1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/gso.h> 104 #include <net/tcp.h> 105 #include <net/udp.h> 106 #include <net/udplite.h> 107 #include <net/ping.h> 108 #include <linux/skbuff.h> 109 #include <net/sock.h> 110 #include <net/raw.h> 111 #include <net/icmp.h> 112 #include <net/inet_common.h> 113 #include <net/ip_tunnels.h> 114 #include <net/xfrm.h> 115 #include <net/net_namespace.h> 116 #include <net/secure_seq.h> 117 #ifdef CONFIG_IP_MROUTE 118 #include <linux/mroute.h> 119 #endif 120 #include <net/l3mdev.h> 121 #include <net/compat.h> 122 #include <net/rps.h> 123 124 #include <trace/events/sock.h> 125 126 /* The inetsw table contains everything that inet_create needs to 127 * build a new socket. 128 */ 129 static struct list_head inetsw[SOCK_MAX]; 130 static DEFINE_SPINLOCK(inetsw_lock); 131 132 /* New destruction routine */ 133 134 void inet_sock_destruct(struct sock *sk) 135 { 136 struct inet_sock *inet = inet_sk(sk); 137 138 __skb_queue_purge(&sk->sk_receive_queue); 139 __skb_queue_purge(&sk->sk_error_queue); 140 141 sk_mem_reclaim_final(sk); 142 143 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 144 pr_err("Attempt to release TCP socket in state %d %p\n", 145 sk->sk_state, sk); 146 return; 147 } 148 if (!sock_flag(sk, SOCK_DEAD)) { 149 pr_err("Attempt to release alive inet socket %p\n", sk); 150 return; 151 } 152 153 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 154 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 155 WARN_ON_ONCE(sk->sk_wmem_queued); 156 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 157 158 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 159 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 160 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 161 } 162 EXPORT_SYMBOL(inet_sock_destruct); 163 164 /* 165 * The routines beyond this point handle the behaviour of an AF_INET 166 * socket object. Mostly it punts to the subprotocols of IP to do 167 * the work. 168 */ 169 170 /* 171 * Automatically bind an unbound socket. 172 */ 173 174 static int inet_autobind(struct sock *sk) 175 { 176 struct inet_sock *inet; 177 /* We may need to bind the socket. */ 178 lock_sock(sk); 179 inet = inet_sk(sk); 180 if (!inet->inet_num) { 181 if (sk->sk_prot->get_port(sk, 0)) { 182 release_sock(sk); 183 return -EAGAIN; 184 } 185 inet->inet_sport = htons(inet->inet_num); 186 } 187 release_sock(sk); 188 return 0; 189 } 190 191 int __inet_listen_sk(struct sock *sk, int backlog) 192 { 193 unsigned char old_state = sk->sk_state; 194 int err, tcp_fastopen; 195 196 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 197 return -EINVAL; 198 199 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 200 /* Really, if the socket is already in listen state 201 * we can only allow the backlog to be adjusted. 202 */ 203 if (old_state != TCP_LISTEN) { 204 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 205 * Note that only TCP sockets (SOCK_STREAM) will reach here. 206 * Also fastopen backlog may already been set via the option 207 * because the socket was in TCP_LISTEN state previously but 208 * was shutdown() rather than close(). 209 */ 210 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 211 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 212 (tcp_fastopen & TFO_SERVER_ENABLE) && 213 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 214 fastopen_queue_tune(sk, backlog); 215 tcp_fastopen_init_key_once(sock_net(sk)); 216 } 217 218 err = inet_csk_listen_start(sk); 219 if (err) 220 return err; 221 222 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 223 } 224 return 0; 225 } 226 227 /* 228 * Move a socket into listening state. 229 */ 230 int inet_listen(struct socket *sock, int backlog) 231 { 232 struct sock *sk = sock->sk; 233 int err = -EINVAL; 234 235 lock_sock(sk); 236 237 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 238 goto out; 239 240 err = __inet_listen_sk(sk, backlog); 241 242 out: 243 release_sock(sk); 244 return err; 245 } 246 EXPORT_SYMBOL(inet_listen); 247 248 /* 249 * Create an inet socket. 250 */ 251 252 static int inet_create(struct net *net, struct socket *sock, int protocol, 253 int kern) 254 { 255 struct sock *sk; 256 struct inet_protosw *answer; 257 struct inet_sock *inet; 258 struct proto *answer_prot; 259 unsigned char answer_flags; 260 int try_loading_module = 0; 261 int err; 262 263 if (protocol < 0 || protocol >= IPPROTO_MAX) 264 return -EINVAL; 265 266 sock->state = SS_UNCONNECTED; 267 268 /* Look for the requested type/protocol pair. */ 269 lookup_protocol: 270 err = -ESOCKTNOSUPPORT; 271 rcu_read_lock(); 272 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 273 274 err = 0; 275 /* Check the non-wild match. */ 276 if (protocol == answer->protocol) { 277 if (protocol != IPPROTO_IP) 278 break; 279 } else { 280 /* Check for the two wild cases. */ 281 if (IPPROTO_IP == protocol) { 282 protocol = answer->protocol; 283 break; 284 } 285 if (IPPROTO_IP == answer->protocol) 286 break; 287 } 288 err = -EPROTONOSUPPORT; 289 } 290 291 if (unlikely(err)) { 292 if (try_loading_module < 2) { 293 rcu_read_unlock(); 294 /* 295 * Be more specific, e.g. net-pf-2-proto-132-type-1 296 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 297 */ 298 if (++try_loading_module == 1) 299 request_module("net-pf-%d-proto-%d-type-%d", 300 PF_INET, protocol, sock->type); 301 /* 302 * Fall back to generic, e.g. net-pf-2-proto-132 303 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 304 */ 305 else 306 request_module("net-pf-%d-proto-%d", 307 PF_INET, protocol); 308 goto lookup_protocol; 309 } else 310 goto out_rcu_unlock; 311 } 312 313 err = -EPERM; 314 if (sock->type == SOCK_RAW && !kern && 315 !ns_capable(net->user_ns, CAP_NET_RAW)) 316 goto out_rcu_unlock; 317 318 sock->ops = answer->ops; 319 answer_prot = answer->prot; 320 answer_flags = answer->flags; 321 rcu_read_unlock(); 322 323 WARN_ON(!answer_prot->slab); 324 325 err = -ENOMEM; 326 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 327 if (!sk) 328 goto out; 329 330 err = 0; 331 if (INET_PROTOSW_REUSE & answer_flags) 332 sk->sk_reuse = SK_CAN_REUSE; 333 334 if (INET_PROTOSW_ICSK & answer_flags) 335 inet_init_csk_locks(sk); 336 337 inet = inet_sk(sk); 338 inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags); 339 340 inet_clear_bit(NODEFRAG, sk); 341 342 if (SOCK_RAW == sock->type) { 343 inet->inet_num = protocol; 344 if (IPPROTO_RAW == protocol) 345 inet_set_bit(HDRINCL, sk); 346 } 347 348 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 349 inet->pmtudisc = IP_PMTUDISC_DONT; 350 else 351 inet->pmtudisc = IP_PMTUDISC_WANT; 352 353 atomic_set(&inet->inet_id, 0); 354 355 sock_init_data(sock, sk); 356 357 sk->sk_destruct = inet_sock_destruct; 358 sk->sk_protocol = protocol; 359 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 360 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 361 362 inet->uc_ttl = -1; 363 inet_set_bit(MC_LOOP, sk); 364 inet->mc_ttl = 1; 365 inet_set_bit(MC_ALL, sk); 366 inet->mc_index = 0; 367 inet->mc_list = NULL; 368 inet->rcv_tos = 0; 369 370 if (inet->inet_num) { 371 /* It assumes that any protocol which allows 372 * the user to assign a number at socket 373 * creation time automatically 374 * shares. 375 */ 376 inet->inet_sport = htons(inet->inet_num); 377 /* Add to protocol hash chains. */ 378 err = sk->sk_prot->hash(sk); 379 if (err) { 380 sk_common_release(sk); 381 goto out; 382 } 383 } 384 385 if (sk->sk_prot->init) { 386 err = sk->sk_prot->init(sk); 387 if (err) { 388 sk_common_release(sk); 389 goto out; 390 } 391 } 392 393 if (!kern) { 394 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 395 if (err) { 396 sk_common_release(sk); 397 goto out; 398 } 399 } 400 out: 401 return err; 402 out_rcu_unlock: 403 rcu_read_unlock(); 404 goto out; 405 } 406 407 408 /* 409 * The peer socket should always be NULL (or else). When we call this 410 * function we are destroying the object and from then on nobody 411 * should refer to it. 412 */ 413 int inet_release(struct socket *sock) 414 { 415 struct sock *sk = sock->sk; 416 417 if (sk) { 418 long timeout; 419 420 if (!sk->sk_kern_sock) 421 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 422 423 /* Applications forget to leave groups before exiting */ 424 ip_mc_drop_socket(sk); 425 426 /* If linger is set, we don't return until the close 427 * is complete. Otherwise we return immediately. The 428 * actually closing is done the same either way. 429 * 430 * If the close is due to the process exiting, we never 431 * linger.. 432 */ 433 timeout = 0; 434 if (sock_flag(sk, SOCK_LINGER) && 435 !(current->flags & PF_EXITING)) 436 timeout = sk->sk_lingertime; 437 sk->sk_prot->close(sk, timeout); 438 sock->sk = NULL; 439 } 440 return 0; 441 } 442 EXPORT_SYMBOL(inet_release); 443 444 int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) 445 { 446 u32 flags = BIND_WITH_LOCK; 447 int err; 448 449 /* If the socket has its own bind function then use it. (RAW) */ 450 if (sk->sk_prot->bind) { 451 return sk->sk_prot->bind(sk, uaddr, addr_len); 452 } 453 if (addr_len < sizeof(struct sockaddr_in)) 454 return -EINVAL; 455 456 /* BPF prog is run before any checks are done so that if the prog 457 * changes context in a wrong way it will be caught. 458 */ 459 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, &addr_len, 460 CGROUP_INET4_BIND, &flags); 461 if (err) 462 return err; 463 464 return __inet_bind(sk, uaddr, addr_len, flags); 465 } 466 467 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 468 { 469 return inet_bind_sk(sock->sk, uaddr, addr_len); 470 } 471 EXPORT_SYMBOL(inet_bind); 472 473 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 474 u32 flags) 475 { 476 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 477 struct inet_sock *inet = inet_sk(sk); 478 struct net *net = sock_net(sk); 479 unsigned short snum; 480 int chk_addr_ret; 481 u32 tb_id = RT_TABLE_LOCAL; 482 int err; 483 484 if (addr->sin_family != AF_INET) { 485 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 486 * only if s_addr is INADDR_ANY. 487 */ 488 err = -EAFNOSUPPORT; 489 if (addr->sin_family != AF_UNSPEC || 490 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 491 goto out; 492 } 493 494 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 495 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 496 497 /* Not specified by any standard per-se, however it breaks too 498 * many applications when removed. It is unfortunate since 499 * allowing applications to make a non-local bind solves 500 * several problems with systems using dynamic addressing. 501 * (ie. your servers still start up even if your ISDN link 502 * is temporarily down) 503 */ 504 err = -EADDRNOTAVAIL; 505 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 506 chk_addr_ret)) 507 goto out; 508 509 snum = ntohs(addr->sin_port); 510 err = -EACCES; 511 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 512 snum && inet_port_requires_bind_service(net, snum) && 513 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 514 goto out; 515 516 /* We keep a pair of addresses. rcv_saddr is the one 517 * used by hash lookups, and saddr is used for transmit. 518 * 519 * In the BSD API these are the same except where it 520 * would be illegal to use them (multicast/broadcast) in 521 * which case the sending device address is used. 522 */ 523 if (flags & BIND_WITH_LOCK) 524 lock_sock(sk); 525 526 /* Check these errors (active socket, double bind). */ 527 err = -EINVAL; 528 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 529 goto out_release_sock; 530 531 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 532 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 533 inet->inet_saddr = 0; /* Use device */ 534 535 /* Make sure we are allowed to bind here. */ 536 if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) || 537 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 538 err = sk->sk_prot->get_port(sk, snum); 539 if (err) { 540 inet->inet_saddr = inet->inet_rcv_saddr = 0; 541 goto out_release_sock; 542 } 543 if (!(flags & BIND_FROM_BPF)) { 544 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 545 if (err) { 546 inet->inet_saddr = inet->inet_rcv_saddr = 0; 547 if (sk->sk_prot->put_port) 548 sk->sk_prot->put_port(sk); 549 goto out_release_sock; 550 } 551 } 552 } 553 554 if (inet->inet_rcv_saddr) 555 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 556 if (snum) 557 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 558 inet->inet_sport = htons(inet->inet_num); 559 inet->inet_daddr = 0; 560 inet->inet_dport = 0; 561 sk_dst_reset(sk); 562 err = 0; 563 out_release_sock: 564 if (flags & BIND_WITH_LOCK) 565 release_sock(sk); 566 out: 567 return err; 568 } 569 570 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 571 int addr_len, int flags) 572 { 573 struct sock *sk = sock->sk; 574 const struct proto *prot; 575 int err; 576 577 if (addr_len < sizeof(uaddr->sa_family)) 578 return -EINVAL; 579 580 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 581 prot = READ_ONCE(sk->sk_prot); 582 583 if (uaddr->sa_family == AF_UNSPEC) 584 return prot->disconnect(sk, flags); 585 586 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 587 err = prot->pre_connect(sk, uaddr, addr_len); 588 if (err) 589 return err; 590 } 591 592 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 593 return -EAGAIN; 594 return prot->connect(sk, uaddr, addr_len); 595 } 596 EXPORT_SYMBOL(inet_dgram_connect); 597 598 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 599 { 600 DEFINE_WAIT_FUNC(wait, woken_wake_function); 601 602 add_wait_queue(sk_sleep(sk), &wait); 603 sk->sk_write_pending += writebias; 604 605 /* Basic assumption: if someone sets sk->sk_err, he _must_ 606 * change state of the socket from TCP_SYN_*. 607 * Connect() does not allow to get error notifications 608 * without closing the socket. 609 */ 610 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 611 release_sock(sk); 612 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 613 lock_sock(sk); 614 if (signal_pending(current) || !timeo) 615 break; 616 } 617 remove_wait_queue(sk_sleep(sk), &wait); 618 sk->sk_write_pending -= writebias; 619 return timeo; 620 } 621 622 /* 623 * Connect to a remote host. There is regrettably still a little 624 * TCP 'magic' in here. 625 */ 626 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 627 int addr_len, int flags, int is_sendmsg) 628 { 629 struct sock *sk = sock->sk; 630 int err; 631 long timeo; 632 633 /* 634 * uaddr can be NULL and addr_len can be 0 if: 635 * sk is a TCP fastopen active socket and 636 * TCP_FASTOPEN_CONNECT sockopt is set and 637 * we already have a valid cookie for this socket. 638 * In this case, user can call write() after connect(). 639 * write() will invoke tcp_sendmsg_fastopen() which calls 640 * __inet_stream_connect(). 641 */ 642 if (uaddr) { 643 if (addr_len < sizeof(uaddr->sa_family)) 644 return -EINVAL; 645 646 if (uaddr->sa_family == AF_UNSPEC) { 647 sk->sk_disconnects++; 648 err = sk->sk_prot->disconnect(sk, flags); 649 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 650 goto out; 651 } 652 } 653 654 switch (sock->state) { 655 default: 656 err = -EINVAL; 657 goto out; 658 case SS_CONNECTED: 659 err = -EISCONN; 660 goto out; 661 case SS_CONNECTING: 662 if (inet_test_bit(DEFER_CONNECT, sk)) 663 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 664 else 665 err = -EALREADY; 666 /* Fall out of switch with err, set for this state */ 667 break; 668 case SS_UNCONNECTED: 669 err = -EISCONN; 670 if (sk->sk_state != TCP_CLOSE) 671 goto out; 672 673 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 674 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 675 if (err) 676 goto out; 677 } 678 679 err = sk->sk_prot->connect(sk, uaddr, addr_len); 680 if (err < 0) 681 goto out; 682 683 sock->state = SS_CONNECTING; 684 685 if (!err && inet_test_bit(DEFER_CONNECT, sk)) 686 goto out; 687 688 /* Just entered SS_CONNECTING state; the only 689 * difference is that return value in non-blocking 690 * case is EINPROGRESS, rather than EALREADY. 691 */ 692 err = -EINPROGRESS; 693 break; 694 } 695 696 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 697 698 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 699 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 700 tcp_sk(sk)->fastopen_req && 701 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 702 int dis = sk->sk_disconnects; 703 704 /* Error code is set above */ 705 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 706 goto out; 707 708 err = sock_intr_errno(timeo); 709 if (signal_pending(current)) 710 goto out; 711 712 if (dis != sk->sk_disconnects) { 713 err = -EPIPE; 714 goto out; 715 } 716 } 717 718 /* Connection was closed by RST, timeout, ICMP error 719 * or another process disconnected us. 720 */ 721 if (sk->sk_state == TCP_CLOSE) 722 goto sock_error; 723 724 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 725 * and error was received after socket entered established state. 726 * Hence, it is handled normally after connect() return successfully. 727 */ 728 729 sock->state = SS_CONNECTED; 730 err = 0; 731 out: 732 return err; 733 734 sock_error: 735 err = sock_error(sk) ? : -ECONNABORTED; 736 sock->state = SS_UNCONNECTED; 737 sk->sk_disconnects++; 738 if (sk->sk_prot->disconnect(sk, flags)) 739 sock->state = SS_DISCONNECTING; 740 goto out; 741 } 742 EXPORT_SYMBOL(__inet_stream_connect); 743 744 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 745 int addr_len, int flags) 746 { 747 int err; 748 749 lock_sock(sock->sk); 750 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 751 release_sock(sock->sk); 752 return err; 753 } 754 EXPORT_SYMBOL(inet_stream_connect); 755 756 void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) 757 { 758 sock_rps_record_flow(newsk); 759 WARN_ON(!((1 << newsk->sk_state) & 760 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 761 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 762 763 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 764 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 765 sock_graft(newsk, newsock); 766 767 newsock->state = SS_CONNECTED; 768 } 769 770 /* 771 * Accept a pending connection. The TCP layer now gives BSD semantics. 772 */ 773 774 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 775 bool kern) 776 { 777 struct sock *sk1 = sock->sk, *sk2; 778 int err = -EINVAL; 779 780 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 781 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 782 if (!sk2) 783 return err; 784 785 lock_sock(sk2); 786 __inet_accept(sock, newsock, sk2); 787 release_sock(sk2); 788 return 0; 789 } 790 EXPORT_SYMBOL(inet_accept); 791 792 /* 793 * This does both peername and sockname. 794 */ 795 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 796 int peer) 797 { 798 struct sock *sk = sock->sk; 799 struct inet_sock *inet = inet_sk(sk); 800 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 801 int sin_addr_len = sizeof(*sin); 802 803 sin->sin_family = AF_INET; 804 lock_sock(sk); 805 if (peer) { 806 if (!inet->inet_dport || 807 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 808 peer == 1)) { 809 release_sock(sk); 810 return -ENOTCONN; 811 } 812 sin->sin_port = inet->inet_dport; 813 sin->sin_addr.s_addr = inet->inet_daddr; 814 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 815 CGROUP_INET4_GETPEERNAME); 816 } else { 817 __be32 addr = inet->inet_rcv_saddr; 818 if (!addr) 819 addr = inet->inet_saddr; 820 sin->sin_port = inet->inet_sport; 821 sin->sin_addr.s_addr = addr; 822 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 823 CGROUP_INET4_GETSOCKNAME); 824 } 825 release_sock(sk); 826 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 827 return sin_addr_len; 828 } 829 EXPORT_SYMBOL(inet_getname); 830 831 int inet_send_prepare(struct sock *sk) 832 { 833 sock_rps_record_flow(sk); 834 835 /* We may need to bind the socket. */ 836 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 837 inet_autobind(sk)) 838 return -EAGAIN; 839 840 return 0; 841 } 842 EXPORT_SYMBOL_GPL(inet_send_prepare); 843 844 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 845 { 846 struct sock *sk = sock->sk; 847 848 if (unlikely(inet_send_prepare(sk))) 849 return -EAGAIN; 850 851 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 852 sk, msg, size); 853 } 854 EXPORT_SYMBOL(inet_sendmsg); 855 856 void inet_splice_eof(struct socket *sock) 857 { 858 const struct proto *prot; 859 struct sock *sk = sock->sk; 860 861 if (unlikely(inet_send_prepare(sk))) 862 return; 863 864 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 865 prot = READ_ONCE(sk->sk_prot); 866 if (prot->splice_eof) 867 prot->splice_eof(sock); 868 } 869 EXPORT_SYMBOL_GPL(inet_splice_eof); 870 871 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 872 size_t, int, int *)); 873 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 874 int flags) 875 { 876 struct sock *sk = sock->sk; 877 int addr_len = 0; 878 int err; 879 880 if (likely(!(flags & MSG_ERRQUEUE))) 881 sock_rps_record_flow(sk); 882 883 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 884 sk, msg, size, flags, &addr_len); 885 if (err >= 0) 886 msg->msg_namelen = addr_len; 887 return err; 888 } 889 EXPORT_SYMBOL(inet_recvmsg); 890 891 int inet_shutdown(struct socket *sock, int how) 892 { 893 struct sock *sk = sock->sk; 894 int err = 0; 895 896 /* This should really check to make sure 897 * the socket is a TCP socket. (WHY AC...) 898 */ 899 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 900 1->2 bit 2 snds. 901 2->3 */ 902 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 903 return -EINVAL; 904 905 lock_sock(sk); 906 if (sock->state == SS_CONNECTING) { 907 if ((1 << sk->sk_state) & 908 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 909 sock->state = SS_DISCONNECTING; 910 else 911 sock->state = SS_CONNECTED; 912 } 913 914 switch (sk->sk_state) { 915 case TCP_CLOSE: 916 err = -ENOTCONN; 917 /* Hack to wake up other listeners, who can poll for 918 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 919 fallthrough; 920 default: 921 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 922 if (sk->sk_prot->shutdown) 923 sk->sk_prot->shutdown(sk, how); 924 break; 925 926 /* Remaining two branches are temporary solution for missing 927 * close() in multithreaded environment. It is _not_ a good idea, 928 * but we have no choice until close() is repaired at VFS level. 929 */ 930 case TCP_LISTEN: 931 if (!(how & RCV_SHUTDOWN)) 932 break; 933 fallthrough; 934 case TCP_SYN_SENT: 935 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 936 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 937 break; 938 } 939 940 /* Wake up anyone sleeping in poll. */ 941 sk->sk_state_change(sk); 942 release_sock(sk); 943 return err; 944 } 945 EXPORT_SYMBOL(inet_shutdown); 946 947 /* 948 * ioctl() calls you can issue on an INET socket. Most of these are 949 * device configuration and stuff and very rarely used. Some ioctls 950 * pass on to the socket itself. 951 * 952 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 953 * loads the devconfigure module does its configuring and unloads it. 954 * There's a good 20K of config code hanging around the kernel. 955 */ 956 957 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 958 { 959 struct sock *sk = sock->sk; 960 int err = 0; 961 struct net *net = sock_net(sk); 962 void __user *p = (void __user *)arg; 963 struct ifreq ifr; 964 struct rtentry rt; 965 966 switch (cmd) { 967 case SIOCADDRT: 968 case SIOCDELRT: 969 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 970 return -EFAULT; 971 err = ip_rt_ioctl(net, cmd, &rt); 972 break; 973 case SIOCRTMSG: 974 err = -EINVAL; 975 break; 976 case SIOCDARP: 977 case SIOCGARP: 978 case SIOCSARP: 979 err = arp_ioctl(net, cmd, (void __user *)arg); 980 break; 981 case SIOCGIFADDR: 982 case SIOCGIFBRDADDR: 983 case SIOCGIFNETMASK: 984 case SIOCGIFDSTADDR: 985 case SIOCGIFPFLAGS: 986 if (get_user_ifreq(&ifr, NULL, p)) 987 return -EFAULT; 988 err = devinet_ioctl(net, cmd, &ifr); 989 if (!err && put_user_ifreq(&ifr, p)) 990 err = -EFAULT; 991 break; 992 993 case SIOCSIFADDR: 994 case SIOCSIFBRDADDR: 995 case SIOCSIFNETMASK: 996 case SIOCSIFDSTADDR: 997 case SIOCSIFPFLAGS: 998 case SIOCSIFFLAGS: 999 if (get_user_ifreq(&ifr, NULL, p)) 1000 return -EFAULT; 1001 err = devinet_ioctl(net, cmd, &ifr); 1002 break; 1003 default: 1004 if (sk->sk_prot->ioctl) 1005 err = sk_ioctl(sk, cmd, (void __user *)arg); 1006 else 1007 err = -ENOIOCTLCMD; 1008 break; 1009 } 1010 return err; 1011 } 1012 EXPORT_SYMBOL(inet_ioctl); 1013 1014 #ifdef CONFIG_COMPAT 1015 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 1016 struct compat_rtentry __user *ur) 1017 { 1018 compat_uptr_t rtdev; 1019 struct rtentry rt; 1020 1021 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1022 3 * sizeof(struct sockaddr)) || 1023 get_user(rt.rt_flags, &ur->rt_flags) || 1024 get_user(rt.rt_metric, &ur->rt_metric) || 1025 get_user(rt.rt_mtu, &ur->rt_mtu) || 1026 get_user(rt.rt_window, &ur->rt_window) || 1027 get_user(rt.rt_irtt, &ur->rt_irtt) || 1028 get_user(rtdev, &ur->rt_dev)) 1029 return -EFAULT; 1030 1031 rt.rt_dev = compat_ptr(rtdev); 1032 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1033 } 1034 1035 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1036 { 1037 void __user *argp = compat_ptr(arg); 1038 struct sock *sk = sock->sk; 1039 1040 switch (cmd) { 1041 case SIOCADDRT: 1042 case SIOCDELRT: 1043 return inet_compat_routing_ioctl(sk, cmd, argp); 1044 default: 1045 if (!sk->sk_prot->compat_ioctl) 1046 return -ENOIOCTLCMD; 1047 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1048 } 1049 } 1050 #endif /* CONFIG_COMPAT */ 1051 1052 const struct proto_ops inet_stream_ops = { 1053 .family = PF_INET, 1054 .owner = THIS_MODULE, 1055 .release = inet_release, 1056 .bind = inet_bind, 1057 .connect = inet_stream_connect, 1058 .socketpair = sock_no_socketpair, 1059 .accept = inet_accept, 1060 .getname = inet_getname, 1061 .poll = tcp_poll, 1062 .ioctl = inet_ioctl, 1063 .gettstamp = sock_gettstamp, 1064 .listen = inet_listen, 1065 .shutdown = inet_shutdown, 1066 .setsockopt = sock_common_setsockopt, 1067 .getsockopt = sock_common_getsockopt, 1068 .sendmsg = inet_sendmsg, 1069 .recvmsg = inet_recvmsg, 1070 #ifdef CONFIG_MMU 1071 .mmap = tcp_mmap, 1072 #endif 1073 .splice_eof = inet_splice_eof, 1074 .splice_read = tcp_splice_read, 1075 .read_sock = tcp_read_sock, 1076 .read_skb = tcp_read_skb, 1077 .sendmsg_locked = tcp_sendmsg_locked, 1078 .peek_len = tcp_peek_len, 1079 #ifdef CONFIG_COMPAT 1080 .compat_ioctl = inet_compat_ioctl, 1081 #endif 1082 .set_rcvlowat = tcp_set_rcvlowat, 1083 }; 1084 EXPORT_SYMBOL(inet_stream_ops); 1085 1086 const struct proto_ops inet_dgram_ops = { 1087 .family = PF_INET, 1088 .owner = THIS_MODULE, 1089 .release = inet_release, 1090 .bind = inet_bind, 1091 .connect = inet_dgram_connect, 1092 .socketpair = sock_no_socketpair, 1093 .accept = sock_no_accept, 1094 .getname = inet_getname, 1095 .poll = udp_poll, 1096 .ioctl = inet_ioctl, 1097 .gettstamp = sock_gettstamp, 1098 .listen = sock_no_listen, 1099 .shutdown = inet_shutdown, 1100 .setsockopt = sock_common_setsockopt, 1101 .getsockopt = sock_common_getsockopt, 1102 .sendmsg = inet_sendmsg, 1103 .read_skb = udp_read_skb, 1104 .recvmsg = inet_recvmsg, 1105 .mmap = sock_no_mmap, 1106 .splice_eof = inet_splice_eof, 1107 .set_peek_off = udp_set_peek_off, 1108 #ifdef CONFIG_COMPAT 1109 .compat_ioctl = inet_compat_ioctl, 1110 #endif 1111 }; 1112 EXPORT_SYMBOL(inet_dgram_ops); 1113 1114 /* 1115 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1116 * udp_poll 1117 */ 1118 static const struct proto_ops inet_sockraw_ops = { 1119 .family = PF_INET, 1120 .owner = THIS_MODULE, 1121 .release = inet_release, 1122 .bind = inet_bind, 1123 .connect = inet_dgram_connect, 1124 .socketpair = sock_no_socketpair, 1125 .accept = sock_no_accept, 1126 .getname = inet_getname, 1127 .poll = datagram_poll, 1128 .ioctl = inet_ioctl, 1129 .gettstamp = sock_gettstamp, 1130 .listen = sock_no_listen, 1131 .shutdown = inet_shutdown, 1132 .setsockopt = sock_common_setsockopt, 1133 .getsockopt = sock_common_getsockopt, 1134 .sendmsg = inet_sendmsg, 1135 .recvmsg = inet_recvmsg, 1136 .mmap = sock_no_mmap, 1137 .splice_eof = inet_splice_eof, 1138 #ifdef CONFIG_COMPAT 1139 .compat_ioctl = inet_compat_ioctl, 1140 #endif 1141 }; 1142 1143 static const struct net_proto_family inet_family_ops = { 1144 .family = PF_INET, 1145 .create = inet_create, 1146 .owner = THIS_MODULE, 1147 }; 1148 1149 /* Upon startup we insert all the elements in inetsw_array[] into 1150 * the linked list inetsw. 1151 */ 1152 static struct inet_protosw inetsw_array[] = 1153 { 1154 { 1155 .type = SOCK_STREAM, 1156 .protocol = IPPROTO_TCP, 1157 .prot = &tcp_prot, 1158 .ops = &inet_stream_ops, 1159 .flags = INET_PROTOSW_PERMANENT | 1160 INET_PROTOSW_ICSK, 1161 }, 1162 1163 { 1164 .type = SOCK_DGRAM, 1165 .protocol = IPPROTO_UDP, 1166 .prot = &udp_prot, 1167 .ops = &inet_dgram_ops, 1168 .flags = INET_PROTOSW_PERMANENT, 1169 }, 1170 1171 { 1172 .type = SOCK_DGRAM, 1173 .protocol = IPPROTO_ICMP, 1174 .prot = &ping_prot, 1175 .ops = &inet_sockraw_ops, 1176 .flags = INET_PROTOSW_REUSE, 1177 }, 1178 1179 { 1180 .type = SOCK_RAW, 1181 .protocol = IPPROTO_IP, /* wild card */ 1182 .prot = &raw_prot, 1183 .ops = &inet_sockraw_ops, 1184 .flags = INET_PROTOSW_REUSE, 1185 } 1186 }; 1187 1188 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1189 1190 void inet_register_protosw(struct inet_protosw *p) 1191 { 1192 struct list_head *lh; 1193 struct inet_protosw *answer; 1194 int protocol = p->protocol; 1195 struct list_head *last_perm; 1196 1197 spin_lock_bh(&inetsw_lock); 1198 1199 if (p->type >= SOCK_MAX) 1200 goto out_illegal; 1201 1202 /* If we are trying to override a permanent protocol, bail. */ 1203 last_perm = &inetsw[p->type]; 1204 list_for_each(lh, &inetsw[p->type]) { 1205 answer = list_entry(lh, struct inet_protosw, list); 1206 /* Check only the non-wild match. */ 1207 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1208 break; 1209 if (protocol == answer->protocol) 1210 goto out_permanent; 1211 last_perm = lh; 1212 } 1213 1214 /* Add the new entry after the last permanent entry if any, so that 1215 * the new entry does not override a permanent entry when matched with 1216 * a wild-card protocol. But it is allowed to override any existing 1217 * non-permanent entry. This means that when we remove this entry, the 1218 * system automatically returns to the old behavior. 1219 */ 1220 list_add_rcu(&p->list, last_perm); 1221 out: 1222 spin_unlock_bh(&inetsw_lock); 1223 1224 return; 1225 1226 out_permanent: 1227 pr_err("Attempt to override permanent protocol %d\n", protocol); 1228 goto out; 1229 1230 out_illegal: 1231 pr_err("Ignoring attempt to register invalid socket type %d\n", 1232 p->type); 1233 goto out; 1234 } 1235 EXPORT_SYMBOL(inet_register_protosw); 1236 1237 void inet_unregister_protosw(struct inet_protosw *p) 1238 { 1239 if (INET_PROTOSW_PERMANENT & p->flags) { 1240 pr_err("Attempt to unregister permanent protocol %d\n", 1241 p->protocol); 1242 } else { 1243 spin_lock_bh(&inetsw_lock); 1244 list_del_rcu(&p->list); 1245 spin_unlock_bh(&inetsw_lock); 1246 1247 synchronize_net(); 1248 } 1249 } 1250 EXPORT_SYMBOL(inet_unregister_protosw); 1251 1252 static int inet_sk_reselect_saddr(struct sock *sk) 1253 { 1254 struct inet_sock *inet = inet_sk(sk); 1255 __be32 old_saddr = inet->inet_saddr; 1256 __be32 daddr = inet->inet_daddr; 1257 struct flowi4 *fl4; 1258 struct rtable *rt; 1259 __be32 new_saddr; 1260 struct ip_options_rcu *inet_opt; 1261 int err; 1262 1263 inet_opt = rcu_dereference_protected(inet->inet_opt, 1264 lockdep_sock_is_held(sk)); 1265 if (inet_opt && inet_opt->opt.srr) 1266 daddr = inet_opt->opt.faddr; 1267 1268 /* Query new route. */ 1269 fl4 = &inet->cork.fl.u.ip4; 1270 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1271 sk->sk_protocol, inet->inet_sport, 1272 inet->inet_dport, sk); 1273 if (IS_ERR(rt)) 1274 return PTR_ERR(rt); 1275 1276 new_saddr = fl4->saddr; 1277 1278 if (new_saddr == old_saddr) { 1279 sk_setup_caps(sk, &rt->dst); 1280 return 0; 1281 } 1282 1283 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1284 if (err) { 1285 ip_rt_put(rt); 1286 return err; 1287 } 1288 1289 sk_setup_caps(sk, &rt->dst); 1290 1291 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1292 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1293 __func__, &old_saddr, &new_saddr); 1294 } 1295 1296 /* 1297 * XXX The only one ugly spot where we need to 1298 * XXX really change the sockets identity after 1299 * XXX it has entered the hashes. -DaveM 1300 * 1301 * Besides that, it does not check for connection 1302 * uniqueness. Wait for troubles. 1303 */ 1304 return __sk_prot_rehash(sk); 1305 } 1306 1307 int inet_sk_rebuild_header(struct sock *sk) 1308 { 1309 struct inet_sock *inet = inet_sk(sk); 1310 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1311 __be32 daddr; 1312 struct ip_options_rcu *inet_opt; 1313 struct flowi4 *fl4; 1314 int err; 1315 1316 /* Route is OK, nothing to do. */ 1317 if (rt) 1318 return 0; 1319 1320 /* Reroute. */ 1321 rcu_read_lock(); 1322 inet_opt = rcu_dereference(inet->inet_opt); 1323 daddr = inet->inet_daddr; 1324 if (inet_opt && inet_opt->opt.srr) 1325 daddr = inet_opt->opt.faddr; 1326 rcu_read_unlock(); 1327 fl4 = &inet->cork.fl.u.ip4; 1328 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1329 inet->inet_dport, inet->inet_sport, 1330 sk->sk_protocol, ip_sock_rt_tos(sk), 1331 sk->sk_bound_dev_if); 1332 if (!IS_ERR(rt)) { 1333 err = 0; 1334 sk_setup_caps(sk, &rt->dst); 1335 } else { 1336 err = PTR_ERR(rt); 1337 1338 /* Routing failed... */ 1339 sk->sk_route_caps = 0; 1340 /* 1341 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1342 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1343 */ 1344 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1345 sk->sk_state != TCP_SYN_SENT || 1346 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1347 (err = inet_sk_reselect_saddr(sk)) != 0) 1348 WRITE_ONCE(sk->sk_err_soft, -err); 1349 } 1350 1351 return err; 1352 } 1353 EXPORT_SYMBOL(inet_sk_rebuild_header); 1354 1355 void inet_sk_set_state(struct sock *sk, int state) 1356 { 1357 trace_inet_sock_set_state(sk, sk->sk_state, state); 1358 sk->sk_state = state; 1359 } 1360 EXPORT_SYMBOL(inet_sk_set_state); 1361 1362 void inet_sk_state_store(struct sock *sk, int newstate) 1363 { 1364 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1365 smp_store_release(&sk->sk_state, newstate); 1366 } 1367 1368 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1369 netdev_features_t features) 1370 { 1371 bool udpfrag = false, fixedid = false, gso_partial, encap; 1372 struct sk_buff *segs = ERR_PTR(-EINVAL); 1373 const struct net_offload *ops; 1374 unsigned int offset = 0; 1375 struct iphdr *iph; 1376 int proto, tot_len; 1377 int nhoff; 1378 int ihl; 1379 int id; 1380 1381 skb_reset_network_header(skb); 1382 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1383 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1384 goto out; 1385 1386 iph = ip_hdr(skb); 1387 ihl = iph->ihl * 4; 1388 if (ihl < sizeof(*iph)) 1389 goto out; 1390 1391 id = ntohs(iph->id); 1392 proto = iph->protocol; 1393 1394 /* Warning: after this point, iph might be no longer valid */ 1395 if (unlikely(!pskb_may_pull(skb, ihl))) 1396 goto out; 1397 __skb_pull(skb, ihl); 1398 1399 encap = SKB_GSO_CB(skb)->encap_level > 0; 1400 if (encap) 1401 features &= skb->dev->hw_enc_features; 1402 SKB_GSO_CB(skb)->encap_level += ihl; 1403 1404 skb_reset_transport_header(skb); 1405 1406 segs = ERR_PTR(-EPROTONOSUPPORT); 1407 1408 if (!skb->encapsulation || encap) { 1409 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1410 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1411 1412 /* fixed ID is invalid if DF bit is not set */ 1413 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1414 goto out; 1415 } 1416 1417 ops = rcu_dereference(inet_offloads[proto]); 1418 if (likely(ops && ops->callbacks.gso_segment)) { 1419 segs = ops->callbacks.gso_segment(skb, features); 1420 if (!segs) 1421 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1422 } 1423 1424 if (IS_ERR_OR_NULL(segs)) 1425 goto out; 1426 1427 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1428 1429 skb = segs; 1430 do { 1431 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1432 if (udpfrag) { 1433 iph->frag_off = htons(offset >> 3); 1434 if (skb->next) 1435 iph->frag_off |= htons(IP_MF); 1436 offset += skb->len - nhoff - ihl; 1437 tot_len = skb->len - nhoff; 1438 } else if (skb_is_gso(skb)) { 1439 if (!fixedid) { 1440 iph->id = htons(id); 1441 id += skb_shinfo(skb)->gso_segs; 1442 } 1443 1444 if (gso_partial) 1445 tot_len = skb_shinfo(skb)->gso_size + 1446 SKB_GSO_CB(skb)->data_offset + 1447 skb->head - (unsigned char *)iph; 1448 else 1449 tot_len = skb->len - nhoff; 1450 } else { 1451 if (!fixedid) 1452 iph->id = htons(id++); 1453 tot_len = skb->len - nhoff; 1454 } 1455 iph->tot_len = htons(tot_len); 1456 ip_send_check(iph); 1457 if (encap) 1458 skb_reset_inner_headers(skb); 1459 skb->network_header = (u8 *)iph - skb->head; 1460 skb_reset_mac_len(skb); 1461 } while ((skb = skb->next)); 1462 1463 out: 1464 return segs; 1465 } 1466 1467 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1468 netdev_features_t features) 1469 { 1470 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1471 return ERR_PTR(-EINVAL); 1472 1473 return inet_gso_segment(skb, features); 1474 } 1475 1476 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1477 { 1478 const struct net_offload *ops; 1479 struct sk_buff *pp = NULL; 1480 const struct iphdr *iph; 1481 struct sk_buff *p; 1482 unsigned int hlen; 1483 unsigned int off; 1484 unsigned int id; 1485 int flush = 1; 1486 int proto; 1487 1488 off = skb_gro_offset(skb); 1489 hlen = off + sizeof(*iph); 1490 iph = skb_gro_header(skb, hlen, off); 1491 if (unlikely(!iph)) 1492 goto out; 1493 1494 proto = iph->protocol; 1495 1496 ops = rcu_dereference(inet_offloads[proto]); 1497 if (!ops || !ops->callbacks.gro_receive) 1498 goto out; 1499 1500 if (*(u8 *)iph != 0x45) 1501 goto out; 1502 1503 if (ip_is_fragment(iph)) 1504 goto out; 1505 1506 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1507 goto out; 1508 1509 NAPI_GRO_CB(skb)->proto = proto; 1510 id = ntohl(*(__be32 *)&iph->id); 1511 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1512 id >>= 16; 1513 1514 list_for_each_entry(p, head, list) { 1515 struct iphdr *iph2; 1516 u16 flush_id; 1517 1518 if (!NAPI_GRO_CB(p)->same_flow) 1519 continue; 1520 1521 iph2 = (struct iphdr *)(p->data + off); 1522 /* The above works because, with the exception of the top 1523 * (inner most) layer, we only aggregate pkts with the same 1524 * hdr length so all the hdrs we'll need to verify will start 1525 * at the same offset. 1526 */ 1527 if ((iph->protocol ^ iph2->protocol) | 1528 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1529 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1530 NAPI_GRO_CB(p)->same_flow = 0; 1531 continue; 1532 } 1533 1534 /* All fields must match except length and checksum. */ 1535 NAPI_GRO_CB(p)->flush |= 1536 (iph->ttl ^ iph2->ttl) | 1537 (iph->tos ^ iph2->tos) | 1538 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1539 1540 NAPI_GRO_CB(p)->flush |= flush; 1541 1542 /* We need to store of the IP ID check to be included later 1543 * when we can verify that this packet does in fact belong 1544 * to a given flow. 1545 */ 1546 flush_id = (u16)(id - ntohs(iph2->id)); 1547 1548 /* This bit of code makes it much easier for us to identify 1549 * the cases where we are doing atomic vs non-atomic IP ID 1550 * checks. Specifically an atomic check can return IP ID 1551 * values 0 - 0xFFFF, while a non-atomic check can only 1552 * return 0 or 0xFFFF. 1553 */ 1554 if (!NAPI_GRO_CB(p)->is_atomic || 1555 !(iph->frag_off & htons(IP_DF))) { 1556 flush_id ^= NAPI_GRO_CB(p)->count; 1557 flush_id = flush_id ? 0xFFFF : 0; 1558 } 1559 1560 /* If the previous IP ID value was based on an atomic 1561 * datagram we can overwrite the value and ignore it. 1562 */ 1563 if (NAPI_GRO_CB(skb)->is_atomic) 1564 NAPI_GRO_CB(p)->flush_id = flush_id; 1565 else 1566 NAPI_GRO_CB(p)->flush_id |= flush_id; 1567 } 1568 1569 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1570 NAPI_GRO_CB(skb)->flush |= flush; 1571 skb_set_network_header(skb, off); 1572 /* The above will be needed by the transport layer if there is one 1573 * immediately following this IP hdr. 1574 */ 1575 1576 /* Note : No need to call skb_gro_postpull_rcsum() here, 1577 * as we already checked checksum over ipv4 header was 0 1578 */ 1579 skb_gro_pull(skb, sizeof(*iph)); 1580 skb_set_transport_header(skb, skb_gro_offset(skb)); 1581 1582 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1583 ops->callbacks.gro_receive, head, skb); 1584 1585 out: 1586 skb_gro_flush_final(skb, pp, flush); 1587 1588 return pp; 1589 } 1590 1591 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1592 struct sk_buff *skb) 1593 { 1594 if (NAPI_GRO_CB(skb)->encap_mark) { 1595 NAPI_GRO_CB(skb)->flush = 1; 1596 return NULL; 1597 } 1598 1599 NAPI_GRO_CB(skb)->encap_mark = 1; 1600 1601 return inet_gro_receive(head, skb); 1602 } 1603 1604 #define SECONDS_PER_DAY 86400 1605 1606 /* inet_current_timestamp - Return IP network timestamp 1607 * 1608 * Return milliseconds since midnight in network byte order. 1609 */ 1610 __be32 inet_current_timestamp(void) 1611 { 1612 u32 secs; 1613 u32 msecs; 1614 struct timespec64 ts; 1615 1616 ktime_get_real_ts64(&ts); 1617 1618 /* Get secs since midnight. */ 1619 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1620 /* Convert to msecs. */ 1621 msecs = secs * MSEC_PER_SEC; 1622 /* Convert nsec to msec. */ 1623 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1624 1625 /* Convert to network byte order. */ 1626 return htonl(msecs); 1627 } 1628 EXPORT_SYMBOL(inet_current_timestamp); 1629 1630 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1631 { 1632 unsigned int family = READ_ONCE(sk->sk_family); 1633 1634 if (family == AF_INET) 1635 return ip_recv_error(sk, msg, len, addr_len); 1636 #if IS_ENABLED(CONFIG_IPV6) 1637 if (family == AF_INET6) 1638 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1639 #endif 1640 return -EINVAL; 1641 } 1642 EXPORT_SYMBOL(inet_recv_error); 1643 1644 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1645 { 1646 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1647 const struct net_offload *ops; 1648 __be16 totlen = iph->tot_len; 1649 int proto = iph->protocol; 1650 int err = -ENOSYS; 1651 1652 if (skb->encapsulation) { 1653 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1654 skb_set_inner_network_header(skb, nhoff); 1655 } 1656 1657 iph_set_totlen(iph, skb->len - nhoff); 1658 csum_replace2(&iph->check, totlen, iph->tot_len); 1659 1660 ops = rcu_dereference(inet_offloads[proto]); 1661 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1662 goto out; 1663 1664 /* Only need to add sizeof(*iph) to get to the next hdr below 1665 * because any hdr with option will have been flushed in 1666 * inet_gro_receive(). 1667 */ 1668 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1669 tcp4_gro_complete, udp4_gro_complete, 1670 skb, nhoff + sizeof(*iph)); 1671 1672 out: 1673 return err; 1674 } 1675 1676 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1677 { 1678 skb->encapsulation = 1; 1679 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1680 return inet_gro_complete(skb, nhoff); 1681 } 1682 1683 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1684 unsigned short type, unsigned char protocol, 1685 struct net *net) 1686 { 1687 struct socket *sock; 1688 int rc = sock_create_kern(net, family, type, protocol, &sock); 1689 1690 if (rc == 0) { 1691 *sk = sock->sk; 1692 (*sk)->sk_allocation = GFP_ATOMIC; 1693 (*sk)->sk_use_task_frag = false; 1694 /* 1695 * Unhash it so that IP input processing does not even see it, 1696 * we do not wish this socket to see incoming packets. 1697 */ 1698 (*sk)->sk_prot->unhash(*sk); 1699 } 1700 return rc; 1701 } 1702 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1703 1704 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1705 { 1706 unsigned long res = 0; 1707 int i; 1708 1709 for_each_possible_cpu(i) 1710 res += snmp_get_cpu_field(mib, i, offt); 1711 return res; 1712 } 1713 EXPORT_SYMBOL_GPL(snmp_fold_field); 1714 1715 #if BITS_PER_LONG==32 1716 1717 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1718 size_t syncp_offset) 1719 { 1720 void *bhptr; 1721 struct u64_stats_sync *syncp; 1722 u64 v; 1723 unsigned int start; 1724 1725 bhptr = per_cpu_ptr(mib, cpu); 1726 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1727 do { 1728 start = u64_stats_fetch_begin(syncp); 1729 v = *(((u64 *)bhptr) + offt); 1730 } while (u64_stats_fetch_retry(syncp, start)); 1731 1732 return v; 1733 } 1734 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1735 1736 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1737 { 1738 u64 res = 0; 1739 int cpu; 1740 1741 for_each_possible_cpu(cpu) { 1742 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1743 } 1744 return res; 1745 } 1746 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1747 #endif 1748 1749 #ifdef CONFIG_IP_MULTICAST 1750 static const struct net_protocol igmp_protocol = { 1751 .handler = igmp_rcv, 1752 }; 1753 #endif 1754 1755 static const struct net_protocol icmp_protocol = { 1756 .handler = icmp_rcv, 1757 .err_handler = icmp_err, 1758 .no_policy = 1, 1759 }; 1760 1761 static __net_init int ipv4_mib_init_net(struct net *net) 1762 { 1763 int i; 1764 1765 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1766 if (!net->mib.tcp_statistics) 1767 goto err_tcp_mib; 1768 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1769 if (!net->mib.ip_statistics) 1770 goto err_ip_mib; 1771 1772 for_each_possible_cpu(i) { 1773 struct ipstats_mib *af_inet_stats; 1774 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1775 u64_stats_init(&af_inet_stats->syncp); 1776 } 1777 1778 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1779 if (!net->mib.net_statistics) 1780 goto err_net_mib; 1781 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1782 if (!net->mib.udp_statistics) 1783 goto err_udp_mib; 1784 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1785 if (!net->mib.udplite_statistics) 1786 goto err_udplite_mib; 1787 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1788 if (!net->mib.icmp_statistics) 1789 goto err_icmp_mib; 1790 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1791 GFP_KERNEL); 1792 if (!net->mib.icmpmsg_statistics) 1793 goto err_icmpmsg_mib; 1794 1795 tcp_mib_init(net); 1796 return 0; 1797 1798 err_icmpmsg_mib: 1799 free_percpu(net->mib.icmp_statistics); 1800 err_icmp_mib: 1801 free_percpu(net->mib.udplite_statistics); 1802 err_udplite_mib: 1803 free_percpu(net->mib.udp_statistics); 1804 err_udp_mib: 1805 free_percpu(net->mib.net_statistics); 1806 err_net_mib: 1807 free_percpu(net->mib.ip_statistics); 1808 err_ip_mib: 1809 free_percpu(net->mib.tcp_statistics); 1810 err_tcp_mib: 1811 return -ENOMEM; 1812 } 1813 1814 static __net_exit void ipv4_mib_exit_net(struct net *net) 1815 { 1816 kfree(net->mib.icmpmsg_statistics); 1817 free_percpu(net->mib.icmp_statistics); 1818 free_percpu(net->mib.udplite_statistics); 1819 free_percpu(net->mib.udp_statistics); 1820 free_percpu(net->mib.net_statistics); 1821 free_percpu(net->mib.ip_statistics); 1822 free_percpu(net->mib.tcp_statistics); 1823 #ifdef CONFIG_MPTCP 1824 /* allocated on demand, see mptcp_init_sock() */ 1825 free_percpu(net->mib.mptcp_statistics); 1826 #endif 1827 } 1828 1829 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1830 .init = ipv4_mib_init_net, 1831 .exit = ipv4_mib_exit_net, 1832 }; 1833 1834 static int __init init_ipv4_mibs(void) 1835 { 1836 return register_pernet_subsys(&ipv4_mib_ops); 1837 } 1838 1839 static __net_init int inet_init_net(struct net *net) 1840 { 1841 /* 1842 * Set defaults for local port range 1843 */ 1844 net->ipv4.ip_local_ports.range = 60999u << 16 | 32768u; 1845 1846 seqlock_init(&net->ipv4.ping_group_range.lock); 1847 /* 1848 * Sane defaults - nobody may create ping sockets. 1849 * Boot scripts should set this to distro-specific group. 1850 */ 1851 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1852 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1853 1854 /* Default values for sysctl-controlled parameters. 1855 * We set them here, in case sysctl is not compiled. 1856 */ 1857 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1858 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1859 net->ipv4.sysctl_ip_dynaddr = 0; 1860 net->ipv4.sysctl_ip_early_demux = 1; 1861 net->ipv4.sysctl_udp_early_demux = 1; 1862 net->ipv4.sysctl_tcp_early_demux = 1; 1863 net->ipv4.sysctl_nexthop_compat_mode = 1; 1864 #ifdef CONFIG_SYSCTL 1865 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1866 #endif 1867 1868 /* Some igmp sysctl, whose values are always used */ 1869 net->ipv4.sysctl_igmp_max_memberships = 20; 1870 net->ipv4.sysctl_igmp_max_msf = 10; 1871 /* IGMP reports for link-local multicast groups are enabled by default */ 1872 net->ipv4.sysctl_igmp_llm_reports = 1; 1873 net->ipv4.sysctl_igmp_qrv = 2; 1874 1875 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1876 1877 return 0; 1878 } 1879 1880 static __net_initdata struct pernet_operations af_inet_ops = { 1881 .init = inet_init_net, 1882 }; 1883 1884 static int __init init_inet_pernet_ops(void) 1885 { 1886 return register_pernet_subsys(&af_inet_ops); 1887 } 1888 1889 static int ipv4_proc_init(void); 1890 1891 /* 1892 * IP protocol layer initialiser 1893 */ 1894 1895 1896 static const struct net_offload ipip_offload = { 1897 .callbacks = { 1898 .gso_segment = ipip_gso_segment, 1899 .gro_receive = ipip_gro_receive, 1900 .gro_complete = ipip_gro_complete, 1901 }, 1902 }; 1903 1904 static int __init ipip_offload_init(void) 1905 { 1906 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1907 } 1908 1909 static int __init ipv4_offload_init(void) 1910 { 1911 /* 1912 * Add offloads 1913 */ 1914 if (udpv4_offload_init() < 0) 1915 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1916 if (tcpv4_offload_init() < 0) 1917 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1918 if (ipip_offload_init() < 0) 1919 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1920 1921 net_hotdata.ip_packet_offload = (struct packet_offload) { 1922 .type = cpu_to_be16(ETH_P_IP), 1923 .callbacks = { 1924 .gso_segment = inet_gso_segment, 1925 .gro_receive = inet_gro_receive, 1926 .gro_complete = inet_gro_complete, 1927 }, 1928 }; 1929 dev_add_offload(&net_hotdata.ip_packet_offload); 1930 return 0; 1931 } 1932 1933 fs_initcall(ipv4_offload_init); 1934 1935 static struct packet_type ip_packet_type __read_mostly = { 1936 .type = cpu_to_be16(ETH_P_IP), 1937 .func = ip_rcv, 1938 .list_func = ip_list_rcv, 1939 }; 1940 1941 static int __init inet_init(void) 1942 { 1943 struct inet_protosw *q; 1944 struct list_head *r; 1945 int rc; 1946 1947 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1948 1949 raw_hashinfo_init(&raw_v4_hashinfo); 1950 1951 rc = proto_register(&tcp_prot, 1); 1952 if (rc) 1953 goto out; 1954 1955 rc = proto_register(&udp_prot, 1); 1956 if (rc) 1957 goto out_unregister_tcp_proto; 1958 1959 rc = proto_register(&raw_prot, 1); 1960 if (rc) 1961 goto out_unregister_udp_proto; 1962 1963 rc = proto_register(&ping_prot, 1); 1964 if (rc) 1965 goto out_unregister_raw_proto; 1966 1967 /* 1968 * Tell SOCKET that we are alive... 1969 */ 1970 1971 (void)sock_register(&inet_family_ops); 1972 1973 #ifdef CONFIG_SYSCTL 1974 ip_static_sysctl_init(); 1975 #endif 1976 1977 /* 1978 * Add all the base protocols. 1979 */ 1980 1981 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1982 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1983 1984 net_hotdata.udp_protocol = (struct net_protocol) { 1985 .handler = udp_rcv, 1986 .err_handler = udp_err, 1987 .no_policy = 1, 1988 }; 1989 if (inet_add_protocol(&net_hotdata.udp_protocol, IPPROTO_UDP) < 0) 1990 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1991 1992 net_hotdata.tcp_protocol = (struct net_protocol) { 1993 .handler = tcp_v4_rcv, 1994 .err_handler = tcp_v4_err, 1995 .no_policy = 1, 1996 .icmp_strict_tag_validation = 1, 1997 }; 1998 if (inet_add_protocol(&net_hotdata.tcp_protocol, IPPROTO_TCP) < 0) 1999 pr_crit("%s: Cannot add TCP protocol\n", __func__); 2000 #ifdef CONFIG_IP_MULTICAST 2001 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 2002 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 2003 #endif 2004 2005 /* Register the socket-side information for inet_create. */ 2006 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 2007 INIT_LIST_HEAD(r); 2008 2009 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 2010 inet_register_protosw(q); 2011 2012 /* 2013 * Set the ARP module up 2014 */ 2015 2016 arp_init(); 2017 2018 /* 2019 * Set the IP module up 2020 */ 2021 2022 ip_init(); 2023 2024 /* Initialise per-cpu ipv4 mibs */ 2025 if (init_ipv4_mibs()) 2026 panic("%s: Cannot init ipv4 mibs\n", __func__); 2027 2028 /* Setup TCP slab cache for open requests. */ 2029 tcp_init(); 2030 2031 /* Setup UDP memory threshold */ 2032 udp_init(); 2033 2034 /* Add UDP-Lite (RFC 3828) */ 2035 udplite4_register(); 2036 2037 raw_init(); 2038 2039 ping_init(); 2040 2041 /* 2042 * Set the ICMP layer up 2043 */ 2044 2045 if (icmp_init() < 0) 2046 panic("Failed to create the ICMP control socket.\n"); 2047 2048 /* 2049 * Initialise the multicast router 2050 */ 2051 #if defined(CONFIG_IP_MROUTE) 2052 if (ip_mr_init()) 2053 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2054 #endif 2055 2056 if (init_inet_pernet_ops()) 2057 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2058 2059 ipv4_proc_init(); 2060 2061 ipfrag_init(); 2062 2063 dev_add_pack(&ip_packet_type); 2064 2065 ip_tunnel_core_init(); 2066 2067 rc = 0; 2068 out: 2069 return rc; 2070 out_unregister_raw_proto: 2071 proto_unregister(&raw_prot); 2072 out_unregister_udp_proto: 2073 proto_unregister(&udp_prot); 2074 out_unregister_tcp_proto: 2075 proto_unregister(&tcp_prot); 2076 goto out; 2077 } 2078 2079 fs_initcall(inet_init); 2080 2081 /* ------------------------------------------------------------------------ */ 2082 2083 #ifdef CONFIG_PROC_FS 2084 static int __init ipv4_proc_init(void) 2085 { 2086 int rc = 0; 2087 2088 if (raw_proc_init()) 2089 goto out_raw; 2090 if (tcp4_proc_init()) 2091 goto out_tcp; 2092 if (udp4_proc_init()) 2093 goto out_udp; 2094 if (ping_proc_init()) 2095 goto out_ping; 2096 if (ip_misc_proc_init()) 2097 goto out_misc; 2098 out: 2099 return rc; 2100 out_misc: 2101 ping_proc_exit(); 2102 out_ping: 2103 udp4_proc_exit(); 2104 out_udp: 2105 tcp4_proc_exit(); 2106 out_tcp: 2107 raw_proc_exit(); 2108 out_raw: 2109 rc = -ENOMEM; 2110 goto out; 2111 } 2112 2113 #else /* CONFIG_PROC_FS */ 2114 static int __init ipv4_proc_init(void) 2115 { 2116 return 0; 2117 } 2118 #endif /* CONFIG_PROC_FS */ 2119