xref: /linux/net/ipv4/arp.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/slab.h>
101 #ifdef CONFIG_SYSCTL
102 #include <linux/sysctl.h>
103 #endif
104 
105 #include <net/net_namespace.h>
106 #include <net/ip.h>
107 #include <net/icmp.h>
108 #include <net/route.h>
109 #include <net/protocol.h>
110 #include <net/tcp.h>
111 #include <net/sock.h>
112 #include <net/arp.h>
113 #include <net/ax25.h>
114 #include <net/netrom.h>
115 
116 #include <asm/system.h>
117 #include <linux/uaccess.h>
118 
119 #include <linux/netfilter_arp.h>
120 
121 /*
122  *	Interface to generic neighbour cache.
123  */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129 
130 static const struct neigh_ops arp_generic_ops = {
131 	.family =		AF_INET,
132 	.solicit =		arp_solicit,
133 	.error_report =		arp_error_report,
134 	.output =		neigh_resolve_output,
135 	.connected_output =	neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139 	.family =		AF_INET,
140 	.solicit =		arp_solicit,
141 	.error_report =		arp_error_report,
142 	.output =		neigh_resolve_output,
143 	.connected_output =	neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147 	.family =		AF_INET,
148 	.output =		neigh_direct_output,
149 	.connected_output =	neigh_direct_output,
150 };
151 
152 static const struct neigh_ops arp_broken_ops = {
153 	.family =		AF_INET,
154 	.solicit =		arp_solicit,
155 	.error_report =		arp_error_report,
156 	.output =		neigh_compat_output,
157 	.connected_output =	neigh_compat_output,
158 };
159 
160 struct neigh_table arp_tbl = {
161 	.family		= AF_INET,
162 	.key_len	= 4,
163 	.hash		= arp_hash,
164 	.constructor	= arp_constructor,
165 	.proxy_redo	= parp_redo,
166 	.id		= "arp_cache",
167 	.parms		= {
168 		.tbl			= &arp_tbl,
169 		.base_reachable_time	= 30 * HZ,
170 		.retrans_time		= 1 * HZ,
171 		.gc_staletime		= 60 * HZ,
172 		.reachable_time		= 30 * HZ,
173 		.delay_probe_time	= 5 * HZ,
174 		.queue_len_bytes	= 64*1024,
175 		.ucast_probes		= 3,
176 		.mcast_probes		= 3,
177 		.anycast_delay		= 1 * HZ,
178 		.proxy_delay		= (8 * HZ) / 10,
179 		.proxy_qlen		= 64,
180 		.locktime		= 1 * HZ,
181 	},
182 	.gc_interval	= 30 * HZ,
183 	.gc_thresh1	= 128,
184 	.gc_thresh2	= 512,
185 	.gc_thresh3	= 1024,
186 };
187 EXPORT_SYMBOL(arp_tbl);
188 
189 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
190 {
191 	switch (dev->type) {
192 	case ARPHRD_ETHER:
193 	case ARPHRD_FDDI:
194 	case ARPHRD_IEEE802:
195 		ip_eth_mc_map(addr, haddr);
196 		return 0;
197 	case ARPHRD_IEEE802_TR:
198 		ip_tr_mc_map(addr, haddr);
199 		return 0;
200 	case ARPHRD_INFINIBAND:
201 		ip_ib_mc_map(addr, dev->broadcast, haddr);
202 		return 0;
203 	case ARPHRD_IPGRE:
204 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
205 		return 0;
206 	default:
207 		if (dir) {
208 			memcpy(haddr, dev->broadcast, dev->addr_len);
209 			return 0;
210 		}
211 	}
212 	return -EINVAL;
213 }
214 
215 
216 static u32 arp_hash(const void *pkey,
217 		    const struct net_device *dev,
218 		    __u32 *hash_rnd)
219 {
220 	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
221 }
222 
223 static int arp_constructor(struct neighbour *neigh)
224 {
225 	__be32 addr = *(__be32 *)neigh->primary_key;
226 	struct net_device *dev = neigh->dev;
227 	struct in_device *in_dev;
228 	struct neigh_parms *parms;
229 
230 	rcu_read_lock();
231 	in_dev = __in_dev_get_rcu(dev);
232 	if (in_dev == NULL) {
233 		rcu_read_unlock();
234 		return -EINVAL;
235 	}
236 
237 	neigh->type = inet_addr_type(dev_net(dev), addr);
238 
239 	parms = in_dev->arp_parms;
240 	__neigh_parms_put(neigh->parms);
241 	neigh->parms = neigh_parms_clone(parms);
242 	rcu_read_unlock();
243 
244 	if (!dev->header_ops) {
245 		neigh->nud_state = NUD_NOARP;
246 		neigh->ops = &arp_direct_ops;
247 		neigh->output = neigh_direct_output;
248 	} else {
249 		/* Good devices (checked by reading texts, but only Ethernet is
250 		   tested)
251 
252 		   ARPHRD_ETHER: (ethernet, apfddi)
253 		   ARPHRD_FDDI: (fddi)
254 		   ARPHRD_IEEE802: (tr)
255 		   ARPHRD_METRICOM: (strip)
256 		   ARPHRD_ARCNET:
257 		   etc. etc. etc.
258 
259 		   ARPHRD_IPDDP will also work, if author repairs it.
260 		   I did not it, because this driver does not work even
261 		   in old paradigm.
262 		 */
263 
264 #if 1
265 		/* So... these "amateur" devices are hopeless.
266 		   The only thing, that I can say now:
267 		   It is very sad that we need to keep ugly obsolete
268 		   code to make them happy.
269 
270 		   They should be moved to more reasonable state, now
271 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
272 		   Besides that, they are sort of out of date
273 		   (a lot of redundant clones/copies, useless in 2.1),
274 		   I wonder why people believe that they work.
275 		 */
276 		switch (dev->type) {
277 		default:
278 			break;
279 		case ARPHRD_ROSE:
280 #if IS_ENABLED(CONFIG_AX25)
281 		case ARPHRD_AX25:
282 #if IS_ENABLED(CONFIG_NETROM)
283 		case ARPHRD_NETROM:
284 #endif
285 			neigh->ops = &arp_broken_ops;
286 			neigh->output = neigh->ops->output;
287 			return 0;
288 #else
289 			break;
290 #endif
291 		}
292 #endif
293 		if (neigh->type == RTN_MULTICAST) {
294 			neigh->nud_state = NUD_NOARP;
295 			arp_mc_map(addr, neigh->ha, dev, 1);
296 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
297 			neigh->nud_state = NUD_NOARP;
298 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
299 		} else if (neigh->type == RTN_BROADCAST ||
300 			   (dev->flags & IFF_POINTOPOINT)) {
301 			neigh->nud_state = NUD_NOARP;
302 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
303 		}
304 
305 		if (dev->header_ops->cache)
306 			neigh->ops = &arp_hh_ops;
307 		else
308 			neigh->ops = &arp_generic_ops;
309 
310 		if (neigh->nud_state & NUD_VALID)
311 			neigh->output = neigh->ops->connected_output;
312 		else
313 			neigh->output = neigh->ops->output;
314 	}
315 	return 0;
316 }
317 
318 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
319 {
320 	dst_link_failure(skb);
321 	kfree_skb(skb);
322 }
323 
324 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
325 {
326 	__be32 saddr = 0;
327 	u8  *dst_ha = NULL;
328 	struct net_device *dev = neigh->dev;
329 	__be32 target = *(__be32 *)neigh->primary_key;
330 	int probes = atomic_read(&neigh->probes);
331 	struct in_device *in_dev;
332 
333 	rcu_read_lock();
334 	in_dev = __in_dev_get_rcu(dev);
335 	if (!in_dev) {
336 		rcu_read_unlock();
337 		return;
338 	}
339 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
340 	default:
341 	case 0:		/* By default announce any local IP */
342 		if (skb && inet_addr_type(dev_net(dev),
343 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
344 			saddr = ip_hdr(skb)->saddr;
345 		break;
346 	case 1:		/* Restrict announcements of saddr in same subnet */
347 		if (!skb)
348 			break;
349 		saddr = ip_hdr(skb)->saddr;
350 		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
351 			/* saddr should be known to target */
352 			if (inet_addr_onlink(in_dev, target, saddr))
353 				break;
354 		}
355 		saddr = 0;
356 		break;
357 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
358 		break;
359 	}
360 	rcu_read_unlock();
361 
362 	if (!saddr)
363 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
364 
365 	probes -= neigh->parms->ucast_probes;
366 	if (probes < 0) {
367 		if (!(neigh->nud_state & NUD_VALID))
368 			printk(KERN_DEBUG
369 			       "trying to ucast probe in NUD_INVALID\n");
370 		dst_ha = neigh->ha;
371 		read_lock_bh(&neigh->lock);
372 	} else {
373 		probes -= neigh->parms->app_probes;
374 		if (probes < 0) {
375 #ifdef CONFIG_ARPD
376 			neigh_app_ns(neigh);
377 #endif
378 			return;
379 		}
380 	}
381 
382 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
383 		 dst_ha, dev->dev_addr, NULL);
384 	if (dst_ha)
385 		read_unlock_bh(&neigh->lock);
386 }
387 
388 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
389 {
390 	int scope;
391 
392 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
393 	case 0:	/* Reply, the tip is already validated */
394 		return 0;
395 	case 1:	/* Reply only if tip is configured on the incoming interface */
396 		sip = 0;
397 		scope = RT_SCOPE_HOST;
398 		break;
399 	case 2:	/*
400 		 * Reply only if tip is configured on the incoming interface
401 		 * and is in same subnet as sip
402 		 */
403 		scope = RT_SCOPE_HOST;
404 		break;
405 	case 3:	/* Do not reply for scope host addresses */
406 		sip = 0;
407 		scope = RT_SCOPE_LINK;
408 		break;
409 	case 4:	/* Reserved */
410 	case 5:
411 	case 6:
412 	case 7:
413 		return 0;
414 	case 8:	/* Do not reply */
415 		return 1;
416 	default:
417 		return 0;
418 	}
419 	return !inet_confirm_addr(in_dev, sip, tip, scope);
420 }
421 
422 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
423 {
424 	struct rtable *rt;
425 	int flag = 0;
426 	/*unsigned long now; */
427 	struct net *net = dev_net(dev);
428 
429 	rt = ip_route_output(net, sip, tip, 0, 0);
430 	if (IS_ERR(rt))
431 		return 1;
432 	if (rt->dst.dev != dev) {
433 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
434 		flag = 1;
435 	}
436 	ip_rt_put(rt);
437 	return flag;
438 }
439 
440 /* OBSOLETE FUNCTIONS */
441 
442 /*
443  *	Find an arp mapping in the cache. If not found, post a request.
444  *
445  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
446  *	even if it exists. It is supposed that skb->dev was mangled
447  *	by a virtual device (eql, shaper). Nobody but broken devices
448  *	is allowed to use this function, it is scheduled to be removed. --ANK
449  */
450 
451 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
452 			      __be32 paddr, struct net_device *dev)
453 {
454 	switch (addr_hint) {
455 	case RTN_LOCAL:
456 		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
457 		memcpy(haddr, dev->dev_addr, dev->addr_len);
458 		return 1;
459 	case RTN_MULTICAST:
460 		arp_mc_map(paddr, haddr, dev, 1);
461 		return 1;
462 	case RTN_BROADCAST:
463 		memcpy(haddr, dev->broadcast, dev->addr_len);
464 		return 1;
465 	}
466 	return 0;
467 }
468 
469 
470 int arp_find(unsigned char *haddr, struct sk_buff *skb)
471 {
472 	struct net_device *dev = skb->dev;
473 	__be32 paddr;
474 	struct neighbour *n;
475 
476 	if (!skb_dst(skb)) {
477 		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
478 		kfree_skb(skb);
479 		return 1;
480 	}
481 
482 	paddr = skb_rtable(skb)->rt_gateway;
483 
484 	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
485 			       paddr, dev))
486 		return 0;
487 
488 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
489 
490 	if (n) {
491 		n->used = jiffies;
492 		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
493 			neigh_ha_snapshot(haddr, n, dev);
494 			neigh_release(n);
495 			return 0;
496 		}
497 		neigh_release(n);
498 	} else
499 		kfree_skb(skb);
500 	return 1;
501 }
502 EXPORT_SYMBOL(arp_find);
503 
504 /* END OF OBSOLETE FUNCTIONS */
505 
506 /*
507  * Check if we can use proxy ARP for this path
508  */
509 static inline int arp_fwd_proxy(struct in_device *in_dev,
510 				struct net_device *dev,	struct rtable *rt)
511 {
512 	struct in_device *out_dev;
513 	int imi, omi = -1;
514 
515 	if (rt->dst.dev == dev)
516 		return 0;
517 
518 	if (!IN_DEV_PROXY_ARP(in_dev))
519 		return 0;
520 	imi = IN_DEV_MEDIUM_ID(in_dev);
521 	if (imi == 0)
522 		return 1;
523 	if (imi == -1)
524 		return 0;
525 
526 	/* place to check for proxy_arp for routes */
527 
528 	out_dev = __in_dev_get_rcu(rt->dst.dev);
529 	if (out_dev)
530 		omi = IN_DEV_MEDIUM_ID(out_dev);
531 
532 	return omi != imi && omi != -1;
533 }
534 
535 /*
536  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
537  *
538  * RFC3069 supports proxy arp replies back to the same interface.  This
539  * is done to support (ethernet) switch features, like RFC 3069, where
540  * the individual ports are not allowed to communicate with each
541  * other, BUT they are allowed to talk to the upstream router.  As
542  * described in RFC 3069, it is possible to allow these hosts to
543  * communicate through the upstream router, by proxy_arp'ing.
544  *
545  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
546  *
547  *  This technology is known by different names:
548  *    In RFC 3069 it is called VLAN Aggregation.
549  *    Cisco and Allied Telesyn call it Private VLAN.
550  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
551  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
552  *
553  */
554 static inline int arp_fwd_pvlan(struct in_device *in_dev,
555 				struct net_device *dev,	struct rtable *rt,
556 				__be32 sip, __be32 tip)
557 {
558 	/* Private VLAN is only concerned about the same ethernet segment */
559 	if (rt->dst.dev != dev)
560 		return 0;
561 
562 	/* Don't reply on self probes (often done by windowz boxes)*/
563 	if (sip == tip)
564 		return 0;
565 
566 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
567 		return 1;
568 	else
569 		return 0;
570 }
571 
572 /*
573  *	Interface to link layer: send routine and receive handler.
574  */
575 
576 /*
577  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
578  *	message.
579  */
580 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
581 			   struct net_device *dev, __be32 src_ip,
582 			   const unsigned char *dest_hw,
583 			   const unsigned char *src_hw,
584 			   const unsigned char *target_hw)
585 {
586 	struct sk_buff *skb;
587 	struct arphdr *arp;
588 	unsigned char *arp_ptr;
589 	int hlen = LL_RESERVED_SPACE(dev);
590 	int tlen = dev->needed_tailroom;
591 
592 	/*
593 	 *	Allocate a buffer
594 	 */
595 
596 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
597 	if (skb == NULL)
598 		return NULL;
599 
600 	skb_reserve(skb, hlen);
601 	skb_reset_network_header(skb);
602 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
603 	skb->dev = dev;
604 	skb->protocol = htons(ETH_P_ARP);
605 	if (src_hw == NULL)
606 		src_hw = dev->dev_addr;
607 	if (dest_hw == NULL)
608 		dest_hw = dev->broadcast;
609 
610 	/*
611 	 *	Fill the device header for the ARP frame
612 	 */
613 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
614 		goto out;
615 
616 	/*
617 	 * Fill out the arp protocol part.
618 	 *
619 	 * The arp hardware type should match the device type, except for FDDI,
620 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
621 	 */
622 	/*
623 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
624 	 *	DIX code for the protocol. Make these device structure fields.
625 	 */
626 	switch (dev->type) {
627 	default:
628 		arp->ar_hrd = htons(dev->type);
629 		arp->ar_pro = htons(ETH_P_IP);
630 		break;
631 
632 #if IS_ENABLED(CONFIG_AX25)
633 	case ARPHRD_AX25:
634 		arp->ar_hrd = htons(ARPHRD_AX25);
635 		arp->ar_pro = htons(AX25_P_IP);
636 		break;
637 
638 #if IS_ENABLED(CONFIG_NETROM)
639 	case ARPHRD_NETROM:
640 		arp->ar_hrd = htons(ARPHRD_NETROM);
641 		arp->ar_pro = htons(AX25_P_IP);
642 		break;
643 #endif
644 #endif
645 
646 #if IS_ENABLED(CONFIG_FDDI)
647 	case ARPHRD_FDDI:
648 		arp->ar_hrd = htons(ARPHRD_ETHER);
649 		arp->ar_pro = htons(ETH_P_IP);
650 		break;
651 #endif
652 #if IS_ENABLED(CONFIG_TR)
653 	case ARPHRD_IEEE802_TR:
654 		arp->ar_hrd = htons(ARPHRD_IEEE802);
655 		arp->ar_pro = htons(ETH_P_IP);
656 		break;
657 #endif
658 	}
659 
660 	arp->ar_hln = dev->addr_len;
661 	arp->ar_pln = 4;
662 	arp->ar_op = htons(type);
663 
664 	arp_ptr = (unsigned char *)(arp + 1);
665 
666 	memcpy(arp_ptr, src_hw, dev->addr_len);
667 	arp_ptr += dev->addr_len;
668 	memcpy(arp_ptr, &src_ip, 4);
669 	arp_ptr += 4;
670 	if (target_hw != NULL)
671 		memcpy(arp_ptr, target_hw, dev->addr_len);
672 	else
673 		memset(arp_ptr, 0, dev->addr_len);
674 	arp_ptr += dev->addr_len;
675 	memcpy(arp_ptr, &dest_ip, 4);
676 
677 	return skb;
678 
679 out:
680 	kfree_skb(skb);
681 	return NULL;
682 }
683 EXPORT_SYMBOL(arp_create);
684 
685 /*
686  *	Send an arp packet.
687  */
688 void arp_xmit(struct sk_buff *skb)
689 {
690 	/* Send it off, maybe filter it using firewalling first.  */
691 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
692 }
693 EXPORT_SYMBOL(arp_xmit);
694 
695 /*
696  *	Create and send an arp packet.
697  */
698 void arp_send(int type, int ptype, __be32 dest_ip,
699 	      struct net_device *dev, __be32 src_ip,
700 	      const unsigned char *dest_hw, const unsigned char *src_hw,
701 	      const unsigned char *target_hw)
702 {
703 	struct sk_buff *skb;
704 
705 	/*
706 	 *	No arp on this interface.
707 	 */
708 
709 	if (dev->flags&IFF_NOARP)
710 		return;
711 
712 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
713 			 dest_hw, src_hw, target_hw);
714 	if (skb == NULL)
715 		return;
716 
717 	arp_xmit(skb);
718 }
719 EXPORT_SYMBOL(arp_send);
720 
721 /*
722  *	Process an arp request.
723  */
724 
725 static int arp_process(struct sk_buff *skb)
726 {
727 	struct net_device *dev = skb->dev;
728 	struct in_device *in_dev = __in_dev_get_rcu(dev);
729 	struct arphdr *arp;
730 	unsigned char *arp_ptr;
731 	struct rtable *rt;
732 	unsigned char *sha;
733 	__be32 sip, tip;
734 	u16 dev_type = dev->type;
735 	int addr_type;
736 	struct neighbour *n;
737 	struct net *net = dev_net(dev);
738 
739 	/* arp_rcv below verifies the ARP header and verifies the device
740 	 * is ARP'able.
741 	 */
742 
743 	if (in_dev == NULL)
744 		goto out;
745 
746 	arp = arp_hdr(skb);
747 
748 	switch (dev_type) {
749 	default:
750 		if (arp->ar_pro != htons(ETH_P_IP) ||
751 		    htons(dev_type) != arp->ar_hrd)
752 			goto out;
753 		break;
754 	case ARPHRD_ETHER:
755 	case ARPHRD_IEEE802_TR:
756 	case ARPHRD_FDDI:
757 	case ARPHRD_IEEE802:
758 		/*
759 		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
760 		 * devices, according to RFC 2625) devices will accept ARP
761 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
762 		 * This is the case also of FDDI, where the RFC 1390 says that
763 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
764 		 * however, to be more robust, we'll accept both 1 (Ethernet)
765 		 * or 6 (IEEE 802.2)
766 		 */
767 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
768 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
769 		    arp->ar_pro != htons(ETH_P_IP))
770 			goto out;
771 		break;
772 	case ARPHRD_AX25:
773 		if (arp->ar_pro != htons(AX25_P_IP) ||
774 		    arp->ar_hrd != htons(ARPHRD_AX25))
775 			goto out;
776 		break;
777 	case ARPHRD_NETROM:
778 		if (arp->ar_pro != htons(AX25_P_IP) ||
779 		    arp->ar_hrd != htons(ARPHRD_NETROM))
780 			goto out;
781 		break;
782 	}
783 
784 	/* Understand only these message types */
785 
786 	if (arp->ar_op != htons(ARPOP_REPLY) &&
787 	    arp->ar_op != htons(ARPOP_REQUEST))
788 		goto out;
789 
790 /*
791  *	Extract fields
792  */
793 	arp_ptr = (unsigned char *)(arp + 1);
794 	sha	= arp_ptr;
795 	arp_ptr += dev->addr_len;
796 	memcpy(&sip, arp_ptr, 4);
797 	arp_ptr += 4;
798 	arp_ptr += dev->addr_len;
799 	memcpy(&tip, arp_ptr, 4);
800 /*
801  *	Check for bad requests for 127.x.x.x and requests for multicast
802  *	addresses.  If this is one such, delete it.
803  */
804 	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
805 		goto out;
806 
807 /*
808  *     Special case: We must set Frame Relay source Q.922 address
809  */
810 	if (dev_type == ARPHRD_DLCI)
811 		sha = dev->broadcast;
812 
813 /*
814  *  Process entry.  The idea here is we want to send a reply if it is a
815  *  request for us or if it is a request for someone else that we hold
816  *  a proxy for.  We want to add an entry to our cache if it is a reply
817  *  to us or if it is a request for our address.
818  *  (The assumption for this last is that if someone is requesting our
819  *  address, they are probably intending to talk to us, so it saves time
820  *  if we cache their address.  Their address is also probably not in
821  *  our cache, since ours is not in their cache.)
822  *
823  *  Putting this another way, we only care about replies if they are to
824  *  us, in which case we add them to the cache.  For requests, we care
825  *  about those for us and those for our proxies.  We reply to both,
826  *  and in the case of requests for us we add the requester to the arp
827  *  cache.
828  */
829 
830 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
831 	if (sip == 0) {
832 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
833 		    inet_addr_type(net, tip) == RTN_LOCAL &&
834 		    !arp_ignore(in_dev, sip, tip))
835 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
836 				 dev->dev_addr, sha);
837 		goto out;
838 	}
839 
840 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
841 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
842 
843 		rt = skb_rtable(skb);
844 		addr_type = rt->rt_type;
845 
846 		if (addr_type == RTN_LOCAL) {
847 			int dont_send;
848 
849 			dont_send = arp_ignore(in_dev, sip, tip);
850 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
851 				dont_send = arp_filter(sip, tip, dev);
852 			if (!dont_send) {
853 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
854 				if (n) {
855 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
856 						 dev, tip, sha, dev->dev_addr,
857 						 sha);
858 					neigh_release(n);
859 				}
860 			}
861 			goto out;
862 		} else if (IN_DEV_FORWARD(in_dev)) {
863 			if (addr_type == RTN_UNICAST  &&
864 			    (arp_fwd_proxy(in_dev, dev, rt) ||
865 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
866 			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
867 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
868 				if (n)
869 					neigh_release(n);
870 
871 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
872 				    skb->pkt_type == PACKET_HOST ||
873 				    in_dev->arp_parms->proxy_delay == 0) {
874 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
875 						 dev, tip, sha, dev->dev_addr,
876 						 sha);
877 				} else {
878 					pneigh_enqueue(&arp_tbl,
879 						       in_dev->arp_parms, skb);
880 					return 0;
881 				}
882 				goto out;
883 			}
884 		}
885 	}
886 
887 	/* Update our ARP tables */
888 
889 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
890 
891 	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
892 		/* Unsolicited ARP is not accepted by default.
893 		   It is possible, that this option should be enabled for some
894 		   devices (strip is candidate)
895 		 */
896 		if (n == NULL &&
897 		    (arp->ar_op == htons(ARPOP_REPLY) ||
898 		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
899 		    inet_addr_type(net, sip) == RTN_UNICAST)
900 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
901 	}
902 
903 	if (n) {
904 		int state = NUD_REACHABLE;
905 		int override;
906 
907 		/* If several different ARP replies follows back-to-back,
908 		   use the FIRST one. It is possible, if several proxy
909 		   agents are active. Taking the first reply prevents
910 		   arp trashing and chooses the fastest router.
911 		 */
912 		override = time_after(jiffies, n->updated + n->parms->locktime);
913 
914 		/* Broadcast replies and request packets
915 		   do not assert neighbour reachability.
916 		 */
917 		if (arp->ar_op != htons(ARPOP_REPLY) ||
918 		    skb->pkt_type != PACKET_HOST)
919 			state = NUD_STALE;
920 		neigh_update(n, sha, state,
921 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
922 		neigh_release(n);
923 	}
924 
925 out:
926 	consume_skb(skb);
927 	return 0;
928 }
929 
930 static void parp_redo(struct sk_buff *skb)
931 {
932 	arp_process(skb);
933 }
934 
935 
936 /*
937  *	Receive an arp request from the device layer.
938  */
939 
940 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
941 		   struct packet_type *pt, struct net_device *orig_dev)
942 {
943 	struct arphdr *arp;
944 
945 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
946 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
947 		goto freeskb;
948 
949 	arp = arp_hdr(skb);
950 	if (arp->ar_hln != dev->addr_len ||
951 	    dev->flags & IFF_NOARP ||
952 	    skb->pkt_type == PACKET_OTHERHOST ||
953 	    skb->pkt_type == PACKET_LOOPBACK ||
954 	    arp->ar_pln != 4)
955 		goto freeskb;
956 
957 	skb = skb_share_check(skb, GFP_ATOMIC);
958 	if (skb == NULL)
959 		goto out_of_mem;
960 
961 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
962 
963 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
964 
965 freeskb:
966 	kfree_skb(skb);
967 out_of_mem:
968 	return 0;
969 }
970 
971 /*
972  *	User level interface (ioctl)
973  */
974 
975 /*
976  *	Set (create) an ARP cache entry.
977  */
978 
979 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
980 {
981 	if (dev == NULL) {
982 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
983 		return 0;
984 	}
985 	if (__in_dev_get_rtnl(dev)) {
986 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
987 		return 0;
988 	}
989 	return -ENXIO;
990 }
991 
992 static int arp_req_set_public(struct net *net, struct arpreq *r,
993 		struct net_device *dev)
994 {
995 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
996 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
997 
998 	if (mask && mask != htonl(0xFFFFFFFF))
999 		return -EINVAL;
1000 	if (!dev && (r->arp_flags & ATF_COM)) {
1001 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1002 				      r->arp_ha.sa_data);
1003 		if (!dev)
1004 			return -ENODEV;
1005 	}
1006 	if (mask) {
1007 		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1008 			return -ENOBUFS;
1009 		return 0;
1010 	}
1011 
1012 	return arp_req_set_proxy(net, dev, 1);
1013 }
1014 
1015 static int arp_req_set(struct net *net, struct arpreq *r,
1016 		       struct net_device *dev)
1017 {
1018 	__be32 ip;
1019 	struct neighbour *neigh;
1020 	int err;
1021 
1022 	if (r->arp_flags & ATF_PUBL)
1023 		return arp_req_set_public(net, r, dev);
1024 
1025 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026 	if (r->arp_flags & ATF_PERM)
1027 		r->arp_flags |= ATF_COM;
1028 	if (dev == NULL) {
1029 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1030 
1031 		if (IS_ERR(rt))
1032 			return PTR_ERR(rt);
1033 		dev = rt->dst.dev;
1034 		ip_rt_put(rt);
1035 		if (!dev)
1036 			return -EINVAL;
1037 	}
1038 	switch (dev->type) {
1039 #if IS_ENABLED(CONFIG_FDDI)
1040 	case ARPHRD_FDDI:
1041 		/*
1042 		 * According to RFC 1390, FDDI devices should accept ARP
1043 		 * hardware types of 1 (Ethernet).  However, to be more
1044 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1045 		 * or 6 (IEEE 802.2).
1046 		 */
1047 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1048 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1049 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1050 			return -EINVAL;
1051 		break;
1052 #endif
1053 	default:
1054 		if (r->arp_ha.sa_family != dev->type)
1055 			return -EINVAL;
1056 		break;
1057 	}
1058 
1059 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1060 	err = PTR_ERR(neigh);
1061 	if (!IS_ERR(neigh)) {
1062 		unsigned state = NUD_STALE;
1063 		if (r->arp_flags & ATF_PERM)
1064 			state = NUD_PERMANENT;
1065 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1066 				   r->arp_ha.sa_data : NULL, state,
1067 				   NEIGH_UPDATE_F_OVERRIDE |
1068 				   NEIGH_UPDATE_F_ADMIN);
1069 		neigh_release(neigh);
1070 	}
1071 	return err;
1072 }
1073 
1074 static unsigned arp_state_to_flags(struct neighbour *neigh)
1075 {
1076 	if (neigh->nud_state&NUD_PERMANENT)
1077 		return ATF_PERM | ATF_COM;
1078 	else if (neigh->nud_state&NUD_VALID)
1079 		return ATF_COM;
1080 	else
1081 		return 0;
1082 }
1083 
1084 /*
1085  *	Get an ARP cache entry.
1086  */
1087 
1088 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1089 {
1090 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1091 	struct neighbour *neigh;
1092 	int err = -ENXIO;
1093 
1094 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1095 	if (neigh) {
1096 		read_lock_bh(&neigh->lock);
1097 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1098 		r->arp_flags = arp_state_to_flags(neigh);
1099 		read_unlock_bh(&neigh->lock);
1100 		r->arp_ha.sa_family = dev->type;
1101 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1102 		neigh_release(neigh);
1103 		err = 0;
1104 	}
1105 	return err;
1106 }
1107 
1108 int arp_invalidate(struct net_device *dev, __be32 ip)
1109 {
1110 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1111 	int err = -ENXIO;
1112 
1113 	if (neigh) {
1114 		if (neigh->nud_state & ~NUD_NOARP)
1115 			err = neigh_update(neigh, NULL, NUD_FAILED,
1116 					   NEIGH_UPDATE_F_OVERRIDE|
1117 					   NEIGH_UPDATE_F_ADMIN);
1118 		neigh_release(neigh);
1119 	}
1120 
1121 	return err;
1122 }
1123 EXPORT_SYMBOL(arp_invalidate);
1124 
1125 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1126 		struct net_device *dev)
1127 {
1128 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1129 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1130 
1131 	if (mask == htonl(0xFFFFFFFF))
1132 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1133 
1134 	if (mask)
1135 		return -EINVAL;
1136 
1137 	return arp_req_set_proxy(net, dev, 0);
1138 }
1139 
1140 static int arp_req_delete(struct net *net, struct arpreq *r,
1141 			  struct net_device *dev)
1142 {
1143 	__be32 ip;
1144 
1145 	if (r->arp_flags & ATF_PUBL)
1146 		return arp_req_delete_public(net, r, dev);
1147 
1148 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1149 	if (dev == NULL) {
1150 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1151 		if (IS_ERR(rt))
1152 			return PTR_ERR(rt);
1153 		dev = rt->dst.dev;
1154 		ip_rt_put(rt);
1155 		if (!dev)
1156 			return -EINVAL;
1157 	}
1158 	return arp_invalidate(dev, ip);
1159 }
1160 
1161 /*
1162  *	Handle an ARP layer I/O control request.
1163  */
1164 
1165 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1166 {
1167 	int err;
1168 	struct arpreq r;
1169 	struct net_device *dev = NULL;
1170 
1171 	switch (cmd) {
1172 	case SIOCDARP:
1173 	case SIOCSARP:
1174 		if (!capable(CAP_NET_ADMIN))
1175 			return -EPERM;
1176 	case SIOCGARP:
1177 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1178 		if (err)
1179 			return -EFAULT;
1180 		break;
1181 	default:
1182 		return -EINVAL;
1183 	}
1184 
1185 	if (r.arp_pa.sa_family != AF_INET)
1186 		return -EPFNOSUPPORT;
1187 
1188 	if (!(r.arp_flags & ATF_PUBL) &&
1189 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1190 		return -EINVAL;
1191 	if (!(r.arp_flags & ATF_NETMASK))
1192 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1193 							   htonl(0xFFFFFFFFUL);
1194 	rtnl_lock();
1195 	if (r.arp_dev[0]) {
1196 		err = -ENODEV;
1197 		dev = __dev_get_by_name(net, r.arp_dev);
1198 		if (dev == NULL)
1199 			goto out;
1200 
1201 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1202 		if (!r.arp_ha.sa_family)
1203 			r.arp_ha.sa_family = dev->type;
1204 		err = -EINVAL;
1205 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1206 			goto out;
1207 	} else if (cmd == SIOCGARP) {
1208 		err = -ENODEV;
1209 		goto out;
1210 	}
1211 
1212 	switch (cmd) {
1213 	case SIOCDARP:
1214 		err = arp_req_delete(net, &r, dev);
1215 		break;
1216 	case SIOCSARP:
1217 		err = arp_req_set(net, &r, dev);
1218 		break;
1219 	case SIOCGARP:
1220 		err = arp_req_get(&r, dev);
1221 		break;
1222 	}
1223 out:
1224 	rtnl_unlock();
1225 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1226 		err = -EFAULT;
1227 	return err;
1228 }
1229 
1230 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1231 			    void *ptr)
1232 {
1233 	struct net_device *dev = ptr;
1234 
1235 	switch (event) {
1236 	case NETDEV_CHANGEADDR:
1237 		neigh_changeaddr(&arp_tbl, dev);
1238 		rt_cache_flush(dev_net(dev), 0);
1239 		break;
1240 	default:
1241 		break;
1242 	}
1243 
1244 	return NOTIFY_DONE;
1245 }
1246 
1247 static struct notifier_block arp_netdev_notifier = {
1248 	.notifier_call = arp_netdev_event,
1249 };
1250 
1251 /* Note, that it is not on notifier chain.
1252    It is necessary, that this routine was called after route cache will be
1253    flushed.
1254  */
1255 void arp_ifdown(struct net_device *dev)
1256 {
1257 	neigh_ifdown(&arp_tbl, dev);
1258 }
1259 
1260 
1261 /*
1262  *	Called once on startup.
1263  */
1264 
1265 static struct packet_type arp_packet_type __read_mostly = {
1266 	.type =	cpu_to_be16(ETH_P_ARP),
1267 	.func =	arp_rcv,
1268 };
1269 
1270 static int arp_proc_init(void);
1271 
1272 void __init arp_init(void)
1273 {
1274 	neigh_table_init(&arp_tbl);
1275 
1276 	dev_add_pack(&arp_packet_type);
1277 	arp_proc_init();
1278 #ifdef CONFIG_SYSCTL
1279 	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1280 #endif
1281 	register_netdevice_notifier(&arp_netdev_notifier);
1282 }
1283 
1284 #ifdef CONFIG_PROC_FS
1285 #if IS_ENABLED(CONFIG_AX25)
1286 
1287 /* ------------------------------------------------------------------------ */
1288 /*
1289  *	ax25 -> ASCII conversion
1290  */
1291 static char *ax2asc2(ax25_address *a, char *buf)
1292 {
1293 	char c, *s;
1294 	int n;
1295 
1296 	for (n = 0, s = buf; n < 6; n++) {
1297 		c = (a->ax25_call[n] >> 1) & 0x7F;
1298 
1299 		if (c != ' ')
1300 			*s++ = c;
1301 	}
1302 
1303 	*s++ = '-';
1304 	n = (a->ax25_call[6] >> 1) & 0x0F;
1305 	if (n > 9) {
1306 		*s++ = '1';
1307 		n -= 10;
1308 	}
1309 
1310 	*s++ = n + '0';
1311 	*s++ = '\0';
1312 
1313 	if (*buf == '\0' || *buf == '-')
1314 		return "*";
1315 
1316 	return buf;
1317 }
1318 #endif /* CONFIG_AX25 */
1319 
1320 #define HBUFFERLEN 30
1321 
1322 static void arp_format_neigh_entry(struct seq_file *seq,
1323 				   struct neighbour *n)
1324 {
1325 	char hbuffer[HBUFFERLEN];
1326 	int k, j;
1327 	char tbuf[16];
1328 	struct net_device *dev = n->dev;
1329 	int hatype = dev->type;
1330 
1331 	read_lock(&n->lock);
1332 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1333 #if IS_ENABLED(CONFIG_AX25)
1334 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1335 		ax2asc2((ax25_address *)n->ha, hbuffer);
1336 	else {
1337 #endif
1338 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1339 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1340 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1341 		hbuffer[k++] = ':';
1342 	}
1343 	if (k != 0)
1344 		--k;
1345 	hbuffer[k] = 0;
1346 #if IS_ENABLED(CONFIG_AX25)
1347 	}
1348 #endif
1349 	sprintf(tbuf, "%pI4", n->primary_key);
1350 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1351 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1352 	read_unlock(&n->lock);
1353 }
1354 
1355 static void arp_format_pneigh_entry(struct seq_file *seq,
1356 				    struct pneigh_entry *n)
1357 {
1358 	struct net_device *dev = n->dev;
1359 	int hatype = dev ? dev->type : 0;
1360 	char tbuf[16];
1361 
1362 	sprintf(tbuf, "%pI4", n->key);
1363 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1364 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1365 		   dev ? dev->name : "*");
1366 }
1367 
1368 static int arp_seq_show(struct seq_file *seq, void *v)
1369 {
1370 	if (v == SEQ_START_TOKEN) {
1371 		seq_puts(seq, "IP address       HW type     Flags       "
1372 			      "HW address            Mask     Device\n");
1373 	} else {
1374 		struct neigh_seq_state *state = seq->private;
1375 
1376 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1377 			arp_format_pneigh_entry(seq, v);
1378 		else
1379 			arp_format_neigh_entry(seq, v);
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1386 {
1387 	/* Don't want to confuse "arp -a" w/ magic entries,
1388 	 * so we tell the generic iterator to skip NUD_NOARP.
1389 	 */
1390 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1391 }
1392 
1393 /* ------------------------------------------------------------------------ */
1394 
1395 static const struct seq_operations arp_seq_ops = {
1396 	.start	= arp_seq_start,
1397 	.next	= neigh_seq_next,
1398 	.stop	= neigh_seq_stop,
1399 	.show	= arp_seq_show,
1400 };
1401 
1402 static int arp_seq_open(struct inode *inode, struct file *file)
1403 {
1404 	return seq_open_net(inode, file, &arp_seq_ops,
1405 			    sizeof(struct neigh_seq_state));
1406 }
1407 
1408 static const struct file_operations arp_seq_fops = {
1409 	.owner		= THIS_MODULE,
1410 	.open           = arp_seq_open,
1411 	.read           = seq_read,
1412 	.llseek         = seq_lseek,
1413 	.release	= seq_release_net,
1414 };
1415 
1416 
1417 static int __net_init arp_net_init(struct net *net)
1418 {
1419 	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1420 		return -ENOMEM;
1421 	return 0;
1422 }
1423 
1424 static void __net_exit arp_net_exit(struct net *net)
1425 {
1426 	proc_net_remove(net, "arp");
1427 }
1428 
1429 static struct pernet_operations arp_net_ops = {
1430 	.init = arp_net_init,
1431 	.exit = arp_net_exit,
1432 };
1433 
1434 static int __init arp_proc_init(void)
1435 {
1436 	return register_pernet_subsys(&arp_net_ops);
1437 }
1438 
1439 #else /* CONFIG_PROC_FS */
1440 
1441 static int __init arp_proc_init(void)
1442 {
1443 	return 0;
1444 }
1445 
1446 #endif /* CONFIG_PROC_FS */
1447