1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/gso.h> 104 #include <net/tcp.h> 105 #include <net/udp.h> 106 #include <net/udplite.h> 107 #include <net/ping.h> 108 #include <linux/skbuff.h> 109 #include <net/sock.h> 110 #include <net/raw.h> 111 #include <net/icmp.h> 112 #include <net/inet_common.h> 113 #include <net/ip_tunnels.h> 114 #include <net/xfrm.h> 115 #include <net/net_namespace.h> 116 #include <net/secure_seq.h> 117 #ifdef CONFIG_IP_MROUTE 118 #include <linux/mroute.h> 119 #endif 120 #include <net/l3mdev.h> 121 #include <net/compat.h> 122 #include <net/rps.h> 123 124 #include <trace/events/sock.h> 125 126 /* The inetsw table contains everything that inet_create needs to 127 * build a new socket. 128 */ 129 static struct list_head inetsw[SOCK_MAX]; 130 static DEFINE_SPINLOCK(inetsw_lock); 131 132 /* New destruction routine */ 133 134 void inet_sock_destruct(struct sock *sk) 135 { 136 struct inet_sock *inet = inet_sk(sk); 137 138 __skb_queue_purge(&sk->sk_receive_queue); 139 __skb_queue_purge(&sk->sk_error_queue); 140 141 sk_mem_reclaim_final(sk); 142 143 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 144 pr_err("Attempt to release TCP socket in state %d %p\n", 145 sk->sk_state, sk); 146 return; 147 } 148 if (!sock_flag(sk, SOCK_DEAD)) { 149 pr_err("Attempt to release alive inet socket %p\n", sk); 150 return; 151 } 152 153 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 154 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 155 WARN_ON_ONCE(sk->sk_wmem_queued); 156 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 157 158 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 159 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 160 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 161 } 162 EXPORT_SYMBOL(inet_sock_destruct); 163 164 /* 165 * The routines beyond this point handle the behaviour of an AF_INET 166 * socket object. Mostly it punts to the subprotocols of IP to do 167 * the work. 168 */ 169 170 /* 171 * Automatically bind an unbound socket. 172 */ 173 174 static int inet_autobind(struct sock *sk) 175 { 176 struct inet_sock *inet; 177 /* We may need to bind the socket. */ 178 lock_sock(sk); 179 inet = inet_sk(sk); 180 if (!inet->inet_num) { 181 if (sk->sk_prot->get_port(sk, 0)) { 182 release_sock(sk); 183 return -EAGAIN; 184 } 185 inet->inet_sport = htons(inet->inet_num); 186 } 187 release_sock(sk); 188 return 0; 189 } 190 191 int __inet_listen_sk(struct sock *sk, int backlog) 192 { 193 unsigned char old_state = sk->sk_state; 194 int err, tcp_fastopen; 195 196 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 197 return -EINVAL; 198 199 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 200 /* Really, if the socket is already in listen state 201 * we can only allow the backlog to be adjusted. 202 */ 203 if (old_state != TCP_LISTEN) { 204 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 205 * Note that only TCP sockets (SOCK_STREAM) will reach here. 206 * Also fastopen backlog may already been set via the option 207 * because the socket was in TCP_LISTEN state previously but 208 * was shutdown() rather than close(). 209 */ 210 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 211 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 212 (tcp_fastopen & TFO_SERVER_ENABLE) && 213 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 214 fastopen_queue_tune(sk, backlog); 215 tcp_fastopen_init_key_once(sock_net(sk)); 216 } 217 218 err = inet_csk_listen_start(sk); 219 if (err) 220 return err; 221 222 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 223 } 224 return 0; 225 } 226 227 /* 228 * Move a socket into listening state. 229 */ 230 int inet_listen(struct socket *sock, int backlog) 231 { 232 struct sock *sk = sock->sk; 233 int err = -EINVAL; 234 235 lock_sock(sk); 236 237 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 238 goto out; 239 240 err = __inet_listen_sk(sk, backlog); 241 242 out: 243 release_sock(sk); 244 return err; 245 } 246 EXPORT_SYMBOL(inet_listen); 247 248 /* 249 * Create an inet socket. 250 */ 251 252 static int inet_create(struct net *net, struct socket *sock, int protocol, 253 int kern) 254 { 255 struct sock *sk; 256 struct inet_protosw *answer; 257 struct inet_sock *inet; 258 struct proto *answer_prot; 259 unsigned char answer_flags; 260 int try_loading_module = 0; 261 int err; 262 263 if (protocol < 0 || protocol >= IPPROTO_MAX) 264 return -EINVAL; 265 266 sock->state = SS_UNCONNECTED; 267 268 /* Look for the requested type/protocol pair. */ 269 lookup_protocol: 270 err = -ESOCKTNOSUPPORT; 271 rcu_read_lock(); 272 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 273 274 err = 0; 275 /* Check the non-wild match. */ 276 if (protocol == answer->protocol) { 277 if (protocol != IPPROTO_IP) 278 break; 279 } else { 280 /* Check for the two wild cases. */ 281 if (IPPROTO_IP == protocol) { 282 protocol = answer->protocol; 283 break; 284 } 285 if (IPPROTO_IP == answer->protocol) 286 break; 287 } 288 err = -EPROTONOSUPPORT; 289 } 290 291 if (unlikely(err)) { 292 if (try_loading_module < 2) { 293 rcu_read_unlock(); 294 /* 295 * Be more specific, e.g. net-pf-2-proto-132-type-1 296 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 297 */ 298 if (++try_loading_module == 1) 299 request_module("net-pf-%d-proto-%d-type-%d", 300 PF_INET, protocol, sock->type); 301 /* 302 * Fall back to generic, e.g. net-pf-2-proto-132 303 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 304 */ 305 else 306 request_module("net-pf-%d-proto-%d", 307 PF_INET, protocol); 308 goto lookup_protocol; 309 } else 310 goto out_rcu_unlock; 311 } 312 313 err = -EPERM; 314 if (sock->type == SOCK_RAW && !kern && 315 !ns_capable(net->user_ns, CAP_NET_RAW)) 316 goto out_rcu_unlock; 317 318 sock->ops = answer->ops; 319 answer_prot = answer->prot; 320 answer_flags = answer->flags; 321 rcu_read_unlock(); 322 323 WARN_ON(!answer_prot->slab); 324 325 err = -ENOMEM; 326 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 327 if (!sk) 328 goto out; 329 330 err = 0; 331 if (INET_PROTOSW_REUSE & answer_flags) 332 sk->sk_reuse = SK_CAN_REUSE; 333 334 if (INET_PROTOSW_ICSK & answer_flags) 335 inet_init_csk_locks(sk); 336 337 inet = inet_sk(sk); 338 inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags); 339 340 inet_clear_bit(NODEFRAG, sk); 341 342 if (SOCK_RAW == sock->type) { 343 inet->inet_num = protocol; 344 if (IPPROTO_RAW == protocol) 345 inet_set_bit(HDRINCL, sk); 346 } 347 348 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 349 inet->pmtudisc = IP_PMTUDISC_DONT; 350 else 351 inet->pmtudisc = IP_PMTUDISC_WANT; 352 353 atomic_set(&inet->inet_id, 0); 354 355 sock_init_data(sock, sk); 356 357 sk->sk_destruct = inet_sock_destruct; 358 sk->sk_protocol = protocol; 359 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 360 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 361 362 inet->uc_ttl = -1; 363 inet_set_bit(MC_LOOP, sk); 364 inet->mc_ttl = 1; 365 inet_set_bit(MC_ALL, sk); 366 inet->mc_index = 0; 367 inet->mc_list = NULL; 368 inet->rcv_tos = 0; 369 370 if (inet->inet_num) { 371 /* It assumes that any protocol which allows 372 * the user to assign a number at socket 373 * creation time automatically 374 * shares. 375 */ 376 inet->inet_sport = htons(inet->inet_num); 377 /* Add to protocol hash chains. */ 378 err = sk->sk_prot->hash(sk); 379 if (err) { 380 sk_common_release(sk); 381 goto out; 382 } 383 } 384 385 if (sk->sk_prot->init) { 386 err = sk->sk_prot->init(sk); 387 if (err) { 388 sk_common_release(sk); 389 goto out; 390 } 391 } 392 393 if (!kern) { 394 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 395 if (err) { 396 sk_common_release(sk); 397 goto out; 398 } 399 } 400 out: 401 return err; 402 out_rcu_unlock: 403 rcu_read_unlock(); 404 goto out; 405 } 406 407 408 /* 409 * The peer socket should always be NULL (or else). When we call this 410 * function we are destroying the object and from then on nobody 411 * should refer to it. 412 */ 413 int inet_release(struct socket *sock) 414 { 415 struct sock *sk = sock->sk; 416 417 if (sk) { 418 long timeout; 419 420 if (!sk->sk_kern_sock) 421 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 422 423 /* Applications forget to leave groups before exiting */ 424 ip_mc_drop_socket(sk); 425 426 /* If linger is set, we don't return until the close 427 * is complete. Otherwise we return immediately. The 428 * actually closing is done the same either way. 429 * 430 * If the close is due to the process exiting, we never 431 * linger.. 432 */ 433 timeout = 0; 434 if (sock_flag(sk, SOCK_LINGER) && 435 !(current->flags & PF_EXITING)) 436 timeout = sk->sk_lingertime; 437 sk->sk_prot->close(sk, timeout); 438 sock->sk = NULL; 439 } 440 return 0; 441 } 442 EXPORT_SYMBOL(inet_release); 443 444 int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) 445 { 446 u32 flags = BIND_WITH_LOCK; 447 int err; 448 449 /* If the socket has its own bind function then use it. (RAW) */ 450 if (sk->sk_prot->bind) { 451 return sk->sk_prot->bind(sk, uaddr, addr_len); 452 } 453 if (addr_len < sizeof(struct sockaddr_in)) 454 return -EINVAL; 455 456 /* BPF prog is run before any checks are done so that if the prog 457 * changes context in a wrong way it will be caught. 458 */ 459 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, &addr_len, 460 CGROUP_INET4_BIND, &flags); 461 if (err) 462 return err; 463 464 return __inet_bind(sk, uaddr, addr_len, flags); 465 } 466 467 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 468 { 469 return inet_bind_sk(sock->sk, uaddr, addr_len); 470 } 471 EXPORT_SYMBOL(inet_bind); 472 473 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 474 u32 flags) 475 { 476 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 477 struct inet_sock *inet = inet_sk(sk); 478 struct net *net = sock_net(sk); 479 unsigned short snum; 480 int chk_addr_ret; 481 u32 tb_id = RT_TABLE_LOCAL; 482 int err; 483 484 if (addr->sin_family != AF_INET) { 485 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 486 * only if s_addr is INADDR_ANY. 487 */ 488 err = -EAFNOSUPPORT; 489 if (addr->sin_family != AF_UNSPEC || 490 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 491 goto out; 492 } 493 494 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 495 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 496 497 /* Not specified by any standard per-se, however it breaks too 498 * many applications when removed. It is unfortunate since 499 * allowing applications to make a non-local bind solves 500 * several problems with systems using dynamic addressing. 501 * (ie. your servers still start up even if your ISDN link 502 * is temporarily down) 503 */ 504 err = -EADDRNOTAVAIL; 505 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 506 chk_addr_ret)) 507 goto out; 508 509 snum = ntohs(addr->sin_port); 510 err = -EACCES; 511 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 512 snum && inet_port_requires_bind_service(net, snum) && 513 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 514 goto out; 515 516 /* We keep a pair of addresses. rcv_saddr is the one 517 * used by hash lookups, and saddr is used for transmit. 518 * 519 * In the BSD API these are the same except where it 520 * would be illegal to use them (multicast/broadcast) in 521 * which case the sending device address is used. 522 */ 523 if (flags & BIND_WITH_LOCK) 524 lock_sock(sk); 525 526 /* Check these errors (active socket, double bind). */ 527 err = -EINVAL; 528 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 529 goto out_release_sock; 530 531 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 532 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 533 inet->inet_saddr = 0; /* Use device */ 534 535 /* Make sure we are allowed to bind here. */ 536 if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) || 537 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 538 err = sk->sk_prot->get_port(sk, snum); 539 if (err) { 540 inet->inet_saddr = inet->inet_rcv_saddr = 0; 541 goto out_release_sock; 542 } 543 if (!(flags & BIND_FROM_BPF)) { 544 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 545 if (err) { 546 inet->inet_saddr = inet->inet_rcv_saddr = 0; 547 if (sk->sk_prot->put_port) 548 sk->sk_prot->put_port(sk); 549 goto out_release_sock; 550 } 551 } 552 } 553 554 if (inet->inet_rcv_saddr) 555 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 556 if (snum) 557 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 558 inet->inet_sport = htons(inet->inet_num); 559 inet->inet_daddr = 0; 560 inet->inet_dport = 0; 561 sk_dst_reset(sk); 562 err = 0; 563 out_release_sock: 564 if (flags & BIND_WITH_LOCK) 565 release_sock(sk); 566 out: 567 return err; 568 } 569 570 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 571 int addr_len, int flags) 572 { 573 struct sock *sk = sock->sk; 574 const struct proto *prot; 575 int err; 576 577 if (addr_len < sizeof(uaddr->sa_family)) 578 return -EINVAL; 579 580 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 581 prot = READ_ONCE(sk->sk_prot); 582 583 if (uaddr->sa_family == AF_UNSPEC) 584 return prot->disconnect(sk, flags); 585 586 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 587 err = prot->pre_connect(sk, uaddr, addr_len); 588 if (err) 589 return err; 590 } 591 592 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 593 return -EAGAIN; 594 return prot->connect(sk, uaddr, addr_len); 595 } 596 EXPORT_SYMBOL(inet_dgram_connect); 597 598 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 599 { 600 DEFINE_WAIT_FUNC(wait, woken_wake_function); 601 602 add_wait_queue(sk_sleep(sk), &wait); 603 sk->sk_write_pending += writebias; 604 605 /* Basic assumption: if someone sets sk->sk_err, he _must_ 606 * change state of the socket from TCP_SYN_*. 607 * Connect() does not allow to get error notifications 608 * without closing the socket. 609 */ 610 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 611 release_sock(sk); 612 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 613 lock_sock(sk); 614 if (signal_pending(current) || !timeo) 615 break; 616 } 617 remove_wait_queue(sk_sleep(sk), &wait); 618 sk->sk_write_pending -= writebias; 619 return timeo; 620 } 621 622 /* 623 * Connect to a remote host. There is regrettably still a little 624 * TCP 'magic' in here. 625 */ 626 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 627 int addr_len, int flags, int is_sendmsg) 628 { 629 struct sock *sk = sock->sk; 630 int err; 631 long timeo; 632 633 /* 634 * uaddr can be NULL and addr_len can be 0 if: 635 * sk is a TCP fastopen active socket and 636 * TCP_FASTOPEN_CONNECT sockopt is set and 637 * we already have a valid cookie for this socket. 638 * In this case, user can call write() after connect(). 639 * write() will invoke tcp_sendmsg_fastopen() which calls 640 * __inet_stream_connect(). 641 */ 642 if (uaddr) { 643 if (addr_len < sizeof(uaddr->sa_family)) 644 return -EINVAL; 645 646 if (uaddr->sa_family == AF_UNSPEC) { 647 sk->sk_disconnects++; 648 err = sk->sk_prot->disconnect(sk, flags); 649 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 650 goto out; 651 } 652 } 653 654 switch (sock->state) { 655 default: 656 err = -EINVAL; 657 goto out; 658 case SS_CONNECTED: 659 err = -EISCONN; 660 goto out; 661 case SS_CONNECTING: 662 if (inet_test_bit(DEFER_CONNECT, sk)) 663 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 664 else 665 err = -EALREADY; 666 /* Fall out of switch with err, set for this state */ 667 break; 668 case SS_UNCONNECTED: 669 err = -EISCONN; 670 if (sk->sk_state != TCP_CLOSE) 671 goto out; 672 673 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 674 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 675 if (err) 676 goto out; 677 } 678 679 err = sk->sk_prot->connect(sk, uaddr, addr_len); 680 if (err < 0) 681 goto out; 682 683 sock->state = SS_CONNECTING; 684 685 if (!err && inet_test_bit(DEFER_CONNECT, sk)) 686 goto out; 687 688 /* Just entered SS_CONNECTING state; the only 689 * difference is that return value in non-blocking 690 * case is EINPROGRESS, rather than EALREADY. 691 */ 692 err = -EINPROGRESS; 693 break; 694 } 695 696 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 697 698 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 699 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 700 tcp_sk(sk)->fastopen_req && 701 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 702 int dis = sk->sk_disconnects; 703 704 /* Error code is set above */ 705 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 706 goto out; 707 708 err = sock_intr_errno(timeo); 709 if (signal_pending(current)) 710 goto out; 711 712 if (dis != sk->sk_disconnects) { 713 err = -EPIPE; 714 goto out; 715 } 716 } 717 718 /* Connection was closed by RST, timeout, ICMP error 719 * or another process disconnected us. 720 */ 721 if (sk->sk_state == TCP_CLOSE) 722 goto sock_error; 723 724 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 725 * and error was received after socket entered established state. 726 * Hence, it is handled normally after connect() return successfully. 727 */ 728 729 sock->state = SS_CONNECTED; 730 err = 0; 731 out: 732 return err; 733 734 sock_error: 735 err = sock_error(sk) ? : -ECONNABORTED; 736 sock->state = SS_UNCONNECTED; 737 sk->sk_disconnects++; 738 if (sk->sk_prot->disconnect(sk, flags)) 739 sock->state = SS_DISCONNECTING; 740 goto out; 741 } 742 EXPORT_SYMBOL(__inet_stream_connect); 743 744 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 745 int addr_len, int flags) 746 { 747 int err; 748 749 lock_sock(sock->sk); 750 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 751 release_sock(sock->sk); 752 return err; 753 } 754 EXPORT_SYMBOL(inet_stream_connect); 755 756 void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) 757 { 758 sock_rps_record_flow(newsk); 759 WARN_ON(!((1 << newsk->sk_state) & 760 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 761 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 762 763 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 764 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 765 sock_graft(newsk, newsock); 766 767 newsock->state = SS_CONNECTED; 768 } 769 770 /* 771 * Accept a pending connection. The TCP layer now gives BSD semantics. 772 */ 773 774 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 775 bool kern) 776 { 777 struct sock *sk1 = sock->sk, *sk2; 778 int err = -EINVAL; 779 780 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 781 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 782 if (!sk2) 783 return err; 784 785 lock_sock(sk2); 786 __inet_accept(sock, newsock, sk2); 787 release_sock(sk2); 788 return 0; 789 } 790 EXPORT_SYMBOL(inet_accept); 791 792 /* 793 * This does both peername and sockname. 794 */ 795 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 796 int peer) 797 { 798 struct sock *sk = sock->sk; 799 struct inet_sock *inet = inet_sk(sk); 800 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 801 int sin_addr_len = sizeof(*sin); 802 803 sin->sin_family = AF_INET; 804 lock_sock(sk); 805 if (peer) { 806 if (!inet->inet_dport || 807 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 808 peer == 1)) { 809 release_sock(sk); 810 return -ENOTCONN; 811 } 812 sin->sin_port = inet->inet_dport; 813 sin->sin_addr.s_addr = inet->inet_daddr; 814 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 815 CGROUP_INET4_GETPEERNAME); 816 } else { 817 __be32 addr = inet->inet_rcv_saddr; 818 if (!addr) 819 addr = inet->inet_saddr; 820 sin->sin_port = inet->inet_sport; 821 sin->sin_addr.s_addr = addr; 822 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 823 CGROUP_INET4_GETSOCKNAME); 824 } 825 release_sock(sk); 826 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 827 return sin_addr_len; 828 } 829 EXPORT_SYMBOL(inet_getname); 830 831 int inet_send_prepare(struct sock *sk) 832 { 833 sock_rps_record_flow(sk); 834 835 /* We may need to bind the socket. */ 836 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 837 inet_autobind(sk)) 838 return -EAGAIN; 839 840 return 0; 841 } 842 EXPORT_SYMBOL_GPL(inet_send_prepare); 843 844 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 845 { 846 struct sock *sk = sock->sk; 847 848 if (unlikely(inet_send_prepare(sk))) 849 return -EAGAIN; 850 851 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 852 sk, msg, size); 853 } 854 EXPORT_SYMBOL(inet_sendmsg); 855 856 void inet_splice_eof(struct socket *sock) 857 { 858 const struct proto *prot; 859 struct sock *sk = sock->sk; 860 861 if (unlikely(inet_send_prepare(sk))) 862 return; 863 864 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 865 prot = READ_ONCE(sk->sk_prot); 866 if (prot->splice_eof) 867 prot->splice_eof(sock); 868 } 869 EXPORT_SYMBOL_GPL(inet_splice_eof); 870 871 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 872 size_t, int, int *)); 873 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 874 int flags) 875 { 876 struct sock *sk = sock->sk; 877 int addr_len = 0; 878 int err; 879 880 if (likely(!(flags & MSG_ERRQUEUE))) 881 sock_rps_record_flow(sk); 882 883 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 884 sk, msg, size, flags, &addr_len); 885 if (err >= 0) 886 msg->msg_namelen = addr_len; 887 return err; 888 } 889 EXPORT_SYMBOL(inet_recvmsg); 890 891 int inet_shutdown(struct socket *sock, int how) 892 { 893 struct sock *sk = sock->sk; 894 int err = 0; 895 896 /* This should really check to make sure 897 * the socket is a TCP socket. (WHY AC...) 898 */ 899 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 900 1->2 bit 2 snds. 901 2->3 */ 902 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 903 return -EINVAL; 904 905 lock_sock(sk); 906 if (sock->state == SS_CONNECTING) { 907 if ((1 << sk->sk_state) & 908 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 909 sock->state = SS_DISCONNECTING; 910 else 911 sock->state = SS_CONNECTED; 912 } 913 914 switch (sk->sk_state) { 915 case TCP_CLOSE: 916 err = -ENOTCONN; 917 /* Hack to wake up other listeners, who can poll for 918 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 919 fallthrough; 920 default: 921 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 922 if (sk->sk_prot->shutdown) 923 sk->sk_prot->shutdown(sk, how); 924 break; 925 926 /* Remaining two branches are temporary solution for missing 927 * close() in multithreaded environment. It is _not_ a good idea, 928 * but we have no choice until close() is repaired at VFS level. 929 */ 930 case TCP_LISTEN: 931 if (!(how & RCV_SHUTDOWN)) 932 break; 933 fallthrough; 934 case TCP_SYN_SENT: 935 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 936 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 937 break; 938 } 939 940 /* Wake up anyone sleeping in poll. */ 941 sk->sk_state_change(sk); 942 release_sock(sk); 943 return err; 944 } 945 EXPORT_SYMBOL(inet_shutdown); 946 947 /* 948 * ioctl() calls you can issue on an INET socket. Most of these are 949 * device configuration and stuff and very rarely used. Some ioctls 950 * pass on to the socket itself. 951 * 952 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 953 * loads the devconfigure module does its configuring and unloads it. 954 * There's a good 20K of config code hanging around the kernel. 955 */ 956 957 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 958 { 959 struct sock *sk = sock->sk; 960 int err = 0; 961 struct net *net = sock_net(sk); 962 void __user *p = (void __user *)arg; 963 struct ifreq ifr; 964 struct rtentry rt; 965 966 switch (cmd) { 967 case SIOCADDRT: 968 case SIOCDELRT: 969 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 970 return -EFAULT; 971 err = ip_rt_ioctl(net, cmd, &rt); 972 break; 973 case SIOCRTMSG: 974 err = -EINVAL; 975 break; 976 case SIOCDARP: 977 case SIOCGARP: 978 case SIOCSARP: 979 err = arp_ioctl(net, cmd, (void __user *)arg); 980 break; 981 case SIOCGIFADDR: 982 case SIOCGIFBRDADDR: 983 case SIOCGIFNETMASK: 984 case SIOCGIFDSTADDR: 985 case SIOCGIFPFLAGS: 986 if (get_user_ifreq(&ifr, NULL, p)) 987 return -EFAULT; 988 err = devinet_ioctl(net, cmd, &ifr); 989 if (!err && put_user_ifreq(&ifr, p)) 990 err = -EFAULT; 991 break; 992 993 case SIOCSIFADDR: 994 case SIOCSIFBRDADDR: 995 case SIOCSIFNETMASK: 996 case SIOCSIFDSTADDR: 997 case SIOCSIFPFLAGS: 998 case SIOCSIFFLAGS: 999 if (get_user_ifreq(&ifr, NULL, p)) 1000 return -EFAULT; 1001 err = devinet_ioctl(net, cmd, &ifr); 1002 break; 1003 default: 1004 if (sk->sk_prot->ioctl) 1005 err = sk_ioctl(sk, cmd, (void __user *)arg); 1006 else 1007 err = -ENOIOCTLCMD; 1008 break; 1009 } 1010 return err; 1011 } 1012 EXPORT_SYMBOL(inet_ioctl); 1013 1014 #ifdef CONFIG_COMPAT 1015 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 1016 struct compat_rtentry __user *ur) 1017 { 1018 compat_uptr_t rtdev; 1019 struct rtentry rt; 1020 1021 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1022 3 * sizeof(struct sockaddr)) || 1023 get_user(rt.rt_flags, &ur->rt_flags) || 1024 get_user(rt.rt_metric, &ur->rt_metric) || 1025 get_user(rt.rt_mtu, &ur->rt_mtu) || 1026 get_user(rt.rt_window, &ur->rt_window) || 1027 get_user(rt.rt_irtt, &ur->rt_irtt) || 1028 get_user(rtdev, &ur->rt_dev)) 1029 return -EFAULT; 1030 1031 rt.rt_dev = compat_ptr(rtdev); 1032 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1033 } 1034 1035 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1036 { 1037 void __user *argp = compat_ptr(arg); 1038 struct sock *sk = sock->sk; 1039 1040 switch (cmd) { 1041 case SIOCADDRT: 1042 case SIOCDELRT: 1043 return inet_compat_routing_ioctl(sk, cmd, argp); 1044 default: 1045 if (!sk->sk_prot->compat_ioctl) 1046 return -ENOIOCTLCMD; 1047 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1048 } 1049 } 1050 #endif /* CONFIG_COMPAT */ 1051 1052 const struct proto_ops inet_stream_ops = { 1053 .family = PF_INET, 1054 .owner = THIS_MODULE, 1055 .release = inet_release, 1056 .bind = inet_bind, 1057 .connect = inet_stream_connect, 1058 .socketpair = sock_no_socketpair, 1059 .accept = inet_accept, 1060 .getname = inet_getname, 1061 .poll = tcp_poll, 1062 .ioctl = inet_ioctl, 1063 .gettstamp = sock_gettstamp, 1064 .listen = inet_listen, 1065 .shutdown = inet_shutdown, 1066 .setsockopt = sock_common_setsockopt, 1067 .getsockopt = sock_common_getsockopt, 1068 .sendmsg = inet_sendmsg, 1069 .recvmsg = inet_recvmsg, 1070 #ifdef CONFIG_MMU 1071 .mmap = tcp_mmap, 1072 #endif 1073 .splice_eof = inet_splice_eof, 1074 .splice_read = tcp_splice_read, 1075 .set_peek_off = sk_set_peek_off, 1076 .read_sock = tcp_read_sock, 1077 .read_skb = tcp_read_skb, 1078 .sendmsg_locked = tcp_sendmsg_locked, 1079 .peek_len = tcp_peek_len, 1080 #ifdef CONFIG_COMPAT 1081 .compat_ioctl = inet_compat_ioctl, 1082 #endif 1083 .set_rcvlowat = tcp_set_rcvlowat, 1084 }; 1085 EXPORT_SYMBOL(inet_stream_ops); 1086 1087 const struct proto_ops inet_dgram_ops = { 1088 .family = PF_INET, 1089 .owner = THIS_MODULE, 1090 .release = inet_release, 1091 .bind = inet_bind, 1092 .connect = inet_dgram_connect, 1093 .socketpair = sock_no_socketpair, 1094 .accept = sock_no_accept, 1095 .getname = inet_getname, 1096 .poll = udp_poll, 1097 .ioctl = inet_ioctl, 1098 .gettstamp = sock_gettstamp, 1099 .listen = sock_no_listen, 1100 .shutdown = inet_shutdown, 1101 .setsockopt = sock_common_setsockopt, 1102 .getsockopt = sock_common_getsockopt, 1103 .sendmsg = inet_sendmsg, 1104 .read_skb = udp_read_skb, 1105 .recvmsg = inet_recvmsg, 1106 .mmap = sock_no_mmap, 1107 .splice_eof = inet_splice_eof, 1108 .set_peek_off = udp_set_peek_off, 1109 #ifdef CONFIG_COMPAT 1110 .compat_ioctl = inet_compat_ioctl, 1111 #endif 1112 }; 1113 EXPORT_SYMBOL(inet_dgram_ops); 1114 1115 /* 1116 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1117 * udp_poll 1118 */ 1119 static const struct proto_ops inet_sockraw_ops = { 1120 .family = PF_INET, 1121 .owner = THIS_MODULE, 1122 .release = inet_release, 1123 .bind = inet_bind, 1124 .connect = inet_dgram_connect, 1125 .socketpair = sock_no_socketpair, 1126 .accept = sock_no_accept, 1127 .getname = inet_getname, 1128 .poll = datagram_poll, 1129 .ioctl = inet_ioctl, 1130 .gettstamp = sock_gettstamp, 1131 .listen = sock_no_listen, 1132 .shutdown = inet_shutdown, 1133 .setsockopt = sock_common_setsockopt, 1134 .getsockopt = sock_common_getsockopt, 1135 .sendmsg = inet_sendmsg, 1136 .recvmsg = inet_recvmsg, 1137 .mmap = sock_no_mmap, 1138 .splice_eof = inet_splice_eof, 1139 #ifdef CONFIG_COMPAT 1140 .compat_ioctl = inet_compat_ioctl, 1141 #endif 1142 }; 1143 1144 static const struct net_proto_family inet_family_ops = { 1145 .family = PF_INET, 1146 .create = inet_create, 1147 .owner = THIS_MODULE, 1148 }; 1149 1150 /* Upon startup we insert all the elements in inetsw_array[] into 1151 * the linked list inetsw. 1152 */ 1153 static struct inet_protosw inetsw_array[] = 1154 { 1155 { 1156 .type = SOCK_STREAM, 1157 .protocol = IPPROTO_TCP, 1158 .prot = &tcp_prot, 1159 .ops = &inet_stream_ops, 1160 .flags = INET_PROTOSW_PERMANENT | 1161 INET_PROTOSW_ICSK, 1162 }, 1163 1164 { 1165 .type = SOCK_DGRAM, 1166 .protocol = IPPROTO_UDP, 1167 .prot = &udp_prot, 1168 .ops = &inet_dgram_ops, 1169 .flags = INET_PROTOSW_PERMANENT, 1170 }, 1171 1172 { 1173 .type = SOCK_DGRAM, 1174 .protocol = IPPROTO_ICMP, 1175 .prot = &ping_prot, 1176 .ops = &inet_sockraw_ops, 1177 .flags = INET_PROTOSW_REUSE, 1178 }, 1179 1180 { 1181 .type = SOCK_RAW, 1182 .protocol = IPPROTO_IP, /* wild card */ 1183 .prot = &raw_prot, 1184 .ops = &inet_sockraw_ops, 1185 .flags = INET_PROTOSW_REUSE, 1186 } 1187 }; 1188 1189 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1190 1191 void inet_register_protosw(struct inet_protosw *p) 1192 { 1193 struct list_head *lh; 1194 struct inet_protosw *answer; 1195 int protocol = p->protocol; 1196 struct list_head *last_perm; 1197 1198 spin_lock_bh(&inetsw_lock); 1199 1200 if (p->type >= SOCK_MAX) 1201 goto out_illegal; 1202 1203 /* If we are trying to override a permanent protocol, bail. */ 1204 last_perm = &inetsw[p->type]; 1205 list_for_each(lh, &inetsw[p->type]) { 1206 answer = list_entry(lh, struct inet_protosw, list); 1207 /* Check only the non-wild match. */ 1208 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1209 break; 1210 if (protocol == answer->protocol) 1211 goto out_permanent; 1212 last_perm = lh; 1213 } 1214 1215 /* Add the new entry after the last permanent entry if any, so that 1216 * the new entry does not override a permanent entry when matched with 1217 * a wild-card protocol. But it is allowed to override any existing 1218 * non-permanent entry. This means that when we remove this entry, the 1219 * system automatically returns to the old behavior. 1220 */ 1221 list_add_rcu(&p->list, last_perm); 1222 out: 1223 spin_unlock_bh(&inetsw_lock); 1224 1225 return; 1226 1227 out_permanent: 1228 pr_err("Attempt to override permanent protocol %d\n", protocol); 1229 goto out; 1230 1231 out_illegal: 1232 pr_err("Ignoring attempt to register invalid socket type %d\n", 1233 p->type); 1234 goto out; 1235 } 1236 EXPORT_SYMBOL(inet_register_protosw); 1237 1238 void inet_unregister_protosw(struct inet_protosw *p) 1239 { 1240 if (INET_PROTOSW_PERMANENT & p->flags) { 1241 pr_err("Attempt to unregister permanent protocol %d\n", 1242 p->protocol); 1243 } else { 1244 spin_lock_bh(&inetsw_lock); 1245 list_del_rcu(&p->list); 1246 spin_unlock_bh(&inetsw_lock); 1247 1248 synchronize_net(); 1249 } 1250 } 1251 EXPORT_SYMBOL(inet_unregister_protosw); 1252 1253 static int inet_sk_reselect_saddr(struct sock *sk) 1254 { 1255 struct inet_sock *inet = inet_sk(sk); 1256 __be32 old_saddr = inet->inet_saddr; 1257 __be32 daddr = inet->inet_daddr; 1258 struct flowi4 *fl4; 1259 struct rtable *rt; 1260 __be32 new_saddr; 1261 struct ip_options_rcu *inet_opt; 1262 int err; 1263 1264 inet_opt = rcu_dereference_protected(inet->inet_opt, 1265 lockdep_sock_is_held(sk)); 1266 if (inet_opt && inet_opt->opt.srr) 1267 daddr = inet_opt->opt.faddr; 1268 1269 /* Query new route. */ 1270 fl4 = &inet->cork.fl.u.ip4; 1271 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1272 sk->sk_protocol, inet->inet_sport, 1273 inet->inet_dport, sk); 1274 if (IS_ERR(rt)) 1275 return PTR_ERR(rt); 1276 1277 new_saddr = fl4->saddr; 1278 1279 if (new_saddr == old_saddr) { 1280 sk_setup_caps(sk, &rt->dst); 1281 return 0; 1282 } 1283 1284 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1285 if (err) { 1286 ip_rt_put(rt); 1287 return err; 1288 } 1289 1290 sk_setup_caps(sk, &rt->dst); 1291 1292 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1293 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1294 __func__, &old_saddr, &new_saddr); 1295 } 1296 1297 /* 1298 * XXX The only one ugly spot where we need to 1299 * XXX really change the sockets identity after 1300 * XXX it has entered the hashes. -DaveM 1301 * 1302 * Besides that, it does not check for connection 1303 * uniqueness. Wait for troubles. 1304 */ 1305 return __sk_prot_rehash(sk); 1306 } 1307 1308 int inet_sk_rebuild_header(struct sock *sk) 1309 { 1310 struct inet_sock *inet = inet_sk(sk); 1311 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1312 __be32 daddr; 1313 struct ip_options_rcu *inet_opt; 1314 struct flowi4 *fl4; 1315 int err; 1316 1317 /* Route is OK, nothing to do. */ 1318 if (rt) 1319 return 0; 1320 1321 /* Reroute. */ 1322 rcu_read_lock(); 1323 inet_opt = rcu_dereference(inet->inet_opt); 1324 daddr = inet->inet_daddr; 1325 if (inet_opt && inet_opt->opt.srr) 1326 daddr = inet_opt->opt.faddr; 1327 rcu_read_unlock(); 1328 fl4 = &inet->cork.fl.u.ip4; 1329 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1330 inet->inet_dport, inet->inet_sport, 1331 sk->sk_protocol, ip_sock_rt_tos(sk), 1332 sk->sk_bound_dev_if); 1333 if (!IS_ERR(rt)) { 1334 err = 0; 1335 sk_setup_caps(sk, &rt->dst); 1336 } else { 1337 err = PTR_ERR(rt); 1338 1339 /* Routing failed... */ 1340 sk->sk_route_caps = 0; 1341 /* 1342 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1343 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1344 */ 1345 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1346 sk->sk_state != TCP_SYN_SENT || 1347 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1348 (err = inet_sk_reselect_saddr(sk)) != 0) 1349 WRITE_ONCE(sk->sk_err_soft, -err); 1350 } 1351 1352 return err; 1353 } 1354 EXPORT_SYMBOL(inet_sk_rebuild_header); 1355 1356 void inet_sk_set_state(struct sock *sk, int state) 1357 { 1358 trace_inet_sock_set_state(sk, sk->sk_state, state); 1359 sk->sk_state = state; 1360 } 1361 EXPORT_SYMBOL(inet_sk_set_state); 1362 1363 void inet_sk_state_store(struct sock *sk, int newstate) 1364 { 1365 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1366 smp_store_release(&sk->sk_state, newstate); 1367 } 1368 1369 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1370 netdev_features_t features) 1371 { 1372 bool udpfrag = false, fixedid = false, gso_partial, encap; 1373 struct sk_buff *segs = ERR_PTR(-EINVAL); 1374 const struct net_offload *ops; 1375 unsigned int offset = 0; 1376 struct iphdr *iph; 1377 int proto, tot_len; 1378 int nhoff; 1379 int ihl; 1380 int id; 1381 1382 skb_reset_network_header(skb); 1383 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1384 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1385 goto out; 1386 1387 iph = ip_hdr(skb); 1388 ihl = iph->ihl * 4; 1389 if (ihl < sizeof(*iph)) 1390 goto out; 1391 1392 id = ntohs(iph->id); 1393 proto = iph->protocol; 1394 1395 /* Warning: after this point, iph might be no longer valid */ 1396 if (unlikely(!pskb_may_pull(skb, ihl))) 1397 goto out; 1398 __skb_pull(skb, ihl); 1399 1400 encap = SKB_GSO_CB(skb)->encap_level > 0; 1401 if (encap) 1402 features &= skb->dev->hw_enc_features; 1403 SKB_GSO_CB(skb)->encap_level += ihl; 1404 1405 skb_reset_transport_header(skb); 1406 1407 segs = ERR_PTR(-EPROTONOSUPPORT); 1408 1409 if (!skb->encapsulation || encap) { 1410 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1411 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1412 1413 /* fixed ID is invalid if DF bit is not set */ 1414 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1415 goto out; 1416 } 1417 1418 ops = rcu_dereference(inet_offloads[proto]); 1419 if (likely(ops && ops->callbacks.gso_segment)) { 1420 segs = ops->callbacks.gso_segment(skb, features); 1421 if (!segs) 1422 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1423 } 1424 1425 if (IS_ERR_OR_NULL(segs)) 1426 goto out; 1427 1428 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1429 1430 skb = segs; 1431 do { 1432 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1433 if (udpfrag) { 1434 iph->frag_off = htons(offset >> 3); 1435 if (skb->next) 1436 iph->frag_off |= htons(IP_MF); 1437 offset += skb->len - nhoff - ihl; 1438 tot_len = skb->len - nhoff; 1439 } else if (skb_is_gso(skb)) { 1440 if (!fixedid) { 1441 iph->id = htons(id); 1442 id += skb_shinfo(skb)->gso_segs; 1443 } 1444 1445 if (gso_partial) 1446 tot_len = skb_shinfo(skb)->gso_size + 1447 SKB_GSO_CB(skb)->data_offset + 1448 skb->head - (unsigned char *)iph; 1449 else 1450 tot_len = skb->len - nhoff; 1451 } else { 1452 if (!fixedid) 1453 iph->id = htons(id++); 1454 tot_len = skb->len - nhoff; 1455 } 1456 iph->tot_len = htons(tot_len); 1457 ip_send_check(iph); 1458 if (encap) 1459 skb_reset_inner_headers(skb); 1460 skb->network_header = (u8 *)iph - skb->head; 1461 skb_reset_mac_len(skb); 1462 } while ((skb = skb->next)); 1463 1464 out: 1465 return segs; 1466 } 1467 1468 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1469 netdev_features_t features) 1470 { 1471 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1472 return ERR_PTR(-EINVAL); 1473 1474 return inet_gso_segment(skb, features); 1475 } 1476 1477 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1478 { 1479 const struct net_offload *ops; 1480 struct sk_buff *pp = NULL; 1481 const struct iphdr *iph; 1482 struct sk_buff *p; 1483 unsigned int hlen; 1484 unsigned int off; 1485 unsigned int id; 1486 int flush = 1; 1487 int proto; 1488 1489 off = skb_gro_offset(skb); 1490 hlen = off + sizeof(*iph); 1491 iph = skb_gro_header(skb, hlen, off); 1492 if (unlikely(!iph)) 1493 goto out; 1494 1495 proto = iph->protocol; 1496 1497 ops = rcu_dereference(inet_offloads[proto]); 1498 if (!ops || !ops->callbacks.gro_receive) 1499 goto out; 1500 1501 if (*(u8 *)iph != 0x45) 1502 goto out; 1503 1504 if (ip_is_fragment(iph)) 1505 goto out; 1506 1507 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1508 goto out; 1509 1510 NAPI_GRO_CB(skb)->proto = proto; 1511 id = ntohl(*(__be32 *)&iph->id); 1512 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1513 id >>= 16; 1514 1515 list_for_each_entry(p, head, list) { 1516 struct iphdr *iph2; 1517 u16 flush_id; 1518 1519 if (!NAPI_GRO_CB(p)->same_flow) 1520 continue; 1521 1522 iph2 = (struct iphdr *)(p->data + off); 1523 /* The above works because, with the exception of the top 1524 * (inner most) layer, we only aggregate pkts with the same 1525 * hdr length so all the hdrs we'll need to verify will start 1526 * at the same offset. 1527 */ 1528 if ((iph->protocol ^ iph2->protocol) | 1529 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1530 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1531 NAPI_GRO_CB(p)->same_flow = 0; 1532 continue; 1533 } 1534 1535 /* All fields must match except length and checksum. */ 1536 NAPI_GRO_CB(p)->flush |= 1537 (iph->ttl ^ iph2->ttl) | 1538 (iph->tos ^ iph2->tos) | 1539 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1540 1541 NAPI_GRO_CB(p)->flush |= flush; 1542 1543 /* We need to store of the IP ID check to be included later 1544 * when we can verify that this packet does in fact belong 1545 * to a given flow. 1546 */ 1547 flush_id = (u16)(id - ntohs(iph2->id)); 1548 1549 /* This bit of code makes it much easier for us to identify 1550 * the cases where we are doing atomic vs non-atomic IP ID 1551 * checks. Specifically an atomic check can return IP ID 1552 * values 0 - 0xFFFF, while a non-atomic check can only 1553 * return 0 or 0xFFFF. 1554 */ 1555 if (!NAPI_GRO_CB(p)->is_atomic || 1556 !(iph->frag_off & htons(IP_DF))) { 1557 flush_id ^= NAPI_GRO_CB(p)->count; 1558 flush_id = flush_id ? 0xFFFF : 0; 1559 } 1560 1561 /* If the previous IP ID value was based on an atomic 1562 * datagram we can overwrite the value and ignore it. 1563 */ 1564 if (NAPI_GRO_CB(skb)->is_atomic) 1565 NAPI_GRO_CB(p)->flush_id = flush_id; 1566 else 1567 NAPI_GRO_CB(p)->flush_id |= flush_id; 1568 } 1569 1570 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1571 NAPI_GRO_CB(skb)->flush |= flush; 1572 skb_set_network_header(skb, off); 1573 /* The above will be needed by the transport layer if there is one 1574 * immediately following this IP hdr. 1575 */ 1576 1577 /* Note : No need to call skb_gro_postpull_rcsum() here, 1578 * as we already checked checksum over ipv4 header was 0 1579 */ 1580 skb_gro_pull(skb, sizeof(*iph)); 1581 skb_set_transport_header(skb, skb_gro_offset(skb)); 1582 1583 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1584 ops->callbacks.gro_receive, head, skb); 1585 1586 out: 1587 skb_gro_flush_final(skb, pp, flush); 1588 1589 return pp; 1590 } 1591 1592 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1593 struct sk_buff *skb) 1594 { 1595 if (NAPI_GRO_CB(skb)->encap_mark) { 1596 NAPI_GRO_CB(skb)->flush = 1; 1597 return NULL; 1598 } 1599 1600 NAPI_GRO_CB(skb)->encap_mark = 1; 1601 1602 return inet_gro_receive(head, skb); 1603 } 1604 1605 #define SECONDS_PER_DAY 86400 1606 1607 /* inet_current_timestamp - Return IP network timestamp 1608 * 1609 * Return milliseconds since midnight in network byte order. 1610 */ 1611 __be32 inet_current_timestamp(void) 1612 { 1613 u32 secs; 1614 u32 msecs; 1615 struct timespec64 ts; 1616 1617 ktime_get_real_ts64(&ts); 1618 1619 /* Get secs since midnight. */ 1620 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1621 /* Convert to msecs. */ 1622 msecs = secs * MSEC_PER_SEC; 1623 /* Convert nsec to msec. */ 1624 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1625 1626 /* Convert to network byte order. */ 1627 return htonl(msecs); 1628 } 1629 EXPORT_SYMBOL(inet_current_timestamp); 1630 1631 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1632 { 1633 unsigned int family = READ_ONCE(sk->sk_family); 1634 1635 if (family == AF_INET) 1636 return ip_recv_error(sk, msg, len, addr_len); 1637 #if IS_ENABLED(CONFIG_IPV6) 1638 if (family == AF_INET6) 1639 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1640 #endif 1641 return -EINVAL; 1642 } 1643 EXPORT_SYMBOL(inet_recv_error); 1644 1645 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1646 { 1647 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1648 const struct net_offload *ops; 1649 __be16 totlen = iph->tot_len; 1650 int proto = iph->protocol; 1651 int err = -ENOSYS; 1652 1653 if (skb->encapsulation) { 1654 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1655 skb_set_inner_network_header(skb, nhoff); 1656 } 1657 1658 iph_set_totlen(iph, skb->len - nhoff); 1659 csum_replace2(&iph->check, totlen, iph->tot_len); 1660 1661 ops = rcu_dereference(inet_offloads[proto]); 1662 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1663 goto out; 1664 1665 /* Only need to add sizeof(*iph) to get to the next hdr below 1666 * because any hdr with option will have been flushed in 1667 * inet_gro_receive(). 1668 */ 1669 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1670 tcp4_gro_complete, udp4_gro_complete, 1671 skb, nhoff + sizeof(*iph)); 1672 1673 out: 1674 return err; 1675 } 1676 1677 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1678 { 1679 skb->encapsulation = 1; 1680 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1681 return inet_gro_complete(skb, nhoff); 1682 } 1683 1684 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1685 unsigned short type, unsigned char protocol, 1686 struct net *net) 1687 { 1688 struct socket *sock; 1689 int rc = sock_create_kern(net, family, type, protocol, &sock); 1690 1691 if (rc == 0) { 1692 *sk = sock->sk; 1693 (*sk)->sk_allocation = GFP_ATOMIC; 1694 (*sk)->sk_use_task_frag = false; 1695 /* 1696 * Unhash it so that IP input processing does not even see it, 1697 * we do not wish this socket to see incoming packets. 1698 */ 1699 (*sk)->sk_prot->unhash(*sk); 1700 } 1701 return rc; 1702 } 1703 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1704 1705 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1706 { 1707 unsigned long res = 0; 1708 int i; 1709 1710 for_each_possible_cpu(i) 1711 res += snmp_get_cpu_field(mib, i, offt); 1712 return res; 1713 } 1714 EXPORT_SYMBOL_GPL(snmp_fold_field); 1715 1716 #if BITS_PER_LONG==32 1717 1718 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1719 size_t syncp_offset) 1720 { 1721 void *bhptr; 1722 struct u64_stats_sync *syncp; 1723 u64 v; 1724 unsigned int start; 1725 1726 bhptr = per_cpu_ptr(mib, cpu); 1727 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1728 do { 1729 start = u64_stats_fetch_begin(syncp); 1730 v = *(((u64 *)bhptr) + offt); 1731 } while (u64_stats_fetch_retry(syncp, start)); 1732 1733 return v; 1734 } 1735 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1736 1737 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1738 { 1739 u64 res = 0; 1740 int cpu; 1741 1742 for_each_possible_cpu(cpu) { 1743 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1744 } 1745 return res; 1746 } 1747 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1748 #endif 1749 1750 #ifdef CONFIG_IP_MULTICAST 1751 static const struct net_protocol igmp_protocol = { 1752 .handler = igmp_rcv, 1753 }; 1754 #endif 1755 1756 static const struct net_protocol icmp_protocol = { 1757 .handler = icmp_rcv, 1758 .err_handler = icmp_err, 1759 .no_policy = 1, 1760 }; 1761 1762 static __net_init int ipv4_mib_init_net(struct net *net) 1763 { 1764 int i; 1765 1766 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1767 if (!net->mib.tcp_statistics) 1768 goto err_tcp_mib; 1769 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1770 if (!net->mib.ip_statistics) 1771 goto err_ip_mib; 1772 1773 for_each_possible_cpu(i) { 1774 struct ipstats_mib *af_inet_stats; 1775 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1776 u64_stats_init(&af_inet_stats->syncp); 1777 } 1778 1779 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1780 if (!net->mib.net_statistics) 1781 goto err_net_mib; 1782 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1783 if (!net->mib.udp_statistics) 1784 goto err_udp_mib; 1785 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1786 if (!net->mib.udplite_statistics) 1787 goto err_udplite_mib; 1788 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1789 if (!net->mib.icmp_statistics) 1790 goto err_icmp_mib; 1791 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1792 GFP_KERNEL); 1793 if (!net->mib.icmpmsg_statistics) 1794 goto err_icmpmsg_mib; 1795 1796 tcp_mib_init(net); 1797 return 0; 1798 1799 err_icmpmsg_mib: 1800 free_percpu(net->mib.icmp_statistics); 1801 err_icmp_mib: 1802 free_percpu(net->mib.udplite_statistics); 1803 err_udplite_mib: 1804 free_percpu(net->mib.udp_statistics); 1805 err_udp_mib: 1806 free_percpu(net->mib.net_statistics); 1807 err_net_mib: 1808 free_percpu(net->mib.ip_statistics); 1809 err_ip_mib: 1810 free_percpu(net->mib.tcp_statistics); 1811 err_tcp_mib: 1812 return -ENOMEM; 1813 } 1814 1815 static __net_exit void ipv4_mib_exit_net(struct net *net) 1816 { 1817 kfree(net->mib.icmpmsg_statistics); 1818 free_percpu(net->mib.icmp_statistics); 1819 free_percpu(net->mib.udplite_statistics); 1820 free_percpu(net->mib.udp_statistics); 1821 free_percpu(net->mib.net_statistics); 1822 free_percpu(net->mib.ip_statistics); 1823 free_percpu(net->mib.tcp_statistics); 1824 #ifdef CONFIG_MPTCP 1825 /* allocated on demand, see mptcp_init_sock() */ 1826 free_percpu(net->mib.mptcp_statistics); 1827 #endif 1828 } 1829 1830 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1831 .init = ipv4_mib_init_net, 1832 .exit = ipv4_mib_exit_net, 1833 }; 1834 1835 static int __init init_ipv4_mibs(void) 1836 { 1837 return register_pernet_subsys(&ipv4_mib_ops); 1838 } 1839 1840 static __net_init int inet_init_net(struct net *net) 1841 { 1842 /* 1843 * Set defaults for local port range 1844 */ 1845 net->ipv4.ip_local_ports.range = 60999u << 16 | 32768u; 1846 1847 seqlock_init(&net->ipv4.ping_group_range.lock); 1848 /* 1849 * Sane defaults - nobody may create ping sockets. 1850 * Boot scripts should set this to distro-specific group. 1851 */ 1852 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1853 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1854 1855 /* Default values for sysctl-controlled parameters. 1856 * We set them here, in case sysctl is not compiled. 1857 */ 1858 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1859 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1860 net->ipv4.sysctl_ip_dynaddr = 0; 1861 net->ipv4.sysctl_ip_early_demux = 1; 1862 net->ipv4.sysctl_udp_early_demux = 1; 1863 net->ipv4.sysctl_tcp_early_demux = 1; 1864 net->ipv4.sysctl_nexthop_compat_mode = 1; 1865 #ifdef CONFIG_SYSCTL 1866 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1867 #endif 1868 1869 /* Some igmp sysctl, whose values are always used */ 1870 net->ipv4.sysctl_igmp_max_memberships = 20; 1871 net->ipv4.sysctl_igmp_max_msf = 10; 1872 /* IGMP reports for link-local multicast groups are enabled by default */ 1873 net->ipv4.sysctl_igmp_llm_reports = 1; 1874 net->ipv4.sysctl_igmp_qrv = 2; 1875 1876 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1877 1878 return 0; 1879 } 1880 1881 static __net_initdata struct pernet_operations af_inet_ops = { 1882 .init = inet_init_net, 1883 }; 1884 1885 static int __init init_inet_pernet_ops(void) 1886 { 1887 return register_pernet_subsys(&af_inet_ops); 1888 } 1889 1890 static int ipv4_proc_init(void); 1891 1892 /* 1893 * IP protocol layer initialiser 1894 */ 1895 1896 1897 static const struct net_offload ipip_offload = { 1898 .callbacks = { 1899 .gso_segment = ipip_gso_segment, 1900 .gro_receive = ipip_gro_receive, 1901 .gro_complete = ipip_gro_complete, 1902 }, 1903 }; 1904 1905 static int __init ipip_offload_init(void) 1906 { 1907 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1908 } 1909 1910 static int __init ipv4_offload_init(void) 1911 { 1912 /* 1913 * Add offloads 1914 */ 1915 if (udpv4_offload_init() < 0) 1916 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1917 if (tcpv4_offload_init() < 0) 1918 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1919 if (ipip_offload_init() < 0) 1920 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1921 1922 net_hotdata.ip_packet_offload = (struct packet_offload) { 1923 .type = cpu_to_be16(ETH_P_IP), 1924 .callbacks = { 1925 .gso_segment = inet_gso_segment, 1926 .gro_receive = inet_gro_receive, 1927 .gro_complete = inet_gro_complete, 1928 }, 1929 }; 1930 dev_add_offload(&net_hotdata.ip_packet_offload); 1931 return 0; 1932 } 1933 1934 fs_initcall(ipv4_offload_init); 1935 1936 static struct packet_type ip_packet_type __read_mostly = { 1937 .type = cpu_to_be16(ETH_P_IP), 1938 .func = ip_rcv, 1939 .list_func = ip_list_rcv, 1940 }; 1941 1942 static int __init inet_init(void) 1943 { 1944 struct inet_protosw *q; 1945 struct list_head *r; 1946 int rc; 1947 1948 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1949 1950 raw_hashinfo_init(&raw_v4_hashinfo); 1951 1952 rc = proto_register(&tcp_prot, 1); 1953 if (rc) 1954 goto out; 1955 1956 rc = proto_register(&udp_prot, 1); 1957 if (rc) 1958 goto out_unregister_tcp_proto; 1959 1960 rc = proto_register(&raw_prot, 1); 1961 if (rc) 1962 goto out_unregister_udp_proto; 1963 1964 rc = proto_register(&ping_prot, 1); 1965 if (rc) 1966 goto out_unregister_raw_proto; 1967 1968 /* 1969 * Tell SOCKET that we are alive... 1970 */ 1971 1972 (void)sock_register(&inet_family_ops); 1973 1974 #ifdef CONFIG_SYSCTL 1975 ip_static_sysctl_init(); 1976 #endif 1977 1978 /* 1979 * Add all the base protocols. 1980 */ 1981 1982 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1983 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1984 1985 net_hotdata.udp_protocol = (struct net_protocol) { 1986 .handler = udp_rcv, 1987 .err_handler = udp_err, 1988 .no_policy = 1, 1989 }; 1990 if (inet_add_protocol(&net_hotdata.udp_protocol, IPPROTO_UDP) < 0) 1991 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1992 1993 net_hotdata.tcp_protocol = (struct net_protocol) { 1994 .handler = tcp_v4_rcv, 1995 .err_handler = tcp_v4_err, 1996 .no_policy = 1, 1997 .icmp_strict_tag_validation = 1, 1998 }; 1999 if (inet_add_protocol(&net_hotdata.tcp_protocol, IPPROTO_TCP) < 0) 2000 pr_crit("%s: Cannot add TCP protocol\n", __func__); 2001 #ifdef CONFIG_IP_MULTICAST 2002 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 2003 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 2004 #endif 2005 2006 /* Register the socket-side information for inet_create. */ 2007 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 2008 INIT_LIST_HEAD(r); 2009 2010 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 2011 inet_register_protosw(q); 2012 2013 /* 2014 * Set the ARP module up 2015 */ 2016 2017 arp_init(); 2018 2019 /* 2020 * Set the IP module up 2021 */ 2022 2023 ip_init(); 2024 2025 /* Initialise per-cpu ipv4 mibs */ 2026 if (init_ipv4_mibs()) 2027 panic("%s: Cannot init ipv4 mibs\n", __func__); 2028 2029 /* Setup TCP slab cache for open requests. */ 2030 tcp_init(); 2031 2032 /* Setup UDP memory threshold */ 2033 udp_init(); 2034 2035 /* Add UDP-Lite (RFC 3828) */ 2036 udplite4_register(); 2037 2038 raw_init(); 2039 2040 ping_init(); 2041 2042 /* 2043 * Set the ICMP layer up 2044 */ 2045 2046 if (icmp_init() < 0) 2047 panic("Failed to create the ICMP control socket.\n"); 2048 2049 /* 2050 * Initialise the multicast router 2051 */ 2052 #if defined(CONFIG_IP_MROUTE) 2053 if (ip_mr_init()) 2054 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2055 #endif 2056 2057 if (init_inet_pernet_ops()) 2058 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2059 2060 ipv4_proc_init(); 2061 2062 ipfrag_init(); 2063 2064 dev_add_pack(&ip_packet_type); 2065 2066 ip_tunnel_core_init(); 2067 2068 rc = 0; 2069 out: 2070 return rc; 2071 out_unregister_raw_proto: 2072 proto_unregister(&raw_prot); 2073 out_unregister_udp_proto: 2074 proto_unregister(&udp_prot); 2075 out_unregister_tcp_proto: 2076 proto_unregister(&tcp_prot); 2077 goto out; 2078 } 2079 2080 fs_initcall(inet_init); 2081 2082 /* ------------------------------------------------------------------------ */ 2083 2084 #ifdef CONFIG_PROC_FS 2085 static int __init ipv4_proc_init(void) 2086 { 2087 int rc = 0; 2088 2089 if (raw_proc_init()) 2090 goto out_raw; 2091 if (tcp4_proc_init()) 2092 goto out_tcp; 2093 if (udp4_proc_init()) 2094 goto out_udp; 2095 if (ping_proc_init()) 2096 goto out_ping; 2097 if (ip_misc_proc_init()) 2098 goto out_misc; 2099 out: 2100 return rc; 2101 out_misc: 2102 ping_proc_exit(); 2103 out_ping: 2104 udp4_proc_exit(); 2105 out_udp: 2106 tcp4_proc_exit(); 2107 out_tcp: 2108 raw_proc_exit(); 2109 out_raw: 2110 rc = -ENOMEM; 2111 goto out; 2112 } 2113 2114 #else /* CONFIG_PROC_FS */ 2115 static int __init ipv4_proc_init(void) 2116 { 2117 return 0; 2118 } 2119 #endif /* CONFIG_PROC_FS */ 2120