xref: /linux/net/ipv4/arp.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* linux/net/ipv4/arp.c
3  *
4  * Copyright (C) 1994 by Florian  La Roche
5  *
6  * This module implements the Address Resolution Protocol ARP (RFC 826),
7  * which is used to convert IP addresses (or in the future maybe other
8  * high-level addresses) into a low-level hardware address (like an Ethernet
9  * address).
10  *
11  * Fixes:
12  *		Alan Cox	:	Removed the Ethernet assumptions in
13  *					Florian's code
14  *		Alan Cox	:	Fixed some small errors in the ARP
15  *					logic
16  *		Alan Cox	:	Allow >4K in /proc
17  *		Alan Cox	:	Make ARP add its own protocol entry
18  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19  *		Stephen Henson	:	Add AX25 support to arp_get_info()
20  *		Alan Cox	:	Drop data when a device is downed.
21  *		Alan Cox	:	Use init_timer().
22  *		Alan Cox	:	Double lock fixes.
23  *		Martin Seine	:	Move the arphdr structure
24  *					to if_arp.h for compatibility.
25  *					with BSD based programs.
26  *		Andrew Tridgell :       Added ARP netmask code and
27  *					re-arranged proxy handling.
28  *		Alan Cox	:	Changed to use notifiers.
29  *		Niibe Yutaka	:	Reply for this device or proxies only.
30  *		Alan Cox	:	Don't proxy across hardware types!
31  *		Jonathan Naylor :	Added support for NET/ROM.
32  *		Mike Shaver     :       RFC1122 checks.
33  *		Jonathan Naylor :	Only lookup the hardware address for
34  *					the correct hardware type.
35  *		Germano Caronni	:	Assorted subtle races.
36  *		Craig Schlenter :	Don't modify permanent entry
37  *					during arp_rcv.
38  *		Russ Nelson	:	Tidied up a few bits.
39  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40  *					eg intelligent arp probing and
41  *					generation
42  *					of host down events.
43  *		Alan Cox	:	Missing unlock in device events.
44  *		Eckes		:	ARP ioctl control errors.
45  *		Alexey Kuznetsov:	Arp free fix.
46  *		Manuel Rodriguez:	Gratuitous ARP.
47  *              Jonathan Layes  :       Added arpd support through kerneld
48  *                                      message queue (960314)
49  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50  *		Mike McLagan    :	Routing by source
51  *		Stuart Cheshire	:	Metricom and grat arp fixes
52  *					*** FOR 2.1 clean this up ***
53  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55  *					folded into the mainstream FDDI code.
56  *					Ack spit, Linus how did you allow that
57  *					one in...
58  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59  *					clean up the APFDDI & gen. FDDI bits.
60  *		Alexey Kuznetsov:	new arp state machine;
61  *					now it is in net/core/neighbour.c.
62  *		Krzysztof Halasa:	Added Frame Relay ARP support.
63  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64  *		Shmulik Hen:		Split arp_send to arp_create and
65  *					arp_xmit so intermediate drivers like
66  *					bonding can change the skb before
67  *					sending (e.g. insert 8021q tag).
68  *		Harald Welte	:	convert to make use of jenkins hash
69  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70  */
71 
72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 
74 #include <linux/module.h>
75 #include <linux/types.h>
76 #include <linux/string.h>
77 #include <linux/kernel.h>
78 #include <linux/capability.h>
79 #include <linux/socket.h>
80 #include <linux/sockios.h>
81 #include <linux/errno.h>
82 #include <linux/in.h>
83 #include <linux/mm.h>
84 #include <linux/inet.h>
85 #include <linux/inetdevice.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/fddidevice.h>
89 #include <linux/if_arp.h>
90 #include <linux/skbuff.h>
91 #include <linux/proc_fs.h>
92 #include <linux/seq_file.h>
93 #include <linux/stat.h>
94 #include <linux/init.h>
95 #include <linux/net.h>
96 #include <linux/rcupdate.h>
97 #include <linux/slab.h>
98 #ifdef CONFIG_SYSCTL
99 #include <linux/sysctl.h>
100 #endif
101 
102 #include <net/net_namespace.h>
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #include <net/ax25.h>
111 #include <net/netrom.h>
112 #include <net/dst_metadata.h>
113 #include <net/ip_tunnels.h>
114 
115 #include <linux/uaccess.h>
116 
117 #include <linux/netfilter_arp.h>
118 
119 /*
120  *	Interface to generic neighbour cache.
121  */
122 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128 static int arp_is_multicast(const void *pkey);
129 
130 static const struct neigh_ops arp_generic_ops = {
131 	.family =		AF_INET,
132 	.solicit =		arp_solicit,
133 	.error_report =		arp_error_report,
134 	.output =		neigh_resolve_output,
135 	.connected_output =	neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139 	.family =		AF_INET,
140 	.solicit =		arp_solicit,
141 	.error_report =		arp_error_report,
142 	.output =		neigh_resolve_output,
143 	.connected_output =	neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147 	.family =		AF_INET,
148 	.output =		neigh_direct_output,
149 	.connected_output =	neigh_direct_output,
150 };
151 
152 struct neigh_table arp_tbl = {
153 	.family		= AF_INET,
154 	.key_len	= 4,
155 	.protocol	= cpu_to_be16(ETH_P_IP),
156 	.hash		= arp_hash,
157 	.key_eq		= arp_key_eq,
158 	.constructor	= arp_constructor,
159 	.proxy_redo	= parp_redo,
160 	.is_multicast	= arp_is_multicast,
161 	.id		= "arp_cache",
162 	.parms		= {
163 		.tbl			= &arp_tbl,
164 		.reachable_time		= 30 * HZ,
165 		.data	= {
166 			[NEIGH_VAR_MCAST_PROBES] = 3,
167 			[NEIGH_VAR_UCAST_PROBES] = 3,
168 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
173 			[NEIGH_VAR_PROXY_QLEN] = 64,
174 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
176 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 		},
178 	},
179 	.gc_interval	= 30 * HZ,
180 	.gc_thresh1	= 128,
181 	.gc_thresh2	= 512,
182 	.gc_thresh3	= 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185 
186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 	switch (dev->type) {
189 	case ARPHRD_ETHER:
190 	case ARPHRD_FDDI:
191 	case ARPHRD_IEEE802:
192 		ip_eth_mc_map(addr, haddr);
193 		return 0;
194 	case ARPHRD_INFINIBAND:
195 		ip_ib_mc_map(addr, dev->broadcast, haddr);
196 		return 0;
197 	case ARPHRD_IPGRE:
198 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 		return 0;
200 	default:
201 		if (dir) {
202 			memcpy(haddr, dev->broadcast, dev->addr_len);
203 			return 0;
204 		}
205 	}
206 	return -EINVAL;
207 }
208 
209 
210 static u32 arp_hash(const void *pkey,
211 		    const struct net_device *dev,
212 		    __u32 *hash_rnd)
213 {
214 	return arp_hashfn(pkey, dev, hash_rnd);
215 }
216 
217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 	return neigh_key_eq32(neigh, pkey);
220 }
221 
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 	__be32 addr;
225 	struct net_device *dev = neigh->dev;
226 	struct in_device *in_dev;
227 	struct neigh_parms *parms;
228 	u32 inaddr_any = INADDR_ANY;
229 
230 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
231 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
232 
233 	addr = *(__be32 *)neigh->primary_key;
234 	rcu_read_lock();
235 	in_dev = __in_dev_get_rcu(dev);
236 	if (!in_dev) {
237 		rcu_read_unlock();
238 		return -EINVAL;
239 	}
240 
241 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
242 
243 	parms = in_dev->arp_parms;
244 	__neigh_parms_put(neigh->parms);
245 	neigh->parms = neigh_parms_clone(parms);
246 	rcu_read_unlock();
247 
248 	if (!dev->header_ops) {
249 		neigh->nud_state = NUD_NOARP;
250 		neigh->ops = &arp_direct_ops;
251 		neigh->output = neigh_direct_output;
252 	} else {
253 		/* Good devices (checked by reading texts, but only Ethernet is
254 		   tested)
255 
256 		   ARPHRD_ETHER: (ethernet, apfddi)
257 		   ARPHRD_FDDI: (fddi)
258 		   ARPHRD_IEEE802: (tr)
259 		   ARPHRD_METRICOM: (strip)
260 		   ARPHRD_ARCNET:
261 		   etc. etc. etc.
262 
263 		   ARPHRD_IPDDP will also work, if author repairs it.
264 		   I did not it, because this driver does not work even
265 		   in old paradigm.
266 		 */
267 
268 		if (neigh->type == RTN_MULTICAST) {
269 			neigh->nud_state = NUD_NOARP;
270 			arp_mc_map(addr, neigh->ha, dev, 1);
271 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
272 			neigh->nud_state = NUD_NOARP;
273 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
274 		} else if (neigh->type == RTN_BROADCAST ||
275 			   (dev->flags & IFF_POINTOPOINT)) {
276 			neigh->nud_state = NUD_NOARP;
277 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
278 		}
279 
280 		if (dev->header_ops->cache)
281 			neigh->ops = &arp_hh_ops;
282 		else
283 			neigh->ops = &arp_generic_ops;
284 
285 		if (neigh->nud_state & NUD_VALID)
286 			neigh->output = neigh->ops->connected_output;
287 		else
288 			neigh->output = neigh->ops->output;
289 	}
290 	return 0;
291 }
292 
293 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
294 {
295 	dst_link_failure(skb);
296 	kfree_skb(skb);
297 }
298 
299 /* Create and send an arp packet. */
300 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
301 			 struct net_device *dev, __be32 src_ip,
302 			 const unsigned char *dest_hw,
303 			 const unsigned char *src_hw,
304 			 const unsigned char *target_hw,
305 			 struct dst_entry *dst)
306 {
307 	struct sk_buff *skb;
308 
309 	/* arp on this interface. */
310 	if (dev->flags & IFF_NOARP)
311 		return;
312 
313 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
314 			 dest_hw, src_hw, target_hw);
315 	if (!skb)
316 		return;
317 
318 	skb_dst_set(skb, dst_clone(dst));
319 	arp_xmit(skb);
320 }
321 
322 void arp_send(int type, int ptype, __be32 dest_ip,
323 	      struct net_device *dev, __be32 src_ip,
324 	      const unsigned char *dest_hw, const unsigned char *src_hw,
325 	      const unsigned char *target_hw)
326 {
327 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
328 		     target_hw, NULL);
329 }
330 EXPORT_SYMBOL(arp_send);
331 
332 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333 {
334 	__be32 saddr = 0;
335 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
336 	struct net_device *dev = neigh->dev;
337 	__be32 target = *(__be32 *)neigh->primary_key;
338 	int probes = atomic_read(&neigh->probes);
339 	struct in_device *in_dev;
340 	struct dst_entry *dst = NULL;
341 
342 	rcu_read_lock();
343 	in_dev = __in_dev_get_rcu(dev);
344 	if (!in_dev) {
345 		rcu_read_unlock();
346 		return;
347 	}
348 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
349 	default:
350 	case 0:		/* By default announce any local IP */
351 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
352 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
353 			saddr = ip_hdr(skb)->saddr;
354 		break;
355 	case 1:		/* Restrict announcements of saddr in same subnet */
356 		if (!skb)
357 			break;
358 		saddr = ip_hdr(skb)->saddr;
359 		if (inet_addr_type_dev_table(dev_net(dev), dev,
360 					     saddr) == RTN_LOCAL) {
361 			/* saddr should be known to target */
362 			if (inet_addr_onlink(in_dev, target, saddr))
363 				break;
364 		}
365 		saddr = 0;
366 		break;
367 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
368 		break;
369 	}
370 	rcu_read_unlock();
371 
372 	if (!saddr)
373 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
374 
375 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
376 	if (probes < 0) {
377 		if (!(neigh->nud_state & NUD_VALID))
378 			pr_debug("trying to ucast probe in NUD_INVALID\n");
379 		neigh_ha_snapshot(dst_ha, neigh, dev);
380 		dst_hw = dst_ha;
381 	} else {
382 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
383 		if (probes < 0) {
384 			neigh_app_ns(neigh);
385 			return;
386 		}
387 	}
388 
389 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
390 		dst = skb_dst(skb);
391 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
392 		     dst_hw, dev->dev_addr, NULL, dst);
393 }
394 
395 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
396 {
397 	struct net *net = dev_net(in_dev->dev);
398 	int scope;
399 
400 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
401 	case 0:	/* Reply, the tip is already validated */
402 		return 0;
403 	case 1:	/* Reply only if tip is configured on the incoming interface */
404 		sip = 0;
405 		scope = RT_SCOPE_HOST;
406 		break;
407 	case 2:	/*
408 		 * Reply only if tip is configured on the incoming interface
409 		 * and is in same subnet as sip
410 		 */
411 		scope = RT_SCOPE_HOST;
412 		break;
413 	case 3:	/* Do not reply for scope host addresses */
414 		sip = 0;
415 		scope = RT_SCOPE_LINK;
416 		in_dev = NULL;
417 		break;
418 	case 4:	/* Reserved */
419 	case 5:
420 	case 6:
421 	case 7:
422 		return 0;
423 	case 8:	/* Do not reply */
424 		return 1;
425 	default:
426 		return 0;
427 	}
428 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
429 }
430 
431 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
432 {
433 	struct rtable *rt;
434 	int flag = 0;
435 	/*unsigned long now; */
436 	struct net *net = dev_net(dev);
437 
438 	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
439 	if (IS_ERR(rt))
440 		return 1;
441 	if (rt->dst.dev != dev) {
442 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
443 		flag = 1;
444 	}
445 	ip_rt_put(rt);
446 	return flag;
447 }
448 
449 /*
450  * Check if we can use proxy ARP for this path
451  */
452 static inline int arp_fwd_proxy(struct in_device *in_dev,
453 				struct net_device *dev,	struct rtable *rt)
454 {
455 	struct in_device *out_dev;
456 	int imi, omi = -1;
457 
458 	if (rt->dst.dev == dev)
459 		return 0;
460 
461 	if (!IN_DEV_PROXY_ARP(in_dev))
462 		return 0;
463 	imi = IN_DEV_MEDIUM_ID(in_dev);
464 	if (imi == 0)
465 		return 1;
466 	if (imi == -1)
467 		return 0;
468 
469 	/* place to check for proxy_arp for routes */
470 
471 	out_dev = __in_dev_get_rcu(rt->dst.dev);
472 	if (out_dev)
473 		omi = IN_DEV_MEDIUM_ID(out_dev);
474 
475 	return omi != imi && omi != -1;
476 }
477 
478 /*
479  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
480  *
481  * RFC3069 supports proxy arp replies back to the same interface.  This
482  * is done to support (ethernet) switch features, like RFC 3069, where
483  * the individual ports are not allowed to communicate with each
484  * other, BUT they are allowed to talk to the upstream router.  As
485  * described in RFC 3069, it is possible to allow these hosts to
486  * communicate through the upstream router, by proxy_arp'ing.
487  *
488  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
489  *
490  *  This technology is known by different names:
491  *    In RFC 3069 it is called VLAN Aggregation.
492  *    Cisco and Allied Telesyn call it Private VLAN.
493  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
494  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
495  *
496  */
497 static inline int arp_fwd_pvlan(struct in_device *in_dev,
498 				struct net_device *dev,	struct rtable *rt,
499 				__be32 sip, __be32 tip)
500 {
501 	/* Private VLAN is only concerned about the same ethernet segment */
502 	if (rt->dst.dev != dev)
503 		return 0;
504 
505 	/* Don't reply on self probes (often done by windowz boxes)*/
506 	if (sip == tip)
507 		return 0;
508 
509 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
510 		return 1;
511 	else
512 		return 0;
513 }
514 
515 /*
516  *	Interface to link layer: send routine and receive handler.
517  */
518 
519 /*
520  *	Create an arp packet. If dest_hw is not set, we create a broadcast
521  *	message.
522  */
523 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
524 			   struct net_device *dev, __be32 src_ip,
525 			   const unsigned char *dest_hw,
526 			   const unsigned char *src_hw,
527 			   const unsigned char *target_hw)
528 {
529 	struct sk_buff *skb;
530 	struct arphdr *arp;
531 	unsigned char *arp_ptr;
532 	int hlen = LL_RESERVED_SPACE(dev);
533 	int tlen = dev->needed_tailroom;
534 
535 	/*
536 	 *	Allocate a buffer
537 	 */
538 
539 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
540 	if (!skb)
541 		return NULL;
542 
543 	skb_reserve(skb, hlen);
544 	skb_reset_network_header(skb);
545 	arp = skb_put(skb, arp_hdr_len(dev));
546 	skb->dev = dev;
547 	skb->protocol = htons(ETH_P_ARP);
548 	if (!src_hw)
549 		src_hw = dev->dev_addr;
550 	if (!dest_hw)
551 		dest_hw = dev->broadcast;
552 
553 	/*
554 	 *	Fill the device header for the ARP frame
555 	 */
556 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
557 		goto out;
558 
559 	/*
560 	 * Fill out the arp protocol part.
561 	 *
562 	 * The arp hardware type should match the device type, except for FDDI,
563 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
564 	 */
565 	/*
566 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
567 	 *	DIX code for the protocol. Make these device structure fields.
568 	 */
569 	switch (dev->type) {
570 	default:
571 		arp->ar_hrd = htons(dev->type);
572 		arp->ar_pro = htons(ETH_P_IP);
573 		break;
574 
575 #if IS_ENABLED(CONFIG_AX25)
576 	case ARPHRD_AX25:
577 		arp->ar_hrd = htons(ARPHRD_AX25);
578 		arp->ar_pro = htons(AX25_P_IP);
579 		break;
580 
581 #if IS_ENABLED(CONFIG_NETROM)
582 	case ARPHRD_NETROM:
583 		arp->ar_hrd = htons(ARPHRD_NETROM);
584 		arp->ar_pro = htons(AX25_P_IP);
585 		break;
586 #endif
587 #endif
588 
589 #if IS_ENABLED(CONFIG_FDDI)
590 	case ARPHRD_FDDI:
591 		arp->ar_hrd = htons(ARPHRD_ETHER);
592 		arp->ar_pro = htons(ETH_P_IP);
593 		break;
594 #endif
595 	}
596 
597 	arp->ar_hln = dev->addr_len;
598 	arp->ar_pln = 4;
599 	arp->ar_op = htons(type);
600 
601 	arp_ptr = (unsigned char *)(arp + 1);
602 
603 	memcpy(arp_ptr, src_hw, dev->addr_len);
604 	arp_ptr += dev->addr_len;
605 	memcpy(arp_ptr, &src_ip, 4);
606 	arp_ptr += 4;
607 
608 	switch (dev->type) {
609 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
610 	case ARPHRD_IEEE1394:
611 		break;
612 #endif
613 	default:
614 		if (target_hw)
615 			memcpy(arp_ptr, target_hw, dev->addr_len);
616 		else
617 			memset(arp_ptr, 0, dev->addr_len);
618 		arp_ptr += dev->addr_len;
619 	}
620 	memcpy(arp_ptr, &dest_ip, 4);
621 
622 	return skb;
623 
624 out:
625 	kfree_skb(skb);
626 	return NULL;
627 }
628 EXPORT_SYMBOL(arp_create);
629 
630 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
631 {
632 	return dev_queue_xmit(skb);
633 }
634 
635 /*
636  *	Send an arp packet.
637  */
638 void arp_xmit(struct sk_buff *skb)
639 {
640 	/* Send it off, maybe filter it using firewalling first.  */
641 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
642 		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
643 		arp_xmit_finish);
644 }
645 EXPORT_SYMBOL(arp_xmit);
646 
647 static bool arp_is_garp(struct net *net, struct net_device *dev,
648 			int *addr_type, __be16 ar_op,
649 			__be32 sip, __be32 tip,
650 			unsigned char *sha, unsigned char *tha)
651 {
652 	bool is_garp = tip == sip;
653 
654 	/* Gratuitous ARP _replies_ also require target hwaddr to be
655 	 * the same as source.
656 	 */
657 	if (is_garp && ar_op == htons(ARPOP_REPLY))
658 		is_garp =
659 			/* IPv4 over IEEE 1394 doesn't provide target
660 			 * hardware address field in its ARP payload.
661 			 */
662 			tha &&
663 			!memcmp(tha, sha, dev->addr_len);
664 
665 	if (is_garp) {
666 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
667 		if (*addr_type != RTN_UNICAST)
668 			is_garp = false;
669 	}
670 	return is_garp;
671 }
672 
673 /*
674  *	Process an arp request.
675  */
676 
677 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
678 {
679 	struct net_device *dev = skb->dev;
680 	struct in_device *in_dev = __in_dev_get_rcu(dev);
681 	struct arphdr *arp;
682 	unsigned char *arp_ptr;
683 	struct rtable *rt;
684 	unsigned char *sha;
685 	unsigned char *tha = NULL;
686 	__be32 sip, tip;
687 	u16 dev_type = dev->type;
688 	int addr_type;
689 	struct neighbour *n;
690 	struct dst_entry *reply_dst = NULL;
691 	bool is_garp = false;
692 
693 	/* arp_rcv below verifies the ARP header and verifies the device
694 	 * is ARP'able.
695 	 */
696 
697 	if (!in_dev)
698 		goto out_free_skb;
699 
700 	arp = arp_hdr(skb);
701 
702 	switch (dev_type) {
703 	default:
704 		if (arp->ar_pro != htons(ETH_P_IP) ||
705 		    htons(dev_type) != arp->ar_hrd)
706 			goto out_free_skb;
707 		break;
708 	case ARPHRD_ETHER:
709 	case ARPHRD_FDDI:
710 	case ARPHRD_IEEE802:
711 		/*
712 		 * ETHERNET, and Fibre Channel (which are IEEE 802
713 		 * devices, according to RFC 2625) devices will accept ARP
714 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
715 		 * This is the case also of FDDI, where the RFC 1390 says that
716 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
717 		 * however, to be more robust, we'll accept both 1 (Ethernet)
718 		 * or 6 (IEEE 802.2)
719 		 */
720 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
721 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
722 		    arp->ar_pro != htons(ETH_P_IP))
723 			goto out_free_skb;
724 		break;
725 	case ARPHRD_AX25:
726 		if (arp->ar_pro != htons(AX25_P_IP) ||
727 		    arp->ar_hrd != htons(ARPHRD_AX25))
728 			goto out_free_skb;
729 		break;
730 	case ARPHRD_NETROM:
731 		if (arp->ar_pro != htons(AX25_P_IP) ||
732 		    arp->ar_hrd != htons(ARPHRD_NETROM))
733 			goto out_free_skb;
734 		break;
735 	}
736 
737 	/* Understand only these message types */
738 
739 	if (arp->ar_op != htons(ARPOP_REPLY) &&
740 	    arp->ar_op != htons(ARPOP_REQUEST))
741 		goto out_free_skb;
742 
743 /*
744  *	Extract fields
745  */
746 	arp_ptr = (unsigned char *)(arp + 1);
747 	sha	= arp_ptr;
748 	arp_ptr += dev->addr_len;
749 	memcpy(&sip, arp_ptr, 4);
750 	arp_ptr += 4;
751 	switch (dev_type) {
752 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
753 	case ARPHRD_IEEE1394:
754 		break;
755 #endif
756 	default:
757 		tha = arp_ptr;
758 		arp_ptr += dev->addr_len;
759 	}
760 	memcpy(&tip, arp_ptr, 4);
761 /*
762  *	Check for bad requests for 127.x.x.x and requests for multicast
763  *	addresses.  If this is one such, delete it.
764  */
765 	if (ipv4_is_multicast(tip) ||
766 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
767 		goto out_free_skb;
768 
769  /*
770   *	For some 802.11 wireless deployments (and possibly other networks),
771   *	there will be an ARP proxy and gratuitous ARP frames are attacks
772   *	and thus should not be accepted.
773   */
774 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
775 		goto out_free_skb;
776 
777 /*
778  *     Special case: We must set Frame Relay source Q.922 address
779  */
780 	if (dev_type == ARPHRD_DLCI)
781 		sha = dev->broadcast;
782 
783 /*
784  *  Process entry.  The idea here is we want to send a reply if it is a
785  *  request for us or if it is a request for someone else that we hold
786  *  a proxy for.  We want to add an entry to our cache if it is a reply
787  *  to us or if it is a request for our address.
788  *  (The assumption for this last is that if someone is requesting our
789  *  address, they are probably intending to talk to us, so it saves time
790  *  if we cache their address.  Their address is also probably not in
791  *  our cache, since ours is not in their cache.)
792  *
793  *  Putting this another way, we only care about replies if they are to
794  *  us, in which case we add them to the cache.  For requests, we care
795  *  about those for us and those for our proxies.  We reply to both,
796  *  and in the case of requests for us we add the requester to the arp
797  *  cache.
798  */
799 
800 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
801 		reply_dst = (struct dst_entry *)
802 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
803 						    GFP_ATOMIC);
804 
805 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
806 	if (sip == 0) {
807 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
808 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
809 		    !arp_ignore(in_dev, sip, tip))
810 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
811 				     sha, dev->dev_addr, sha, reply_dst);
812 		goto out_consume_skb;
813 	}
814 
815 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
816 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
817 
818 		rt = skb_rtable(skb);
819 		addr_type = rt->rt_type;
820 
821 		if (addr_type == RTN_LOCAL) {
822 			int dont_send;
823 
824 			dont_send = arp_ignore(in_dev, sip, tip);
825 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
826 				dont_send = arp_filter(sip, tip, dev);
827 			if (!dont_send) {
828 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
829 				if (n) {
830 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
831 						     sip, dev, tip, sha,
832 						     dev->dev_addr, sha,
833 						     reply_dst);
834 					neigh_release(n);
835 				}
836 			}
837 			goto out_consume_skb;
838 		} else if (IN_DEV_FORWARD(in_dev)) {
839 			if (addr_type == RTN_UNICAST  &&
840 			    (arp_fwd_proxy(in_dev, dev, rt) ||
841 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
842 			     (rt->dst.dev != dev &&
843 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
844 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
845 				if (n)
846 					neigh_release(n);
847 
848 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
849 				    skb->pkt_type == PACKET_HOST ||
850 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
851 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
852 						     sip, dev, tip, sha,
853 						     dev->dev_addr, sha,
854 						     reply_dst);
855 				} else {
856 					pneigh_enqueue(&arp_tbl,
857 						       in_dev->arp_parms, skb);
858 					goto out_free_dst;
859 				}
860 				goto out_consume_skb;
861 			}
862 		}
863 	}
864 
865 	/* Update our ARP tables */
866 
867 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
868 
869 	addr_type = -1;
870 	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
871 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
872 				      sip, tip, sha, tha);
873 	}
874 
875 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
876 		/* Unsolicited ARP is not accepted by default.
877 		   It is possible, that this option should be enabled for some
878 		   devices (strip is candidate)
879 		 */
880 		if (!n &&
881 		    (is_garp ||
882 		     (arp->ar_op == htons(ARPOP_REPLY) &&
883 		      (addr_type == RTN_UNICAST ||
884 		       (addr_type < 0 &&
885 			/* postpone calculation to as late as possible */
886 			inet_addr_type_dev_table(net, dev, sip) ==
887 				RTN_UNICAST)))))
888 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
889 	}
890 
891 	if (n) {
892 		int state = NUD_REACHABLE;
893 		int override;
894 
895 		/* If several different ARP replies follows back-to-back,
896 		   use the FIRST one. It is possible, if several proxy
897 		   agents are active. Taking the first reply prevents
898 		   arp trashing and chooses the fastest router.
899 		 */
900 		override = time_after(jiffies,
901 				      n->updated +
902 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
903 			   is_garp;
904 
905 		/* Broadcast replies and request packets
906 		   do not assert neighbour reachability.
907 		 */
908 		if (arp->ar_op != htons(ARPOP_REPLY) ||
909 		    skb->pkt_type != PACKET_HOST)
910 			state = NUD_STALE;
911 		neigh_update(n, sha, state,
912 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
913 		neigh_release(n);
914 	}
915 
916 out_consume_skb:
917 	consume_skb(skb);
918 
919 out_free_dst:
920 	dst_release(reply_dst);
921 	return NET_RX_SUCCESS;
922 
923 out_free_skb:
924 	kfree_skb(skb);
925 	return NET_RX_DROP;
926 }
927 
928 static void parp_redo(struct sk_buff *skb)
929 {
930 	arp_process(dev_net(skb->dev), NULL, skb);
931 }
932 
933 static int arp_is_multicast(const void *pkey)
934 {
935 	return ipv4_is_multicast(*((__be32 *)pkey));
936 }
937 
938 /*
939  *	Receive an arp request from the device layer.
940  */
941 
942 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
943 		   struct packet_type *pt, struct net_device *orig_dev)
944 {
945 	const struct arphdr *arp;
946 
947 	/* do not tweak dropwatch on an ARP we will ignore */
948 	if (dev->flags & IFF_NOARP ||
949 	    skb->pkt_type == PACKET_OTHERHOST ||
950 	    skb->pkt_type == PACKET_LOOPBACK)
951 		goto consumeskb;
952 
953 	skb = skb_share_check(skb, GFP_ATOMIC);
954 	if (!skb)
955 		goto out_of_mem;
956 
957 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
958 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
959 		goto freeskb;
960 
961 	arp = arp_hdr(skb);
962 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
963 		goto freeskb;
964 
965 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
966 
967 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
968 		       dev_net(dev), NULL, skb, dev, NULL,
969 		       arp_process);
970 
971 consumeskb:
972 	consume_skb(skb);
973 	return NET_RX_SUCCESS;
974 freeskb:
975 	kfree_skb(skb);
976 out_of_mem:
977 	return NET_RX_DROP;
978 }
979 
980 /*
981  *	User level interface (ioctl)
982  */
983 
984 /*
985  *	Set (create) an ARP cache entry.
986  */
987 
988 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
989 {
990 	if (!dev) {
991 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
992 		return 0;
993 	}
994 	if (__in_dev_get_rtnl(dev)) {
995 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
996 		return 0;
997 	}
998 	return -ENXIO;
999 }
1000 
1001 static int arp_req_set_public(struct net *net, struct arpreq *r,
1002 		struct net_device *dev)
1003 {
1004 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1005 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1006 
1007 	if (mask && mask != htonl(0xFFFFFFFF))
1008 		return -EINVAL;
1009 	if (!dev && (r->arp_flags & ATF_COM)) {
1010 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1011 				      r->arp_ha.sa_data);
1012 		if (!dev)
1013 			return -ENODEV;
1014 	}
1015 	if (mask) {
1016 		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1017 			return -ENOBUFS;
1018 		return 0;
1019 	}
1020 
1021 	return arp_req_set_proxy(net, dev, 1);
1022 }
1023 
1024 static int arp_req_set(struct net *net, struct arpreq *r,
1025 		       struct net_device *dev)
1026 {
1027 	__be32 ip;
1028 	struct neighbour *neigh;
1029 	int err;
1030 
1031 	if (r->arp_flags & ATF_PUBL)
1032 		return arp_req_set_public(net, r, dev);
1033 
1034 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1035 	if (r->arp_flags & ATF_PERM)
1036 		r->arp_flags |= ATF_COM;
1037 	if (!dev) {
1038 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1039 
1040 		if (IS_ERR(rt))
1041 			return PTR_ERR(rt);
1042 		dev = rt->dst.dev;
1043 		ip_rt_put(rt);
1044 		if (!dev)
1045 			return -EINVAL;
1046 	}
1047 	switch (dev->type) {
1048 #if IS_ENABLED(CONFIG_FDDI)
1049 	case ARPHRD_FDDI:
1050 		/*
1051 		 * According to RFC 1390, FDDI devices should accept ARP
1052 		 * hardware types of 1 (Ethernet).  However, to be more
1053 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1054 		 * or 6 (IEEE 802.2).
1055 		 */
1056 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1057 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1058 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1059 			return -EINVAL;
1060 		break;
1061 #endif
1062 	default:
1063 		if (r->arp_ha.sa_family != dev->type)
1064 			return -EINVAL;
1065 		break;
1066 	}
1067 
1068 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1069 	err = PTR_ERR(neigh);
1070 	if (!IS_ERR(neigh)) {
1071 		unsigned int state = NUD_STALE;
1072 		if (r->arp_flags & ATF_PERM)
1073 			state = NUD_PERMANENT;
1074 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1075 				   r->arp_ha.sa_data : NULL, state,
1076 				   NEIGH_UPDATE_F_OVERRIDE |
1077 				   NEIGH_UPDATE_F_ADMIN, 0);
1078 		neigh_release(neigh);
1079 	}
1080 	return err;
1081 }
1082 
1083 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1084 {
1085 	if (neigh->nud_state&NUD_PERMANENT)
1086 		return ATF_PERM | ATF_COM;
1087 	else if (neigh->nud_state&NUD_VALID)
1088 		return ATF_COM;
1089 	else
1090 		return 0;
1091 }
1092 
1093 /*
1094  *	Get an ARP cache entry.
1095  */
1096 
1097 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1098 {
1099 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1100 	struct neighbour *neigh;
1101 	int err = -ENXIO;
1102 
1103 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1104 	if (neigh) {
1105 		if (!(neigh->nud_state & NUD_NOARP)) {
1106 			read_lock_bh(&neigh->lock);
1107 			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1108 			r->arp_flags = arp_state_to_flags(neigh);
1109 			read_unlock_bh(&neigh->lock);
1110 			r->arp_ha.sa_family = dev->type;
1111 			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1112 			err = 0;
1113 		}
1114 		neigh_release(neigh);
1115 	}
1116 	return err;
1117 }
1118 
1119 static int arp_invalidate(struct net_device *dev, __be32 ip)
1120 {
1121 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122 	int err = -ENXIO;
1123 	struct neigh_table *tbl = &arp_tbl;
1124 
1125 	if (neigh) {
1126 		if (neigh->nud_state & ~NUD_NOARP)
1127 			err = neigh_update(neigh, NULL, NUD_FAILED,
1128 					   NEIGH_UPDATE_F_OVERRIDE|
1129 					   NEIGH_UPDATE_F_ADMIN, 0);
1130 		write_lock_bh(&tbl->lock);
1131 		neigh_release(neigh);
1132 		neigh_remove_one(neigh, tbl);
1133 		write_unlock_bh(&tbl->lock);
1134 	}
1135 
1136 	return err;
1137 }
1138 
1139 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1140 		struct net_device *dev)
1141 {
1142 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1143 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1144 
1145 	if (mask == htonl(0xFFFFFFFF))
1146 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1147 
1148 	if (mask)
1149 		return -EINVAL;
1150 
1151 	return arp_req_set_proxy(net, dev, 0);
1152 }
1153 
1154 static int arp_req_delete(struct net *net, struct arpreq *r,
1155 			  struct net_device *dev)
1156 {
1157 	__be32 ip;
1158 
1159 	if (r->arp_flags & ATF_PUBL)
1160 		return arp_req_delete_public(net, r, dev);
1161 
1162 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1163 	if (!dev) {
1164 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1165 		if (IS_ERR(rt))
1166 			return PTR_ERR(rt);
1167 		dev = rt->dst.dev;
1168 		ip_rt_put(rt);
1169 		if (!dev)
1170 			return -EINVAL;
1171 	}
1172 	return arp_invalidate(dev, ip);
1173 }
1174 
1175 /*
1176  *	Handle an ARP layer I/O control request.
1177  */
1178 
1179 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1180 {
1181 	int err;
1182 	struct arpreq r;
1183 	struct net_device *dev = NULL;
1184 
1185 	switch (cmd) {
1186 	case SIOCDARP:
1187 	case SIOCSARP:
1188 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1189 			return -EPERM;
1190 		fallthrough;
1191 	case SIOCGARP:
1192 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1193 		if (err)
1194 			return -EFAULT;
1195 		break;
1196 	default:
1197 		return -EINVAL;
1198 	}
1199 
1200 	if (r.arp_pa.sa_family != AF_INET)
1201 		return -EPFNOSUPPORT;
1202 
1203 	if (!(r.arp_flags & ATF_PUBL) &&
1204 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1205 		return -EINVAL;
1206 	if (!(r.arp_flags & ATF_NETMASK))
1207 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1208 							   htonl(0xFFFFFFFFUL);
1209 	rtnl_lock();
1210 	if (r.arp_dev[0]) {
1211 		err = -ENODEV;
1212 		dev = __dev_get_by_name(net, r.arp_dev);
1213 		if (!dev)
1214 			goto out;
1215 
1216 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1217 		if (!r.arp_ha.sa_family)
1218 			r.arp_ha.sa_family = dev->type;
1219 		err = -EINVAL;
1220 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1221 			goto out;
1222 	} else if (cmd == SIOCGARP) {
1223 		err = -ENODEV;
1224 		goto out;
1225 	}
1226 
1227 	switch (cmd) {
1228 	case SIOCDARP:
1229 		err = arp_req_delete(net, &r, dev);
1230 		break;
1231 	case SIOCSARP:
1232 		err = arp_req_set(net, &r, dev);
1233 		break;
1234 	case SIOCGARP:
1235 		err = arp_req_get(&r, dev);
1236 		break;
1237 	}
1238 out:
1239 	rtnl_unlock();
1240 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1241 		err = -EFAULT;
1242 	return err;
1243 }
1244 
1245 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1246 			    void *ptr)
1247 {
1248 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1249 	struct netdev_notifier_change_info *change_info;
1250 
1251 	switch (event) {
1252 	case NETDEV_CHANGEADDR:
1253 		neigh_changeaddr(&arp_tbl, dev);
1254 		rt_cache_flush(dev_net(dev));
1255 		break;
1256 	case NETDEV_CHANGE:
1257 		change_info = ptr;
1258 		if (change_info->flags_changed & IFF_NOARP)
1259 			neigh_changeaddr(&arp_tbl, dev);
1260 		if (!netif_carrier_ok(dev))
1261 			neigh_carrier_down(&arp_tbl, dev);
1262 		break;
1263 	default:
1264 		break;
1265 	}
1266 
1267 	return NOTIFY_DONE;
1268 }
1269 
1270 static struct notifier_block arp_netdev_notifier = {
1271 	.notifier_call = arp_netdev_event,
1272 };
1273 
1274 /* Note, that it is not on notifier chain.
1275    It is necessary, that this routine was called after route cache will be
1276    flushed.
1277  */
1278 void arp_ifdown(struct net_device *dev)
1279 {
1280 	neigh_ifdown(&arp_tbl, dev);
1281 }
1282 
1283 
1284 /*
1285  *	Called once on startup.
1286  */
1287 
1288 static struct packet_type arp_packet_type __read_mostly = {
1289 	.type =	cpu_to_be16(ETH_P_ARP),
1290 	.func =	arp_rcv,
1291 };
1292 
1293 static int arp_proc_init(void);
1294 
1295 void __init arp_init(void)
1296 {
1297 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1298 
1299 	dev_add_pack(&arp_packet_type);
1300 	arp_proc_init();
1301 #ifdef CONFIG_SYSCTL
1302 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1303 #endif
1304 	register_netdevice_notifier(&arp_netdev_notifier);
1305 }
1306 
1307 #ifdef CONFIG_PROC_FS
1308 #if IS_ENABLED(CONFIG_AX25)
1309 
1310 /* ------------------------------------------------------------------------ */
1311 /*
1312  *	ax25 -> ASCII conversion
1313  */
1314 static void ax2asc2(ax25_address *a, char *buf)
1315 {
1316 	char c, *s;
1317 	int n;
1318 
1319 	for (n = 0, s = buf; n < 6; n++) {
1320 		c = (a->ax25_call[n] >> 1) & 0x7F;
1321 
1322 		if (c != ' ')
1323 			*s++ = c;
1324 	}
1325 
1326 	*s++ = '-';
1327 	n = (a->ax25_call[6] >> 1) & 0x0F;
1328 	if (n > 9) {
1329 		*s++ = '1';
1330 		n -= 10;
1331 	}
1332 
1333 	*s++ = n + '0';
1334 	*s++ = '\0';
1335 
1336 	if (*buf == '\0' || *buf == '-') {
1337 		buf[0] = '*';
1338 		buf[1] = '\0';
1339 	}
1340 }
1341 #endif /* CONFIG_AX25 */
1342 
1343 #define HBUFFERLEN 30
1344 
1345 static void arp_format_neigh_entry(struct seq_file *seq,
1346 				   struct neighbour *n)
1347 {
1348 	char hbuffer[HBUFFERLEN];
1349 	int k, j;
1350 	char tbuf[16];
1351 	struct net_device *dev = n->dev;
1352 	int hatype = dev->type;
1353 
1354 	read_lock(&n->lock);
1355 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1356 #if IS_ENABLED(CONFIG_AX25)
1357 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1358 		ax2asc2((ax25_address *)n->ha, hbuffer);
1359 	else {
1360 #endif
1361 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1362 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1363 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1364 		hbuffer[k++] = ':';
1365 	}
1366 	if (k != 0)
1367 		--k;
1368 	hbuffer[k] = 0;
1369 #if IS_ENABLED(CONFIG_AX25)
1370 	}
1371 #endif
1372 	sprintf(tbuf, "%pI4", n->primary_key);
1373 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1374 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1375 	read_unlock(&n->lock);
1376 }
1377 
1378 static void arp_format_pneigh_entry(struct seq_file *seq,
1379 				    struct pneigh_entry *n)
1380 {
1381 	struct net_device *dev = n->dev;
1382 	int hatype = dev ? dev->type : 0;
1383 	char tbuf[16];
1384 
1385 	sprintf(tbuf, "%pI4", n->key);
1386 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1387 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1388 		   dev ? dev->name : "*");
1389 }
1390 
1391 static int arp_seq_show(struct seq_file *seq, void *v)
1392 {
1393 	if (v == SEQ_START_TOKEN) {
1394 		seq_puts(seq, "IP address       HW type     Flags       "
1395 			      "HW address            Mask     Device\n");
1396 	} else {
1397 		struct neigh_seq_state *state = seq->private;
1398 
1399 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1400 			arp_format_pneigh_entry(seq, v);
1401 		else
1402 			arp_format_neigh_entry(seq, v);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1409 {
1410 	/* Don't want to confuse "arp -a" w/ magic entries,
1411 	 * so we tell the generic iterator to skip NUD_NOARP.
1412 	 */
1413 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1414 }
1415 
1416 /* ------------------------------------------------------------------------ */
1417 
1418 static const struct seq_operations arp_seq_ops = {
1419 	.start	= arp_seq_start,
1420 	.next	= neigh_seq_next,
1421 	.stop	= neigh_seq_stop,
1422 	.show	= arp_seq_show,
1423 };
1424 
1425 /* ------------------------------------------------------------------------ */
1426 
1427 static int __net_init arp_net_init(struct net *net)
1428 {
1429 	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1430 			sizeof(struct neigh_seq_state)))
1431 		return -ENOMEM;
1432 	return 0;
1433 }
1434 
1435 static void __net_exit arp_net_exit(struct net *net)
1436 {
1437 	remove_proc_entry("arp", net->proc_net);
1438 }
1439 
1440 static struct pernet_operations arp_net_ops = {
1441 	.init = arp_net_init,
1442 	.exit = arp_net_exit,
1443 };
1444 
1445 static int __init arp_proc_init(void)
1446 {
1447 	return register_pernet_subsys(&arp_net_ops);
1448 }
1449 
1450 #else /* CONFIG_PROC_FS */
1451 
1452 static int __init arp_proc_init(void)
1453 {
1454 	return 0;
1455 }
1456 
1457 #endif /* CONFIG_PROC_FS */
1458