1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/gso.h> 104 #include <net/tcp.h> 105 #include <net/udp.h> 106 #include <net/udplite.h> 107 #include <net/ping.h> 108 #include <linux/skbuff.h> 109 #include <net/sock.h> 110 #include <net/raw.h> 111 #include <net/icmp.h> 112 #include <net/inet_common.h> 113 #include <net/ip_tunnels.h> 114 #include <net/xfrm.h> 115 #include <net/net_namespace.h> 116 #include <net/secure_seq.h> 117 #ifdef CONFIG_IP_MROUTE 118 #include <linux/mroute.h> 119 #endif 120 #include <net/l3mdev.h> 121 #include <net/compat.h> 122 123 #include <trace/events/sock.h> 124 125 /* The inetsw table contains everything that inet_create needs to 126 * build a new socket. 127 */ 128 static struct list_head inetsw[SOCK_MAX]; 129 static DEFINE_SPINLOCK(inetsw_lock); 130 131 /* New destruction routine */ 132 133 void inet_sock_destruct(struct sock *sk) 134 { 135 struct inet_sock *inet = inet_sk(sk); 136 137 __skb_queue_purge(&sk->sk_receive_queue); 138 __skb_queue_purge(&sk->sk_error_queue); 139 140 sk_mem_reclaim_final(sk); 141 142 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 143 pr_err("Attempt to release TCP socket in state %d %p\n", 144 sk->sk_state, sk); 145 return; 146 } 147 if (!sock_flag(sk, SOCK_DEAD)) { 148 pr_err("Attempt to release alive inet socket %p\n", sk); 149 return; 150 } 151 152 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 153 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 154 WARN_ON_ONCE(sk->sk_wmem_queued); 155 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 156 157 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 159 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 160 } 161 EXPORT_SYMBOL(inet_sock_destruct); 162 163 /* 164 * The routines beyond this point handle the behaviour of an AF_INET 165 * socket object. Mostly it punts to the subprotocols of IP to do 166 * the work. 167 */ 168 169 /* 170 * Automatically bind an unbound socket. 171 */ 172 173 static int inet_autobind(struct sock *sk) 174 { 175 struct inet_sock *inet; 176 /* We may need to bind the socket. */ 177 lock_sock(sk); 178 inet = inet_sk(sk); 179 if (!inet->inet_num) { 180 if (sk->sk_prot->get_port(sk, 0)) { 181 release_sock(sk); 182 return -EAGAIN; 183 } 184 inet->inet_sport = htons(inet->inet_num); 185 } 186 release_sock(sk); 187 return 0; 188 } 189 190 int __inet_listen_sk(struct sock *sk, int backlog) 191 { 192 unsigned char old_state = sk->sk_state; 193 int err, tcp_fastopen; 194 195 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 196 return -EINVAL; 197 198 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 199 /* Really, if the socket is already in listen state 200 * we can only allow the backlog to be adjusted. 201 */ 202 if (old_state != TCP_LISTEN) { 203 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 204 * Note that only TCP sockets (SOCK_STREAM) will reach here. 205 * Also fastopen backlog may already been set via the option 206 * because the socket was in TCP_LISTEN state previously but 207 * was shutdown() rather than close(). 208 */ 209 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 210 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 211 (tcp_fastopen & TFO_SERVER_ENABLE) && 212 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 213 fastopen_queue_tune(sk, backlog); 214 tcp_fastopen_init_key_once(sock_net(sk)); 215 } 216 217 err = inet_csk_listen_start(sk); 218 if (err) 219 return err; 220 221 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 222 } 223 return 0; 224 } 225 226 /* 227 * Move a socket into listening state. 228 */ 229 int inet_listen(struct socket *sock, int backlog) 230 { 231 struct sock *sk = sock->sk; 232 int err = -EINVAL; 233 234 lock_sock(sk); 235 236 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 237 goto out; 238 239 err = __inet_listen_sk(sk, backlog); 240 241 out: 242 release_sock(sk); 243 return err; 244 } 245 EXPORT_SYMBOL(inet_listen); 246 247 /* 248 * Create an inet socket. 249 */ 250 251 static int inet_create(struct net *net, struct socket *sock, int protocol, 252 int kern) 253 { 254 struct sock *sk; 255 struct inet_protosw *answer; 256 struct inet_sock *inet; 257 struct proto *answer_prot; 258 unsigned char answer_flags; 259 int try_loading_module = 0; 260 int err; 261 262 if (protocol < 0 || protocol >= IPPROTO_MAX) 263 return -EINVAL; 264 265 sock->state = SS_UNCONNECTED; 266 267 /* Look for the requested type/protocol pair. */ 268 lookup_protocol: 269 err = -ESOCKTNOSUPPORT; 270 rcu_read_lock(); 271 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 272 273 err = 0; 274 /* Check the non-wild match. */ 275 if (protocol == answer->protocol) { 276 if (protocol != IPPROTO_IP) 277 break; 278 } else { 279 /* Check for the two wild cases. */ 280 if (IPPROTO_IP == protocol) { 281 protocol = answer->protocol; 282 break; 283 } 284 if (IPPROTO_IP == answer->protocol) 285 break; 286 } 287 err = -EPROTONOSUPPORT; 288 } 289 290 if (unlikely(err)) { 291 if (try_loading_module < 2) { 292 rcu_read_unlock(); 293 /* 294 * Be more specific, e.g. net-pf-2-proto-132-type-1 295 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 296 */ 297 if (++try_loading_module == 1) 298 request_module("net-pf-%d-proto-%d-type-%d", 299 PF_INET, protocol, sock->type); 300 /* 301 * Fall back to generic, e.g. net-pf-2-proto-132 302 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 303 */ 304 else 305 request_module("net-pf-%d-proto-%d", 306 PF_INET, protocol); 307 goto lookup_protocol; 308 } else 309 goto out_rcu_unlock; 310 } 311 312 err = -EPERM; 313 if (sock->type == SOCK_RAW && !kern && 314 !ns_capable(net->user_ns, CAP_NET_RAW)) 315 goto out_rcu_unlock; 316 317 sock->ops = answer->ops; 318 answer_prot = answer->prot; 319 answer_flags = answer->flags; 320 rcu_read_unlock(); 321 322 WARN_ON(!answer_prot->slab); 323 324 err = -ENOMEM; 325 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 326 if (!sk) 327 goto out; 328 329 err = 0; 330 if (INET_PROTOSW_REUSE & answer_flags) 331 sk->sk_reuse = SK_CAN_REUSE; 332 333 inet = inet_sk(sk); 334 inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags); 335 336 inet_clear_bit(NODEFRAG, sk); 337 338 if (SOCK_RAW == sock->type) { 339 inet->inet_num = protocol; 340 if (IPPROTO_RAW == protocol) 341 inet_set_bit(HDRINCL, sk); 342 } 343 344 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 345 inet->pmtudisc = IP_PMTUDISC_DONT; 346 else 347 inet->pmtudisc = IP_PMTUDISC_WANT; 348 349 atomic_set(&inet->inet_id, 0); 350 351 sock_init_data(sock, sk); 352 353 sk->sk_destruct = inet_sock_destruct; 354 sk->sk_protocol = protocol; 355 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 356 sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); 357 358 inet->uc_ttl = -1; 359 inet_set_bit(MC_LOOP, sk); 360 inet->mc_ttl = 1; 361 inet_set_bit(MC_ALL, sk); 362 inet->mc_index = 0; 363 inet->mc_list = NULL; 364 inet->rcv_tos = 0; 365 366 if (inet->inet_num) { 367 /* It assumes that any protocol which allows 368 * the user to assign a number at socket 369 * creation time automatically 370 * shares. 371 */ 372 inet->inet_sport = htons(inet->inet_num); 373 /* Add to protocol hash chains. */ 374 err = sk->sk_prot->hash(sk); 375 if (err) { 376 sk_common_release(sk); 377 goto out; 378 } 379 } 380 381 if (sk->sk_prot->init) { 382 err = sk->sk_prot->init(sk); 383 if (err) { 384 sk_common_release(sk); 385 goto out; 386 } 387 } 388 389 if (!kern) { 390 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 391 if (err) { 392 sk_common_release(sk); 393 goto out; 394 } 395 } 396 out: 397 return err; 398 out_rcu_unlock: 399 rcu_read_unlock(); 400 goto out; 401 } 402 403 404 /* 405 * The peer socket should always be NULL (or else). When we call this 406 * function we are destroying the object and from then on nobody 407 * should refer to it. 408 */ 409 int inet_release(struct socket *sock) 410 { 411 struct sock *sk = sock->sk; 412 413 if (sk) { 414 long timeout; 415 416 if (!sk->sk_kern_sock) 417 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 418 419 /* Applications forget to leave groups before exiting */ 420 ip_mc_drop_socket(sk); 421 422 /* If linger is set, we don't return until the close 423 * is complete. Otherwise we return immediately. The 424 * actually closing is done the same either way. 425 * 426 * If the close is due to the process exiting, we never 427 * linger.. 428 */ 429 timeout = 0; 430 if (sock_flag(sk, SOCK_LINGER) && 431 !(current->flags & PF_EXITING)) 432 timeout = sk->sk_lingertime; 433 sk->sk_prot->close(sk, timeout); 434 sock->sk = NULL; 435 } 436 return 0; 437 } 438 EXPORT_SYMBOL(inet_release); 439 440 int inet_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) 441 { 442 u32 flags = BIND_WITH_LOCK; 443 int err; 444 445 /* If the socket has its own bind function then use it. (RAW) */ 446 if (sk->sk_prot->bind) { 447 return sk->sk_prot->bind(sk, uaddr, addr_len); 448 } 449 if (addr_len < sizeof(struct sockaddr_in)) 450 return -EINVAL; 451 452 /* BPF prog is run before any checks are done so that if the prog 453 * changes context in a wrong way it will be caught. 454 */ 455 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, &addr_len, 456 CGROUP_INET4_BIND, &flags); 457 if (err) 458 return err; 459 460 return __inet_bind(sk, uaddr, addr_len, flags); 461 } 462 463 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 464 { 465 return inet_bind_sk(sock->sk, uaddr, addr_len); 466 } 467 EXPORT_SYMBOL(inet_bind); 468 469 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 470 u32 flags) 471 { 472 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 473 struct inet_sock *inet = inet_sk(sk); 474 struct net *net = sock_net(sk); 475 unsigned short snum; 476 int chk_addr_ret; 477 u32 tb_id = RT_TABLE_LOCAL; 478 int err; 479 480 if (addr->sin_family != AF_INET) { 481 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 482 * only if s_addr is INADDR_ANY. 483 */ 484 err = -EAFNOSUPPORT; 485 if (addr->sin_family != AF_UNSPEC || 486 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 487 goto out; 488 } 489 490 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 491 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 492 493 /* Not specified by any standard per-se, however it breaks too 494 * many applications when removed. It is unfortunate since 495 * allowing applications to make a non-local bind solves 496 * several problems with systems using dynamic addressing. 497 * (ie. your servers still start up even if your ISDN link 498 * is temporarily down) 499 */ 500 err = -EADDRNOTAVAIL; 501 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 502 chk_addr_ret)) 503 goto out; 504 505 snum = ntohs(addr->sin_port); 506 err = -EACCES; 507 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 508 snum && inet_port_requires_bind_service(net, snum) && 509 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 510 goto out; 511 512 /* We keep a pair of addresses. rcv_saddr is the one 513 * used by hash lookups, and saddr is used for transmit. 514 * 515 * In the BSD API these are the same except where it 516 * would be illegal to use them (multicast/broadcast) in 517 * which case the sending device address is used. 518 */ 519 if (flags & BIND_WITH_LOCK) 520 lock_sock(sk); 521 522 /* Check these errors (active socket, double bind). */ 523 err = -EINVAL; 524 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 525 goto out_release_sock; 526 527 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 528 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 529 inet->inet_saddr = 0; /* Use device */ 530 531 /* Make sure we are allowed to bind here. */ 532 if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) || 533 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 534 err = sk->sk_prot->get_port(sk, snum); 535 if (err) { 536 inet->inet_saddr = inet->inet_rcv_saddr = 0; 537 goto out_release_sock; 538 } 539 if (!(flags & BIND_FROM_BPF)) { 540 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 541 if (err) { 542 inet->inet_saddr = inet->inet_rcv_saddr = 0; 543 if (sk->sk_prot->put_port) 544 sk->sk_prot->put_port(sk); 545 goto out_release_sock; 546 } 547 } 548 } 549 550 if (inet->inet_rcv_saddr) 551 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 552 if (snum) 553 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 554 inet->inet_sport = htons(inet->inet_num); 555 inet->inet_daddr = 0; 556 inet->inet_dport = 0; 557 sk_dst_reset(sk); 558 err = 0; 559 out_release_sock: 560 if (flags & BIND_WITH_LOCK) 561 release_sock(sk); 562 out: 563 return err; 564 } 565 566 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 567 int addr_len, int flags) 568 { 569 struct sock *sk = sock->sk; 570 const struct proto *prot; 571 int err; 572 573 if (addr_len < sizeof(uaddr->sa_family)) 574 return -EINVAL; 575 576 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 577 prot = READ_ONCE(sk->sk_prot); 578 579 if (uaddr->sa_family == AF_UNSPEC) 580 return prot->disconnect(sk, flags); 581 582 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 583 err = prot->pre_connect(sk, uaddr, addr_len); 584 if (err) 585 return err; 586 } 587 588 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 589 return -EAGAIN; 590 return prot->connect(sk, uaddr, addr_len); 591 } 592 EXPORT_SYMBOL(inet_dgram_connect); 593 594 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 595 { 596 DEFINE_WAIT_FUNC(wait, woken_wake_function); 597 598 add_wait_queue(sk_sleep(sk), &wait); 599 sk->sk_write_pending += writebias; 600 601 /* Basic assumption: if someone sets sk->sk_err, he _must_ 602 * change state of the socket from TCP_SYN_*. 603 * Connect() does not allow to get error notifications 604 * without closing the socket. 605 */ 606 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 607 release_sock(sk); 608 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 609 lock_sock(sk); 610 if (signal_pending(current) || !timeo) 611 break; 612 } 613 remove_wait_queue(sk_sleep(sk), &wait); 614 sk->sk_write_pending -= writebias; 615 return timeo; 616 } 617 618 /* 619 * Connect to a remote host. There is regrettably still a little 620 * TCP 'magic' in here. 621 */ 622 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 623 int addr_len, int flags, int is_sendmsg) 624 { 625 struct sock *sk = sock->sk; 626 int err; 627 long timeo; 628 629 /* 630 * uaddr can be NULL and addr_len can be 0 if: 631 * sk is a TCP fastopen active socket and 632 * TCP_FASTOPEN_CONNECT sockopt is set and 633 * we already have a valid cookie for this socket. 634 * In this case, user can call write() after connect(). 635 * write() will invoke tcp_sendmsg_fastopen() which calls 636 * __inet_stream_connect(). 637 */ 638 if (uaddr) { 639 if (addr_len < sizeof(uaddr->sa_family)) 640 return -EINVAL; 641 642 if (uaddr->sa_family == AF_UNSPEC) { 643 sk->sk_disconnects++; 644 err = sk->sk_prot->disconnect(sk, flags); 645 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 646 goto out; 647 } 648 } 649 650 switch (sock->state) { 651 default: 652 err = -EINVAL; 653 goto out; 654 case SS_CONNECTED: 655 err = -EISCONN; 656 goto out; 657 case SS_CONNECTING: 658 if (inet_test_bit(DEFER_CONNECT, sk)) 659 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 660 else 661 err = -EALREADY; 662 /* Fall out of switch with err, set for this state */ 663 break; 664 case SS_UNCONNECTED: 665 err = -EISCONN; 666 if (sk->sk_state != TCP_CLOSE) 667 goto out; 668 669 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 670 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 671 if (err) 672 goto out; 673 } 674 675 err = sk->sk_prot->connect(sk, uaddr, addr_len); 676 if (err < 0) 677 goto out; 678 679 sock->state = SS_CONNECTING; 680 681 if (!err && inet_test_bit(DEFER_CONNECT, sk)) 682 goto out; 683 684 /* Just entered SS_CONNECTING state; the only 685 * difference is that return value in non-blocking 686 * case is EINPROGRESS, rather than EALREADY. 687 */ 688 err = -EINPROGRESS; 689 break; 690 } 691 692 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 693 694 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 695 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 696 tcp_sk(sk)->fastopen_req && 697 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 698 int dis = sk->sk_disconnects; 699 700 /* Error code is set above */ 701 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 702 goto out; 703 704 err = sock_intr_errno(timeo); 705 if (signal_pending(current)) 706 goto out; 707 708 if (dis != sk->sk_disconnects) { 709 err = -EPIPE; 710 goto out; 711 } 712 } 713 714 /* Connection was closed by RST, timeout, ICMP error 715 * or another process disconnected us. 716 */ 717 if (sk->sk_state == TCP_CLOSE) 718 goto sock_error; 719 720 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 721 * and error was received after socket entered established state. 722 * Hence, it is handled normally after connect() return successfully. 723 */ 724 725 sock->state = SS_CONNECTED; 726 err = 0; 727 out: 728 return err; 729 730 sock_error: 731 err = sock_error(sk) ? : -ECONNABORTED; 732 sock->state = SS_UNCONNECTED; 733 sk->sk_disconnects++; 734 if (sk->sk_prot->disconnect(sk, flags)) 735 sock->state = SS_DISCONNECTING; 736 goto out; 737 } 738 EXPORT_SYMBOL(__inet_stream_connect); 739 740 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 741 int addr_len, int flags) 742 { 743 int err; 744 745 lock_sock(sock->sk); 746 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 747 release_sock(sock->sk); 748 return err; 749 } 750 EXPORT_SYMBOL(inet_stream_connect); 751 752 void __inet_accept(struct socket *sock, struct socket *newsock, struct sock *newsk) 753 { 754 sock_rps_record_flow(newsk); 755 WARN_ON(!((1 << newsk->sk_state) & 756 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 757 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 758 759 if (test_bit(SOCK_SUPPORT_ZC, &sock->flags)) 760 set_bit(SOCK_SUPPORT_ZC, &newsock->flags); 761 sock_graft(newsk, newsock); 762 763 newsock->state = SS_CONNECTED; 764 } 765 766 /* 767 * Accept a pending connection. The TCP layer now gives BSD semantics. 768 */ 769 770 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 771 bool kern) 772 { 773 struct sock *sk1 = sock->sk, *sk2; 774 int err = -EINVAL; 775 776 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 777 sk2 = READ_ONCE(sk1->sk_prot)->accept(sk1, flags, &err, kern); 778 if (!sk2) 779 return err; 780 781 lock_sock(sk2); 782 __inet_accept(sock, newsock, sk2); 783 release_sock(sk2); 784 return 0; 785 } 786 EXPORT_SYMBOL(inet_accept); 787 788 /* 789 * This does both peername and sockname. 790 */ 791 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 792 int peer) 793 { 794 struct sock *sk = sock->sk; 795 struct inet_sock *inet = inet_sk(sk); 796 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 797 int sin_addr_len = sizeof(*sin); 798 799 sin->sin_family = AF_INET; 800 lock_sock(sk); 801 if (peer) { 802 if (!inet->inet_dport || 803 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 804 peer == 1)) { 805 release_sock(sk); 806 return -ENOTCONN; 807 } 808 sin->sin_port = inet->inet_dport; 809 sin->sin_addr.s_addr = inet->inet_daddr; 810 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 811 CGROUP_INET4_GETPEERNAME); 812 } else { 813 __be32 addr = inet->inet_rcv_saddr; 814 if (!addr) 815 addr = inet->inet_saddr; 816 sin->sin_port = inet->inet_sport; 817 sin->sin_addr.s_addr = addr; 818 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, &sin_addr_len, 819 CGROUP_INET4_GETSOCKNAME); 820 } 821 release_sock(sk); 822 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 823 return sin_addr_len; 824 } 825 EXPORT_SYMBOL(inet_getname); 826 827 int inet_send_prepare(struct sock *sk) 828 { 829 sock_rps_record_flow(sk); 830 831 /* We may need to bind the socket. */ 832 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 833 inet_autobind(sk)) 834 return -EAGAIN; 835 836 return 0; 837 } 838 EXPORT_SYMBOL_GPL(inet_send_prepare); 839 840 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 841 { 842 struct sock *sk = sock->sk; 843 844 if (unlikely(inet_send_prepare(sk))) 845 return -EAGAIN; 846 847 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 848 sk, msg, size); 849 } 850 EXPORT_SYMBOL(inet_sendmsg); 851 852 void inet_splice_eof(struct socket *sock) 853 { 854 const struct proto *prot; 855 struct sock *sk = sock->sk; 856 857 if (unlikely(inet_send_prepare(sk))) 858 return; 859 860 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 861 prot = READ_ONCE(sk->sk_prot); 862 if (prot->splice_eof) 863 prot->splice_eof(sock); 864 } 865 EXPORT_SYMBOL_GPL(inet_splice_eof); 866 867 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 868 size_t, int, int *)); 869 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 870 int flags) 871 { 872 struct sock *sk = sock->sk; 873 int addr_len = 0; 874 int err; 875 876 if (likely(!(flags & MSG_ERRQUEUE))) 877 sock_rps_record_flow(sk); 878 879 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 880 sk, msg, size, flags, &addr_len); 881 if (err >= 0) 882 msg->msg_namelen = addr_len; 883 return err; 884 } 885 EXPORT_SYMBOL(inet_recvmsg); 886 887 int inet_shutdown(struct socket *sock, int how) 888 { 889 struct sock *sk = sock->sk; 890 int err = 0; 891 892 /* This should really check to make sure 893 * the socket is a TCP socket. (WHY AC...) 894 */ 895 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 896 1->2 bit 2 snds. 897 2->3 */ 898 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 899 return -EINVAL; 900 901 lock_sock(sk); 902 if (sock->state == SS_CONNECTING) { 903 if ((1 << sk->sk_state) & 904 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 905 sock->state = SS_DISCONNECTING; 906 else 907 sock->state = SS_CONNECTED; 908 } 909 910 switch (sk->sk_state) { 911 case TCP_CLOSE: 912 err = -ENOTCONN; 913 /* Hack to wake up other listeners, who can poll for 914 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 915 fallthrough; 916 default: 917 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | how); 918 if (sk->sk_prot->shutdown) 919 sk->sk_prot->shutdown(sk, how); 920 break; 921 922 /* Remaining two branches are temporary solution for missing 923 * close() in multithreaded environment. It is _not_ a good idea, 924 * but we have no choice until close() is repaired at VFS level. 925 */ 926 case TCP_LISTEN: 927 if (!(how & RCV_SHUTDOWN)) 928 break; 929 fallthrough; 930 case TCP_SYN_SENT: 931 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 932 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 933 break; 934 } 935 936 /* Wake up anyone sleeping in poll. */ 937 sk->sk_state_change(sk); 938 release_sock(sk); 939 return err; 940 } 941 EXPORT_SYMBOL(inet_shutdown); 942 943 /* 944 * ioctl() calls you can issue on an INET socket. Most of these are 945 * device configuration and stuff and very rarely used. Some ioctls 946 * pass on to the socket itself. 947 * 948 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 949 * loads the devconfigure module does its configuring and unloads it. 950 * There's a good 20K of config code hanging around the kernel. 951 */ 952 953 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 954 { 955 struct sock *sk = sock->sk; 956 int err = 0; 957 struct net *net = sock_net(sk); 958 void __user *p = (void __user *)arg; 959 struct ifreq ifr; 960 struct rtentry rt; 961 962 switch (cmd) { 963 case SIOCADDRT: 964 case SIOCDELRT: 965 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 966 return -EFAULT; 967 err = ip_rt_ioctl(net, cmd, &rt); 968 break; 969 case SIOCRTMSG: 970 err = -EINVAL; 971 break; 972 case SIOCDARP: 973 case SIOCGARP: 974 case SIOCSARP: 975 err = arp_ioctl(net, cmd, (void __user *)arg); 976 break; 977 case SIOCGIFADDR: 978 case SIOCGIFBRDADDR: 979 case SIOCGIFNETMASK: 980 case SIOCGIFDSTADDR: 981 case SIOCGIFPFLAGS: 982 if (get_user_ifreq(&ifr, NULL, p)) 983 return -EFAULT; 984 err = devinet_ioctl(net, cmd, &ifr); 985 if (!err && put_user_ifreq(&ifr, p)) 986 err = -EFAULT; 987 break; 988 989 case SIOCSIFADDR: 990 case SIOCSIFBRDADDR: 991 case SIOCSIFNETMASK: 992 case SIOCSIFDSTADDR: 993 case SIOCSIFPFLAGS: 994 case SIOCSIFFLAGS: 995 if (get_user_ifreq(&ifr, NULL, p)) 996 return -EFAULT; 997 err = devinet_ioctl(net, cmd, &ifr); 998 break; 999 default: 1000 if (sk->sk_prot->ioctl) 1001 err = sk_ioctl(sk, cmd, (void __user *)arg); 1002 else 1003 err = -ENOIOCTLCMD; 1004 break; 1005 } 1006 return err; 1007 } 1008 EXPORT_SYMBOL(inet_ioctl); 1009 1010 #ifdef CONFIG_COMPAT 1011 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 1012 struct compat_rtentry __user *ur) 1013 { 1014 compat_uptr_t rtdev; 1015 struct rtentry rt; 1016 1017 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 1018 3 * sizeof(struct sockaddr)) || 1019 get_user(rt.rt_flags, &ur->rt_flags) || 1020 get_user(rt.rt_metric, &ur->rt_metric) || 1021 get_user(rt.rt_mtu, &ur->rt_mtu) || 1022 get_user(rt.rt_window, &ur->rt_window) || 1023 get_user(rt.rt_irtt, &ur->rt_irtt) || 1024 get_user(rtdev, &ur->rt_dev)) 1025 return -EFAULT; 1026 1027 rt.rt_dev = compat_ptr(rtdev); 1028 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1029 } 1030 1031 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1032 { 1033 void __user *argp = compat_ptr(arg); 1034 struct sock *sk = sock->sk; 1035 1036 switch (cmd) { 1037 case SIOCADDRT: 1038 case SIOCDELRT: 1039 return inet_compat_routing_ioctl(sk, cmd, argp); 1040 default: 1041 if (!sk->sk_prot->compat_ioctl) 1042 return -ENOIOCTLCMD; 1043 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1044 } 1045 } 1046 #endif /* CONFIG_COMPAT */ 1047 1048 const struct proto_ops inet_stream_ops = { 1049 .family = PF_INET, 1050 .owner = THIS_MODULE, 1051 .release = inet_release, 1052 .bind = inet_bind, 1053 .connect = inet_stream_connect, 1054 .socketpair = sock_no_socketpair, 1055 .accept = inet_accept, 1056 .getname = inet_getname, 1057 .poll = tcp_poll, 1058 .ioctl = inet_ioctl, 1059 .gettstamp = sock_gettstamp, 1060 .listen = inet_listen, 1061 .shutdown = inet_shutdown, 1062 .setsockopt = sock_common_setsockopt, 1063 .getsockopt = sock_common_getsockopt, 1064 .sendmsg = inet_sendmsg, 1065 .recvmsg = inet_recvmsg, 1066 #ifdef CONFIG_MMU 1067 .mmap = tcp_mmap, 1068 #endif 1069 .splice_eof = inet_splice_eof, 1070 .splice_read = tcp_splice_read, 1071 .read_sock = tcp_read_sock, 1072 .read_skb = tcp_read_skb, 1073 .sendmsg_locked = tcp_sendmsg_locked, 1074 .peek_len = tcp_peek_len, 1075 #ifdef CONFIG_COMPAT 1076 .compat_ioctl = inet_compat_ioctl, 1077 #endif 1078 .set_rcvlowat = tcp_set_rcvlowat, 1079 }; 1080 EXPORT_SYMBOL(inet_stream_ops); 1081 1082 const struct proto_ops inet_dgram_ops = { 1083 .family = PF_INET, 1084 .owner = THIS_MODULE, 1085 .release = inet_release, 1086 .bind = inet_bind, 1087 .connect = inet_dgram_connect, 1088 .socketpair = sock_no_socketpair, 1089 .accept = sock_no_accept, 1090 .getname = inet_getname, 1091 .poll = udp_poll, 1092 .ioctl = inet_ioctl, 1093 .gettstamp = sock_gettstamp, 1094 .listen = sock_no_listen, 1095 .shutdown = inet_shutdown, 1096 .setsockopt = sock_common_setsockopt, 1097 .getsockopt = sock_common_getsockopt, 1098 .sendmsg = inet_sendmsg, 1099 .read_skb = udp_read_skb, 1100 .recvmsg = inet_recvmsg, 1101 .mmap = sock_no_mmap, 1102 .splice_eof = inet_splice_eof, 1103 .set_peek_off = sk_set_peek_off, 1104 #ifdef CONFIG_COMPAT 1105 .compat_ioctl = inet_compat_ioctl, 1106 #endif 1107 }; 1108 EXPORT_SYMBOL(inet_dgram_ops); 1109 1110 /* 1111 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1112 * udp_poll 1113 */ 1114 static const struct proto_ops inet_sockraw_ops = { 1115 .family = PF_INET, 1116 .owner = THIS_MODULE, 1117 .release = inet_release, 1118 .bind = inet_bind, 1119 .connect = inet_dgram_connect, 1120 .socketpair = sock_no_socketpair, 1121 .accept = sock_no_accept, 1122 .getname = inet_getname, 1123 .poll = datagram_poll, 1124 .ioctl = inet_ioctl, 1125 .gettstamp = sock_gettstamp, 1126 .listen = sock_no_listen, 1127 .shutdown = inet_shutdown, 1128 .setsockopt = sock_common_setsockopt, 1129 .getsockopt = sock_common_getsockopt, 1130 .sendmsg = inet_sendmsg, 1131 .recvmsg = inet_recvmsg, 1132 .mmap = sock_no_mmap, 1133 .splice_eof = inet_splice_eof, 1134 #ifdef CONFIG_COMPAT 1135 .compat_ioctl = inet_compat_ioctl, 1136 #endif 1137 }; 1138 1139 static const struct net_proto_family inet_family_ops = { 1140 .family = PF_INET, 1141 .create = inet_create, 1142 .owner = THIS_MODULE, 1143 }; 1144 1145 /* Upon startup we insert all the elements in inetsw_array[] into 1146 * the linked list inetsw. 1147 */ 1148 static struct inet_protosw inetsw_array[] = 1149 { 1150 { 1151 .type = SOCK_STREAM, 1152 .protocol = IPPROTO_TCP, 1153 .prot = &tcp_prot, 1154 .ops = &inet_stream_ops, 1155 .flags = INET_PROTOSW_PERMANENT | 1156 INET_PROTOSW_ICSK, 1157 }, 1158 1159 { 1160 .type = SOCK_DGRAM, 1161 .protocol = IPPROTO_UDP, 1162 .prot = &udp_prot, 1163 .ops = &inet_dgram_ops, 1164 .flags = INET_PROTOSW_PERMANENT, 1165 }, 1166 1167 { 1168 .type = SOCK_DGRAM, 1169 .protocol = IPPROTO_ICMP, 1170 .prot = &ping_prot, 1171 .ops = &inet_sockraw_ops, 1172 .flags = INET_PROTOSW_REUSE, 1173 }, 1174 1175 { 1176 .type = SOCK_RAW, 1177 .protocol = IPPROTO_IP, /* wild card */ 1178 .prot = &raw_prot, 1179 .ops = &inet_sockraw_ops, 1180 .flags = INET_PROTOSW_REUSE, 1181 } 1182 }; 1183 1184 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1185 1186 void inet_register_protosw(struct inet_protosw *p) 1187 { 1188 struct list_head *lh; 1189 struct inet_protosw *answer; 1190 int protocol = p->protocol; 1191 struct list_head *last_perm; 1192 1193 spin_lock_bh(&inetsw_lock); 1194 1195 if (p->type >= SOCK_MAX) 1196 goto out_illegal; 1197 1198 /* If we are trying to override a permanent protocol, bail. */ 1199 last_perm = &inetsw[p->type]; 1200 list_for_each(lh, &inetsw[p->type]) { 1201 answer = list_entry(lh, struct inet_protosw, list); 1202 /* Check only the non-wild match. */ 1203 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1204 break; 1205 if (protocol == answer->protocol) 1206 goto out_permanent; 1207 last_perm = lh; 1208 } 1209 1210 /* Add the new entry after the last permanent entry if any, so that 1211 * the new entry does not override a permanent entry when matched with 1212 * a wild-card protocol. But it is allowed to override any existing 1213 * non-permanent entry. This means that when we remove this entry, the 1214 * system automatically returns to the old behavior. 1215 */ 1216 list_add_rcu(&p->list, last_perm); 1217 out: 1218 spin_unlock_bh(&inetsw_lock); 1219 1220 return; 1221 1222 out_permanent: 1223 pr_err("Attempt to override permanent protocol %d\n", protocol); 1224 goto out; 1225 1226 out_illegal: 1227 pr_err("Ignoring attempt to register invalid socket type %d\n", 1228 p->type); 1229 goto out; 1230 } 1231 EXPORT_SYMBOL(inet_register_protosw); 1232 1233 void inet_unregister_protosw(struct inet_protosw *p) 1234 { 1235 if (INET_PROTOSW_PERMANENT & p->flags) { 1236 pr_err("Attempt to unregister permanent protocol %d\n", 1237 p->protocol); 1238 } else { 1239 spin_lock_bh(&inetsw_lock); 1240 list_del_rcu(&p->list); 1241 spin_unlock_bh(&inetsw_lock); 1242 1243 synchronize_net(); 1244 } 1245 } 1246 EXPORT_SYMBOL(inet_unregister_protosw); 1247 1248 static int inet_sk_reselect_saddr(struct sock *sk) 1249 { 1250 struct inet_sock *inet = inet_sk(sk); 1251 __be32 old_saddr = inet->inet_saddr; 1252 __be32 daddr = inet->inet_daddr; 1253 struct flowi4 *fl4; 1254 struct rtable *rt; 1255 __be32 new_saddr; 1256 struct ip_options_rcu *inet_opt; 1257 int err; 1258 1259 inet_opt = rcu_dereference_protected(inet->inet_opt, 1260 lockdep_sock_is_held(sk)); 1261 if (inet_opt && inet_opt->opt.srr) 1262 daddr = inet_opt->opt.faddr; 1263 1264 /* Query new route. */ 1265 fl4 = &inet->cork.fl.u.ip4; 1266 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1267 sk->sk_protocol, inet->inet_sport, 1268 inet->inet_dport, sk); 1269 if (IS_ERR(rt)) 1270 return PTR_ERR(rt); 1271 1272 new_saddr = fl4->saddr; 1273 1274 if (new_saddr == old_saddr) { 1275 sk_setup_caps(sk, &rt->dst); 1276 return 0; 1277 } 1278 1279 err = inet_bhash2_update_saddr(sk, &new_saddr, AF_INET); 1280 if (err) { 1281 ip_rt_put(rt); 1282 return err; 1283 } 1284 1285 sk_setup_caps(sk, &rt->dst); 1286 1287 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1288 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1289 __func__, &old_saddr, &new_saddr); 1290 } 1291 1292 /* 1293 * XXX The only one ugly spot where we need to 1294 * XXX really change the sockets identity after 1295 * XXX it has entered the hashes. -DaveM 1296 * 1297 * Besides that, it does not check for connection 1298 * uniqueness. Wait for troubles. 1299 */ 1300 return __sk_prot_rehash(sk); 1301 } 1302 1303 int inet_sk_rebuild_header(struct sock *sk) 1304 { 1305 struct inet_sock *inet = inet_sk(sk); 1306 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1307 __be32 daddr; 1308 struct ip_options_rcu *inet_opt; 1309 struct flowi4 *fl4; 1310 int err; 1311 1312 /* Route is OK, nothing to do. */ 1313 if (rt) 1314 return 0; 1315 1316 /* Reroute. */ 1317 rcu_read_lock(); 1318 inet_opt = rcu_dereference(inet->inet_opt); 1319 daddr = inet->inet_daddr; 1320 if (inet_opt && inet_opt->opt.srr) 1321 daddr = inet_opt->opt.faddr; 1322 rcu_read_unlock(); 1323 fl4 = &inet->cork.fl.u.ip4; 1324 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1325 inet->inet_dport, inet->inet_sport, 1326 sk->sk_protocol, RT_CONN_FLAGS(sk), 1327 sk->sk_bound_dev_if); 1328 if (!IS_ERR(rt)) { 1329 err = 0; 1330 sk_setup_caps(sk, &rt->dst); 1331 } else { 1332 err = PTR_ERR(rt); 1333 1334 /* Routing failed... */ 1335 sk->sk_route_caps = 0; 1336 /* 1337 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1338 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1339 */ 1340 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1341 sk->sk_state != TCP_SYN_SENT || 1342 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1343 (err = inet_sk_reselect_saddr(sk)) != 0) 1344 WRITE_ONCE(sk->sk_err_soft, -err); 1345 } 1346 1347 return err; 1348 } 1349 EXPORT_SYMBOL(inet_sk_rebuild_header); 1350 1351 void inet_sk_set_state(struct sock *sk, int state) 1352 { 1353 trace_inet_sock_set_state(sk, sk->sk_state, state); 1354 sk->sk_state = state; 1355 } 1356 EXPORT_SYMBOL(inet_sk_set_state); 1357 1358 void inet_sk_state_store(struct sock *sk, int newstate) 1359 { 1360 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1361 smp_store_release(&sk->sk_state, newstate); 1362 } 1363 1364 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1365 netdev_features_t features) 1366 { 1367 bool udpfrag = false, fixedid = false, gso_partial, encap; 1368 struct sk_buff *segs = ERR_PTR(-EINVAL); 1369 const struct net_offload *ops; 1370 unsigned int offset = 0; 1371 struct iphdr *iph; 1372 int proto, tot_len; 1373 int nhoff; 1374 int ihl; 1375 int id; 1376 1377 skb_reset_network_header(skb); 1378 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1379 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1380 goto out; 1381 1382 iph = ip_hdr(skb); 1383 ihl = iph->ihl * 4; 1384 if (ihl < sizeof(*iph)) 1385 goto out; 1386 1387 id = ntohs(iph->id); 1388 proto = iph->protocol; 1389 1390 /* Warning: after this point, iph might be no longer valid */ 1391 if (unlikely(!pskb_may_pull(skb, ihl))) 1392 goto out; 1393 __skb_pull(skb, ihl); 1394 1395 encap = SKB_GSO_CB(skb)->encap_level > 0; 1396 if (encap) 1397 features &= skb->dev->hw_enc_features; 1398 SKB_GSO_CB(skb)->encap_level += ihl; 1399 1400 skb_reset_transport_header(skb); 1401 1402 segs = ERR_PTR(-EPROTONOSUPPORT); 1403 1404 if (!skb->encapsulation || encap) { 1405 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1406 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1407 1408 /* fixed ID is invalid if DF bit is not set */ 1409 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1410 goto out; 1411 } 1412 1413 ops = rcu_dereference(inet_offloads[proto]); 1414 if (likely(ops && ops->callbacks.gso_segment)) { 1415 segs = ops->callbacks.gso_segment(skb, features); 1416 if (!segs) 1417 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1418 } 1419 1420 if (IS_ERR_OR_NULL(segs)) 1421 goto out; 1422 1423 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1424 1425 skb = segs; 1426 do { 1427 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1428 if (udpfrag) { 1429 iph->frag_off = htons(offset >> 3); 1430 if (skb->next) 1431 iph->frag_off |= htons(IP_MF); 1432 offset += skb->len - nhoff - ihl; 1433 tot_len = skb->len - nhoff; 1434 } else if (skb_is_gso(skb)) { 1435 if (!fixedid) { 1436 iph->id = htons(id); 1437 id += skb_shinfo(skb)->gso_segs; 1438 } 1439 1440 if (gso_partial) 1441 tot_len = skb_shinfo(skb)->gso_size + 1442 SKB_GSO_CB(skb)->data_offset + 1443 skb->head - (unsigned char *)iph; 1444 else 1445 tot_len = skb->len - nhoff; 1446 } else { 1447 if (!fixedid) 1448 iph->id = htons(id++); 1449 tot_len = skb->len - nhoff; 1450 } 1451 iph->tot_len = htons(tot_len); 1452 ip_send_check(iph); 1453 if (encap) 1454 skb_reset_inner_headers(skb); 1455 skb->network_header = (u8 *)iph - skb->head; 1456 skb_reset_mac_len(skb); 1457 } while ((skb = skb->next)); 1458 1459 out: 1460 return segs; 1461 } 1462 1463 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1464 netdev_features_t features) 1465 { 1466 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1467 return ERR_PTR(-EINVAL); 1468 1469 return inet_gso_segment(skb, features); 1470 } 1471 1472 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1473 { 1474 const struct net_offload *ops; 1475 struct sk_buff *pp = NULL; 1476 const struct iphdr *iph; 1477 struct sk_buff *p; 1478 unsigned int hlen; 1479 unsigned int off; 1480 unsigned int id; 1481 int flush = 1; 1482 int proto; 1483 1484 off = skb_gro_offset(skb); 1485 hlen = off + sizeof(*iph); 1486 iph = skb_gro_header(skb, hlen, off); 1487 if (unlikely(!iph)) 1488 goto out; 1489 1490 proto = iph->protocol; 1491 1492 ops = rcu_dereference(inet_offloads[proto]); 1493 if (!ops || !ops->callbacks.gro_receive) 1494 goto out; 1495 1496 if (*(u8 *)iph != 0x45) 1497 goto out; 1498 1499 if (ip_is_fragment(iph)) 1500 goto out; 1501 1502 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1503 goto out; 1504 1505 NAPI_GRO_CB(skb)->proto = proto; 1506 id = ntohl(*(__be32 *)&iph->id); 1507 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1508 id >>= 16; 1509 1510 list_for_each_entry(p, head, list) { 1511 struct iphdr *iph2; 1512 u16 flush_id; 1513 1514 if (!NAPI_GRO_CB(p)->same_flow) 1515 continue; 1516 1517 iph2 = (struct iphdr *)(p->data + off); 1518 /* The above works because, with the exception of the top 1519 * (inner most) layer, we only aggregate pkts with the same 1520 * hdr length so all the hdrs we'll need to verify will start 1521 * at the same offset. 1522 */ 1523 if ((iph->protocol ^ iph2->protocol) | 1524 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1525 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1526 NAPI_GRO_CB(p)->same_flow = 0; 1527 continue; 1528 } 1529 1530 /* All fields must match except length and checksum. */ 1531 NAPI_GRO_CB(p)->flush |= 1532 (iph->ttl ^ iph2->ttl) | 1533 (iph->tos ^ iph2->tos) | 1534 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1535 1536 NAPI_GRO_CB(p)->flush |= flush; 1537 1538 /* We need to store of the IP ID check to be included later 1539 * when we can verify that this packet does in fact belong 1540 * to a given flow. 1541 */ 1542 flush_id = (u16)(id - ntohs(iph2->id)); 1543 1544 /* This bit of code makes it much easier for us to identify 1545 * the cases where we are doing atomic vs non-atomic IP ID 1546 * checks. Specifically an atomic check can return IP ID 1547 * values 0 - 0xFFFF, while a non-atomic check can only 1548 * return 0 or 0xFFFF. 1549 */ 1550 if (!NAPI_GRO_CB(p)->is_atomic || 1551 !(iph->frag_off & htons(IP_DF))) { 1552 flush_id ^= NAPI_GRO_CB(p)->count; 1553 flush_id = flush_id ? 0xFFFF : 0; 1554 } 1555 1556 /* If the previous IP ID value was based on an atomic 1557 * datagram we can overwrite the value and ignore it. 1558 */ 1559 if (NAPI_GRO_CB(skb)->is_atomic) 1560 NAPI_GRO_CB(p)->flush_id = flush_id; 1561 else 1562 NAPI_GRO_CB(p)->flush_id |= flush_id; 1563 } 1564 1565 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1566 NAPI_GRO_CB(skb)->flush |= flush; 1567 skb_set_network_header(skb, off); 1568 /* The above will be needed by the transport layer if there is one 1569 * immediately following this IP hdr. 1570 */ 1571 1572 /* Note : No need to call skb_gro_postpull_rcsum() here, 1573 * as we already checked checksum over ipv4 header was 0 1574 */ 1575 skb_gro_pull(skb, sizeof(*iph)); 1576 skb_set_transport_header(skb, skb_gro_offset(skb)); 1577 1578 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1579 ops->callbacks.gro_receive, head, skb); 1580 1581 out: 1582 skb_gro_flush_final(skb, pp, flush); 1583 1584 return pp; 1585 } 1586 1587 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1588 struct sk_buff *skb) 1589 { 1590 if (NAPI_GRO_CB(skb)->encap_mark) { 1591 NAPI_GRO_CB(skb)->flush = 1; 1592 return NULL; 1593 } 1594 1595 NAPI_GRO_CB(skb)->encap_mark = 1; 1596 1597 return inet_gro_receive(head, skb); 1598 } 1599 1600 #define SECONDS_PER_DAY 86400 1601 1602 /* inet_current_timestamp - Return IP network timestamp 1603 * 1604 * Return milliseconds since midnight in network byte order. 1605 */ 1606 __be32 inet_current_timestamp(void) 1607 { 1608 u32 secs; 1609 u32 msecs; 1610 struct timespec64 ts; 1611 1612 ktime_get_real_ts64(&ts); 1613 1614 /* Get secs since midnight. */ 1615 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1616 /* Convert to msecs. */ 1617 msecs = secs * MSEC_PER_SEC; 1618 /* Convert nsec to msec. */ 1619 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1620 1621 /* Convert to network byte order. */ 1622 return htonl(msecs); 1623 } 1624 EXPORT_SYMBOL(inet_current_timestamp); 1625 1626 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1627 { 1628 if (sk->sk_family == AF_INET) 1629 return ip_recv_error(sk, msg, len, addr_len); 1630 #if IS_ENABLED(CONFIG_IPV6) 1631 if (sk->sk_family == AF_INET6) 1632 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1633 #endif 1634 return -EINVAL; 1635 } 1636 1637 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1638 { 1639 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1640 const struct net_offload *ops; 1641 __be16 totlen = iph->tot_len; 1642 int proto = iph->protocol; 1643 int err = -ENOSYS; 1644 1645 if (skb->encapsulation) { 1646 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1647 skb_set_inner_network_header(skb, nhoff); 1648 } 1649 1650 iph_set_totlen(iph, skb->len - nhoff); 1651 csum_replace2(&iph->check, totlen, iph->tot_len); 1652 1653 ops = rcu_dereference(inet_offloads[proto]); 1654 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1655 goto out; 1656 1657 /* Only need to add sizeof(*iph) to get to the next hdr below 1658 * because any hdr with option will have been flushed in 1659 * inet_gro_receive(). 1660 */ 1661 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1662 tcp4_gro_complete, udp4_gro_complete, 1663 skb, nhoff + sizeof(*iph)); 1664 1665 out: 1666 return err; 1667 } 1668 1669 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1670 { 1671 skb->encapsulation = 1; 1672 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1673 return inet_gro_complete(skb, nhoff); 1674 } 1675 1676 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1677 unsigned short type, unsigned char protocol, 1678 struct net *net) 1679 { 1680 struct socket *sock; 1681 int rc = sock_create_kern(net, family, type, protocol, &sock); 1682 1683 if (rc == 0) { 1684 *sk = sock->sk; 1685 (*sk)->sk_allocation = GFP_ATOMIC; 1686 (*sk)->sk_use_task_frag = false; 1687 /* 1688 * Unhash it so that IP input processing does not even see it, 1689 * we do not wish this socket to see incoming packets. 1690 */ 1691 (*sk)->sk_prot->unhash(*sk); 1692 } 1693 return rc; 1694 } 1695 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1696 1697 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1698 { 1699 unsigned long res = 0; 1700 int i; 1701 1702 for_each_possible_cpu(i) 1703 res += snmp_get_cpu_field(mib, i, offt); 1704 return res; 1705 } 1706 EXPORT_SYMBOL_GPL(snmp_fold_field); 1707 1708 #if BITS_PER_LONG==32 1709 1710 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1711 size_t syncp_offset) 1712 { 1713 void *bhptr; 1714 struct u64_stats_sync *syncp; 1715 u64 v; 1716 unsigned int start; 1717 1718 bhptr = per_cpu_ptr(mib, cpu); 1719 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1720 do { 1721 start = u64_stats_fetch_begin(syncp); 1722 v = *(((u64 *)bhptr) + offt); 1723 } while (u64_stats_fetch_retry(syncp, start)); 1724 1725 return v; 1726 } 1727 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1728 1729 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1730 { 1731 u64 res = 0; 1732 int cpu; 1733 1734 for_each_possible_cpu(cpu) { 1735 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1736 } 1737 return res; 1738 } 1739 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1740 #endif 1741 1742 #ifdef CONFIG_IP_MULTICAST 1743 static const struct net_protocol igmp_protocol = { 1744 .handler = igmp_rcv, 1745 }; 1746 #endif 1747 1748 static const struct net_protocol tcp_protocol = { 1749 .handler = tcp_v4_rcv, 1750 .err_handler = tcp_v4_err, 1751 .no_policy = 1, 1752 .icmp_strict_tag_validation = 1, 1753 }; 1754 1755 static const struct net_protocol udp_protocol = { 1756 .handler = udp_rcv, 1757 .err_handler = udp_err, 1758 .no_policy = 1, 1759 }; 1760 1761 static const struct net_protocol icmp_protocol = { 1762 .handler = icmp_rcv, 1763 .err_handler = icmp_err, 1764 .no_policy = 1, 1765 }; 1766 1767 static __net_init int ipv4_mib_init_net(struct net *net) 1768 { 1769 int i; 1770 1771 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1772 if (!net->mib.tcp_statistics) 1773 goto err_tcp_mib; 1774 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1775 if (!net->mib.ip_statistics) 1776 goto err_ip_mib; 1777 1778 for_each_possible_cpu(i) { 1779 struct ipstats_mib *af_inet_stats; 1780 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1781 u64_stats_init(&af_inet_stats->syncp); 1782 } 1783 1784 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1785 if (!net->mib.net_statistics) 1786 goto err_net_mib; 1787 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1788 if (!net->mib.udp_statistics) 1789 goto err_udp_mib; 1790 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1791 if (!net->mib.udplite_statistics) 1792 goto err_udplite_mib; 1793 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1794 if (!net->mib.icmp_statistics) 1795 goto err_icmp_mib; 1796 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1797 GFP_KERNEL); 1798 if (!net->mib.icmpmsg_statistics) 1799 goto err_icmpmsg_mib; 1800 1801 tcp_mib_init(net); 1802 return 0; 1803 1804 err_icmpmsg_mib: 1805 free_percpu(net->mib.icmp_statistics); 1806 err_icmp_mib: 1807 free_percpu(net->mib.udplite_statistics); 1808 err_udplite_mib: 1809 free_percpu(net->mib.udp_statistics); 1810 err_udp_mib: 1811 free_percpu(net->mib.net_statistics); 1812 err_net_mib: 1813 free_percpu(net->mib.ip_statistics); 1814 err_ip_mib: 1815 free_percpu(net->mib.tcp_statistics); 1816 err_tcp_mib: 1817 return -ENOMEM; 1818 } 1819 1820 static __net_exit void ipv4_mib_exit_net(struct net *net) 1821 { 1822 kfree(net->mib.icmpmsg_statistics); 1823 free_percpu(net->mib.icmp_statistics); 1824 free_percpu(net->mib.udplite_statistics); 1825 free_percpu(net->mib.udp_statistics); 1826 free_percpu(net->mib.net_statistics); 1827 free_percpu(net->mib.ip_statistics); 1828 free_percpu(net->mib.tcp_statistics); 1829 #ifdef CONFIG_MPTCP 1830 /* allocated on demand, see mptcp_init_sock() */ 1831 free_percpu(net->mib.mptcp_statistics); 1832 #endif 1833 } 1834 1835 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1836 .init = ipv4_mib_init_net, 1837 .exit = ipv4_mib_exit_net, 1838 }; 1839 1840 static int __init init_ipv4_mibs(void) 1841 { 1842 return register_pernet_subsys(&ipv4_mib_ops); 1843 } 1844 1845 static __net_init int inet_init_net(struct net *net) 1846 { 1847 /* 1848 * Set defaults for local port range 1849 */ 1850 seqlock_init(&net->ipv4.ip_local_ports.lock); 1851 net->ipv4.ip_local_ports.range[0] = 32768; 1852 net->ipv4.ip_local_ports.range[1] = 60999; 1853 1854 seqlock_init(&net->ipv4.ping_group_range.lock); 1855 /* 1856 * Sane defaults - nobody may create ping sockets. 1857 * Boot scripts should set this to distro-specific group. 1858 */ 1859 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1860 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1861 1862 /* Default values for sysctl-controlled parameters. 1863 * We set them here, in case sysctl is not compiled. 1864 */ 1865 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1866 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1867 net->ipv4.sysctl_ip_dynaddr = 0; 1868 net->ipv4.sysctl_ip_early_demux = 1; 1869 net->ipv4.sysctl_udp_early_demux = 1; 1870 net->ipv4.sysctl_tcp_early_demux = 1; 1871 net->ipv4.sysctl_nexthop_compat_mode = 1; 1872 #ifdef CONFIG_SYSCTL 1873 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1874 #endif 1875 1876 /* Some igmp sysctl, whose values are always used */ 1877 net->ipv4.sysctl_igmp_max_memberships = 20; 1878 net->ipv4.sysctl_igmp_max_msf = 10; 1879 /* IGMP reports for link-local multicast groups are enabled by default */ 1880 net->ipv4.sysctl_igmp_llm_reports = 1; 1881 net->ipv4.sysctl_igmp_qrv = 2; 1882 1883 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1884 1885 return 0; 1886 } 1887 1888 static __net_initdata struct pernet_operations af_inet_ops = { 1889 .init = inet_init_net, 1890 }; 1891 1892 static int __init init_inet_pernet_ops(void) 1893 { 1894 return register_pernet_subsys(&af_inet_ops); 1895 } 1896 1897 static int ipv4_proc_init(void); 1898 1899 /* 1900 * IP protocol layer initialiser 1901 */ 1902 1903 static struct packet_offload ip_packet_offload __read_mostly = { 1904 .type = cpu_to_be16(ETH_P_IP), 1905 .callbacks = { 1906 .gso_segment = inet_gso_segment, 1907 .gro_receive = inet_gro_receive, 1908 .gro_complete = inet_gro_complete, 1909 }, 1910 }; 1911 1912 static const struct net_offload ipip_offload = { 1913 .callbacks = { 1914 .gso_segment = ipip_gso_segment, 1915 .gro_receive = ipip_gro_receive, 1916 .gro_complete = ipip_gro_complete, 1917 }, 1918 }; 1919 1920 static int __init ipip_offload_init(void) 1921 { 1922 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1923 } 1924 1925 static int __init ipv4_offload_init(void) 1926 { 1927 /* 1928 * Add offloads 1929 */ 1930 if (udpv4_offload_init() < 0) 1931 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1932 if (tcpv4_offload_init() < 0) 1933 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1934 if (ipip_offload_init() < 0) 1935 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1936 1937 dev_add_offload(&ip_packet_offload); 1938 return 0; 1939 } 1940 1941 fs_initcall(ipv4_offload_init); 1942 1943 static struct packet_type ip_packet_type __read_mostly = { 1944 .type = cpu_to_be16(ETH_P_IP), 1945 .func = ip_rcv, 1946 .list_func = ip_list_rcv, 1947 }; 1948 1949 static int __init inet_init(void) 1950 { 1951 struct inet_protosw *q; 1952 struct list_head *r; 1953 int rc; 1954 1955 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1956 1957 raw_hashinfo_init(&raw_v4_hashinfo); 1958 1959 rc = proto_register(&tcp_prot, 1); 1960 if (rc) 1961 goto out; 1962 1963 rc = proto_register(&udp_prot, 1); 1964 if (rc) 1965 goto out_unregister_tcp_proto; 1966 1967 rc = proto_register(&raw_prot, 1); 1968 if (rc) 1969 goto out_unregister_udp_proto; 1970 1971 rc = proto_register(&ping_prot, 1); 1972 if (rc) 1973 goto out_unregister_raw_proto; 1974 1975 /* 1976 * Tell SOCKET that we are alive... 1977 */ 1978 1979 (void)sock_register(&inet_family_ops); 1980 1981 #ifdef CONFIG_SYSCTL 1982 ip_static_sysctl_init(); 1983 #endif 1984 1985 /* 1986 * Add all the base protocols. 1987 */ 1988 1989 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1990 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1991 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1992 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1993 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1994 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1995 #ifdef CONFIG_IP_MULTICAST 1996 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1997 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1998 #endif 1999 2000 /* Register the socket-side information for inet_create. */ 2001 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 2002 INIT_LIST_HEAD(r); 2003 2004 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 2005 inet_register_protosw(q); 2006 2007 /* 2008 * Set the ARP module up 2009 */ 2010 2011 arp_init(); 2012 2013 /* 2014 * Set the IP module up 2015 */ 2016 2017 ip_init(); 2018 2019 /* Initialise per-cpu ipv4 mibs */ 2020 if (init_ipv4_mibs()) 2021 panic("%s: Cannot init ipv4 mibs\n", __func__); 2022 2023 /* Setup TCP slab cache for open requests. */ 2024 tcp_init(); 2025 2026 /* Setup UDP memory threshold */ 2027 udp_init(); 2028 2029 /* Add UDP-Lite (RFC 3828) */ 2030 udplite4_register(); 2031 2032 raw_init(); 2033 2034 ping_init(); 2035 2036 /* 2037 * Set the ICMP layer up 2038 */ 2039 2040 if (icmp_init() < 0) 2041 panic("Failed to create the ICMP control socket.\n"); 2042 2043 /* 2044 * Initialise the multicast router 2045 */ 2046 #if defined(CONFIG_IP_MROUTE) 2047 if (ip_mr_init()) 2048 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2049 #endif 2050 2051 if (init_inet_pernet_ops()) 2052 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2053 2054 ipv4_proc_init(); 2055 2056 ipfrag_init(); 2057 2058 dev_add_pack(&ip_packet_type); 2059 2060 ip_tunnel_core_init(); 2061 2062 rc = 0; 2063 out: 2064 return rc; 2065 out_unregister_raw_proto: 2066 proto_unregister(&raw_prot); 2067 out_unregister_udp_proto: 2068 proto_unregister(&udp_prot); 2069 out_unregister_tcp_proto: 2070 proto_unregister(&tcp_prot); 2071 goto out; 2072 } 2073 2074 fs_initcall(inet_init); 2075 2076 /* ------------------------------------------------------------------------ */ 2077 2078 #ifdef CONFIG_PROC_FS 2079 static int __init ipv4_proc_init(void) 2080 { 2081 int rc = 0; 2082 2083 if (raw_proc_init()) 2084 goto out_raw; 2085 if (tcp4_proc_init()) 2086 goto out_tcp; 2087 if (udp4_proc_init()) 2088 goto out_udp; 2089 if (ping_proc_init()) 2090 goto out_ping; 2091 if (ip_misc_proc_init()) 2092 goto out_misc; 2093 out: 2094 return rc; 2095 out_misc: 2096 ping_proc_exit(); 2097 out_ping: 2098 udp4_proc_exit(); 2099 out_udp: 2100 tcp4_proc_exit(); 2101 out_tcp: 2102 raw_proc_exit(); 2103 out_raw: 2104 rc = -ENOMEM; 2105 goto out; 2106 } 2107 2108 #else /* CONFIG_PROC_FS */ 2109 static int __init ipv4_proc_init(void) 2110 { 2111 return 0; 2112 } 2113 #endif /* CONFIG_PROC_FS */ 2114