1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/gso.h> 104 #include <net/tcp.h> 105 #include <net/udp.h> 106 #include <net/udplite.h> 107 #include <net/ping.h> 108 #include <linux/skbuff.h> 109 #include <net/sock.h> 110 #include <net/raw.h> 111 #include <net/icmp.h> 112 #include <net/inet_common.h> 113 #include <net/ip_tunnels.h> 114 #include <net/xfrm.h> 115 #include <net/net_namespace.h> 116 #include <net/secure_seq.h> 117 #ifdef CONFIG_IP_MROUTE 118 #include <linux/mroute.h> 119 #endif 120 #include <net/l3mdev.h> 121 #include <net/compat.h> 122 123 #include <trace/events/sock.h> 124 125 /* The inetsw table contains everything that inet_create needs to 126 * build a new socket. 127 */ 128 static struct list_head inetsw[SOCK_MAX]; 129 static DEFINE_SPINLOCK(inetsw_lock); 130 131 /* New destruction routine */ 132 133 void inet_sock_destruct(struct sock *sk) 134 { 135 struct inet_sock *inet = inet_sk(sk); 136 137 __skb_queue_purge(&sk->sk_receive_queue); 138 __skb_queue_purge(&sk->sk_error_queue); 139 140 sk_mem_reclaim_final(sk); 141 142 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 143 pr_err("Attempt to release TCP socket in state %d %p\n", 144 sk->sk_state, sk); 145 return; 146 } 147 if (!sock_flag(sk, SOCK_DEAD)) { 148 pr_err("Attempt to release alive inet socket %p\n", sk); 149 return; 150 } 151 152 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 153 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 154 WARN_ON_ONCE(sk->sk_wmem_queued); 155 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 156 157 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 159 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 160 } 161 EXPORT_SYMBOL(inet_sock_destruct); 162 163 /* 164 * The routines beyond this point handle the behaviour of an AF_INET 165 * socket object. Mostly it punts to the subprotocols of IP to do 166 * the work. 167 */ 168 169 /* 170 * Automatically bind an unbound socket. 171 */ 172 173 static int inet_autobind(struct sock *sk) 174 { 175 struct inet_sock *inet; 176 /* We may need to bind the socket. */ 177 lock_sock(sk); 178 inet = inet_sk(sk); 179 if (!inet->inet_num) { 180 if (sk->sk_prot->get_port(sk, 0)) { 181 release_sock(sk); 182 return -EAGAIN; 183 } 184 inet->inet_sport = htons(inet->inet_num); 185 } 186 release_sock(sk); 187 return 0; 188 } 189 190 int __inet_listen_sk(struct sock *sk, int backlog) 191 { 192 unsigned char old_state = sk->sk_state; 193 int err, tcp_fastopen; 194 195 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 196 return -EINVAL; 197 198 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 199 /* Really, if the socket is already in listen state 200 * we can only allow the backlog to be adjusted. 201 */ 202 if (old_state != TCP_LISTEN) { 203 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 204 * Note that only TCP sockets (SOCK_STREAM) will reach here. 205 * Also fastopen backlog may already been set via the option 206 * because the socket was in TCP_LISTEN state previously but 207 * was shutdown() rather than close(). 208 */ 209 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 210 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 211 (tcp_fastopen & TFO_SERVER_ENABLE) && 212 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 213 fastopen_queue_tune(sk, backlog); 214 tcp_fastopen_init_key_once(sock_net(sk)); 215 } 216 217 err = inet_csk_listen_start(sk); 218 if (err) 219 return err; 220 221 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 222 } 223 return 0; 224 } 225 226 /* 227 * Move a socket into listening state. 228 */ 229 int inet_listen(struct socket *sock, int backlog) 230 { 231 struct sock *sk = sock->sk; 232 int err = -EINVAL; 233 234 lock_sock(sk); 235 236 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 237 goto out; 238 239 err = __inet_listen_sk(sk, backlog); 240 241 out: 242 release_sock(sk); 243 return err; 244 } 245 EXPORT_SYMBOL(inet_listen); 246 247 /* 248 * Create an inet socket. 249 */ 250 251 static int inet_create(struct net *net, struct socket *sock, int protocol, 252 int kern) 253 { 254 struct sock *sk; 255 struct inet_protosw *answer; 256 struct inet_sock *inet; 257 struct proto *answer_prot; 258 unsigned char answer_flags; 259 int try_loading_module = 0; 260 int err; 261 262 if (protocol < 0 || protocol >= IPPROTO_MAX) 263 return -EINVAL; 264 265 sock->state = SS_UNCONNECTED; 266 267 /* Look for the requested type/protocol pair. */ 268 lookup_protocol: 269 err = -ESOCKTNOSUPPORT; 270 rcu_read_lock(); 271 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 272 273 err = 0; 274 /* Check the non-wild match. */ 275 if (protocol == answer->protocol) { 276 if (protocol != IPPROTO_IP) 277 break; 278 } else { 279 /* Check for the two wild cases. */ 280 if (IPPROTO_IP == protocol) { 281 protocol = answer->protocol; 282 break; 283 } 284 if (IPPROTO_IP == answer->protocol) 285 break; 286 } 287 err = -EPROTONOSUPPORT; 288 } 289 290 if (unlikely(err)) { 291 if (try_loading_module < 2) { 292 rcu_read_unlock(); 293 /* 294 * Be more specific, e.g. net-pf-2-proto-132-type-1 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 296 */ 297 if (++try_loading_module == 1) 298 request_module("net-pf-%d-proto-%d-type-%d", 299 PF_INET, protocol, sock->type); 300 /* 301 * Fall back to generic, e.g. net-pf-2-proto-132 302 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 303 */ 304 else 305 request_module("net-pf-%d-proto-%d", 306 PF_INET, protocol); 307 goto lookup_protocol; 308 } else 309 goto out_rcu_unlock; 310 } 311 312 err = -EPERM; 313 if (sock->type == SOCK_RAW && !kern && 314 !ns_capable(net->user_ns, CAP_NET_RAW)) 315 goto out_rcu_unlock; 316 317 sock->ops = answer->ops; 318 answer_prot = answer->prot; 319 answer_flags = answer->flags; 320 rcu_read_unlock(); 321 322 WARN_ON(!answer_prot->slab); 323 324 err = -ENOMEM; 325 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 326 if (!sk) 327 goto out; 328 329 err = 0; 330 if (INET_PROTOSW_REUSE & answer_flags) 331 sk->sk_reuse = SK_CAN_REUSE; 332 333 if (INET_PROTOSW_ICSK & answer_flags) 334 inet_init_csk_locks(sk); 335 336 inet = inet_sk(sk); 337 inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags); 338 339 inet_clear_bit(NODEFRAG, sk); 340 341 if (SOCK_RAW == sock->type) { 342 inet->inet_num = protocol; 343 if (IPPROTO_RAW == protocol) 344 inet_set_bit(HDRINCL, sk); 345 } 346 347 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 348 inet->pmtudisc = IP_PMTUDISC_DONT; 349 else 350 inet->pmtudisc = IP_PMTUDISC_WANT; 351 352 atomic_set(&inet->inet_id, 0); 353 354 sock_init_data(sock, sk); 355 356 sk->sk_destruct = inet_sock_destruct; 357 sk->sk_protocol = protocol; 358 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 359 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 360 361 inet->uc_ttl = -1; 362 inet_set_bit(MC_LOOP, sk); 363 inet->mc_ttl = 1; 364 inet_set_bit(MC_ALL, sk); 365 inet->mc_index = 0; 366 inet->mc_list = NULL; 367 inet->rcv_tos = 0; 368 369 if (inet->inet_num) { 370 /* It assumes that any protocol which allows 371 * the user to assign a number at socket 372 * creation time automatically 373 * shares. 374 */ 375 inet->inet_sport = htons(inet->inet_num); 376 /* Add to protocol hash chains. */ 377 err = sk->sk_prot->hash(sk); 378 if (err) { 379 sk_common_release(sk); 380 goto out; 381 } 382 } 383 384 if (sk->sk_prot->init) { 385 err = sk->sk_prot->init(sk); 386 if (err) { 387 sk_common_release(sk); 388 goto out; 389 } 390 } 391 392 if (!kern) { 393 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 394 if (err) { 395 sk_common_release(sk); 396 goto out; 397 } 398 } 399 out: 400 return err; 401 out_rcu_unlock: 402 rcu_read_unlock(); 403 goto out; 404 } 405 406 407 /* 408 * The peer socket should always be NULL (or else). When we call this 409 * function we are destroying the object and from then on nobody 410 * should refer to it. 411 */ 412 int inet_release(struct socket *sock) 413 { 414 struct sock *sk = sock->sk; 415 416 if (sk) { 417 long timeout; 418 419 if (!sk->sk_kern_sock) 420 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 421 422 /* Applications forget to leave groups before exiting */ 423 ip_mc_drop_socket(sk); 424 425 /* If linger is set, we don't return until the close 426 * is complete. Otherwise we return immediately. The 427 * actually closing is done the same either way. 428 * 429 * If the close is due to the process exiting, we never 430 * linger.. 431 */ 432 timeout = 0; 433 if (sock_flag(sk, SOCK_LINGER) && 434 !(current->flags & PF_EXITING)) 435 timeout = sk->sk_lingertime; 436 sk->sk_prot->close(sk, timeout); 437 sock->sk = NULL; 438 } 439 return 0; 440 } 441 EXPORT_SYMBOL(inet_release); 442 443 int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) 444 { 445 u32 flags = BIND_WITH_LOCK; 446 int err; 447 448 /* If the socket has its own bind function then use it. (RAW) */ 449 if (sk->sk_prot->bind) { 450 return sk->sk_prot->bind(sk, uaddr, addr_len); 451 } 452 if (addr_len < sizeof(struct sockaddr_in)) 453 return -EINVAL; 454 455 /* BPF prog is run before any checks are done so that if the prog 456 * changes context in a wrong way it will be caught. 457 */ 458 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, &addr_len, 459 CGROUP_INET4_BIND, &flags); 460 if (err) 461 return err; 462 463 return __inet_bind(sk, uaddr, addr_len, flags); 464 } 465 466 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 467 { 468 return inet_bind_sk(sock->sk, uaddr, addr_len); 469 } 470 EXPORT_SYMBOL(inet_bind); 471 472 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 473 u32 flags) 474 { 475 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 476 struct inet_sock *inet = inet_sk(sk); 477 struct net *net = sock_net(sk); 478 unsigned short snum; 479 int chk_addr_ret; 480 u32 tb_id = RT_TABLE_LOCAL; 481 int err; 482 483 if (addr->sin_family != AF_INET) { 484 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 485 * only if s_addr is INADDR_ANY. 486 */ 487 err = -EAFNOSUPPORT; 488 if (addr->sin_family != AF_UNSPEC || 489 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 490 goto out; 491 } 492 493 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 494 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 495 496 /* Not specified by any standard per-se, however it breaks too 497 * many applications when removed. It is unfortunate since 498 * allowing applications to make a non-local bind solves 499 * several problems with systems using dynamic addressing. 500 * (ie. your servers still start up even if your ISDN link 501 * is temporarily down) 502 */ 503 err = -EADDRNOTAVAIL; 504 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 505 chk_addr_ret)) 506 goto out; 507 508 snum = ntohs(addr->sin_port); 509 err = -EACCES; 510 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 511 snum && inet_port_requires_bind_service(net, snum) && 512 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 513 goto out; 514 515 /* We keep a pair of addresses. rcv_saddr is the one 516 * used by hash lookups, and saddr is used for transmit. 517 * 518 * In the BSD API these are the same except where it 519 * would be illegal to use them (multicast/broadcast) in 520 * which case the sending device address is used. 521 */ 522 if (flags & BIND_WITH_LOCK) 523 lock_sock(sk); 524 525 /* Check these errors (active socket, double bind). */ 526 err = -EINVAL; 527 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 528 goto out_release_sock; 529 530 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 531 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 532 inet->inet_saddr = 0; /* Use device */ 533 534 /* Make sure we are allowed to bind here. */ 535 if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) || 536 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 537 err = sk->sk_prot->get_port(sk, snum); 538 if (err) { 539 inet->inet_saddr = inet->inet_rcv_saddr = 0; 540 goto out_release_sock; 541 } 542 if (!(flags & BIND_FROM_BPF)) { 543 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 544 if (err) { 545 inet->inet_saddr = inet->inet_rcv_saddr = 0; 546 if (sk->sk_prot->put_port) 547 sk->sk_prot->put_port(sk); 548 goto out_release_sock; 549 } 550 } 551 } 552 553 if (inet->inet_rcv_saddr) 554 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 555 if (snum) 556 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 557 inet->inet_sport = htons(inet->inet_num); 558 inet->inet_daddr = 0; 559 inet->inet_dport = 0; 560 sk_dst_reset(sk); 561 err = 0; 562 out_release_sock: 563 if (flags & BIND_WITH_LOCK) 564 release_sock(sk); 565 out: 566 return err; 567 } 568 569 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 570 int addr_len, int flags) 571 { 572 struct sock *sk = sock->sk; 573 const struct proto *prot; 574 int err; 575 576 if (addr_len < sizeof(uaddr->sa_family)) 577 return -EINVAL; 578 579 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 580 prot = READ_ONCE(sk->sk_prot); 581 582 if (uaddr->sa_family == AF_UNSPEC) 583 return prot->disconnect(sk, flags); 584 585 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 586 err = prot->pre_connect(sk, uaddr, addr_len); 587 if (err) 588 return err; 589 } 590 591 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 592 return -EAGAIN; 593 return prot->connect(sk, uaddr, addr_len); 594 } 595 EXPORT_SYMBOL(inet_dgram_connect); 596 597 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 598 { 599 DEFINE_WAIT_FUNC(wait, woken_wake_function); 600 601 add_wait_queue(sk_sleep(sk), &wait); 602 sk->sk_write_pending += writebias; 603 604 /* Basic assumption: if someone sets sk->sk_err, he _must_ 605 * change state of the socket from TCP_SYN_*. 606 * Connect() does not allow to get error notifications 607 * without closing the socket. 608 */ 609 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 610 release_sock(sk); 611 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 612 lock_sock(sk); 613 if (signal_pending(current) || !timeo) 614 break; 615 } 616 remove_wait_queue(sk_sleep(sk), &wait); 617 sk->sk_write_pending -= writebias; 618 return timeo; 619 } 620 621 /* 622 * Connect to a remote host. There is regrettably still a little 623 * TCP 'magic' in here. 624 */ 625 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 626 int addr_len, int flags, int is_sendmsg) 627 { 628 struct sock *sk = sock->sk; 629 int err; 630 long timeo; 631 632 /* 633 * uaddr can be NULL and addr_len can be 0 if: 634 * sk is a TCP fastopen active socket and 635 * TCP_FASTOPEN_CONNECT sockopt is set and 636 * we already have a valid cookie for this socket. 637 * In this case, user can call write() after connect(). 638 * write() will invoke tcp_sendmsg_fastopen() which calls 639 * __inet_stream_connect(). 640 */ 641 if (uaddr) { 642 if (addr_len < sizeof(uaddr->sa_family)) 643 return -EINVAL; 644 645 if (uaddr->sa_family == AF_UNSPEC) { 646 sk->sk_disconnects++; 647 err = sk->sk_prot->disconnect(sk, flags); 648 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 649 goto out; 650 } 651 } 652 653 switch (sock->state) { 654 default: 655 err = -EINVAL; 656 goto out; 657 case SS_CONNECTED: 658 err = -EISCONN; 659 goto out; 660 case SS_CONNECTING: 661 if (inet_test_bit(DEFER_CONNECT, sk)) 662 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 663 else 664 err = -EALREADY; 665 /* Fall out of switch with err, set for this state */ 666 break; 667 case SS_UNCONNECTED: 668 err = -EISCONN; 669 if (sk->sk_state != TCP_CLOSE) 670 goto out; 671 672 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 673 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 674 if (err) 675 goto out; 676 } 677 678 err = sk->sk_prot->connect(sk, uaddr, addr_len); 679 if (err < 0) 680 goto out; 681 682 sock->state = SS_CONNECTING; 683 684 if (!err && inet_test_bit(DEFER_CONNECT, sk)) 685 goto out; 686 687 /* Just entered SS_CONNECTING state; the only 688 * difference is that return value in non-blocking 689 * case is EINPROGRESS, rather than EALREADY. 690 */ 691 err = -EINPROGRESS; 692 break; 693 } 694 695 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 696 697 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 698 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 699 tcp_sk(sk)->fastopen_req && 700 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 701 int dis = sk->sk_disconnects; 702 703 /* Error code is set above */ 704 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 705 goto out; 706 707 err = sock_intr_errno(timeo); 708 if (signal_pending(current)) 709 goto out; 710 711 if (dis != sk->sk_disconnects) { 712 err = -EPIPE; 713 goto out; 714 } 715 } 716 717 /* Connection was closed by RST, timeout, ICMP error 718 * or another process disconnected us. 719 */ 720 if (sk->sk_state == TCP_CLOSE) 721 goto sock_error; 722 723 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 724 * and error was received after socket entered established state. 725 * Hence, it is handled normally after connect() return successfully. 726 */ 727 728 sock->state = SS_CONNECTED; 729 err = 0; 730 out: 731 return err; 732 733 sock_error: 734 err = sock_error(sk) ? : -ECONNABORTED; 735 sock->state = SS_UNCONNECTED; 736 sk->sk_disconnects++; 737 if (sk->sk_prot->disconnect(sk, flags)) 738 sock->state = SS_DISCONNECTING; 739 goto out; 740 } 741 EXPORT_SYMBOL(__inet_stream_connect); 742 743 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 744 int addr_len, int flags) 745 { 746 int err; 747 748 lock_sock(sock->sk); 749 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 750 release_sock(sock->sk); 751 return err; 752 } 753 EXPORT_SYMBOL(inet_stream_connect); 754 755 void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) 756 { 757 sock_rps_record_flow(newsk); 758 WARN_ON(!((1 << newsk->sk_state) & 759 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 760 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 761 762 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 763 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 764 sock_graft(newsk, newsock); 765 766 newsock->state = SS_CONNECTED; 767 } 768 769 /* 770 * Accept a pending connection. The TCP layer now gives BSD semantics. 771 */ 772 773 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 774 bool kern) 775 { 776 struct sock *sk1 = sock->sk, *sk2; 777 int err = -EINVAL; 778 779 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 780 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 781 if (!sk2) 782 return err; 783 784 lock_sock(sk2); 785 __inet_accept(sock, newsock, sk2); 786 release_sock(sk2); 787 return 0; 788 } 789 EXPORT_SYMBOL(inet_accept); 790 791 /* 792 * This does both peername and sockname. 793 */ 794 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 795 int peer) 796 { 797 struct sock *sk = sock->sk; 798 struct inet_sock *inet = inet_sk(sk); 799 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 800 int sin_addr_len = sizeof(*sin); 801 802 sin->sin_family = AF_INET; 803 lock_sock(sk); 804 if (peer) { 805 if (!inet->inet_dport || 806 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 807 peer == 1)) { 808 release_sock(sk); 809 return -ENOTCONN; 810 } 811 sin->sin_port = inet->inet_dport; 812 sin->sin_addr.s_addr = inet->inet_daddr; 813 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 814 CGROUP_INET4_GETPEERNAME); 815 } else { 816 __be32 addr = inet->inet_rcv_saddr; 817 if (!addr) 818 addr = inet->inet_saddr; 819 sin->sin_port = inet->inet_sport; 820 sin->sin_addr.s_addr = addr; 821 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 822 CGROUP_INET4_GETSOCKNAME); 823 } 824 release_sock(sk); 825 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 826 return sin_addr_len; 827 } 828 EXPORT_SYMBOL(inet_getname); 829 830 int inet_send_prepare(struct sock *sk) 831 { 832 sock_rps_record_flow(sk); 833 834 /* We may need to bind the socket. */ 835 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 836 inet_autobind(sk)) 837 return -EAGAIN; 838 839 return 0; 840 } 841 EXPORT_SYMBOL_GPL(inet_send_prepare); 842 843 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 844 { 845 struct sock *sk = sock->sk; 846 847 if (unlikely(inet_send_prepare(sk))) 848 return -EAGAIN; 849 850 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 851 sk, msg, size); 852 } 853 EXPORT_SYMBOL(inet_sendmsg); 854 855 void inet_splice_eof(struct socket *sock) 856 { 857 const struct proto *prot; 858 struct sock *sk = sock->sk; 859 860 if (unlikely(inet_send_prepare(sk))) 861 return; 862 863 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 864 prot = READ_ONCE(sk->sk_prot); 865 if (prot->splice_eof) 866 prot->splice_eof(sock); 867 } 868 EXPORT_SYMBOL_GPL(inet_splice_eof); 869 870 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 871 size_t, int, int *)); 872 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 873 int flags) 874 { 875 struct sock *sk = sock->sk; 876 int addr_len = 0; 877 int err; 878 879 if (likely(!(flags & MSG_ERRQUEUE))) 880 sock_rps_record_flow(sk); 881 882 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 883 sk, msg, size, flags, &addr_len); 884 if (err >= 0) 885 msg->msg_namelen = addr_len; 886 return err; 887 } 888 EXPORT_SYMBOL(inet_recvmsg); 889 890 int inet_shutdown(struct socket *sock, int how) 891 { 892 struct sock *sk = sock->sk; 893 int err = 0; 894 895 /* This should really check to make sure 896 * the socket is a TCP socket. (WHY AC...) 897 */ 898 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 899 1->2 bit 2 snds. 900 2->3 */ 901 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 902 return -EINVAL; 903 904 lock_sock(sk); 905 if (sock->state == SS_CONNECTING) { 906 if ((1 << sk->sk_state) & 907 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 908 sock->state = SS_DISCONNECTING; 909 else 910 sock->state = SS_CONNECTED; 911 } 912 913 switch (sk->sk_state) { 914 case TCP_CLOSE: 915 err = -ENOTCONN; 916 /* Hack to wake up other listeners, who can poll for 917 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 918 fallthrough; 919 default: 920 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 921 if (sk->sk_prot->shutdown) 922 sk->sk_prot->shutdown(sk, how); 923 break; 924 925 /* Remaining two branches are temporary solution for missing 926 * close() in multithreaded environment. It is _not_ a good idea, 927 * but we have no choice until close() is repaired at VFS level. 928 */ 929 case TCP_LISTEN: 930 if (!(how & RCV_SHUTDOWN)) 931 break; 932 fallthrough; 933 case TCP_SYN_SENT: 934 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 935 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 936 break; 937 } 938 939 /* Wake up anyone sleeping in poll. */ 940 sk->sk_state_change(sk); 941 release_sock(sk); 942 return err; 943 } 944 EXPORT_SYMBOL(inet_shutdown); 945 946 /* 947 * ioctl() calls you can issue on an INET socket. Most of these are 948 * device configuration and stuff and very rarely used. Some ioctls 949 * pass on to the socket itself. 950 * 951 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 952 * loads the devconfigure module does its configuring and unloads it. 953 * There's a good 20K of config code hanging around the kernel. 954 */ 955 956 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 957 { 958 struct sock *sk = sock->sk; 959 int err = 0; 960 struct net *net = sock_net(sk); 961 void __user *p = (void __user *)arg; 962 struct ifreq ifr; 963 struct rtentry rt; 964 965 switch (cmd) { 966 case SIOCADDRT: 967 case SIOCDELRT: 968 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 969 return -EFAULT; 970 err = ip_rt_ioctl(net, cmd, &rt); 971 break; 972 case SIOCRTMSG: 973 err = -EINVAL; 974 break; 975 case SIOCDARP: 976 case SIOCGARP: 977 case SIOCSARP: 978 err = arp_ioctl(net, cmd, (void __user *)arg); 979 break; 980 case SIOCGIFADDR: 981 case SIOCGIFBRDADDR: 982 case SIOCGIFNETMASK: 983 case SIOCGIFDSTADDR: 984 case SIOCGIFPFLAGS: 985 if (get_user_ifreq(&ifr, NULL, p)) 986 return -EFAULT; 987 err = devinet_ioctl(net, cmd, &ifr); 988 if (!err && put_user_ifreq(&ifr, p)) 989 err = -EFAULT; 990 break; 991 992 case SIOCSIFADDR: 993 case SIOCSIFBRDADDR: 994 case SIOCSIFNETMASK: 995 case SIOCSIFDSTADDR: 996 case SIOCSIFPFLAGS: 997 case SIOCSIFFLAGS: 998 if (get_user_ifreq(&ifr, NULL, p)) 999 return -EFAULT; 1000 err = devinet_ioctl(net, cmd, &ifr); 1001 break; 1002 default: 1003 if (sk->sk_prot->ioctl) 1004 err = sk_ioctl(sk, cmd, (void __user *)arg); 1005 else 1006 err = -ENOIOCTLCMD; 1007 break; 1008 } 1009 return err; 1010 } 1011 EXPORT_SYMBOL(inet_ioctl); 1012 1013 #ifdef CONFIG_COMPAT 1014 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 1015 struct compat_rtentry __user *ur) 1016 { 1017 compat_uptr_t rtdev; 1018 struct rtentry rt; 1019 1020 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1021 3 * sizeof(struct sockaddr)) || 1022 get_user(rt.rt_flags, &ur->rt_flags) || 1023 get_user(rt.rt_metric, &ur->rt_metric) || 1024 get_user(rt.rt_mtu, &ur->rt_mtu) || 1025 get_user(rt.rt_window, &ur->rt_window) || 1026 get_user(rt.rt_irtt, &ur->rt_irtt) || 1027 get_user(rtdev, &ur->rt_dev)) 1028 return -EFAULT; 1029 1030 rt.rt_dev = compat_ptr(rtdev); 1031 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1032 } 1033 1034 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1035 { 1036 void __user *argp = compat_ptr(arg); 1037 struct sock *sk = sock->sk; 1038 1039 switch (cmd) { 1040 case SIOCADDRT: 1041 case SIOCDELRT: 1042 return inet_compat_routing_ioctl(sk, cmd, argp); 1043 default: 1044 if (!sk->sk_prot->compat_ioctl) 1045 return -ENOIOCTLCMD; 1046 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1047 } 1048 } 1049 #endif /* CONFIG_COMPAT */ 1050 1051 const struct proto_ops inet_stream_ops = { 1052 .family = PF_INET, 1053 .owner = THIS_MODULE, 1054 .release = inet_release, 1055 .bind = inet_bind, 1056 .connect = inet_stream_connect, 1057 .socketpair = sock_no_socketpair, 1058 .accept = inet_accept, 1059 .getname = inet_getname, 1060 .poll = tcp_poll, 1061 .ioctl = inet_ioctl, 1062 .gettstamp = sock_gettstamp, 1063 .listen = inet_listen, 1064 .shutdown = inet_shutdown, 1065 .setsockopt = sock_common_setsockopt, 1066 .getsockopt = sock_common_getsockopt, 1067 .sendmsg = inet_sendmsg, 1068 .recvmsg = inet_recvmsg, 1069 #ifdef CONFIG_MMU 1070 .mmap = tcp_mmap, 1071 #endif 1072 .splice_eof = inet_splice_eof, 1073 .splice_read = tcp_splice_read, 1074 .read_sock = tcp_read_sock, 1075 .read_skb = tcp_read_skb, 1076 .sendmsg_locked = tcp_sendmsg_locked, 1077 .peek_len = tcp_peek_len, 1078 #ifdef CONFIG_COMPAT 1079 .compat_ioctl = inet_compat_ioctl, 1080 #endif 1081 .set_rcvlowat = tcp_set_rcvlowat, 1082 }; 1083 EXPORT_SYMBOL(inet_stream_ops); 1084 1085 const struct proto_ops inet_dgram_ops = { 1086 .family = PF_INET, 1087 .owner = THIS_MODULE, 1088 .release = inet_release, 1089 .bind = inet_bind, 1090 .connect = inet_dgram_connect, 1091 .socketpair = sock_no_socketpair, 1092 .accept = sock_no_accept, 1093 .getname = inet_getname, 1094 .poll = udp_poll, 1095 .ioctl = inet_ioctl, 1096 .gettstamp = sock_gettstamp, 1097 .listen = sock_no_listen, 1098 .shutdown = inet_shutdown, 1099 .setsockopt = sock_common_setsockopt, 1100 .getsockopt = sock_common_getsockopt, 1101 .sendmsg = inet_sendmsg, 1102 .read_skb = udp_read_skb, 1103 .recvmsg = inet_recvmsg, 1104 .mmap = sock_no_mmap, 1105 .splice_eof = inet_splice_eof, 1106 .set_peek_off = sk_set_peek_off, 1107 #ifdef CONFIG_COMPAT 1108 .compat_ioctl = inet_compat_ioctl, 1109 #endif 1110 }; 1111 EXPORT_SYMBOL(inet_dgram_ops); 1112 1113 /* 1114 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1115 * udp_poll 1116 */ 1117 static const struct proto_ops inet_sockraw_ops = { 1118 .family = PF_INET, 1119 .owner = THIS_MODULE, 1120 .release = inet_release, 1121 .bind = inet_bind, 1122 .connect = inet_dgram_connect, 1123 .socketpair = sock_no_socketpair, 1124 .accept = sock_no_accept, 1125 .getname = inet_getname, 1126 .poll = datagram_poll, 1127 .ioctl = inet_ioctl, 1128 .gettstamp = sock_gettstamp, 1129 .listen = sock_no_listen, 1130 .shutdown = inet_shutdown, 1131 .setsockopt = sock_common_setsockopt, 1132 .getsockopt = sock_common_getsockopt, 1133 .sendmsg = inet_sendmsg, 1134 .recvmsg = inet_recvmsg, 1135 .mmap = sock_no_mmap, 1136 .splice_eof = inet_splice_eof, 1137 #ifdef CONFIG_COMPAT 1138 .compat_ioctl = inet_compat_ioctl, 1139 #endif 1140 }; 1141 1142 static const struct net_proto_family inet_family_ops = { 1143 .family = PF_INET, 1144 .create = inet_create, 1145 .owner = THIS_MODULE, 1146 }; 1147 1148 /* Upon startup we insert all the elements in inetsw_array[] into 1149 * the linked list inetsw. 1150 */ 1151 static struct inet_protosw inetsw_array[] = 1152 { 1153 { 1154 .type = SOCK_STREAM, 1155 .protocol = IPPROTO_TCP, 1156 .prot = &tcp_prot, 1157 .ops = &inet_stream_ops, 1158 .flags = INET_PROTOSW_PERMANENT | 1159 INET_PROTOSW_ICSK, 1160 }, 1161 1162 { 1163 .type = SOCK_DGRAM, 1164 .protocol = IPPROTO_UDP, 1165 .prot = &udp_prot, 1166 .ops = &inet_dgram_ops, 1167 .flags = INET_PROTOSW_PERMANENT, 1168 }, 1169 1170 { 1171 .type = SOCK_DGRAM, 1172 .protocol = IPPROTO_ICMP, 1173 .prot = &ping_prot, 1174 .ops = &inet_sockraw_ops, 1175 .flags = INET_PROTOSW_REUSE, 1176 }, 1177 1178 { 1179 .type = SOCK_RAW, 1180 .protocol = IPPROTO_IP, /* wild card */ 1181 .prot = &raw_prot, 1182 .ops = &inet_sockraw_ops, 1183 .flags = INET_PROTOSW_REUSE, 1184 } 1185 }; 1186 1187 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1188 1189 void inet_register_protosw(struct inet_protosw *p) 1190 { 1191 struct list_head *lh; 1192 struct inet_protosw *answer; 1193 int protocol = p->protocol; 1194 struct list_head *last_perm; 1195 1196 spin_lock_bh(&inetsw_lock); 1197 1198 if (p->type >= SOCK_MAX) 1199 goto out_illegal; 1200 1201 /* If we are trying to override a permanent protocol, bail. */ 1202 last_perm = &inetsw[p->type]; 1203 list_for_each(lh, &inetsw[p->type]) { 1204 answer = list_entry(lh, struct inet_protosw, list); 1205 /* Check only the non-wild match. */ 1206 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1207 break; 1208 if (protocol == answer->protocol) 1209 goto out_permanent; 1210 last_perm = lh; 1211 } 1212 1213 /* Add the new entry after the last permanent entry if any, so that 1214 * the new entry does not override a permanent entry when matched with 1215 * a wild-card protocol. But it is allowed to override any existing 1216 * non-permanent entry. This means that when we remove this entry, the 1217 * system automatically returns to the old behavior. 1218 */ 1219 list_add_rcu(&p->list, last_perm); 1220 out: 1221 spin_unlock_bh(&inetsw_lock); 1222 1223 return; 1224 1225 out_permanent: 1226 pr_err("Attempt to override permanent protocol %d\n", protocol); 1227 goto out; 1228 1229 out_illegal: 1230 pr_err("Ignoring attempt to register invalid socket type %d\n", 1231 p->type); 1232 goto out; 1233 } 1234 EXPORT_SYMBOL(inet_register_protosw); 1235 1236 void inet_unregister_protosw(struct inet_protosw *p) 1237 { 1238 if (INET_PROTOSW_PERMANENT & p->flags) { 1239 pr_err("Attempt to unregister permanent protocol %d\n", 1240 p->protocol); 1241 } else { 1242 spin_lock_bh(&inetsw_lock); 1243 list_del_rcu(&p->list); 1244 spin_unlock_bh(&inetsw_lock); 1245 1246 synchronize_net(); 1247 } 1248 } 1249 EXPORT_SYMBOL(inet_unregister_protosw); 1250 1251 static int inet_sk_reselect_saddr(struct sock *sk) 1252 { 1253 struct inet_sock *inet = inet_sk(sk); 1254 __be32 old_saddr = inet->inet_saddr; 1255 __be32 daddr = inet->inet_daddr; 1256 struct flowi4 *fl4; 1257 struct rtable *rt; 1258 __be32 new_saddr; 1259 struct ip_options_rcu *inet_opt; 1260 int err; 1261 1262 inet_opt = rcu_dereference_protected(inet->inet_opt, 1263 lockdep_sock_is_held(sk)); 1264 if (inet_opt && inet_opt->opt.srr) 1265 daddr = inet_opt->opt.faddr; 1266 1267 /* Query new route. */ 1268 fl4 = &inet->cork.fl.u.ip4; 1269 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1270 sk->sk_protocol, inet->inet_sport, 1271 inet->inet_dport, sk); 1272 if (IS_ERR(rt)) 1273 return PTR_ERR(rt); 1274 1275 new_saddr = fl4->saddr; 1276 1277 if (new_saddr == old_saddr) { 1278 sk_setup_caps(sk, &rt->dst); 1279 return 0; 1280 } 1281 1282 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1283 if (err) { 1284 ip_rt_put(rt); 1285 return err; 1286 } 1287 1288 sk_setup_caps(sk, &rt->dst); 1289 1290 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1291 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1292 __func__, &old_saddr, &new_saddr); 1293 } 1294 1295 /* 1296 * XXX The only one ugly spot where we need to 1297 * XXX really change the sockets identity after 1298 * XXX it has entered the hashes. -DaveM 1299 * 1300 * Besides that, it does not check for connection 1301 * uniqueness. Wait for troubles. 1302 */ 1303 return __sk_prot_rehash(sk); 1304 } 1305 1306 int inet_sk_rebuild_header(struct sock *sk) 1307 { 1308 struct inet_sock *inet = inet_sk(sk); 1309 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1310 __be32 daddr; 1311 struct ip_options_rcu *inet_opt; 1312 struct flowi4 *fl4; 1313 int err; 1314 1315 /* Route is OK, nothing to do. */ 1316 if (rt) 1317 return 0; 1318 1319 /* Reroute. */ 1320 rcu_read_lock(); 1321 inet_opt = rcu_dereference(inet->inet_opt); 1322 daddr = inet->inet_daddr; 1323 if (inet_opt && inet_opt->opt.srr) 1324 daddr = inet_opt->opt.faddr; 1325 rcu_read_unlock(); 1326 fl4 = &inet->cork.fl.u.ip4; 1327 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1328 inet->inet_dport, inet->inet_sport, 1329 sk->sk_protocol, RT_CONN_FLAGS(sk), 1330 sk->sk_bound_dev_if); 1331 if (!IS_ERR(rt)) { 1332 err = 0; 1333 sk_setup_caps(sk, &rt->dst); 1334 } else { 1335 err = PTR_ERR(rt); 1336 1337 /* Routing failed... */ 1338 sk->sk_route_caps = 0; 1339 /* 1340 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1341 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1342 */ 1343 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1344 sk->sk_state != TCP_SYN_SENT || 1345 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1346 (err = inet_sk_reselect_saddr(sk)) != 0) 1347 WRITE_ONCE(sk->sk_err_soft, -err); 1348 } 1349 1350 return err; 1351 } 1352 EXPORT_SYMBOL(inet_sk_rebuild_header); 1353 1354 void inet_sk_set_state(struct sock *sk, int state) 1355 { 1356 trace_inet_sock_set_state(sk, sk->sk_state, state); 1357 sk->sk_state = state; 1358 } 1359 EXPORT_SYMBOL(inet_sk_set_state); 1360 1361 void inet_sk_state_store(struct sock *sk, int newstate) 1362 { 1363 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1364 smp_store_release(&sk->sk_state, newstate); 1365 } 1366 1367 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1368 netdev_features_t features) 1369 { 1370 bool udpfrag = false, fixedid = false, gso_partial, encap; 1371 struct sk_buff *segs = ERR_PTR(-EINVAL); 1372 const struct net_offload *ops; 1373 unsigned int offset = 0; 1374 struct iphdr *iph; 1375 int proto, tot_len; 1376 int nhoff; 1377 int ihl; 1378 int id; 1379 1380 skb_reset_network_header(skb); 1381 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1382 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1383 goto out; 1384 1385 iph = ip_hdr(skb); 1386 ihl = iph->ihl * 4; 1387 if (ihl < sizeof(*iph)) 1388 goto out; 1389 1390 id = ntohs(iph->id); 1391 proto = iph->protocol; 1392 1393 /* Warning: after this point, iph might be no longer valid */ 1394 if (unlikely(!pskb_may_pull(skb, ihl))) 1395 goto out; 1396 __skb_pull(skb, ihl); 1397 1398 encap = SKB_GSO_CB(skb)->encap_level > 0; 1399 if (encap) 1400 features &= skb->dev->hw_enc_features; 1401 SKB_GSO_CB(skb)->encap_level += ihl; 1402 1403 skb_reset_transport_header(skb); 1404 1405 segs = ERR_PTR(-EPROTONOSUPPORT); 1406 1407 if (!skb->encapsulation || encap) { 1408 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1409 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1410 1411 /* fixed ID is invalid if DF bit is not set */ 1412 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1413 goto out; 1414 } 1415 1416 ops = rcu_dereference(inet_offloads[proto]); 1417 if (likely(ops && ops->callbacks.gso_segment)) { 1418 segs = ops->callbacks.gso_segment(skb, features); 1419 if (!segs) 1420 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1421 } 1422 1423 if (IS_ERR_OR_NULL(segs)) 1424 goto out; 1425 1426 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1427 1428 skb = segs; 1429 do { 1430 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1431 if (udpfrag) { 1432 iph->frag_off = htons(offset >> 3); 1433 if (skb->next) 1434 iph->frag_off |= htons(IP_MF); 1435 offset += skb->len - nhoff - ihl; 1436 tot_len = skb->len - nhoff; 1437 } else if (skb_is_gso(skb)) { 1438 if (!fixedid) { 1439 iph->id = htons(id); 1440 id += skb_shinfo(skb)->gso_segs; 1441 } 1442 1443 if (gso_partial) 1444 tot_len = skb_shinfo(skb)->gso_size + 1445 SKB_GSO_CB(skb)->data_offset + 1446 skb->head - (unsigned char *)iph; 1447 else 1448 tot_len = skb->len - nhoff; 1449 } else { 1450 if (!fixedid) 1451 iph->id = htons(id++); 1452 tot_len = skb->len - nhoff; 1453 } 1454 iph->tot_len = htons(tot_len); 1455 ip_send_check(iph); 1456 if (encap) 1457 skb_reset_inner_headers(skb); 1458 skb->network_header = (u8 *)iph - skb->head; 1459 skb_reset_mac_len(skb); 1460 } while ((skb = skb->next)); 1461 1462 out: 1463 return segs; 1464 } 1465 1466 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1467 netdev_features_t features) 1468 { 1469 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1470 return ERR_PTR(-EINVAL); 1471 1472 return inet_gso_segment(skb, features); 1473 } 1474 1475 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1476 { 1477 const struct net_offload *ops; 1478 struct sk_buff *pp = NULL; 1479 const struct iphdr *iph; 1480 struct sk_buff *p; 1481 unsigned int hlen; 1482 unsigned int off; 1483 unsigned int id; 1484 int flush = 1; 1485 int proto; 1486 1487 off = skb_gro_offset(skb); 1488 hlen = off + sizeof(*iph); 1489 iph = skb_gro_header(skb, hlen, off); 1490 if (unlikely(!iph)) 1491 goto out; 1492 1493 proto = iph->protocol; 1494 1495 ops = rcu_dereference(inet_offloads[proto]); 1496 if (!ops || !ops->callbacks.gro_receive) 1497 goto out; 1498 1499 if (*(u8 *)iph != 0x45) 1500 goto out; 1501 1502 if (ip_is_fragment(iph)) 1503 goto out; 1504 1505 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1506 goto out; 1507 1508 NAPI_GRO_CB(skb)->proto = proto; 1509 id = ntohl(*(__be32 *)&iph->id); 1510 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1511 id >>= 16; 1512 1513 list_for_each_entry(p, head, list) { 1514 struct iphdr *iph2; 1515 u16 flush_id; 1516 1517 if (!NAPI_GRO_CB(p)->same_flow) 1518 continue; 1519 1520 iph2 = (struct iphdr *)(p->data + off); 1521 /* The above works because, with the exception of the top 1522 * (inner most) layer, we only aggregate pkts with the same 1523 * hdr length so all the hdrs we'll need to verify will start 1524 * at the same offset. 1525 */ 1526 if ((iph->protocol ^ iph2->protocol) | 1527 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1528 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1529 NAPI_GRO_CB(p)->same_flow = 0; 1530 continue; 1531 } 1532 1533 /* All fields must match except length and checksum. */ 1534 NAPI_GRO_CB(p)->flush |= 1535 (iph->ttl ^ iph2->ttl) | 1536 (iph->tos ^ iph2->tos) | 1537 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1538 1539 NAPI_GRO_CB(p)->flush |= flush; 1540 1541 /* We need to store of the IP ID check to be included later 1542 * when we can verify that this packet does in fact belong 1543 * to a given flow. 1544 */ 1545 flush_id = (u16)(id - ntohs(iph2->id)); 1546 1547 /* This bit of code makes it much easier for us to identify 1548 * the cases where we are doing atomic vs non-atomic IP ID 1549 * checks. Specifically an atomic check can return IP ID 1550 * values 0 - 0xFFFF, while a non-atomic check can only 1551 * return 0 or 0xFFFF. 1552 */ 1553 if (!NAPI_GRO_CB(p)->is_atomic || 1554 !(iph->frag_off & htons(IP_DF))) { 1555 flush_id ^= NAPI_GRO_CB(p)->count; 1556 flush_id = flush_id ? 0xFFFF : 0; 1557 } 1558 1559 /* If the previous IP ID value was based on an atomic 1560 * datagram we can overwrite the value and ignore it. 1561 */ 1562 if (NAPI_GRO_CB(skb)->is_atomic) 1563 NAPI_GRO_CB(p)->flush_id = flush_id; 1564 else 1565 NAPI_GRO_CB(p)->flush_id |= flush_id; 1566 } 1567 1568 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1569 NAPI_GRO_CB(skb)->flush |= flush; 1570 skb_set_network_header(skb, off); 1571 /* The above will be needed by the transport layer if there is one 1572 * immediately following this IP hdr. 1573 */ 1574 1575 /* Note : No need to call skb_gro_postpull_rcsum() here, 1576 * as we already checked checksum over ipv4 header was 0 1577 */ 1578 skb_gro_pull(skb, sizeof(*iph)); 1579 skb_set_transport_header(skb, skb_gro_offset(skb)); 1580 1581 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1582 ops->callbacks.gro_receive, head, skb); 1583 1584 out: 1585 skb_gro_flush_final(skb, pp, flush); 1586 1587 return pp; 1588 } 1589 1590 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1591 struct sk_buff *skb) 1592 { 1593 if (NAPI_GRO_CB(skb)->encap_mark) { 1594 NAPI_GRO_CB(skb)->flush = 1; 1595 return NULL; 1596 } 1597 1598 NAPI_GRO_CB(skb)->encap_mark = 1; 1599 1600 return inet_gro_receive(head, skb); 1601 } 1602 1603 #define SECONDS_PER_DAY 86400 1604 1605 /* inet_current_timestamp - Return IP network timestamp 1606 * 1607 * Return milliseconds since midnight in network byte order. 1608 */ 1609 __be32 inet_current_timestamp(void) 1610 { 1611 u32 secs; 1612 u32 msecs; 1613 struct timespec64 ts; 1614 1615 ktime_get_real_ts64(&ts); 1616 1617 /* Get secs since midnight. */ 1618 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1619 /* Convert to msecs. */ 1620 msecs = secs * MSEC_PER_SEC; 1621 /* Convert nsec to msec. */ 1622 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1623 1624 /* Convert to network byte order. */ 1625 return htonl(msecs); 1626 } 1627 EXPORT_SYMBOL(inet_current_timestamp); 1628 1629 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1630 { 1631 unsigned int family = READ_ONCE(sk->sk_family); 1632 1633 if (family == AF_INET) 1634 return ip_recv_error(sk, msg, len, addr_len); 1635 #if IS_ENABLED(CONFIG_IPV6) 1636 if (family == AF_INET6) 1637 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1638 #endif 1639 return -EINVAL; 1640 } 1641 EXPORT_SYMBOL(inet_recv_error); 1642 1643 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1644 { 1645 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1646 const struct net_offload *ops; 1647 __be16 totlen = iph->tot_len; 1648 int proto = iph->protocol; 1649 int err = -ENOSYS; 1650 1651 if (skb->encapsulation) { 1652 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1653 skb_set_inner_network_header(skb, nhoff); 1654 } 1655 1656 iph_set_totlen(iph, skb->len - nhoff); 1657 csum_replace2(&iph->check, totlen, iph->tot_len); 1658 1659 ops = rcu_dereference(inet_offloads[proto]); 1660 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1661 goto out; 1662 1663 /* Only need to add sizeof(*iph) to get to the next hdr below 1664 * because any hdr with option will have been flushed in 1665 * inet_gro_receive(). 1666 */ 1667 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1668 tcp4_gro_complete, udp4_gro_complete, 1669 skb, nhoff + sizeof(*iph)); 1670 1671 out: 1672 return err; 1673 } 1674 1675 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1676 { 1677 skb->encapsulation = 1; 1678 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1679 return inet_gro_complete(skb, nhoff); 1680 } 1681 1682 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1683 unsigned short type, unsigned char protocol, 1684 struct net *net) 1685 { 1686 struct socket *sock; 1687 int rc = sock_create_kern(net, family, type, protocol, &sock); 1688 1689 if (rc == 0) { 1690 *sk = sock->sk; 1691 (*sk)->sk_allocation = GFP_ATOMIC; 1692 (*sk)->sk_use_task_frag = false; 1693 /* 1694 * Unhash it so that IP input processing does not even see it, 1695 * we do not wish this socket to see incoming packets. 1696 */ 1697 (*sk)->sk_prot->unhash(*sk); 1698 } 1699 return rc; 1700 } 1701 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1702 1703 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1704 { 1705 unsigned long res = 0; 1706 int i; 1707 1708 for_each_possible_cpu(i) 1709 res += snmp_get_cpu_field(mib, i, offt); 1710 return res; 1711 } 1712 EXPORT_SYMBOL_GPL(snmp_fold_field); 1713 1714 #if BITS_PER_LONG==32 1715 1716 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1717 size_t syncp_offset) 1718 { 1719 void *bhptr; 1720 struct u64_stats_sync *syncp; 1721 u64 v; 1722 unsigned int start; 1723 1724 bhptr = per_cpu_ptr(mib, cpu); 1725 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1726 do { 1727 start = u64_stats_fetch_begin(syncp); 1728 v = *(((u64 *)bhptr) + offt); 1729 } while (u64_stats_fetch_retry(syncp, start)); 1730 1731 return v; 1732 } 1733 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1734 1735 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1736 { 1737 u64 res = 0; 1738 int cpu; 1739 1740 for_each_possible_cpu(cpu) { 1741 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1742 } 1743 return res; 1744 } 1745 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1746 #endif 1747 1748 #ifdef CONFIG_IP_MULTICAST 1749 static const struct net_protocol igmp_protocol = { 1750 .handler = igmp_rcv, 1751 }; 1752 #endif 1753 1754 static const struct net_protocol tcp_protocol = { 1755 .handler = tcp_v4_rcv, 1756 .err_handler = tcp_v4_err, 1757 .no_policy = 1, 1758 .icmp_strict_tag_validation = 1, 1759 }; 1760 1761 static const struct net_protocol udp_protocol = { 1762 .handler = udp_rcv, 1763 .err_handler = udp_err, 1764 .no_policy = 1, 1765 }; 1766 1767 static const struct net_protocol icmp_protocol = { 1768 .handler = icmp_rcv, 1769 .err_handler = icmp_err, 1770 .no_policy = 1, 1771 }; 1772 1773 static __net_init int ipv4_mib_init_net(struct net *net) 1774 { 1775 int i; 1776 1777 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1778 if (!net->mib.tcp_statistics) 1779 goto err_tcp_mib; 1780 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1781 if (!net->mib.ip_statistics) 1782 goto err_ip_mib; 1783 1784 for_each_possible_cpu(i) { 1785 struct ipstats_mib *af_inet_stats; 1786 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1787 u64_stats_init(&af_inet_stats->syncp); 1788 } 1789 1790 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1791 if (!net->mib.net_statistics) 1792 goto err_net_mib; 1793 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1794 if (!net->mib.udp_statistics) 1795 goto err_udp_mib; 1796 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1797 if (!net->mib.udplite_statistics) 1798 goto err_udplite_mib; 1799 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1800 if (!net->mib.icmp_statistics) 1801 goto err_icmp_mib; 1802 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1803 GFP_KERNEL); 1804 if (!net->mib.icmpmsg_statistics) 1805 goto err_icmpmsg_mib; 1806 1807 tcp_mib_init(net); 1808 return 0; 1809 1810 err_icmpmsg_mib: 1811 free_percpu(net->mib.icmp_statistics); 1812 err_icmp_mib: 1813 free_percpu(net->mib.udplite_statistics); 1814 err_udplite_mib: 1815 free_percpu(net->mib.udp_statistics); 1816 err_udp_mib: 1817 free_percpu(net->mib.net_statistics); 1818 err_net_mib: 1819 free_percpu(net->mib.ip_statistics); 1820 err_ip_mib: 1821 free_percpu(net->mib.tcp_statistics); 1822 err_tcp_mib: 1823 return -ENOMEM; 1824 } 1825 1826 static __net_exit void ipv4_mib_exit_net(struct net *net) 1827 { 1828 kfree(net->mib.icmpmsg_statistics); 1829 free_percpu(net->mib.icmp_statistics); 1830 free_percpu(net->mib.udplite_statistics); 1831 free_percpu(net->mib.udp_statistics); 1832 free_percpu(net->mib.net_statistics); 1833 free_percpu(net->mib.ip_statistics); 1834 free_percpu(net->mib.tcp_statistics); 1835 #ifdef CONFIG_MPTCP 1836 /* allocated on demand, see mptcp_init_sock() */ 1837 free_percpu(net->mib.mptcp_statistics); 1838 #endif 1839 } 1840 1841 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1842 .init = ipv4_mib_init_net, 1843 .exit = ipv4_mib_exit_net, 1844 }; 1845 1846 static int __init init_ipv4_mibs(void) 1847 { 1848 return register_pernet_subsys(&ipv4_mib_ops); 1849 } 1850 1851 static __net_init int inet_init_net(struct net *net) 1852 { 1853 /* 1854 * Set defaults for local port range 1855 */ 1856 net->ipv4.ip_local_ports.range = 60999u << 16 | 32768u; 1857 1858 seqlock_init(&net->ipv4.ping_group_range.lock); 1859 /* 1860 * Sane defaults - nobody may create ping sockets. 1861 * Boot scripts should set this to distro-specific group. 1862 */ 1863 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1864 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1865 1866 /* Default values for sysctl-controlled parameters. 1867 * We set them here, in case sysctl is not compiled. 1868 */ 1869 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1870 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1871 net->ipv4.sysctl_ip_dynaddr = 0; 1872 net->ipv4.sysctl_ip_early_demux = 1; 1873 net->ipv4.sysctl_udp_early_demux = 1; 1874 net->ipv4.sysctl_tcp_early_demux = 1; 1875 net->ipv4.sysctl_nexthop_compat_mode = 1; 1876 #ifdef CONFIG_SYSCTL 1877 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1878 #endif 1879 1880 /* Some igmp sysctl, whose values are always used */ 1881 net->ipv4.sysctl_igmp_max_memberships = 20; 1882 net->ipv4.sysctl_igmp_max_msf = 10; 1883 /* IGMP reports for link-local multicast groups are enabled by default */ 1884 net->ipv4.sysctl_igmp_llm_reports = 1; 1885 net->ipv4.sysctl_igmp_qrv = 2; 1886 1887 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1888 1889 return 0; 1890 } 1891 1892 static __net_initdata struct pernet_operations af_inet_ops = { 1893 .init = inet_init_net, 1894 }; 1895 1896 static int __init init_inet_pernet_ops(void) 1897 { 1898 return register_pernet_subsys(&af_inet_ops); 1899 } 1900 1901 static int ipv4_proc_init(void); 1902 1903 /* 1904 * IP protocol layer initialiser 1905 */ 1906 1907 static struct packet_offload ip_packet_offload __read_mostly = { 1908 .type = cpu_to_be16(ETH_P_IP), 1909 .callbacks = { 1910 .gso_segment = inet_gso_segment, 1911 .gro_receive = inet_gro_receive, 1912 .gro_complete = inet_gro_complete, 1913 }, 1914 }; 1915 1916 static const struct net_offload ipip_offload = { 1917 .callbacks = { 1918 .gso_segment = ipip_gso_segment, 1919 .gro_receive = ipip_gro_receive, 1920 .gro_complete = ipip_gro_complete, 1921 }, 1922 }; 1923 1924 static int __init ipip_offload_init(void) 1925 { 1926 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1927 } 1928 1929 static int __init ipv4_offload_init(void) 1930 { 1931 /* 1932 * Add offloads 1933 */ 1934 if (udpv4_offload_init() < 0) 1935 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1936 if (tcpv4_offload_init() < 0) 1937 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1938 if (ipip_offload_init() < 0) 1939 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1940 1941 dev_add_offload(&ip_packet_offload); 1942 return 0; 1943 } 1944 1945 fs_initcall(ipv4_offload_init); 1946 1947 static struct packet_type ip_packet_type __read_mostly = { 1948 .type = cpu_to_be16(ETH_P_IP), 1949 .func = ip_rcv, 1950 .list_func = ip_list_rcv, 1951 }; 1952 1953 static int __init inet_init(void) 1954 { 1955 struct inet_protosw *q; 1956 struct list_head *r; 1957 int rc; 1958 1959 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1960 1961 raw_hashinfo_init(&raw_v4_hashinfo); 1962 1963 rc = proto_register(&tcp_prot, 1); 1964 if (rc) 1965 goto out; 1966 1967 rc = proto_register(&udp_prot, 1); 1968 if (rc) 1969 goto out_unregister_tcp_proto; 1970 1971 rc = proto_register(&raw_prot, 1); 1972 if (rc) 1973 goto out_unregister_udp_proto; 1974 1975 rc = proto_register(&ping_prot, 1); 1976 if (rc) 1977 goto out_unregister_raw_proto; 1978 1979 /* 1980 * Tell SOCKET that we are alive... 1981 */ 1982 1983 (void)sock_register(&inet_family_ops); 1984 1985 #ifdef CONFIG_SYSCTL 1986 ip_static_sysctl_init(); 1987 #endif 1988 1989 /* 1990 * Add all the base protocols. 1991 */ 1992 1993 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1994 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1995 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1996 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1997 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1998 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1999 #ifdef CONFIG_IP_MULTICAST 2000 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 2001 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 2002 #endif 2003 2004 /* Register the socket-side information for inet_create. */ 2005 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 2006 INIT_LIST_HEAD(r); 2007 2008 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 2009 inet_register_protosw(q); 2010 2011 /* 2012 * Set the ARP module up 2013 */ 2014 2015 arp_init(); 2016 2017 /* 2018 * Set the IP module up 2019 */ 2020 2021 ip_init(); 2022 2023 /* Initialise per-cpu ipv4 mibs */ 2024 if (init_ipv4_mibs()) 2025 panic("%s: Cannot init ipv4 mibs\n", __func__); 2026 2027 /* Setup TCP slab cache for open requests. */ 2028 tcp_init(); 2029 2030 /* Setup UDP memory threshold */ 2031 udp_init(); 2032 2033 /* Add UDP-Lite (RFC 3828) */ 2034 udplite4_register(); 2035 2036 raw_init(); 2037 2038 ping_init(); 2039 2040 /* 2041 * Set the ICMP layer up 2042 */ 2043 2044 if (icmp_init() < 0) 2045 panic("Failed to create the ICMP control socket.\n"); 2046 2047 /* 2048 * Initialise the multicast router 2049 */ 2050 #if defined(CONFIG_IP_MROUTE) 2051 if (ip_mr_init()) 2052 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2053 #endif 2054 2055 if (init_inet_pernet_ops()) 2056 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2057 2058 ipv4_proc_init(); 2059 2060 ipfrag_init(); 2061 2062 dev_add_pack(&ip_packet_type); 2063 2064 ip_tunnel_core_init(); 2065 2066 rc = 0; 2067 out: 2068 return rc; 2069 out_unregister_raw_proto: 2070 proto_unregister(&raw_prot); 2071 out_unregister_udp_proto: 2072 proto_unregister(&udp_prot); 2073 out_unregister_tcp_proto: 2074 proto_unregister(&tcp_prot); 2075 goto out; 2076 } 2077 2078 fs_initcall(inet_init); 2079 2080 /* ------------------------------------------------------------------------ */ 2081 2082 #ifdef CONFIG_PROC_FS 2083 static int __init ipv4_proc_init(void) 2084 { 2085 int rc = 0; 2086 2087 if (raw_proc_init()) 2088 goto out_raw; 2089 if (tcp4_proc_init()) 2090 goto out_tcp; 2091 if (udp4_proc_init()) 2092 goto out_udp; 2093 if (ping_proc_init()) 2094 goto out_ping; 2095 if (ip_misc_proc_init()) 2096 goto out_misc; 2097 out: 2098 return rc; 2099 out_misc: 2100 ping_proc_exit(); 2101 out_ping: 2102 udp4_proc_exit(); 2103 out_udp: 2104 tcp4_proc_exit(); 2105 out_tcp: 2106 raw_proc_exit(); 2107 out_raw: 2108 rc = -ENOMEM; 2109 goto out; 2110 } 2111 2112 #else /* CONFIG_PROC_FS */ 2113 static int __init ipv4_proc_init(void) 2114 { 2115 return 0; 2116 } 2117 #endif /* CONFIG_PROC_FS */ 2118