xref: /linux/net/ipv4/fib_frontend.c (revision f5ef419630e85e80284cd0256cb5a13a66bbd6c5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		IPv4 Forwarding Information Base: FIB frontend.
7  *
8  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
9  *
10  *		This program is free software; you can redistribute it and/or
11  *		modify it under the terms of the GNU General Public License
12  *		as published by the Free Software Foundation; either version
13  *		2 of the License, or (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/capability.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/string.h>
24 #include <linux/socket.h>
25 #include <linux/sockios.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/inetdevice.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_addr.h>
32 #include <linux/if_arp.h>
33 #include <linux/skbuff.h>
34 #include <linux/cache.h>
35 #include <linux/init.h>
36 #include <linux/list.h>
37 #include <linux/slab.h>
38 
39 #include <net/ip.h>
40 #include <net/protocol.h>
41 #include <net/route.h>
42 #include <net/tcp.h>
43 #include <net/sock.h>
44 #include <net/arp.h>
45 #include <net/ip_fib.h>
46 #include <net/rtnetlink.h>
47 #include <net/xfrm.h>
48 #include <net/l3mdev.h>
49 #include <net/lwtunnel.h>
50 #include <trace/events/fib.h>
51 
52 #ifndef CONFIG_IP_MULTIPLE_TABLES
53 
54 static int __net_init fib4_rules_init(struct net *net)
55 {
56 	struct fib_table *local_table, *main_table;
57 
58 	main_table  = fib_trie_table(RT_TABLE_MAIN, NULL);
59 	if (!main_table)
60 		return -ENOMEM;
61 
62 	local_table = fib_trie_table(RT_TABLE_LOCAL, main_table);
63 	if (!local_table)
64 		goto fail;
65 
66 	hlist_add_head_rcu(&local_table->tb_hlist,
67 				&net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
68 	hlist_add_head_rcu(&main_table->tb_hlist,
69 				&net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
70 	return 0;
71 
72 fail:
73 	fib_free_table(main_table);
74 	return -ENOMEM;
75 }
76 #else
77 
78 struct fib_table *fib_new_table(struct net *net, u32 id)
79 {
80 	struct fib_table *tb, *alias = NULL;
81 	unsigned int h;
82 
83 	if (id == 0)
84 		id = RT_TABLE_MAIN;
85 	tb = fib_get_table(net, id);
86 	if (tb)
87 		return tb;
88 
89 	if (id == RT_TABLE_LOCAL && !net->ipv4.fib_has_custom_rules)
90 		alias = fib_new_table(net, RT_TABLE_MAIN);
91 
92 	tb = fib_trie_table(id, alias);
93 	if (!tb)
94 		return NULL;
95 
96 	switch (id) {
97 	case RT_TABLE_MAIN:
98 		rcu_assign_pointer(net->ipv4.fib_main, tb);
99 		break;
100 	case RT_TABLE_DEFAULT:
101 		rcu_assign_pointer(net->ipv4.fib_default, tb);
102 		break;
103 	default:
104 		break;
105 	}
106 
107 	h = id & (FIB_TABLE_HASHSZ - 1);
108 	hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
109 	return tb;
110 }
111 EXPORT_SYMBOL_GPL(fib_new_table);
112 
113 /* caller must hold either rtnl or rcu read lock */
114 struct fib_table *fib_get_table(struct net *net, u32 id)
115 {
116 	struct fib_table *tb;
117 	struct hlist_head *head;
118 	unsigned int h;
119 
120 	if (id == 0)
121 		id = RT_TABLE_MAIN;
122 	h = id & (FIB_TABLE_HASHSZ - 1);
123 
124 	head = &net->ipv4.fib_table_hash[h];
125 	hlist_for_each_entry_rcu(tb, head, tb_hlist) {
126 		if (tb->tb_id == id)
127 			return tb;
128 	}
129 	return NULL;
130 }
131 #endif /* CONFIG_IP_MULTIPLE_TABLES */
132 
133 static void fib_replace_table(struct net *net, struct fib_table *old,
134 			      struct fib_table *new)
135 {
136 #ifdef CONFIG_IP_MULTIPLE_TABLES
137 	switch (new->tb_id) {
138 	case RT_TABLE_MAIN:
139 		rcu_assign_pointer(net->ipv4.fib_main, new);
140 		break;
141 	case RT_TABLE_DEFAULT:
142 		rcu_assign_pointer(net->ipv4.fib_default, new);
143 		break;
144 	default:
145 		break;
146 	}
147 
148 #endif
149 	/* replace the old table in the hlist */
150 	hlist_replace_rcu(&old->tb_hlist, &new->tb_hlist);
151 }
152 
153 int fib_unmerge(struct net *net)
154 {
155 	struct fib_table *old, *new, *main_table;
156 
157 	/* attempt to fetch local table if it has been allocated */
158 	old = fib_get_table(net, RT_TABLE_LOCAL);
159 	if (!old)
160 		return 0;
161 
162 	new = fib_trie_unmerge(old);
163 	if (!new)
164 		return -ENOMEM;
165 
166 	/* table is already unmerged */
167 	if (new == old)
168 		return 0;
169 
170 	/* replace merged table with clean table */
171 	fib_replace_table(net, old, new);
172 	fib_free_table(old);
173 
174 	/* attempt to fetch main table if it has been allocated */
175 	main_table = fib_get_table(net, RT_TABLE_MAIN);
176 	if (!main_table)
177 		return 0;
178 
179 	/* flush local entries from main table */
180 	fib_table_flush_external(main_table);
181 
182 	return 0;
183 }
184 
185 static void fib_flush(struct net *net)
186 {
187 	int flushed = 0;
188 	unsigned int h;
189 
190 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
191 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
192 		struct hlist_node *tmp;
193 		struct fib_table *tb;
194 
195 		hlist_for_each_entry_safe(tb, tmp, head, tb_hlist)
196 			flushed += fib_table_flush(net, tb);
197 	}
198 
199 	if (flushed)
200 		rt_cache_flush(net);
201 }
202 
203 /*
204  * Find address type as if only "dev" was present in the system. If
205  * on_dev is NULL then all interfaces are taken into consideration.
206  */
207 static inline unsigned int __inet_dev_addr_type(struct net *net,
208 						const struct net_device *dev,
209 						__be32 addr, u32 tb_id)
210 {
211 	struct flowi4		fl4 = { .daddr = addr };
212 	struct fib_result	res;
213 	unsigned int ret = RTN_BROADCAST;
214 	struct fib_table *table;
215 
216 	if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
217 		return RTN_BROADCAST;
218 	if (ipv4_is_multicast(addr))
219 		return RTN_MULTICAST;
220 
221 	rcu_read_lock();
222 
223 	table = fib_get_table(net, tb_id);
224 	if (table) {
225 		ret = RTN_UNICAST;
226 		if (!fib_table_lookup(table, &fl4, &res, FIB_LOOKUP_NOREF)) {
227 			if (!dev || dev == res.fi->fib_dev)
228 				ret = res.type;
229 		}
230 	}
231 
232 	rcu_read_unlock();
233 	return ret;
234 }
235 
236 unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id)
237 {
238 	return __inet_dev_addr_type(net, NULL, addr, tb_id);
239 }
240 EXPORT_SYMBOL(inet_addr_type_table);
241 
242 unsigned int inet_addr_type(struct net *net, __be32 addr)
243 {
244 	return __inet_dev_addr_type(net, NULL, addr, RT_TABLE_LOCAL);
245 }
246 EXPORT_SYMBOL(inet_addr_type);
247 
248 unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
249 				__be32 addr)
250 {
251 	u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
252 
253 	return __inet_dev_addr_type(net, dev, addr, rt_table);
254 }
255 EXPORT_SYMBOL(inet_dev_addr_type);
256 
257 /* inet_addr_type with dev == NULL but using the table from a dev
258  * if one is associated
259  */
260 unsigned int inet_addr_type_dev_table(struct net *net,
261 				      const struct net_device *dev,
262 				      __be32 addr)
263 {
264 	u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
265 
266 	return __inet_dev_addr_type(net, NULL, addr, rt_table);
267 }
268 EXPORT_SYMBOL(inet_addr_type_dev_table);
269 
270 __be32 fib_compute_spec_dst(struct sk_buff *skb)
271 {
272 	struct net_device *dev = skb->dev;
273 	struct in_device *in_dev;
274 	struct fib_result res;
275 	struct rtable *rt;
276 	struct net *net;
277 	int scope;
278 
279 	rt = skb_rtable(skb);
280 	if ((rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL)) ==
281 	    RTCF_LOCAL)
282 		return ip_hdr(skb)->daddr;
283 
284 	in_dev = __in_dev_get_rcu(dev);
285 	BUG_ON(!in_dev);
286 
287 	net = dev_net(dev);
288 
289 	scope = RT_SCOPE_UNIVERSE;
290 	if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) {
291 		struct flowi4 fl4 = {
292 			.flowi4_iif = LOOPBACK_IFINDEX,
293 			.daddr = ip_hdr(skb)->saddr,
294 			.flowi4_tos = RT_TOS(ip_hdr(skb)->tos),
295 			.flowi4_scope = scope,
296 			.flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0,
297 		};
298 		if (!fib_lookup(net, &fl4, &res, 0))
299 			return FIB_RES_PREFSRC(net, res);
300 	} else {
301 		scope = RT_SCOPE_LINK;
302 	}
303 
304 	return inet_select_addr(dev, ip_hdr(skb)->saddr, scope);
305 }
306 
307 /* Given (packet source, input interface) and optional (dst, oif, tos):
308  * - (main) check, that source is valid i.e. not broadcast or our local
309  *   address.
310  * - figure out what "logical" interface this packet arrived
311  *   and calculate "specific destination" address.
312  * - check, that packet arrived from expected physical interface.
313  * called with rcu_read_lock()
314  */
315 static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
316 				 u8 tos, int oif, struct net_device *dev,
317 				 int rpf, struct in_device *idev, u32 *itag)
318 {
319 	int ret, no_addr;
320 	struct fib_result res;
321 	struct flowi4 fl4;
322 	struct net *net = dev_net(dev);
323 	bool dev_match;
324 
325 	fl4.flowi4_oif = 0;
326 	fl4.flowi4_iif = l3mdev_master_ifindex_rcu(dev);
327 	if (!fl4.flowi4_iif)
328 		fl4.flowi4_iif = oif ? : LOOPBACK_IFINDEX;
329 	fl4.daddr = src;
330 	fl4.saddr = dst;
331 	fl4.flowi4_tos = tos;
332 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
333 	fl4.flowi4_tun_key.tun_id = 0;
334 	fl4.flowi4_flags = 0;
335 	fl4.flowi4_uid = sock_net_uid(net, NULL);
336 
337 	no_addr = idev->ifa_list == NULL;
338 
339 	fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0;
340 
341 	trace_fib_validate_source(dev, &fl4);
342 
343 	if (fib_lookup(net, &fl4, &res, 0))
344 		goto last_resort;
345 	if (res.type != RTN_UNICAST &&
346 	    (res.type != RTN_LOCAL || !IN_DEV_ACCEPT_LOCAL(idev)))
347 		goto e_inval;
348 	if (!rpf && !fib_num_tclassid_users(net) &&
349 	    (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev)))
350 		goto last_resort;
351 	fib_combine_itag(itag, &res);
352 	dev_match = false;
353 
354 #ifdef CONFIG_IP_ROUTE_MULTIPATH
355 	for (ret = 0; ret < res.fi->fib_nhs; ret++) {
356 		struct fib_nh *nh = &res.fi->fib_nh[ret];
357 
358 		if (nh->nh_dev == dev) {
359 			dev_match = true;
360 			break;
361 		} else if (l3mdev_master_ifindex_rcu(nh->nh_dev) == dev->ifindex) {
362 			dev_match = true;
363 			break;
364 		}
365 	}
366 #else
367 	if (FIB_RES_DEV(res) == dev)
368 		dev_match = true;
369 #endif
370 	if (dev_match) {
371 		ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
372 		return ret;
373 	}
374 	if (no_addr)
375 		goto last_resort;
376 	if (rpf == 1)
377 		goto e_rpf;
378 	fl4.flowi4_oif = dev->ifindex;
379 
380 	ret = 0;
381 	if (fib_lookup(net, &fl4, &res, FIB_LOOKUP_IGNORE_LINKSTATE) == 0) {
382 		if (res.type == RTN_UNICAST)
383 			ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
384 	}
385 	return ret;
386 
387 last_resort:
388 	if (rpf)
389 		goto e_rpf;
390 	*itag = 0;
391 	return 0;
392 
393 e_inval:
394 	return -EINVAL;
395 e_rpf:
396 	return -EXDEV;
397 }
398 
399 /* Ignore rp_filter for packets protected by IPsec. */
400 int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
401 			u8 tos, int oif, struct net_device *dev,
402 			struct in_device *idev, u32 *itag)
403 {
404 	int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev);
405 
406 	if (!r && !fib_num_tclassid_users(dev_net(dev)) &&
407 	    IN_DEV_ACCEPT_LOCAL(idev) &&
408 	    (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) {
409 		*itag = 0;
410 		return 0;
411 	}
412 	return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag);
413 }
414 
415 static inline __be32 sk_extract_addr(struct sockaddr *addr)
416 {
417 	return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
418 }
419 
420 static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
421 {
422 	struct nlattr *nla;
423 
424 	nla = (struct nlattr *) ((char *) mx + len);
425 	nla->nla_type = type;
426 	nla->nla_len = nla_attr_size(4);
427 	*(u32 *) nla_data(nla) = value;
428 
429 	return len + nla_total_size(4);
430 }
431 
432 static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
433 				 struct fib_config *cfg)
434 {
435 	__be32 addr;
436 	int plen;
437 
438 	memset(cfg, 0, sizeof(*cfg));
439 	cfg->fc_nlinfo.nl_net = net;
440 
441 	if (rt->rt_dst.sa_family != AF_INET)
442 		return -EAFNOSUPPORT;
443 
444 	/*
445 	 * Check mask for validity:
446 	 * a) it must be contiguous.
447 	 * b) destination must have all host bits clear.
448 	 * c) if application forgot to set correct family (AF_INET),
449 	 *    reject request unless it is absolutely clear i.e.
450 	 *    both family and mask are zero.
451 	 */
452 	plen = 32;
453 	addr = sk_extract_addr(&rt->rt_dst);
454 	if (!(rt->rt_flags & RTF_HOST)) {
455 		__be32 mask = sk_extract_addr(&rt->rt_genmask);
456 
457 		if (rt->rt_genmask.sa_family != AF_INET) {
458 			if (mask || rt->rt_genmask.sa_family)
459 				return -EAFNOSUPPORT;
460 		}
461 
462 		if (bad_mask(mask, addr))
463 			return -EINVAL;
464 
465 		plen = inet_mask_len(mask);
466 	}
467 
468 	cfg->fc_dst_len = plen;
469 	cfg->fc_dst = addr;
470 
471 	if (cmd != SIOCDELRT) {
472 		cfg->fc_nlflags = NLM_F_CREATE;
473 		cfg->fc_protocol = RTPROT_BOOT;
474 	}
475 
476 	if (rt->rt_metric)
477 		cfg->fc_priority = rt->rt_metric - 1;
478 
479 	if (rt->rt_flags & RTF_REJECT) {
480 		cfg->fc_scope = RT_SCOPE_HOST;
481 		cfg->fc_type = RTN_UNREACHABLE;
482 		return 0;
483 	}
484 
485 	cfg->fc_scope = RT_SCOPE_NOWHERE;
486 	cfg->fc_type = RTN_UNICAST;
487 
488 	if (rt->rt_dev) {
489 		char *colon;
490 		struct net_device *dev;
491 		char devname[IFNAMSIZ];
492 
493 		if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
494 			return -EFAULT;
495 
496 		devname[IFNAMSIZ-1] = 0;
497 		colon = strchr(devname, ':');
498 		if (colon)
499 			*colon = 0;
500 		dev = __dev_get_by_name(net, devname);
501 		if (!dev)
502 			return -ENODEV;
503 		cfg->fc_oif = dev->ifindex;
504 		cfg->fc_table = l3mdev_fib_table(dev);
505 		if (colon) {
506 			struct in_ifaddr *ifa;
507 			struct in_device *in_dev = __in_dev_get_rtnl(dev);
508 			if (!in_dev)
509 				return -ENODEV;
510 			*colon = ':';
511 			for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
512 				if (strcmp(ifa->ifa_label, devname) == 0)
513 					break;
514 			if (!ifa)
515 				return -ENODEV;
516 			cfg->fc_prefsrc = ifa->ifa_local;
517 		}
518 	}
519 
520 	addr = sk_extract_addr(&rt->rt_gateway);
521 	if (rt->rt_gateway.sa_family == AF_INET && addr) {
522 		unsigned int addr_type;
523 
524 		cfg->fc_gw = addr;
525 		addr_type = inet_addr_type_table(net, addr, cfg->fc_table);
526 		if (rt->rt_flags & RTF_GATEWAY &&
527 		    addr_type == RTN_UNICAST)
528 			cfg->fc_scope = RT_SCOPE_UNIVERSE;
529 	}
530 
531 	if (cmd == SIOCDELRT)
532 		return 0;
533 
534 	if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
535 		return -EINVAL;
536 
537 	if (cfg->fc_scope == RT_SCOPE_NOWHERE)
538 		cfg->fc_scope = RT_SCOPE_LINK;
539 
540 	if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
541 		struct nlattr *mx;
542 		int len = 0;
543 
544 		mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
545 		if (!mx)
546 			return -ENOMEM;
547 
548 		if (rt->rt_flags & RTF_MTU)
549 			len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
550 
551 		if (rt->rt_flags & RTF_WINDOW)
552 			len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
553 
554 		if (rt->rt_flags & RTF_IRTT)
555 			len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
556 
557 		cfg->fc_mx = mx;
558 		cfg->fc_mx_len = len;
559 	}
560 
561 	return 0;
562 }
563 
564 /*
565  * Handle IP routing ioctl calls.
566  * These are used to manipulate the routing tables
567  */
568 int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
569 {
570 	struct fib_config cfg;
571 	struct rtentry rt;
572 	int err;
573 
574 	switch (cmd) {
575 	case SIOCADDRT:		/* Add a route */
576 	case SIOCDELRT:		/* Delete a route */
577 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
578 			return -EPERM;
579 
580 		if (copy_from_user(&rt, arg, sizeof(rt)))
581 			return -EFAULT;
582 
583 		rtnl_lock();
584 		err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
585 		if (err == 0) {
586 			struct fib_table *tb;
587 
588 			if (cmd == SIOCDELRT) {
589 				tb = fib_get_table(net, cfg.fc_table);
590 				if (tb)
591 					err = fib_table_delete(net, tb, &cfg);
592 				else
593 					err = -ESRCH;
594 			} else {
595 				tb = fib_new_table(net, cfg.fc_table);
596 				if (tb)
597 					err = fib_table_insert(net, tb, &cfg);
598 				else
599 					err = -ENOBUFS;
600 			}
601 
602 			/* allocated by rtentry_to_fib_config() */
603 			kfree(cfg.fc_mx);
604 		}
605 		rtnl_unlock();
606 		return err;
607 	}
608 	return -EINVAL;
609 }
610 
611 const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
612 	[RTA_DST]		= { .type = NLA_U32 },
613 	[RTA_SRC]		= { .type = NLA_U32 },
614 	[RTA_IIF]		= { .type = NLA_U32 },
615 	[RTA_OIF]		= { .type = NLA_U32 },
616 	[RTA_GATEWAY]		= { .type = NLA_U32 },
617 	[RTA_PRIORITY]		= { .type = NLA_U32 },
618 	[RTA_PREFSRC]		= { .type = NLA_U32 },
619 	[RTA_METRICS]		= { .type = NLA_NESTED },
620 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
621 	[RTA_FLOW]		= { .type = NLA_U32 },
622 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
623 	[RTA_ENCAP]		= { .type = NLA_NESTED },
624 	[RTA_UID]		= { .type = NLA_U32 },
625 	[RTA_MARK]		= { .type = NLA_U32 },
626 };
627 
628 static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
629 			     struct nlmsghdr *nlh, struct fib_config *cfg)
630 {
631 	struct nlattr *attr;
632 	int err, remaining;
633 	struct rtmsg *rtm;
634 
635 	err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy,
636 			     NULL);
637 	if (err < 0)
638 		goto errout;
639 
640 	memset(cfg, 0, sizeof(*cfg));
641 
642 	rtm = nlmsg_data(nlh);
643 	cfg->fc_dst_len = rtm->rtm_dst_len;
644 	cfg->fc_tos = rtm->rtm_tos;
645 	cfg->fc_table = rtm->rtm_table;
646 	cfg->fc_protocol = rtm->rtm_protocol;
647 	cfg->fc_scope = rtm->rtm_scope;
648 	cfg->fc_type = rtm->rtm_type;
649 	cfg->fc_flags = rtm->rtm_flags;
650 	cfg->fc_nlflags = nlh->nlmsg_flags;
651 
652 	cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
653 	cfg->fc_nlinfo.nlh = nlh;
654 	cfg->fc_nlinfo.nl_net = net;
655 
656 	if (cfg->fc_type > RTN_MAX) {
657 		err = -EINVAL;
658 		goto errout;
659 	}
660 
661 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
662 		switch (nla_type(attr)) {
663 		case RTA_DST:
664 			cfg->fc_dst = nla_get_be32(attr);
665 			break;
666 		case RTA_OIF:
667 			cfg->fc_oif = nla_get_u32(attr);
668 			break;
669 		case RTA_GATEWAY:
670 			cfg->fc_gw = nla_get_be32(attr);
671 			break;
672 		case RTA_PRIORITY:
673 			cfg->fc_priority = nla_get_u32(attr);
674 			break;
675 		case RTA_PREFSRC:
676 			cfg->fc_prefsrc = nla_get_be32(attr);
677 			break;
678 		case RTA_METRICS:
679 			cfg->fc_mx = nla_data(attr);
680 			cfg->fc_mx_len = nla_len(attr);
681 			break;
682 		case RTA_MULTIPATH:
683 			err = lwtunnel_valid_encap_type_attr(nla_data(attr),
684 							     nla_len(attr));
685 			if (err < 0)
686 				goto errout;
687 			cfg->fc_mp = nla_data(attr);
688 			cfg->fc_mp_len = nla_len(attr);
689 			break;
690 		case RTA_FLOW:
691 			cfg->fc_flow = nla_get_u32(attr);
692 			break;
693 		case RTA_TABLE:
694 			cfg->fc_table = nla_get_u32(attr);
695 			break;
696 		case RTA_ENCAP:
697 			cfg->fc_encap = attr;
698 			break;
699 		case RTA_ENCAP_TYPE:
700 			cfg->fc_encap_type = nla_get_u16(attr);
701 			err = lwtunnel_valid_encap_type(cfg->fc_encap_type);
702 			if (err < 0)
703 				goto errout;
704 			break;
705 		}
706 	}
707 
708 	return 0;
709 errout:
710 	return err;
711 }
712 
713 static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
714 			     struct netlink_ext_ack *extack)
715 {
716 	struct net *net = sock_net(skb->sk);
717 	struct fib_config cfg;
718 	struct fib_table *tb;
719 	int err;
720 
721 	err = rtm_to_fib_config(net, skb, nlh, &cfg);
722 	if (err < 0)
723 		goto errout;
724 
725 	tb = fib_get_table(net, cfg.fc_table);
726 	if (!tb) {
727 		err = -ESRCH;
728 		goto errout;
729 	}
730 
731 	err = fib_table_delete(net, tb, &cfg);
732 errout:
733 	return err;
734 }
735 
736 static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
737 			     struct netlink_ext_ack *extack)
738 {
739 	struct net *net = sock_net(skb->sk);
740 	struct fib_config cfg;
741 	struct fib_table *tb;
742 	int err;
743 
744 	err = rtm_to_fib_config(net, skb, nlh, &cfg);
745 	if (err < 0)
746 		goto errout;
747 
748 	tb = fib_new_table(net, cfg.fc_table);
749 	if (!tb) {
750 		err = -ENOBUFS;
751 		goto errout;
752 	}
753 
754 	err = fib_table_insert(net, tb, &cfg);
755 errout:
756 	return err;
757 }
758 
759 static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
760 {
761 	struct net *net = sock_net(skb->sk);
762 	unsigned int h, s_h;
763 	unsigned int e = 0, s_e;
764 	struct fib_table *tb;
765 	struct hlist_head *head;
766 	int dumped = 0, err;
767 
768 	if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
769 	    ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
770 		return skb->len;
771 
772 	s_h = cb->args[0];
773 	s_e = cb->args[1];
774 
775 	rcu_read_lock();
776 
777 	for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
778 		e = 0;
779 		head = &net->ipv4.fib_table_hash[h];
780 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
781 			if (e < s_e)
782 				goto next;
783 			if (dumped)
784 				memset(&cb->args[2], 0, sizeof(cb->args) -
785 						 2 * sizeof(cb->args[0]));
786 			err = fib_table_dump(tb, skb, cb);
787 			if (err < 0) {
788 				if (likely(skb->len))
789 					goto out;
790 
791 				goto out_err;
792 			}
793 			dumped = 1;
794 next:
795 			e++;
796 		}
797 	}
798 out:
799 	err = skb->len;
800 out_err:
801 	rcu_read_unlock();
802 
803 	cb->args[1] = e;
804 	cb->args[0] = h;
805 
806 	return err;
807 }
808 
809 /* Prepare and feed intra-kernel routing request.
810  * Really, it should be netlink message, but :-( netlink
811  * can be not configured, so that we feed it directly
812  * to fib engine. It is legal, because all events occur
813  * only when netlink is already locked.
814  */
815 static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
816 {
817 	struct net *net = dev_net(ifa->ifa_dev->dev);
818 	u32 tb_id = l3mdev_fib_table(ifa->ifa_dev->dev);
819 	struct fib_table *tb;
820 	struct fib_config cfg = {
821 		.fc_protocol = RTPROT_KERNEL,
822 		.fc_type = type,
823 		.fc_dst = dst,
824 		.fc_dst_len = dst_len,
825 		.fc_prefsrc = ifa->ifa_local,
826 		.fc_oif = ifa->ifa_dev->dev->ifindex,
827 		.fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
828 		.fc_nlinfo = {
829 			.nl_net = net,
830 		},
831 	};
832 
833 	if (!tb_id)
834 		tb_id = (type == RTN_UNICAST) ? RT_TABLE_MAIN : RT_TABLE_LOCAL;
835 
836 	tb = fib_new_table(net, tb_id);
837 	if (!tb)
838 		return;
839 
840 	cfg.fc_table = tb->tb_id;
841 
842 	if (type != RTN_LOCAL)
843 		cfg.fc_scope = RT_SCOPE_LINK;
844 	else
845 		cfg.fc_scope = RT_SCOPE_HOST;
846 
847 	if (cmd == RTM_NEWROUTE)
848 		fib_table_insert(net, tb, &cfg);
849 	else
850 		fib_table_delete(net, tb, &cfg);
851 }
852 
853 void fib_add_ifaddr(struct in_ifaddr *ifa)
854 {
855 	struct in_device *in_dev = ifa->ifa_dev;
856 	struct net_device *dev = in_dev->dev;
857 	struct in_ifaddr *prim = ifa;
858 	__be32 mask = ifa->ifa_mask;
859 	__be32 addr = ifa->ifa_local;
860 	__be32 prefix = ifa->ifa_address & mask;
861 
862 	if (ifa->ifa_flags & IFA_F_SECONDARY) {
863 		prim = inet_ifa_byprefix(in_dev, prefix, mask);
864 		if (!prim) {
865 			pr_warn("%s: bug: prim == NULL\n", __func__);
866 			return;
867 		}
868 	}
869 
870 	fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
871 
872 	if (!(dev->flags & IFF_UP))
873 		return;
874 
875 	/* Add broadcast address, if it is explicitly assigned. */
876 	if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
877 		fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
878 
879 	if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
880 	    (prefix != addr || ifa->ifa_prefixlen < 32)) {
881 		if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
882 			fib_magic(RTM_NEWROUTE,
883 				  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
884 				  prefix, ifa->ifa_prefixlen, prim);
885 
886 		/* Add network specific broadcasts, when it takes a sense */
887 		if (ifa->ifa_prefixlen < 31) {
888 			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
889 			fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
890 				  32, prim);
891 		}
892 	}
893 }
894 
895 /* Delete primary or secondary address.
896  * Optionally, on secondary address promotion consider the addresses
897  * from subnet iprim as deleted, even if they are in device list.
898  * In this case the secondary ifa can be in device list.
899  */
900 void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
901 {
902 	struct in_device *in_dev = ifa->ifa_dev;
903 	struct net_device *dev = in_dev->dev;
904 	struct in_ifaddr *ifa1;
905 	struct in_ifaddr *prim = ifa, *prim1 = NULL;
906 	__be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
907 	__be32 any = ifa->ifa_address & ifa->ifa_mask;
908 #define LOCAL_OK	1
909 #define BRD_OK		2
910 #define BRD0_OK		4
911 #define BRD1_OK		8
912 	unsigned int ok = 0;
913 	int subnet = 0;		/* Primary network */
914 	int gone = 1;		/* Address is missing */
915 	int same_prefsrc = 0;	/* Another primary with same IP */
916 
917 	if (ifa->ifa_flags & IFA_F_SECONDARY) {
918 		prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
919 		if (!prim) {
920 			/* if the device has been deleted, we don't perform
921 			 * address promotion
922 			 */
923 			if (!in_dev->dead)
924 				pr_warn("%s: bug: prim == NULL\n", __func__);
925 			return;
926 		}
927 		if (iprim && iprim != prim) {
928 			pr_warn("%s: bug: iprim != prim\n", __func__);
929 			return;
930 		}
931 	} else if (!ipv4_is_zeronet(any) &&
932 		   (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
933 		if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
934 			fib_magic(RTM_DELROUTE,
935 				  dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
936 				  any, ifa->ifa_prefixlen, prim);
937 		subnet = 1;
938 	}
939 
940 	if (in_dev->dead)
941 		goto no_promotions;
942 
943 	/* Deletion is more complicated than add.
944 	 * We should take care of not to delete too much :-)
945 	 *
946 	 * Scan address list to be sure that addresses are really gone.
947 	 */
948 
949 	for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
950 		if (ifa1 == ifa) {
951 			/* promotion, keep the IP */
952 			gone = 0;
953 			continue;
954 		}
955 		/* Ignore IFAs from our subnet */
956 		if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
957 		    inet_ifa_match(ifa1->ifa_address, iprim))
958 			continue;
959 
960 		/* Ignore ifa1 if it uses different primary IP (prefsrc) */
961 		if (ifa1->ifa_flags & IFA_F_SECONDARY) {
962 			/* Another address from our subnet? */
963 			if (ifa1->ifa_mask == prim->ifa_mask &&
964 			    inet_ifa_match(ifa1->ifa_address, prim))
965 				prim1 = prim;
966 			else {
967 				/* We reached the secondaries, so
968 				 * same_prefsrc should be determined.
969 				 */
970 				if (!same_prefsrc)
971 					continue;
972 				/* Search new prim1 if ifa1 is not
973 				 * using the current prim1
974 				 */
975 				if (!prim1 ||
976 				    ifa1->ifa_mask != prim1->ifa_mask ||
977 				    !inet_ifa_match(ifa1->ifa_address, prim1))
978 					prim1 = inet_ifa_byprefix(in_dev,
979 							ifa1->ifa_address,
980 							ifa1->ifa_mask);
981 				if (!prim1)
982 					continue;
983 				if (prim1->ifa_local != prim->ifa_local)
984 					continue;
985 			}
986 		} else {
987 			if (prim->ifa_local != ifa1->ifa_local)
988 				continue;
989 			prim1 = ifa1;
990 			if (prim != prim1)
991 				same_prefsrc = 1;
992 		}
993 		if (ifa->ifa_local == ifa1->ifa_local)
994 			ok |= LOCAL_OK;
995 		if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
996 			ok |= BRD_OK;
997 		if (brd == ifa1->ifa_broadcast)
998 			ok |= BRD1_OK;
999 		if (any == ifa1->ifa_broadcast)
1000 			ok |= BRD0_OK;
1001 		/* primary has network specific broadcasts */
1002 		if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
1003 			__be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
1004 			__be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
1005 
1006 			if (!ipv4_is_zeronet(any1)) {
1007 				if (ifa->ifa_broadcast == brd1 ||
1008 				    ifa->ifa_broadcast == any1)
1009 					ok |= BRD_OK;
1010 				if (brd == brd1 || brd == any1)
1011 					ok |= BRD1_OK;
1012 				if (any == brd1 || any == any1)
1013 					ok |= BRD0_OK;
1014 			}
1015 		}
1016 	}
1017 
1018 no_promotions:
1019 	if (!(ok & BRD_OK))
1020 		fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
1021 	if (subnet && ifa->ifa_prefixlen < 31) {
1022 		if (!(ok & BRD1_OK))
1023 			fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
1024 		if (!(ok & BRD0_OK))
1025 			fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
1026 	}
1027 	if (!(ok & LOCAL_OK)) {
1028 		unsigned int addr_type;
1029 
1030 		fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
1031 
1032 		/* Check, that this local address finally disappeared. */
1033 		addr_type = inet_addr_type_dev_table(dev_net(dev), dev,
1034 						     ifa->ifa_local);
1035 		if (gone && addr_type != RTN_LOCAL) {
1036 			/* And the last, but not the least thing.
1037 			 * We must flush stray FIB entries.
1038 			 *
1039 			 * First of all, we scan fib_info list searching
1040 			 * for stray nexthop entries, then ignite fib_flush.
1041 			 */
1042 			if (fib_sync_down_addr(dev, ifa->ifa_local))
1043 				fib_flush(dev_net(dev));
1044 		}
1045 	}
1046 #undef LOCAL_OK
1047 #undef BRD_OK
1048 #undef BRD0_OK
1049 #undef BRD1_OK
1050 }
1051 
1052 static void nl_fib_lookup(struct net *net, struct fib_result_nl *frn)
1053 {
1054 
1055 	struct fib_result       res;
1056 	struct flowi4           fl4 = {
1057 		.flowi4_mark = frn->fl_mark,
1058 		.daddr = frn->fl_addr,
1059 		.flowi4_tos = frn->fl_tos,
1060 		.flowi4_scope = frn->fl_scope,
1061 	};
1062 	struct fib_table *tb;
1063 
1064 	rcu_read_lock();
1065 
1066 	tb = fib_get_table(net, frn->tb_id_in);
1067 
1068 	frn->err = -ENOENT;
1069 	if (tb) {
1070 		local_bh_disable();
1071 
1072 		frn->tb_id = tb->tb_id;
1073 		frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
1074 
1075 		if (!frn->err) {
1076 			frn->prefixlen = res.prefixlen;
1077 			frn->nh_sel = res.nh_sel;
1078 			frn->type = res.type;
1079 			frn->scope = res.scope;
1080 		}
1081 		local_bh_enable();
1082 	}
1083 
1084 	rcu_read_unlock();
1085 }
1086 
1087 static void nl_fib_input(struct sk_buff *skb)
1088 {
1089 	struct net *net;
1090 	struct fib_result_nl *frn;
1091 	struct nlmsghdr *nlh;
1092 	u32 portid;
1093 
1094 	net = sock_net(skb->sk);
1095 	nlh = nlmsg_hdr(skb);
1096 	if (skb->len < nlmsg_total_size(sizeof(*frn)) ||
1097 	    skb->len < nlh->nlmsg_len ||
1098 	    nlmsg_len(nlh) < sizeof(*frn))
1099 		return;
1100 
1101 	skb = netlink_skb_clone(skb, GFP_KERNEL);
1102 	if (!skb)
1103 		return;
1104 	nlh = nlmsg_hdr(skb);
1105 
1106 	frn = (struct fib_result_nl *) nlmsg_data(nlh);
1107 	nl_fib_lookup(net, frn);
1108 
1109 	portid = NETLINK_CB(skb).portid;      /* netlink portid */
1110 	NETLINK_CB(skb).portid = 0;        /* from kernel */
1111 	NETLINK_CB(skb).dst_group = 0;  /* unicast */
1112 	netlink_unicast(net->ipv4.fibnl, skb, portid, MSG_DONTWAIT);
1113 }
1114 
1115 static int __net_init nl_fib_lookup_init(struct net *net)
1116 {
1117 	struct sock *sk;
1118 	struct netlink_kernel_cfg cfg = {
1119 		.input	= nl_fib_input,
1120 	};
1121 
1122 	sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, &cfg);
1123 	if (!sk)
1124 		return -EAFNOSUPPORT;
1125 	net->ipv4.fibnl = sk;
1126 	return 0;
1127 }
1128 
1129 static void nl_fib_lookup_exit(struct net *net)
1130 {
1131 	netlink_kernel_release(net->ipv4.fibnl);
1132 	net->ipv4.fibnl = NULL;
1133 }
1134 
1135 static void fib_disable_ip(struct net_device *dev, unsigned long event,
1136 			   bool force)
1137 {
1138 	if (fib_sync_down_dev(dev, event, force))
1139 		fib_flush(dev_net(dev));
1140 	else
1141 		rt_cache_flush(dev_net(dev));
1142 	arp_ifdown(dev);
1143 }
1144 
1145 static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
1146 {
1147 	struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
1148 	struct net_device *dev = ifa->ifa_dev->dev;
1149 	struct net *net = dev_net(dev);
1150 
1151 	switch (event) {
1152 	case NETDEV_UP:
1153 		fib_add_ifaddr(ifa);
1154 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1155 		fib_sync_up(dev, RTNH_F_DEAD);
1156 #endif
1157 		atomic_inc(&net->ipv4.dev_addr_genid);
1158 		rt_cache_flush(dev_net(dev));
1159 		break;
1160 	case NETDEV_DOWN:
1161 		fib_del_ifaddr(ifa, NULL);
1162 		atomic_inc(&net->ipv4.dev_addr_genid);
1163 		if (!ifa->ifa_dev->ifa_list) {
1164 			/* Last address was deleted from this interface.
1165 			 * Disable IP.
1166 			 */
1167 			fib_disable_ip(dev, event, true);
1168 		} else {
1169 			rt_cache_flush(dev_net(dev));
1170 		}
1171 		break;
1172 	}
1173 	return NOTIFY_DONE;
1174 }
1175 
1176 static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1177 {
1178 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1179 	struct netdev_notifier_changeupper_info *info;
1180 	struct in_device *in_dev;
1181 	struct net *net = dev_net(dev);
1182 	unsigned int flags;
1183 
1184 	if (event == NETDEV_UNREGISTER) {
1185 		fib_disable_ip(dev, event, true);
1186 		rt_flush_dev(dev);
1187 		return NOTIFY_DONE;
1188 	}
1189 
1190 	in_dev = __in_dev_get_rtnl(dev);
1191 	if (!in_dev)
1192 		return NOTIFY_DONE;
1193 
1194 	switch (event) {
1195 	case NETDEV_UP:
1196 		for_ifa(in_dev) {
1197 			fib_add_ifaddr(ifa);
1198 		} endfor_ifa(in_dev);
1199 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1200 		fib_sync_up(dev, RTNH_F_DEAD);
1201 #endif
1202 		atomic_inc(&net->ipv4.dev_addr_genid);
1203 		rt_cache_flush(net);
1204 		break;
1205 	case NETDEV_DOWN:
1206 		fib_disable_ip(dev, event, false);
1207 		break;
1208 	case NETDEV_CHANGE:
1209 		flags = dev_get_flags(dev);
1210 		if (flags & (IFF_RUNNING | IFF_LOWER_UP))
1211 			fib_sync_up(dev, RTNH_F_LINKDOWN);
1212 		else
1213 			fib_sync_down_dev(dev, event, false);
1214 		/* fall through */
1215 	case NETDEV_CHANGEMTU:
1216 		rt_cache_flush(net);
1217 		break;
1218 	case NETDEV_CHANGEUPPER:
1219 		info = ptr;
1220 		/* flush all routes if dev is linked to or unlinked from
1221 		 * an L3 master device (e.g., VRF)
1222 		 */
1223 		if (info->upper_dev && netif_is_l3_master(info->upper_dev))
1224 			fib_disable_ip(dev, NETDEV_DOWN, true);
1225 		break;
1226 	}
1227 	return NOTIFY_DONE;
1228 }
1229 
1230 static struct notifier_block fib_inetaddr_notifier = {
1231 	.notifier_call = fib_inetaddr_event,
1232 };
1233 
1234 static struct notifier_block fib_netdev_notifier = {
1235 	.notifier_call = fib_netdev_event,
1236 };
1237 
1238 static int __net_init ip_fib_net_init(struct net *net)
1239 {
1240 	int err;
1241 	size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
1242 
1243 	net->ipv4.fib_seq = 0;
1244 
1245 	/* Avoid false sharing : Use at least a full cache line */
1246 	size = max_t(size_t, size, L1_CACHE_BYTES);
1247 
1248 	net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
1249 	if (!net->ipv4.fib_table_hash)
1250 		return -ENOMEM;
1251 
1252 	err = fib4_rules_init(net);
1253 	if (err < 0)
1254 		goto fail;
1255 	return 0;
1256 
1257 fail:
1258 	kfree(net->ipv4.fib_table_hash);
1259 	return err;
1260 }
1261 
1262 static void ip_fib_net_exit(struct net *net)
1263 {
1264 	unsigned int i;
1265 
1266 	rtnl_lock();
1267 #ifdef CONFIG_IP_MULTIPLE_TABLES
1268 	RCU_INIT_POINTER(net->ipv4.fib_main, NULL);
1269 	RCU_INIT_POINTER(net->ipv4.fib_default, NULL);
1270 #endif
1271 	for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
1272 		struct hlist_head *head = &net->ipv4.fib_table_hash[i];
1273 		struct hlist_node *tmp;
1274 		struct fib_table *tb;
1275 
1276 		hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) {
1277 			hlist_del(&tb->tb_hlist);
1278 			fib_table_flush(net, tb);
1279 			fib_free_table(tb);
1280 		}
1281 	}
1282 
1283 #ifdef CONFIG_IP_MULTIPLE_TABLES
1284 	fib4_rules_exit(net);
1285 #endif
1286 	rtnl_unlock();
1287 	kfree(net->ipv4.fib_table_hash);
1288 }
1289 
1290 static int __net_init fib_net_init(struct net *net)
1291 {
1292 	int error;
1293 
1294 #ifdef CONFIG_IP_ROUTE_CLASSID
1295 	net->ipv4.fib_num_tclassid_users = 0;
1296 #endif
1297 	error = ip_fib_net_init(net);
1298 	if (error < 0)
1299 		goto out;
1300 	error = nl_fib_lookup_init(net);
1301 	if (error < 0)
1302 		goto out_nlfl;
1303 	error = fib_proc_init(net);
1304 	if (error < 0)
1305 		goto out_proc;
1306 out:
1307 	return error;
1308 
1309 out_proc:
1310 	nl_fib_lookup_exit(net);
1311 out_nlfl:
1312 	ip_fib_net_exit(net);
1313 	goto out;
1314 }
1315 
1316 static void __net_exit fib_net_exit(struct net *net)
1317 {
1318 	fib_proc_exit(net);
1319 	nl_fib_lookup_exit(net);
1320 	ip_fib_net_exit(net);
1321 }
1322 
1323 static struct pernet_operations fib_net_ops = {
1324 	.init = fib_net_init,
1325 	.exit = fib_net_exit,
1326 };
1327 
1328 void __init ip_fib_init(void)
1329 {
1330 	rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
1331 	rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
1332 	rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
1333 
1334 	register_pernet_subsys(&fib_net_ops);
1335 	register_netdevice_notifier(&fib_netdev_notifier);
1336 	register_inetaddr_notifier(&fib_inetaddr_notifier);
1337 
1338 	fib_trie_init();
1339 }
1340