info(n)->full_children, 2396 tn_info(n)->empty_children); 2397 } else { 2398 __be32 val = htonl(n->key); 2399 struct fib_alias *fa; 2400 2401 seq_indent(seq, iter->depth); 2402 seq_printf(seq, " |-- %pI4\n", &val); 2403 2404 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2405 char buf1[32], buf2[32]; 2406 2407 seq_indent(seq, iter->depth + 1); 2408 seq_printf(seq, " /%zu %s %s", 2409 KEYLENGTH - fa->fa_slen, 2410 rtn_scope(buf1, sizeof(buf1), 2411 fa->fa_info->fib_scope), 2412 rtn_type(buf2, sizeof(buf2), 2413 fa->fa_type)); 2414 if (fa->fa_tos) 2415 seq_printf(seq, " tos=%d", fa->fa_tos); 2416 seq_putc(seq, '\n'); 2417 } 2418 } 2419 2420 return 0; 2421 } 2422 2423 static const struct seq_operations fib_trie_seq_ops = { 2424 .start = fib_trie_seq_start, 2425 .next = fib_trie_seq_next, 2426 .stop = fib_trie_seq_stop, 2427 .show = fib_trie_seq_show, 2428 }; 2429 2430 static int fib_trie_seq_open(struct inode *inode, struct file *file) 2431 { 2432 return seq_open_net(inode, file, &fib_trie_seq_ops, 2433 sizeof(struct fib_trie_iter)); 2434 } 2435 2436 static const struct file_operations fib_trie_fops = { 2437 .owner = THIS_MODULE, 2438 .open = fib_trie_seq_open, 2439 .read = seq_read, 2440 .llseek = seq_lseek, 2441 .release = seq_release_net, 2442 }; 2443 2444 struct fib_route_iter { 2445 struct seq_net_private p; 2446 struct fib_table *main_tb; 2447 struct key_vector *tnode; 2448 loff_t pos; 2449 t_key key; 2450 }; 2451 2452 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2453 loff_t pos) 2454 { 2455 struct fib_table *tb = iter->main_tb; 2456 struct key_vector *l, **tp = &iter->tnode; 2457 struct trie *t; 2458 t_key key; 2459 2460 /* use cache location of next-to-find key */ 2461 if (iter->pos > 0 && pos >= iter->pos) { 2462 pos -= iter->pos; 2463 key = iter->key; 2464 } else { 2465 t = (struct trie *)tb->tb_data; 2466 iter->tnode = t->kv; 2467 iter->pos = 0; 2468 key = 0; 2469 } 2470 2471 while ((l = leaf_walk_rcu(tp, key)) != NULL) { 2472 key = l->key + 1; 2473 iter->pos++; 2474 2475 if (--pos <= 0) 2476 break; 2477 2478 l = NULL; 2479 2480 /* handle unlikely case of a key wrap */ 2481 if (!key) 2482 break; 2483 } 2484 2485 if (l) 2486 iter->key = key; /* remember it */ 2487 else 2488 iter->pos = 0; /* forget it */ 2489 2490 return l; 2491 } 2492 2493 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2494 __acquires(RCU) 2495 { 2496 struct fib_route_iter *iter = seq->private; 2497 struct fib_table *tb; 2498 struct trie *t; 2499 2500 rcu_read_lock(); 2501 2502 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2503 if (!tb) 2504 return NULL; 2505 2506 iter->main_tb = tb; 2507 2508 if (*pos != 0) 2509 return fib_route_get_idx(iter, *pos); 2510 2511 t = (struct trie *)tb->tb_data; 2512 iter->tnode = t->kv; 2513 iter->pos = 0; 2514 iter->key = 0; 2515 2516 return SEQ_START_TOKEN; 2517 } 2518 2519 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2520 { 2521 struct fib_route_iter *iter = seq->private; 2522 struct key_vector *l = NULL; 2523 t_key key = iter->key; 2524 2525 ++*pos; 2526 2527 /* only allow key of 0 for start of sequence */ 2528 if ((v == SEQ_START_TOKEN) || key) 2529 l = leaf_walk_rcu(&iter->tnode, key); 2530 2531 if (l) { 2532 iter->key = l->key + 1; 2533 iter->pos++; 2534 } else { 2535 iter->pos = 0; 2536 } 2537 2538 return l; 2539 } 2540 2541 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2542 __releases(RCU) 2543 { 2544 rcu_read_unlock(); 2545 } 2546 2547 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) 2548 { 2549 unsigned int flags = 0; 2550 2551 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2552 flags = RTF_REJECT; 2553 if (fi && fi->fib_nh->nh_gw) 2554 flags |= RTF_GATEWAY; 2555 if (mask == htonl(0xFFFFFFFF)) 2556 flags |= RTF_HOST; 2557 flags |= RTF_UP; 2558 return flags; 2559 } 2560 2561 /* 2562 * This outputs /proc/net/route. 2563 * The format of the file is not supposed to be changed 2564 * and needs to be same as fib_hash output to avoid breaking 2565 * legacy utilities 2566 */ 2567 static int fib_route_seq_show(struct seq_file *seq, void *v) 2568 { 2569 struct fib_route_iter *iter = seq->private; 2570 struct fib_table *tb = iter->main_tb; 2571 struct fib_alias *fa; 2572 struct key_vector *l = v; 2573 __be32 prefix; 2574 2575 if (v == SEQ_START_TOKEN) { 2576 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2577 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2578 "\tWindow\tIRTT"); 2579 return 0; 2580 } 2581 2582 prefix = htonl(l->key); 2583 2584 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2585 const struct fib_info *fi = fa->fa_info; 2586 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2587 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2588 2589 if ((fa->fa_type == RTN_BROADCAST) || 2590 (fa->fa_type == RTN_MULTICAST)) 2591 continue; 2592 2593 if (fa->tb_id != tb->tb_id) 2594 continue; 2595 2596 seq_setwidth(seq, 127); 2597 2598 if (fi) 2599 seq_printf(seq, 2600 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 2601 "%d\t%08X\t%d\t%u\t%u", 2602 fi->fib_dev ? fi->fib_dev->name : "*", 2603 prefix, 2604 fi->fib_nh->nh_gw, flags, 0, 0, 2605 fi->fib_priority, 2606 mask, 2607 (fi->fib_advmss ? 2608 fi->fib_advmss + 40 : 0), 2609 fi->fib_window, 2610 fi->fib_rtt >> 3); 2611 else 2612 seq_printf(seq, 2613 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 2614 "%d\t%08X\t%d\t%u\t%u", 2615 prefix, 0, flags, 0, 0, 0, 2616 mask, 0, 0, 0); 2617 2618 seq_pad(seq, '\n'); 2619 } 2620 2621 return 0; 2622 } 2623 2624 static const struct seq_operations fib_route_seq_ops = { 2625 .start = fib_route_seq_start, 2626 .next = fib_route_seq_next, 2627 .stop = fib_route_seq_stop, 2628 .show = fib_route_seq_show, 2629 }; 2630 2631 static int fib_route_seq_open(struct inode *inode, struct file *file) 2632 { 2633 return seq_open_net(inode, file, &fib_route_seq_ops, 2634 sizeof(struct fib_route_iter)); 2635 } 2636 2637 static const struct file_operations fib_route_fops = { 2638 .owner = THIS_MODULE, 2639 .open = fib_route_seq_open, 2640 .read = seq_read, 2641 .llseek = seq_lseek, 2642 .release = seq_release_net, 2643 }; 2644 2645 int __net_init fib_proc_init(struct net *net) 2646 { 2647 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops)) 2648 goto out1; 2649 2650 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net, 2651 &fib_triestat_fops)) 2652 goto out2; 2653 2654 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops)) 2655 goto out3; 2656 2657 return 0; 2658 2659 out3: 2660 remove_proc_entry("fib_triestat", net->proc_net); 2661 out2: 2662 remove_proc_entry("fib_trie", net->proc_net); 2663 out1: 2664 return -ENOMEM; 2665 } 2666 2667 void __net_exit fib_proc_exit(struct net *net) 2668 { 2669 remove_proc_entry("fib_trie", net->proc_net); 2670 remove_proc_entry("fib_triestat", net->proc_net); 2671 remove_proc_entry("route", net->proc_net); 2672 } 2673 2674 #endif /* CONFIG_PROC_FS */ 2675