xref: /linux/net/ipv4/arp.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /* linux/net/ipv4/arp.c
2  *
3  * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4  *
5  * Copyright (C) 1994 by Florian  La Roche
6  *
7  * This module implements the Address Resolution Protocol ARP (RFC 826),
8  * which is used to convert IP addresses (or in the future maybe other
9  * high-level addresses) into a low-level hardware address (like an Ethernet
10  * address).
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  *
17  * Fixes:
18  *		Alan Cox	:	Removed the Ethernet assumptions in
19  *					Florian's code
20  *		Alan Cox	:	Fixed some small errors in the ARP
21  *					logic
22  *		Alan Cox	:	Allow >4K in /proc
23  *		Alan Cox	:	Make ARP add its own protocol entry
24  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25  *		Stephen Henson	:	Add AX25 support to arp_get_info()
26  *		Alan Cox	:	Drop data when a device is downed.
27  *		Alan Cox	:	Use init_timer().
28  *		Alan Cox	:	Double lock fixes.
29  *		Martin Seine	:	Move the arphdr structure
30  *					to if_arp.h for compatibility.
31  *					with BSD based programs.
32  *		Andrew Tridgell :       Added ARP netmask code and
33  *					re-arranged proxy handling.
34  *		Alan Cox	:	Changed to use notifiers.
35  *		Niibe Yutaka	:	Reply for this device or proxies only.
36  *		Alan Cox	:	Don't proxy across hardware types!
37  *		Jonathan Naylor :	Added support for NET/ROM.
38  *		Mike Shaver     :       RFC1122 checks.
39  *		Jonathan Naylor :	Only lookup the hardware address for
40  *					the correct hardware type.
41  *		Germano Caronni	:	Assorted subtle races.
42  *		Craig Schlenter :	Don't modify permanent entry
43  *					during arp_rcv.
44  *		Russ Nelson	:	Tidied up a few bits.
45  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46  *					eg intelligent arp probing and
47  *					generation
48  *					of host down events.
49  *		Alan Cox	:	Missing unlock in device events.
50  *		Eckes		:	ARP ioctl control errors.
51  *		Alexey Kuznetsov:	Arp free fix.
52  *		Manuel Rodriguez:	Gratuitous ARP.
53  *              Jonathan Layes  :       Added arpd support through kerneld
54  *                                      message queue (960314)
55  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56  *		Mike McLagan    :	Routing by source
57  *		Stuart Cheshire	:	Metricom and grat arp fixes
58  *					*** FOR 2.1 clean this up ***
59  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60  *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61  *					folded into the mainstream FDDI code.
62  *					Ack spit, Linus how did you allow that
63  *					one in...
64  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65  *					clean up the APFDDI & gen. FDDI bits.
66  *		Alexey Kuznetsov:	new arp state machine;
67  *					now it is in net/core/neighbour.c.
68  *		Krzysztof Halasa:	Added Frame Relay ARP support.
69  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70  *		Shmulik Hen:		Split arp_send to arp_create and
71  *					arp_xmit so intermediate drivers like
72  *					bonding can change the skb before
73  *					sending (e.g. insert 8021q tag).
74  *		Harald Welte	:	convert to make use of jenkins hash
75  */
76 
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/capability.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
85 #include <linux/in.h>
86 #include <linux/mm.h>
87 #include <linux/inet.h>
88 #include <linux/inetdevice.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/fddidevice.h>
92 #include <linux/if_arp.h>
93 #include <linux/trdevice.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/jhash.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 #endif
120 
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
123 
124 #include <linux/netfilter_arp.h>
125 
126 /*
127  *	Interface to generic neighbour cache.
128  */
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
134 
135 static struct neigh_ops arp_generic_ops = {
136 	.family =		AF_INET,
137 	.solicit =		arp_solicit,
138 	.error_report =		arp_error_report,
139 	.output =		neigh_resolve_output,
140 	.connected_output =	neigh_connected_output,
141 	.hh_output =		dev_queue_xmit,
142 	.queue_xmit =		dev_queue_xmit,
143 };
144 
145 static struct neigh_ops arp_hh_ops = {
146 	.family =		AF_INET,
147 	.solicit =		arp_solicit,
148 	.error_report =		arp_error_report,
149 	.output =		neigh_resolve_output,
150 	.connected_output =	neigh_resolve_output,
151 	.hh_output =		dev_queue_xmit,
152 	.queue_xmit =		dev_queue_xmit,
153 };
154 
155 static struct neigh_ops arp_direct_ops = {
156 	.family =		AF_INET,
157 	.output =		dev_queue_xmit,
158 	.connected_output =	dev_queue_xmit,
159 	.hh_output =		dev_queue_xmit,
160 	.queue_xmit =		dev_queue_xmit,
161 };
162 
163 struct neigh_ops arp_broken_ops = {
164 	.family =		AF_INET,
165 	.solicit =		arp_solicit,
166 	.error_report =		arp_error_report,
167 	.output =		neigh_compat_output,
168 	.connected_output =	neigh_compat_output,
169 	.hh_output =		dev_queue_xmit,
170 	.queue_xmit =		dev_queue_xmit,
171 };
172 
173 struct neigh_table arp_tbl = {
174 	.family =	AF_INET,
175 	.entry_size =	sizeof(struct neighbour) + 4,
176 	.key_len =	4,
177 	.hash =		arp_hash,
178 	.constructor =	arp_constructor,
179 	.proxy_redo =	parp_redo,
180 	.id =		"arp_cache",
181 	.parms = {
182 		.tbl =			&arp_tbl,
183 		.base_reachable_time =	30 * HZ,
184 		.retrans_time =	1 * HZ,
185 		.gc_staletime =	60 * HZ,
186 		.reachable_time =		30 * HZ,
187 		.delay_probe_time =	5 * HZ,
188 		.queue_len =		3,
189 		.ucast_probes =	3,
190 		.mcast_probes =	3,
191 		.anycast_delay =	1 * HZ,
192 		.proxy_delay =		(8 * HZ) / 10,
193 		.proxy_qlen =		64,
194 		.locktime =		1 * HZ,
195 	},
196 	.gc_interval =	30 * HZ,
197 	.gc_thresh1 =	128,
198 	.gc_thresh2 =	512,
199 	.gc_thresh3 =	1024,
200 };
201 
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
203 {
204 	switch (dev->type) {
205 	case ARPHRD_ETHER:
206 	case ARPHRD_FDDI:
207 	case ARPHRD_IEEE802:
208 		ip_eth_mc_map(addr, haddr);
209 		return 0;
210 	case ARPHRD_IEEE802_TR:
211 		ip_tr_mc_map(addr, haddr);
212 		return 0;
213 	case ARPHRD_INFINIBAND:
214 		ip_ib_mc_map(addr, dev->broadcast, haddr);
215 		return 0;
216 	default:
217 		if (dir) {
218 			memcpy(haddr, dev->broadcast, dev->addr_len);
219 			return 0;
220 		}
221 	}
222 	return -EINVAL;
223 }
224 
225 
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
227 {
228 	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229 }
230 
231 static int arp_constructor(struct neighbour *neigh)
232 {
233 	__be32 addr = *(__be32*)neigh->primary_key;
234 	struct net_device *dev = neigh->dev;
235 	struct in_device *in_dev;
236 	struct neigh_parms *parms;
237 
238 	neigh->type = inet_addr_type(addr);
239 
240 	rcu_read_lock();
241 	in_dev = __in_dev_get_rcu(dev);
242 	if (in_dev == NULL) {
243 		rcu_read_unlock();
244 		return -EINVAL;
245 	}
246 
247 	parms = in_dev->arp_parms;
248 	__neigh_parms_put(neigh->parms);
249 	neigh->parms = neigh_parms_clone(parms);
250 	rcu_read_unlock();
251 
252 	if (!dev->header_ops) {
253 		neigh->nud_state = NUD_NOARP;
254 		neigh->ops = &arp_direct_ops;
255 		neigh->output = neigh->ops->queue_xmit;
256 	} else {
257 		/* Good devices (checked by reading texts, but only Ethernet is
258 		   tested)
259 
260 		   ARPHRD_ETHER: (ethernet, apfddi)
261 		   ARPHRD_FDDI: (fddi)
262 		   ARPHRD_IEEE802: (tr)
263 		   ARPHRD_METRICOM: (strip)
264 		   ARPHRD_ARCNET:
265 		   etc. etc. etc.
266 
267 		   ARPHRD_IPDDP will also work, if author repairs it.
268 		   I did not it, because this driver does not work even
269 		   in old paradigm.
270 		 */
271 
272 #if 1
273 		/* So... these "amateur" devices are hopeless.
274 		   The only thing, that I can say now:
275 		   It is very sad that we need to keep ugly obsolete
276 		   code to make them happy.
277 
278 		   They should be moved to more reasonable state, now
279 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 		   Besides that, they are sort of out of date
281 		   (a lot of redundant clones/copies, useless in 2.1),
282 		   I wonder why people believe that they work.
283 		 */
284 		switch (dev->type) {
285 		default:
286 			break;
287 		case ARPHRD_ROSE:
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 		case ARPHRD_AX25:
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 		case ARPHRD_NETROM:
292 #endif
293 			neigh->ops = &arp_broken_ops;
294 			neigh->output = neigh->ops->output;
295 			return 0;
296 #endif
297 		;}
298 #endif
299 		if (neigh->type == RTN_MULTICAST) {
300 			neigh->nud_state = NUD_NOARP;
301 			arp_mc_map(addr, neigh->ha, dev, 1);
302 		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 			neigh->nud_state = NUD_NOARP;
304 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 			neigh->nud_state = NUD_NOARP;
307 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 		}
309 
310 		if (dev->header_ops->cache)
311 			neigh->ops = &arp_hh_ops;
312 		else
313 			neigh->ops = &arp_generic_ops;
314 
315 		if (neigh->nud_state&NUD_VALID)
316 			neigh->output = neigh->ops->connected_output;
317 		else
318 			neigh->output = neigh->ops->output;
319 	}
320 	return 0;
321 }
322 
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324 {
325 	dst_link_failure(skb);
326 	kfree_skb(skb);
327 }
328 
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330 {
331 	__be32 saddr = 0;
332 	u8  *dst_ha = NULL;
333 	struct net_device *dev = neigh->dev;
334 	__be32 target = *(__be32*)neigh->primary_key;
335 	int probes = atomic_read(&neigh->probes);
336 	struct in_device *in_dev = in_dev_get(dev);
337 
338 	if (!in_dev)
339 		return;
340 
341 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342 	default:
343 	case 0:		/* By default announce any local IP */
344 		if (skb && inet_addr_type(ip_hdr(skb)->saddr) == RTN_LOCAL)
345 			saddr = ip_hdr(skb)->saddr;
346 		break;
347 	case 1:		/* Restrict announcements of saddr in same subnet */
348 		if (!skb)
349 			break;
350 		saddr = ip_hdr(skb)->saddr;
351 		if (inet_addr_type(saddr) == RTN_LOCAL) {
352 			/* saddr should be known to target */
353 			if (inet_addr_onlink(in_dev, target, saddr))
354 				break;
355 		}
356 		saddr = 0;
357 		break;
358 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
359 		break;
360 	}
361 
362 	if (in_dev)
363 		in_dev_put(in_dev);
364 	if (!saddr)
365 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
366 
367 	if ((probes -= neigh->parms->ucast_probes) < 0) {
368 		if (!(neigh->nud_state&NUD_VALID))
369 			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370 		dst_ha = neigh->ha;
371 		read_lock_bh(&neigh->lock);
372 	} else if ((probes -= neigh->parms->app_probes) < 0) {
373 #ifdef CONFIG_ARPD
374 		neigh_app_ns(neigh);
375 #endif
376 		return;
377 	}
378 
379 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 		 dst_ha, dev->dev_addr, NULL);
381 	if (dst_ha)
382 		read_unlock_bh(&neigh->lock);
383 }
384 
385 static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
386 		      __be32 sip, __be32 tip)
387 {
388 	int scope;
389 
390 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
391 	case 0:	/* Reply, the tip is already validated */
392 		return 0;
393 	case 1:	/* Reply only if tip is configured on the incoming interface */
394 		sip = 0;
395 		scope = RT_SCOPE_HOST;
396 		break;
397 	case 2:	/*
398 		 * Reply only if tip is configured on the incoming interface
399 		 * and is in same subnet as sip
400 		 */
401 		scope = RT_SCOPE_HOST;
402 		break;
403 	case 3:	/* Do not reply for scope host addresses */
404 		sip = 0;
405 		scope = RT_SCOPE_LINK;
406 		dev = NULL;
407 		break;
408 	case 4:	/* Reserved */
409 	case 5:
410 	case 6:
411 	case 7:
412 		return 0;
413 	case 8:	/* Do not reply */
414 		return 1;
415 	default:
416 		return 0;
417 	}
418 	return !inet_confirm_addr(dev, sip, tip, scope);
419 }
420 
421 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
422 {
423 	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
424 						 .saddr = tip } } };
425 	struct rtable *rt;
426 	int flag = 0;
427 	/*unsigned long now; */
428 
429 	if (ip_route_output_key(&rt, &fl) < 0)
430 		return 1;
431 	if (rt->u.dst.dev != dev) {
432 		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
433 		flag = 1;
434 	}
435 	ip_rt_put(rt);
436 	return flag;
437 }
438 
439 /* OBSOLETE FUNCTIONS */
440 
441 /*
442  *	Find an arp mapping in the cache. If not found, post a request.
443  *
444  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
445  *	even if it exists. It is supposed that skb->dev was mangled
446  *	by a virtual device (eql, shaper). Nobody but broken devices
447  *	is allowed to use this function, it is scheduled to be removed. --ANK
448  */
449 
450 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
451 {
452 	switch (addr_hint) {
453 	case RTN_LOCAL:
454 		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
455 		memcpy(haddr, dev->dev_addr, dev->addr_len);
456 		return 1;
457 	case RTN_MULTICAST:
458 		arp_mc_map(paddr, haddr, dev, 1);
459 		return 1;
460 	case RTN_BROADCAST:
461 		memcpy(haddr, dev->broadcast, dev->addr_len);
462 		return 1;
463 	}
464 	return 0;
465 }
466 
467 
468 int arp_find(unsigned char *haddr, struct sk_buff *skb)
469 {
470 	struct net_device *dev = skb->dev;
471 	__be32 paddr;
472 	struct neighbour *n;
473 
474 	if (!skb->dst) {
475 		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
476 		kfree_skb(skb);
477 		return 1;
478 	}
479 
480 	paddr = ((struct rtable*)skb->dst)->rt_gateway;
481 
482 	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
483 		return 0;
484 
485 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
486 
487 	if (n) {
488 		n->used = jiffies;
489 		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
490 			read_lock_bh(&n->lock);
491 			memcpy(haddr, n->ha, dev->addr_len);
492 			read_unlock_bh(&n->lock);
493 			neigh_release(n);
494 			return 0;
495 		}
496 		neigh_release(n);
497 	} else
498 		kfree_skb(skb);
499 	return 1;
500 }
501 
502 /* END OF OBSOLETE FUNCTIONS */
503 
504 int arp_bind_neighbour(struct dst_entry *dst)
505 {
506 	struct net_device *dev = dst->dev;
507 	struct neighbour *n = dst->neighbour;
508 
509 	if (dev == NULL)
510 		return -EINVAL;
511 	if (n == NULL) {
512 		__be32 nexthop = ((struct rtable*)dst)->rt_gateway;
513 		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
514 			nexthop = 0;
515 		n = __neigh_lookup_errno(
516 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
517 		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
518 #endif
519 		    &arp_tbl, &nexthop, dev);
520 		if (IS_ERR(n))
521 			return PTR_ERR(n);
522 		dst->neighbour = n;
523 	}
524 	return 0;
525 }
526 
527 /*
528  * Check if we can use proxy ARP for this path
529  */
530 
531 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
532 {
533 	struct in_device *out_dev;
534 	int imi, omi = -1;
535 
536 	if (!IN_DEV_PROXY_ARP(in_dev))
537 		return 0;
538 
539 	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
540 		return 1;
541 	if (imi == -1)
542 		return 0;
543 
544 	/* place to check for proxy_arp for routes */
545 
546 	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
547 		omi = IN_DEV_MEDIUM_ID(out_dev);
548 		in_dev_put(out_dev);
549 	}
550 	return (omi != imi && omi != -1);
551 }
552 
553 /*
554  *	Interface to link layer: send routine and receive handler.
555  */
556 
557 /*
558  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
559  *	message.
560  */
561 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
562 			   struct net_device *dev, __be32 src_ip,
563 			   unsigned char *dest_hw, unsigned char *src_hw,
564 			   unsigned char *target_hw)
565 {
566 	struct sk_buff *skb;
567 	struct arphdr *arp;
568 	unsigned char *arp_ptr;
569 
570 	/*
571 	 *	Allocate a buffer
572 	 */
573 
574 	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
575 				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
576 	if (skb == NULL)
577 		return NULL;
578 
579 	skb_reserve(skb, LL_RESERVED_SPACE(dev));
580 	skb_reset_network_header(skb);
581 	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
582 	skb->dev = dev;
583 	skb->protocol = htons(ETH_P_ARP);
584 	if (src_hw == NULL)
585 		src_hw = dev->dev_addr;
586 	if (dest_hw == NULL)
587 		dest_hw = dev->broadcast;
588 
589 	/*
590 	 *	Fill the device header for the ARP frame
591 	 */
592 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
593 		goto out;
594 
595 	/*
596 	 * Fill out the arp protocol part.
597 	 *
598 	 * The arp hardware type should match the device type, except for FDDI,
599 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
600 	 */
601 	/*
602 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
603 	 *	DIX code for the protocol. Make these device structure fields.
604 	 */
605 	switch (dev->type) {
606 	default:
607 		arp->ar_hrd = htons(dev->type);
608 		arp->ar_pro = htons(ETH_P_IP);
609 		break;
610 
611 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
612 	case ARPHRD_AX25:
613 		arp->ar_hrd = htons(ARPHRD_AX25);
614 		arp->ar_pro = htons(AX25_P_IP);
615 		break;
616 
617 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
618 	case ARPHRD_NETROM:
619 		arp->ar_hrd = htons(ARPHRD_NETROM);
620 		arp->ar_pro = htons(AX25_P_IP);
621 		break;
622 #endif
623 #endif
624 
625 #ifdef CONFIG_FDDI
626 	case ARPHRD_FDDI:
627 		arp->ar_hrd = htons(ARPHRD_ETHER);
628 		arp->ar_pro = htons(ETH_P_IP);
629 		break;
630 #endif
631 #ifdef CONFIG_TR
632 	case ARPHRD_IEEE802_TR:
633 		arp->ar_hrd = htons(ARPHRD_IEEE802);
634 		arp->ar_pro = htons(ETH_P_IP);
635 		break;
636 #endif
637 	}
638 
639 	arp->ar_hln = dev->addr_len;
640 	arp->ar_pln = 4;
641 	arp->ar_op = htons(type);
642 
643 	arp_ptr=(unsigned char *)(arp+1);
644 
645 	memcpy(arp_ptr, src_hw, dev->addr_len);
646 	arp_ptr+=dev->addr_len;
647 	memcpy(arp_ptr, &src_ip,4);
648 	arp_ptr+=4;
649 	if (target_hw != NULL)
650 		memcpy(arp_ptr, target_hw, dev->addr_len);
651 	else
652 		memset(arp_ptr, 0, dev->addr_len);
653 	arp_ptr+=dev->addr_len;
654 	memcpy(arp_ptr, &dest_ip, 4);
655 
656 	return skb;
657 
658 out:
659 	kfree_skb(skb);
660 	return NULL;
661 }
662 
663 /*
664  *	Send an arp packet.
665  */
666 void arp_xmit(struct sk_buff *skb)
667 {
668 	/* Send it off, maybe filter it using firewalling first.  */
669 	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
670 }
671 
672 /*
673  *	Create and send an arp packet.
674  */
675 void arp_send(int type, int ptype, __be32 dest_ip,
676 	      struct net_device *dev, __be32 src_ip,
677 	      unsigned char *dest_hw, unsigned char *src_hw,
678 	      unsigned char *target_hw)
679 {
680 	struct sk_buff *skb;
681 
682 	/*
683 	 *	No arp on this interface.
684 	 */
685 
686 	if (dev->flags&IFF_NOARP)
687 		return;
688 
689 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
690 			 dest_hw, src_hw, target_hw);
691 	if (skb == NULL) {
692 		return;
693 	}
694 
695 	arp_xmit(skb);
696 }
697 
698 /*
699  *	Process an arp request.
700  */
701 
702 static int arp_process(struct sk_buff *skb)
703 {
704 	struct net_device *dev = skb->dev;
705 	struct in_device *in_dev = in_dev_get(dev);
706 	struct arphdr *arp;
707 	unsigned char *arp_ptr;
708 	struct rtable *rt;
709 	unsigned char *sha;
710 	__be32 sip, tip;
711 	u16 dev_type = dev->type;
712 	int addr_type;
713 	struct neighbour *n;
714 
715 	/* arp_rcv below verifies the ARP header and verifies the device
716 	 * is ARP'able.
717 	 */
718 
719 	if (in_dev == NULL)
720 		goto out;
721 
722 	arp = arp_hdr(skb);
723 
724 	switch (dev_type) {
725 	default:
726 		if (arp->ar_pro != htons(ETH_P_IP) ||
727 		    htons(dev_type) != arp->ar_hrd)
728 			goto out;
729 		break;
730 	case ARPHRD_ETHER:
731 	case ARPHRD_IEEE802_TR:
732 	case ARPHRD_FDDI:
733 	case ARPHRD_IEEE802:
734 		/*
735 		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
736 		 * devices, according to RFC 2625) devices will accept ARP
737 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
738 		 * This is the case also of FDDI, where the RFC 1390 says that
739 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
740 		 * however, to be more robust, we'll accept both 1 (Ethernet)
741 		 * or 6 (IEEE 802.2)
742 		 */
743 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
744 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
745 		    arp->ar_pro != htons(ETH_P_IP))
746 			goto out;
747 		break;
748 	case ARPHRD_AX25:
749 		if (arp->ar_pro != htons(AX25_P_IP) ||
750 		    arp->ar_hrd != htons(ARPHRD_AX25))
751 			goto out;
752 		break;
753 	case ARPHRD_NETROM:
754 		if (arp->ar_pro != htons(AX25_P_IP) ||
755 		    arp->ar_hrd != htons(ARPHRD_NETROM))
756 			goto out;
757 		break;
758 	}
759 
760 	/* Understand only these message types */
761 
762 	if (arp->ar_op != htons(ARPOP_REPLY) &&
763 	    arp->ar_op != htons(ARPOP_REQUEST))
764 		goto out;
765 
766 /*
767  *	Extract fields
768  */
769 	arp_ptr= (unsigned char *)(arp+1);
770 	sha	= arp_ptr;
771 	arp_ptr += dev->addr_len;
772 	memcpy(&sip, arp_ptr, 4);
773 	arp_ptr += 4;
774 	arp_ptr += dev->addr_len;
775 	memcpy(&tip, arp_ptr, 4);
776 /*
777  *	Check for bad requests for 127.x.x.x and requests for multicast
778  *	addresses.  If this is one such, delete it.
779  */
780 	if (LOOPBACK(tip) || MULTICAST(tip))
781 		goto out;
782 
783 /*
784  *     Special case: We must set Frame Relay source Q.922 address
785  */
786 	if (dev_type == ARPHRD_DLCI)
787 		sha = dev->broadcast;
788 
789 /*
790  *  Process entry.  The idea here is we want to send a reply if it is a
791  *  request for us or if it is a request for someone else that we hold
792  *  a proxy for.  We want to add an entry to our cache if it is a reply
793  *  to us or if it is a request for our address.
794  *  (The assumption for this last is that if someone is requesting our
795  *  address, they are probably intending to talk to us, so it saves time
796  *  if we cache their address.  Their address is also probably not in
797  *  our cache, since ours is not in their cache.)
798  *
799  *  Putting this another way, we only care about replies if they are to
800  *  us, in which case we add them to the cache.  For requests, we care
801  *  about those for us and those for our proxies.  We reply to both,
802  *  and in the case of requests for us we add the requester to the arp
803  *  cache.
804  */
805 
806 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
807 	if (sip == 0) {
808 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
809 		    inet_addr_type(tip) == RTN_LOCAL &&
810 		    !arp_ignore(in_dev,dev,sip,tip))
811 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
812 				 dev->dev_addr, sha);
813 		goto out;
814 	}
815 
816 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
817 	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
818 
819 		rt = (struct rtable*)skb->dst;
820 		addr_type = rt->rt_type;
821 
822 		if (addr_type == RTN_LOCAL) {
823 			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
824 			if (n) {
825 				int dont_send = 0;
826 
827 				if (!dont_send)
828 					dont_send |= arp_ignore(in_dev,dev,sip,tip);
829 				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
830 					dont_send |= arp_filter(sip,tip,dev);
831 				if (!dont_send)
832 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
833 
834 				neigh_release(n);
835 			}
836 			goto out;
837 		} else if (IN_DEV_FORWARD(in_dev)) {
838 			if ((rt->rt_flags&RTCF_DNAT) ||
839 			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
840 			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
841 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
842 				if (n)
843 					neigh_release(n);
844 
845 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
846 				    skb->pkt_type == PACKET_HOST ||
847 				    in_dev->arp_parms->proxy_delay == 0) {
848 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
849 				} else {
850 					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
851 					in_dev_put(in_dev);
852 					return 0;
853 				}
854 				goto out;
855 			}
856 		}
857 	}
858 
859 	/* Update our ARP tables */
860 
861 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
862 
863 	if (IPV4_DEVCONF_ALL(ARP_ACCEPT)) {
864 		/* Unsolicited ARP is not accepted by default.
865 		   It is possible, that this option should be enabled for some
866 		   devices (strip is candidate)
867 		 */
868 		if (n == NULL &&
869 		    arp->ar_op == htons(ARPOP_REPLY) &&
870 		    inet_addr_type(sip) == RTN_UNICAST)
871 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
872 	}
873 
874 	if (n) {
875 		int state = NUD_REACHABLE;
876 		int override;
877 
878 		/* If several different ARP replies follows back-to-back,
879 		   use the FIRST one. It is possible, if several proxy
880 		   agents are active. Taking the first reply prevents
881 		   arp trashing and chooses the fastest router.
882 		 */
883 		override = time_after(jiffies, n->updated + n->parms->locktime);
884 
885 		/* Broadcast replies and request packets
886 		   do not assert neighbour reachability.
887 		 */
888 		if (arp->ar_op != htons(ARPOP_REPLY) ||
889 		    skb->pkt_type != PACKET_HOST)
890 			state = NUD_STALE;
891 		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
892 		neigh_release(n);
893 	}
894 
895 out:
896 	if (in_dev)
897 		in_dev_put(in_dev);
898 	kfree_skb(skb);
899 	return 0;
900 }
901 
902 static void parp_redo(struct sk_buff *skb)
903 {
904 	arp_process(skb);
905 }
906 
907 
908 /*
909  *	Receive an arp request from the device layer.
910  */
911 
912 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
913 		   struct packet_type *pt, struct net_device *orig_dev)
914 {
915 	struct arphdr *arp;
916 
917 	if (dev->nd_net != &init_net)
918 		goto freeskb;
919 
920 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
921 	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
922 				 (2 * dev->addr_len) +
923 				 (2 * sizeof(u32)))))
924 		goto freeskb;
925 
926 	arp = arp_hdr(skb);
927 	if (arp->ar_hln != dev->addr_len ||
928 	    dev->flags & IFF_NOARP ||
929 	    skb->pkt_type == PACKET_OTHERHOST ||
930 	    skb->pkt_type == PACKET_LOOPBACK ||
931 	    arp->ar_pln != 4)
932 		goto freeskb;
933 
934 	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
935 		goto out_of_mem;
936 
937 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
938 
939 	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
940 
941 freeskb:
942 	kfree_skb(skb);
943 out_of_mem:
944 	return 0;
945 }
946 
947 /*
948  *	User level interface (ioctl)
949  */
950 
951 /*
952  *	Set (create) an ARP cache entry.
953  */
954 
955 static int arp_req_set(struct arpreq *r, struct net_device * dev)
956 {
957 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
958 	struct neighbour *neigh;
959 	int err;
960 
961 	if (r->arp_flags&ATF_PUBL) {
962 		__be32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
963 		if (mask && mask != htonl(0xFFFFFFFF))
964 			return -EINVAL;
965 		if (!dev && (r->arp_flags & ATF_COM)) {
966 			dev = dev_getbyhwaddr(&init_net, r->arp_ha.sa_family, r->arp_ha.sa_data);
967 			if (!dev)
968 				return -ENODEV;
969 		}
970 		if (mask) {
971 			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
972 				return -ENOBUFS;
973 			return 0;
974 		}
975 		if (dev == NULL) {
976 			IPV4_DEVCONF_ALL(PROXY_ARP) = 1;
977 			return 0;
978 		}
979 		if (__in_dev_get_rtnl(dev)) {
980 			IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, 1);
981 			return 0;
982 		}
983 		return -ENXIO;
984 	}
985 
986 	if (r->arp_flags & ATF_PERM)
987 		r->arp_flags |= ATF_COM;
988 	if (dev == NULL) {
989 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
990 							 .tos = RTO_ONLINK } } };
991 		struct rtable * rt;
992 		if ((err = ip_route_output_key(&rt, &fl)) != 0)
993 			return err;
994 		dev = rt->u.dst.dev;
995 		ip_rt_put(rt);
996 		if (!dev)
997 			return -EINVAL;
998 	}
999 	switch (dev->type) {
1000 #ifdef CONFIG_FDDI
1001 	case ARPHRD_FDDI:
1002 		/*
1003 		 * According to RFC 1390, FDDI devices should accept ARP
1004 		 * hardware types of 1 (Ethernet).  However, to be more
1005 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1006 		 * or 6 (IEEE 802.2).
1007 		 */
1008 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1009 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1010 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1011 			return -EINVAL;
1012 		break;
1013 #endif
1014 	default:
1015 		if (r->arp_ha.sa_family != dev->type)
1016 			return -EINVAL;
1017 		break;
1018 	}
1019 
1020 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1021 	err = PTR_ERR(neigh);
1022 	if (!IS_ERR(neigh)) {
1023 		unsigned state = NUD_STALE;
1024 		if (r->arp_flags & ATF_PERM)
1025 			state = NUD_PERMANENT;
1026 		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1027 				   r->arp_ha.sa_data : NULL, state,
1028 				   NEIGH_UPDATE_F_OVERRIDE|
1029 				   NEIGH_UPDATE_F_ADMIN);
1030 		neigh_release(neigh);
1031 	}
1032 	return err;
1033 }
1034 
1035 static unsigned arp_state_to_flags(struct neighbour *neigh)
1036 {
1037 	unsigned flags = 0;
1038 	if (neigh->nud_state&NUD_PERMANENT)
1039 		flags = ATF_PERM|ATF_COM;
1040 	else if (neigh->nud_state&NUD_VALID)
1041 		flags = ATF_COM;
1042 	return flags;
1043 }
1044 
1045 /*
1046  *	Get an ARP cache entry.
1047  */
1048 
1049 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1050 {
1051 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1052 	struct neighbour *neigh;
1053 	int err = -ENXIO;
1054 
1055 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1056 	if (neigh) {
1057 		read_lock_bh(&neigh->lock);
1058 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1059 		r->arp_flags = arp_state_to_flags(neigh);
1060 		read_unlock_bh(&neigh->lock);
1061 		r->arp_ha.sa_family = dev->type;
1062 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1063 		neigh_release(neigh);
1064 		err = 0;
1065 	}
1066 	return err;
1067 }
1068 
1069 static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1070 {
1071 	int err;
1072 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1073 	struct neighbour *neigh;
1074 
1075 	if (r->arp_flags & ATF_PUBL) {
1076 		__be32 mask =
1077 		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1078 		if (mask == htonl(0xFFFFFFFF))
1079 			return pneigh_delete(&arp_tbl, &ip, dev);
1080 		if (mask == 0) {
1081 			if (dev == NULL) {
1082 				IPV4_DEVCONF_ALL(PROXY_ARP) = 0;
1083 				return 0;
1084 			}
1085 			if (__in_dev_get_rtnl(dev)) {
1086 				IN_DEV_CONF_SET(__in_dev_get_rtnl(dev),
1087 						PROXY_ARP, 0);
1088 				return 0;
1089 			}
1090 			return -ENXIO;
1091 		}
1092 		return -EINVAL;
1093 	}
1094 
1095 	if (dev == NULL) {
1096 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1097 							 .tos = RTO_ONLINK } } };
1098 		struct rtable * rt;
1099 		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1100 			return err;
1101 		dev = rt->u.dst.dev;
1102 		ip_rt_put(rt);
1103 		if (!dev)
1104 			return -EINVAL;
1105 	}
1106 	err = -ENXIO;
1107 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1108 	if (neigh) {
1109 		if (neigh->nud_state&~NUD_NOARP)
1110 			err = neigh_update(neigh, NULL, NUD_FAILED,
1111 					   NEIGH_UPDATE_F_OVERRIDE|
1112 					   NEIGH_UPDATE_F_ADMIN);
1113 		neigh_release(neigh);
1114 	}
1115 	return err;
1116 }
1117 
1118 /*
1119  *	Handle an ARP layer I/O control request.
1120  */
1121 
1122 int arp_ioctl(unsigned int cmd, void __user *arg)
1123 {
1124 	int err;
1125 	struct arpreq r;
1126 	struct net_device *dev = NULL;
1127 
1128 	switch (cmd) {
1129 		case SIOCDARP:
1130 		case SIOCSARP:
1131 			if (!capable(CAP_NET_ADMIN))
1132 				return -EPERM;
1133 		case SIOCGARP:
1134 			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1135 			if (err)
1136 				return -EFAULT;
1137 			break;
1138 		default:
1139 			return -EINVAL;
1140 	}
1141 
1142 	if (r.arp_pa.sa_family != AF_INET)
1143 		return -EPFNOSUPPORT;
1144 
1145 	if (!(r.arp_flags & ATF_PUBL) &&
1146 	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1147 		return -EINVAL;
1148 	if (!(r.arp_flags & ATF_NETMASK))
1149 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1150 							   htonl(0xFFFFFFFFUL);
1151 	rtnl_lock();
1152 	if (r.arp_dev[0]) {
1153 		err = -ENODEV;
1154 		if ((dev = __dev_get_by_name(&init_net, r.arp_dev)) == NULL)
1155 			goto out;
1156 
1157 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1158 		if (!r.arp_ha.sa_family)
1159 			r.arp_ha.sa_family = dev->type;
1160 		err = -EINVAL;
1161 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1162 			goto out;
1163 	} else if (cmd == SIOCGARP) {
1164 		err = -ENODEV;
1165 		goto out;
1166 	}
1167 
1168 	switch (cmd) {
1169 	case SIOCDARP:
1170 		err = arp_req_delete(&r, dev);
1171 		break;
1172 	case SIOCSARP:
1173 		err = arp_req_set(&r, dev);
1174 		break;
1175 	case SIOCGARP:
1176 		err = arp_req_get(&r, dev);
1177 		if (!err && copy_to_user(arg, &r, sizeof(r)))
1178 			err = -EFAULT;
1179 		break;
1180 	}
1181 out:
1182 	rtnl_unlock();
1183 	return err;
1184 }
1185 
1186 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1187 {
1188 	struct net_device *dev = ptr;
1189 
1190 	if (dev->nd_net != &init_net)
1191 		return NOTIFY_DONE;
1192 
1193 	switch (event) {
1194 	case NETDEV_CHANGEADDR:
1195 		neigh_changeaddr(&arp_tbl, dev);
1196 		rt_cache_flush(0);
1197 		break;
1198 	default:
1199 		break;
1200 	}
1201 
1202 	return NOTIFY_DONE;
1203 }
1204 
1205 static struct notifier_block arp_netdev_notifier = {
1206 	.notifier_call = arp_netdev_event,
1207 };
1208 
1209 /* Note, that it is not on notifier chain.
1210    It is necessary, that this routine was called after route cache will be
1211    flushed.
1212  */
1213 void arp_ifdown(struct net_device *dev)
1214 {
1215 	neigh_ifdown(&arp_tbl, dev);
1216 }
1217 
1218 
1219 /*
1220  *	Called once on startup.
1221  */
1222 
1223 static struct packet_type arp_packet_type = {
1224 	.type =	__constant_htons(ETH_P_ARP),
1225 	.func =	arp_rcv,
1226 };
1227 
1228 static int arp_proc_init(void);
1229 
1230 void __init arp_init(void)
1231 {
1232 	neigh_table_init(&arp_tbl);
1233 
1234 	dev_add_pack(&arp_packet_type);
1235 	arp_proc_init();
1236 #ifdef CONFIG_SYSCTL
1237 	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1238 			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1239 #endif
1240 	register_netdevice_notifier(&arp_netdev_notifier);
1241 }
1242 
1243 #ifdef CONFIG_PROC_FS
1244 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1245 
1246 /* ------------------------------------------------------------------------ */
1247 /*
1248  *	ax25 -> ASCII conversion
1249  */
1250 static char *ax2asc2(ax25_address *a, char *buf)
1251 {
1252 	char c, *s;
1253 	int n;
1254 
1255 	for (n = 0, s = buf; n < 6; n++) {
1256 		c = (a->ax25_call[n] >> 1) & 0x7F;
1257 
1258 		if (c != ' ') *s++ = c;
1259 	}
1260 
1261 	*s++ = '-';
1262 
1263 	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1264 		*s++ = '1';
1265 		n -= 10;
1266 	}
1267 
1268 	*s++ = n + '0';
1269 	*s++ = '\0';
1270 
1271 	if (*buf == '\0' || *buf == '-')
1272 	   return "*";
1273 
1274 	return buf;
1275 
1276 }
1277 #endif /* CONFIG_AX25 */
1278 
1279 #define HBUFFERLEN 30
1280 
1281 static void arp_format_neigh_entry(struct seq_file *seq,
1282 				   struct neighbour *n)
1283 {
1284 	char hbuffer[HBUFFERLEN];
1285 	const char hexbuf[] = "0123456789ABCDEF";
1286 	int k, j;
1287 	char tbuf[16];
1288 	struct net_device *dev = n->dev;
1289 	int hatype = dev->type;
1290 
1291 	read_lock(&n->lock);
1292 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1293 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1294 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1295 		ax2asc2((ax25_address *)n->ha, hbuffer);
1296 	else {
1297 #endif
1298 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1299 		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1300 		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1301 		hbuffer[k++] = ':';
1302 	}
1303 	hbuffer[--k] = 0;
1304 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1305 	}
1306 #endif
1307 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1308 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1309 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1310 	read_unlock(&n->lock);
1311 }
1312 
1313 static void arp_format_pneigh_entry(struct seq_file *seq,
1314 				    struct pneigh_entry *n)
1315 {
1316 	struct net_device *dev = n->dev;
1317 	int hatype = dev ? dev->type : 0;
1318 	char tbuf[16];
1319 
1320 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1321 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1322 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1323 		   dev ? dev->name : "*");
1324 }
1325 
1326 static int arp_seq_show(struct seq_file *seq, void *v)
1327 {
1328 	if (v == SEQ_START_TOKEN) {
1329 		seq_puts(seq, "IP address       HW type     Flags       "
1330 			      "HW address            Mask     Device\n");
1331 	} else {
1332 		struct neigh_seq_state *state = seq->private;
1333 
1334 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1335 			arp_format_pneigh_entry(seq, v);
1336 		else
1337 			arp_format_neigh_entry(seq, v);
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1344 {
1345 	/* Don't want to confuse "arp -a" w/ magic entries,
1346 	 * so we tell the generic iterator to skip NUD_NOARP.
1347 	 */
1348 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1349 }
1350 
1351 /* ------------------------------------------------------------------------ */
1352 
1353 static const struct seq_operations arp_seq_ops = {
1354 	.start  = arp_seq_start,
1355 	.next   = neigh_seq_next,
1356 	.stop   = neigh_seq_stop,
1357 	.show   = arp_seq_show,
1358 };
1359 
1360 static int arp_seq_open(struct inode *inode, struct file *file)
1361 {
1362 	return seq_open_private(file, &arp_seq_ops,
1363 			sizeof(struct neigh_seq_state));
1364 }
1365 
1366 static const struct file_operations arp_seq_fops = {
1367 	.owner		= THIS_MODULE,
1368 	.open           = arp_seq_open,
1369 	.read           = seq_read,
1370 	.llseek         = seq_lseek,
1371 	.release	= seq_release_private,
1372 };
1373 
1374 static int __init arp_proc_init(void)
1375 {
1376 	if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1377 		return -ENOMEM;
1378 	return 0;
1379 }
1380 
1381 #else /* CONFIG_PROC_FS */
1382 
1383 static int __init arp_proc_init(void)
1384 {
1385 	return 0;
1386 }
1387 
1388 #endif /* CONFIG_PROC_FS */
1389 
1390 EXPORT_SYMBOL(arp_broken_ops);
1391 EXPORT_SYMBOL(arp_find);
1392 EXPORT_SYMBOL(arp_create);
1393 EXPORT_SYMBOL(arp_xmit);
1394 EXPORT_SYMBOL(arp_send);
1395 EXPORT_SYMBOL(arp_tbl);
1396 
1397 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1398 EXPORT_SYMBOL(clip_tbl_hook);
1399 #endif
1400