1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * PF_INET protocol family socket handler. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Florian La Roche, <flla@stud.uni-sb.de> 12 * Alan Cox, <A.Cox@swansea.ac.uk> 13 * 14 * Changes (see also sock.c) 15 * 16 * piggy, 17 * Karl Knutson : Socket protocol table 18 * A.N.Kuznetsov : Socket death error in accept(). 19 * John Richardson : Fix non blocking error in connect() 20 * so sockets that fail to connect 21 * don't return -EINPROGRESS. 22 * Alan Cox : Asynchronous I/O support 23 * Alan Cox : Keep correct socket pointer on sock 24 * structures 25 * when accept() ed 26 * Alan Cox : Semantics of SO_LINGER aren't state 27 * moved to close when you look carefully. 28 * With this fixed and the accept bug fixed 29 * some RPC stuff seems happier. 30 * Niibe Yutaka : 4.4BSD style write async I/O 31 * Alan Cox, 32 * Tony Gale : Fixed reuse semantics. 33 * Alan Cox : bind() shouldn't abort existing but dead 34 * sockets. Stops FTP netin:.. I hope. 35 * Alan Cox : bind() works correctly for RAW sockets. 36 * Note that FreeBSD at least was broken 37 * in this respect so be careful with 38 * compatibility tests... 39 * Alan Cox : routing cache support 40 * Alan Cox : memzero the socket structure for 41 * compactness. 42 * Matt Day : nonblock connect error handler 43 * Alan Cox : Allow large numbers of pending sockets 44 * (eg for big web sites), but only if 45 * specifically application requested. 46 * Alan Cox : New buffering throughout IP. Used 47 * dumbly. 48 * Alan Cox : New buffering now used smartly. 49 * Alan Cox : BSD rather than common sense 50 * interpretation of listen. 51 * Germano Caronni : Assorted small races. 52 * Alan Cox : sendmsg/recvmsg basic support. 53 * Alan Cox : Only sendmsg/recvmsg now supported. 54 * Alan Cox : Locked down bind (see security list). 55 * Alan Cox : Loosened bind a little. 56 * Mike McLagan : ADD/DEL DLCI Ioctls 57 * Willy Konynenberg : Transparent proxying support. 58 * David S. Miller : New socket lookup architecture. 59 * Some other random speedups. 60 * Cyrus Durgin : Cleaned up file for kmod hacks. 61 * Andi Kleen : Fix inet_stream_connect TCP race. 62 */ 63 64 #define pr_fmt(fmt) "IPv4: " fmt 65 66 #include <linux/err.h> 67 #include <linux/errno.h> 68 #include <linux/types.h> 69 #include <linux/socket.h> 70 #include <linux/in.h> 71 #include <linux/kernel.h> 72 #include <linux/kmod.h> 73 #include <linux/sched.h> 74 #include <linux/timer.h> 75 #include <linux/string.h> 76 #include <linux/sockios.h> 77 #include <linux/net.h> 78 #include <linux/capability.h> 79 #include <linux/fcntl.h> 80 #include <linux/mm.h> 81 #include <linux/interrupt.h> 82 #include <linux/stat.h> 83 #include <linux/init.h> 84 #include <linux/poll.h> 85 #include <linux/netfilter_ipv4.h> 86 #include <linux/random.h> 87 #include <linux/slab.h> 88 89 #include <linux/uaccess.h> 90 91 #include <linux/inet.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/netdevice.h> 95 #include <net/checksum.h> 96 #include <net/ip.h> 97 #include <net/protocol.h> 98 #include <net/arp.h> 99 #include <net/route.h> 100 #include <net/ip_fib.h> 101 #include <net/inet_connection_sock.h> 102 #include <net/gro.h> 103 #include <net/tcp.h> 104 #include <net/udp.h> 105 #include <net/udplite.h> 106 #include <net/ping.h> 107 #include <linux/skbuff.h> 108 #include <net/sock.h> 109 #include <net/raw.h> 110 #include <net/icmp.h> 111 #include <net/inet_common.h> 112 #include <net/ip_tunnels.h> 113 #include <net/xfrm.h> 114 #include <net/net_namespace.h> 115 #include <net/secure_seq.h> 116 #ifdef CONFIG_IP_MROUTE 117 #include <linux/mroute.h> 118 #endif 119 #include <net/l3mdev.h> 120 #include <net/compat.h> 121 122 #include <trace/events/sock.h> 123 124 /* The inetsw table contains everything that inet_create needs to 125 * build a new socket. 126 */ 127 static struct list_head inetsw[SOCK_MAX]; 128 static DEFINE_SPINLOCK(inetsw_lock); 129 130 /* New destruction routine */ 131 132 void inet_sock_destruct(struct sock *sk) 133 { 134 struct inet_sock *inet = inet_sk(sk); 135 136 __skb_queue_purge(&sk->sk_receive_queue); 137 __skb_queue_purge(&sk->sk_error_queue); 138 139 sk_mem_reclaim_final(sk); 140 141 if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { 142 pr_err("Attempt to release TCP socket in state %d %p\n", 143 sk->sk_state, sk); 144 return; 145 } 146 if (!sock_flag(sk, SOCK_DEAD)) { 147 pr_err("Attempt to release alive inet socket %p\n", sk); 148 return; 149 } 150 151 WARN_ON_ONCE(atomic_read(&sk->sk_rmem_alloc)); 152 WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 153 WARN_ON_ONCE(sk->sk_wmem_queued); 154 WARN_ON_ONCE(sk_forward_alloc_get(sk)); 155 156 kfree(rcu_dereference_protected(inet->inet_opt, 1)); 157 dst_release(rcu_dereference_protected(sk->sk_dst_cache, 1)); 158 dst_release(rcu_dereference_protected(sk->sk_rx_dst, 1)); 159 sk_refcnt_debug_dec(sk); 160 } 161 EXPORT_SYMBOL(inet_sock_destruct); 162 163 /* 164 * The routines beyond this point handle the behaviour of an AF_INET 165 * socket object. Mostly it punts to the subprotocols of IP to do 166 * the work. 167 */ 168 169 /* 170 * Automatically bind an unbound socket. 171 */ 172 173 static int inet_autobind(struct sock *sk) 174 { 175 struct inet_sock *inet; 176 /* We may need to bind the socket. */ 177 lock_sock(sk); 178 inet = inet_sk(sk); 179 if (!inet->inet_num) { 180 if (sk->sk_prot->get_port(sk, 0)) { 181 release_sock(sk); 182 return -EAGAIN; 183 } 184 inet->inet_sport = htons(inet->inet_num); 185 } 186 release_sock(sk); 187 return 0; 188 } 189 190 /* 191 * Move a socket into listening state. 192 */ 193 int inet_listen(struct socket *sock, int backlog) 194 { 195 struct sock *sk = sock->sk; 196 unsigned char old_state; 197 int err, tcp_fastopen; 198 199 lock_sock(sk); 200 201 err = -EINVAL; 202 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 203 goto out; 204 205 old_state = sk->sk_state; 206 if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) 207 goto out; 208 209 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 210 /* Really, if the socket is already in listen state 211 * we can only allow the backlog to be adjusted. 212 */ 213 if (old_state != TCP_LISTEN) { 214 /* Enable TFO w/o requiring TCP_FASTOPEN socket option. 215 * Note that only TCP sockets (SOCK_STREAM) will reach here. 216 * Also fastopen backlog may already been set via the option 217 * because the socket was in TCP_LISTEN state previously but 218 * was shutdown() rather than close(). 219 */ 220 tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); 221 if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && 222 (tcp_fastopen & TFO_SERVER_ENABLE) && 223 !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { 224 fastopen_queue_tune(sk, backlog); 225 tcp_fastopen_init_key_once(sock_net(sk)); 226 } 227 228 err = inet_csk_listen_start(sk); 229 if (err) 230 goto out; 231 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); 232 } 233 err = 0; 234 235 out: 236 release_sock(sk); 237 return err; 238 } 239 EXPORT_SYMBOL(inet_listen); 240 241 /* 242 * Create an inet socket. 243 */ 244 245 static int inet_create(struct net *net, struct socket *sock, int protocol, 246 int kern) 247 { 248 struct sock *sk; 249 struct inet_protosw *answer; 250 struct inet_sock *inet; 251 struct proto *answer_prot; 252 unsigned char answer_flags; 253 int try_loading_module = 0; 254 int err; 255 256 if (protocol < 0 || protocol >= IPPROTO_MAX) 257 return -EINVAL; 258 259 sock->state = SS_UNCONNECTED; 260 261 /* Look for the requested type/protocol pair. */ 262 lookup_protocol: 263 err = -ESOCKTNOSUPPORT; 264 rcu_read_lock(); 265 list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { 266 267 err = 0; 268 /* Check the non-wild match. */ 269 if (protocol == answer->protocol) { 270 if (protocol != IPPROTO_IP) 271 break; 272 } else { 273 /* Check for the two wild cases. */ 274 if (IPPROTO_IP == protocol) { 275 protocol = answer->protocol; 276 break; 277 } 278 if (IPPROTO_IP == answer->protocol) 279 break; 280 } 281 err = -EPROTONOSUPPORT; 282 } 283 284 if (unlikely(err)) { 285 if (try_loading_module < 2) { 286 rcu_read_unlock(); 287 /* 288 * Be more specific, e.g. net-pf-2-proto-132-type-1 289 * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) 290 */ 291 if (++try_loading_module == 1) 292 request_module("net-pf-%d-proto-%d-type-%d", 293 PF_INET, protocol, sock->type); 294 /* 295 * Fall back to generic, e.g. net-pf-2-proto-132 296 * (net-pf-PF_INET-proto-IPPROTO_SCTP) 297 */ 298 else 299 request_module("net-pf-%d-proto-%d", 300 PF_INET, protocol); 301 goto lookup_protocol; 302 } else 303 goto out_rcu_unlock; 304 } 305 306 err = -EPERM; 307 if (sock->type == SOCK_RAW && !kern && 308 !ns_capable(net->user_ns, CAP_NET_RAW)) 309 goto out_rcu_unlock; 310 311 sock->ops = answer->ops; 312 answer_prot = answer->prot; 313 answer_flags = answer->flags; 314 rcu_read_unlock(); 315 316 WARN_ON(!answer_prot->slab); 317 318 err = -ENOMEM; 319 sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); 320 if (!sk) 321 goto out; 322 323 err = 0; 324 if (INET_PROTOSW_REUSE & answer_flags) 325 sk->sk_reuse = SK_CAN_REUSE; 326 327 inet = inet_sk(sk); 328 inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; 329 330 inet->nodefrag = 0; 331 332 if (SOCK_RAW == sock->type) { 333 inet->inet_num = protocol; 334 if (IPPROTO_RAW == protocol) 335 inet->hdrincl = 1; 336 } 337 338 if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) 339 inet->pmtudisc = IP_PMTUDISC_DONT; 340 else 341 inet->pmtudisc = IP_PMTUDISC_WANT; 342 343 inet->inet_id = 0; 344 345 sock_init_data(sock, sk); 346 347 sk->sk_destruct = inet_sock_destruct; 348 sk->sk_protocol = protocol; 349 sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 350 351 inet->uc_ttl = -1; 352 inet->mc_loop = 1; 353 inet->mc_ttl = 1; 354 inet->mc_all = 1; 355 inet->mc_index = 0; 356 inet->mc_list = NULL; 357 inet->rcv_tos = 0; 358 359 sk_refcnt_debug_inc(sk); 360 361 if (inet->inet_num) { 362 /* It assumes that any protocol which allows 363 * the user to assign a number at socket 364 * creation time automatically 365 * shares. 366 */ 367 inet->inet_sport = htons(inet->inet_num); 368 /* Add to protocol hash chains. */ 369 err = sk->sk_prot->hash(sk); 370 if (err) { 371 sk_common_release(sk); 372 goto out; 373 } 374 } 375 376 if (sk->sk_prot->init) { 377 err = sk->sk_prot->init(sk); 378 if (err) { 379 sk_common_release(sk); 380 goto out; 381 } 382 } 383 384 if (!kern) { 385 err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); 386 if (err) { 387 sk_common_release(sk); 388 goto out; 389 } 390 } 391 out: 392 return err; 393 out_rcu_unlock: 394 rcu_read_unlock(); 395 goto out; 396 } 397 398 399 /* 400 * The peer socket should always be NULL (or else). When we call this 401 * function we are destroying the object and from then on nobody 402 * should refer to it. 403 */ 404 int inet_release(struct socket *sock) 405 { 406 struct sock *sk = sock->sk; 407 408 if (sk) { 409 long timeout; 410 411 if (!sk->sk_kern_sock) 412 BPF_CGROUP_RUN_PROG_INET_SOCK_RELEASE(sk); 413 414 /* Applications forget to leave groups before exiting */ 415 ip_mc_drop_socket(sk); 416 417 /* If linger is set, we don't return until the close 418 * is complete. Otherwise we return immediately. The 419 * actually closing is done the same either way. 420 * 421 * If the close is due to the process exiting, we never 422 * linger.. 423 */ 424 timeout = 0; 425 if (sock_flag(sk, SOCK_LINGER) && 426 !(current->flags & PF_EXITING)) 427 timeout = sk->sk_lingertime; 428 sk->sk_prot->close(sk, timeout); 429 sock->sk = NULL; 430 } 431 return 0; 432 } 433 EXPORT_SYMBOL(inet_release); 434 435 int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 436 { 437 struct sock *sk = sock->sk; 438 u32 flags = BIND_WITH_LOCK; 439 int err; 440 441 /* If the socket has its own bind function then use it. (RAW) */ 442 if (sk->sk_prot->bind) { 443 return sk->sk_prot->bind(sk, uaddr, addr_len); 444 } 445 if (addr_len < sizeof(struct sockaddr_in)) 446 return -EINVAL; 447 448 /* BPF prog is run before any checks are done so that if the prog 449 * changes context in a wrong way it will be caught. 450 */ 451 err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, 452 CGROUP_INET4_BIND, &flags); 453 if (err) 454 return err; 455 456 return __inet_bind(sk, uaddr, addr_len, flags); 457 } 458 EXPORT_SYMBOL(inet_bind); 459 460 int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, 461 u32 flags) 462 { 463 struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; 464 struct inet_sock *inet = inet_sk(sk); 465 struct net *net = sock_net(sk); 466 unsigned short snum; 467 int chk_addr_ret; 468 u32 tb_id = RT_TABLE_LOCAL; 469 int err; 470 471 if (addr->sin_family != AF_INET) { 472 /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) 473 * only if s_addr is INADDR_ANY. 474 */ 475 err = -EAFNOSUPPORT; 476 if (addr->sin_family != AF_UNSPEC || 477 addr->sin_addr.s_addr != htonl(INADDR_ANY)) 478 goto out; 479 } 480 481 tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; 482 chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); 483 484 /* Not specified by any standard per-se, however it breaks too 485 * many applications when removed. It is unfortunate since 486 * allowing applications to make a non-local bind solves 487 * several problems with systems using dynamic addressing. 488 * (ie. your servers still start up even if your ISDN link 489 * is temporarily down) 490 */ 491 err = -EADDRNOTAVAIL; 492 if (!inet_addr_valid_or_nonlocal(net, inet, addr->sin_addr.s_addr, 493 chk_addr_ret)) 494 goto out; 495 496 snum = ntohs(addr->sin_port); 497 err = -EACCES; 498 if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && 499 snum && inet_port_requires_bind_service(net, snum) && 500 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 501 goto out; 502 503 /* We keep a pair of addresses. rcv_saddr is the one 504 * used by hash lookups, and saddr is used for transmit. 505 * 506 * In the BSD API these are the same except where it 507 * would be illegal to use them (multicast/broadcast) in 508 * which case the sending device address is used. 509 */ 510 if (flags & BIND_WITH_LOCK) 511 lock_sock(sk); 512 513 /* Check these errors (active socket, double bind). */ 514 err = -EINVAL; 515 if (sk->sk_state != TCP_CLOSE || inet->inet_num) 516 goto out_release_sock; 517 518 inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; 519 if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) 520 inet->inet_saddr = 0; /* Use device */ 521 522 /* Make sure we are allowed to bind here. */ 523 if (snum || !(inet->bind_address_no_port || 524 (flags & BIND_FORCE_ADDRESS_NO_PORT))) { 525 if (sk->sk_prot->get_port(sk, snum)) { 526 inet->inet_saddr = inet->inet_rcv_saddr = 0; 527 err = -EADDRINUSE; 528 goto out_release_sock; 529 } 530 if (!(flags & BIND_FROM_BPF)) { 531 err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); 532 if (err) { 533 inet->inet_saddr = inet->inet_rcv_saddr = 0; 534 if (sk->sk_prot->put_port) 535 sk->sk_prot->put_port(sk); 536 goto out_release_sock; 537 } 538 } 539 } 540 541 if (inet->inet_rcv_saddr) 542 sk->sk_userlocks |= SOCK_BINDADDR_LOCK; 543 if (snum) 544 sk->sk_userlocks |= SOCK_BINDPORT_LOCK; 545 inet->inet_sport = htons(inet->inet_num); 546 inet->inet_daddr = 0; 547 inet->inet_dport = 0; 548 sk_dst_reset(sk); 549 err = 0; 550 out_release_sock: 551 if (flags & BIND_WITH_LOCK) 552 release_sock(sk); 553 out: 554 return err; 555 } 556 557 int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, 558 int addr_len, int flags) 559 { 560 struct sock *sk = sock->sk; 561 int err; 562 563 if (addr_len < sizeof(uaddr->sa_family)) 564 return -EINVAL; 565 if (uaddr->sa_family == AF_UNSPEC) 566 return sk->sk_prot->disconnect(sk, flags); 567 568 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 569 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 570 if (err) 571 return err; 572 } 573 574 if (data_race(!inet_sk(sk)->inet_num) && inet_autobind(sk)) 575 return -EAGAIN; 576 return sk->sk_prot->connect(sk, uaddr, addr_len); 577 } 578 EXPORT_SYMBOL(inet_dgram_connect); 579 580 static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) 581 { 582 DEFINE_WAIT_FUNC(wait, woken_wake_function); 583 584 add_wait_queue(sk_sleep(sk), &wait); 585 sk->sk_write_pending += writebias; 586 587 /* Basic assumption: if someone sets sk->sk_err, he _must_ 588 * change state of the socket from TCP_SYN_*. 589 * Connect() does not allow to get error notifications 590 * without closing the socket. 591 */ 592 while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 593 release_sock(sk); 594 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 595 lock_sock(sk); 596 if (signal_pending(current) || !timeo) 597 break; 598 } 599 remove_wait_queue(sk_sleep(sk), &wait); 600 sk->sk_write_pending -= writebias; 601 return timeo; 602 } 603 604 /* 605 * Connect to a remote host. There is regrettably still a little 606 * TCP 'magic' in here. 607 */ 608 int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 609 int addr_len, int flags, int is_sendmsg) 610 { 611 struct sock *sk = sock->sk; 612 int err; 613 long timeo; 614 615 /* 616 * uaddr can be NULL and addr_len can be 0 if: 617 * sk is a TCP fastopen active socket and 618 * TCP_FASTOPEN_CONNECT sockopt is set and 619 * we already have a valid cookie for this socket. 620 * In this case, user can call write() after connect(). 621 * write() will invoke tcp_sendmsg_fastopen() which calls 622 * __inet_stream_connect(). 623 */ 624 if (uaddr) { 625 if (addr_len < sizeof(uaddr->sa_family)) 626 return -EINVAL; 627 628 if (uaddr->sa_family == AF_UNSPEC) { 629 err = sk->sk_prot->disconnect(sk, flags); 630 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 631 goto out; 632 } 633 } 634 635 switch (sock->state) { 636 default: 637 err = -EINVAL; 638 goto out; 639 case SS_CONNECTED: 640 err = -EISCONN; 641 goto out; 642 case SS_CONNECTING: 643 if (inet_sk(sk)->defer_connect) 644 err = is_sendmsg ? -EINPROGRESS : -EISCONN; 645 else 646 err = -EALREADY; 647 /* Fall out of switch with err, set for this state */ 648 break; 649 case SS_UNCONNECTED: 650 err = -EISCONN; 651 if (sk->sk_state != TCP_CLOSE) 652 goto out; 653 654 if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { 655 err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); 656 if (err) 657 goto out; 658 } 659 660 err = sk->sk_prot->connect(sk, uaddr, addr_len); 661 if (err < 0) 662 goto out; 663 664 sock->state = SS_CONNECTING; 665 666 if (!err && inet_sk(sk)->defer_connect) 667 goto out; 668 669 /* Just entered SS_CONNECTING state; the only 670 * difference is that return value in non-blocking 671 * case is EINPROGRESS, rather than EALREADY. 672 */ 673 err = -EINPROGRESS; 674 break; 675 } 676 677 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 678 679 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 680 int writebias = (sk->sk_protocol == IPPROTO_TCP) && 681 tcp_sk(sk)->fastopen_req && 682 tcp_sk(sk)->fastopen_req->data ? 1 : 0; 683 684 /* Error code is set above */ 685 if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) 686 goto out; 687 688 err = sock_intr_errno(timeo); 689 if (signal_pending(current)) 690 goto out; 691 } 692 693 /* Connection was closed by RST, timeout, ICMP error 694 * or another process disconnected us. 695 */ 696 if (sk->sk_state == TCP_CLOSE) 697 goto sock_error; 698 699 /* sk->sk_err may be not zero now, if RECVERR was ordered by user 700 * and error was received after socket entered established state. 701 * Hence, it is handled normally after connect() return successfully. 702 */ 703 704 sock->state = SS_CONNECTED; 705 err = 0; 706 out: 707 return err; 708 709 sock_error: 710 err = sock_error(sk) ? : -ECONNABORTED; 711 sock->state = SS_UNCONNECTED; 712 if (sk->sk_prot->disconnect(sk, flags)) 713 sock->state = SS_DISCONNECTING; 714 goto out; 715 } 716 EXPORT_SYMBOL(__inet_stream_connect); 717 718 int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, 719 int addr_len, int flags) 720 { 721 int err; 722 723 lock_sock(sock->sk); 724 err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 725 release_sock(sock->sk); 726 return err; 727 } 728 EXPORT_SYMBOL(inet_stream_connect); 729 730 /* 731 * Accept a pending connection. The TCP layer now gives BSD semantics. 732 */ 733 734 int inet_accept(struct socket *sock, struct socket *newsock, int flags, 735 bool kern) 736 { 737 struct sock *sk1 = sock->sk; 738 int err = -EINVAL; 739 struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); 740 741 if (!sk2) 742 goto do_err; 743 744 lock_sock(sk2); 745 746 sock_rps_record_flow(sk2); 747 WARN_ON(!((1 << sk2->sk_state) & 748 (TCPF_ESTABLISHED | TCPF_SYN_RECV | 749 TCPF_CLOSE_WAIT | TCPF_CLOSE))); 750 751 sock_graft(sk2, newsock); 752 753 newsock->state = SS_CONNECTED; 754 err = 0; 755 release_sock(sk2); 756 do_err: 757 return err; 758 } 759 EXPORT_SYMBOL(inet_accept); 760 761 /* 762 * This does both peername and sockname. 763 */ 764 int inet_getname(struct socket *sock, struct sockaddr *uaddr, 765 int peer) 766 { 767 struct sock *sk = sock->sk; 768 struct inet_sock *inet = inet_sk(sk); 769 DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); 770 771 sin->sin_family = AF_INET; 772 lock_sock(sk); 773 if (peer) { 774 if (!inet->inet_dport || 775 (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && 776 peer == 1)) { 777 release_sock(sk); 778 return -ENOTCONN; 779 } 780 sin->sin_port = inet->inet_dport; 781 sin->sin_addr.s_addr = inet->inet_daddr; 782 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 783 CGROUP_INET4_GETPEERNAME); 784 } else { 785 __be32 addr = inet->inet_rcv_saddr; 786 if (!addr) 787 addr = inet->inet_saddr; 788 sin->sin_port = inet->inet_sport; 789 sin->sin_addr.s_addr = addr; 790 BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, 791 CGROUP_INET4_GETSOCKNAME); 792 } 793 release_sock(sk); 794 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 795 return sizeof(*sin); 796 } 797 EXPORT_SYMBOL(inet_getname); 798 799 int inet_send_prepare(struct sock *sk) 800 { 801 sock_rps_record_flow(sk); 802 803 /* We may need to bind the socket. */ 804 if (data_race(!inet_sk(sk)->inet_num) && !sk->sk_prot->no_autobind && 805 inet_autobind(sk)) 806 return -EAGAIN; 807 808 return 0; 809 } 810 EXPORT_SYMBOL_GPL(inet_send_prepare); 811 812 int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 813 { 814 struct sock *sk = sock->sk; 815 816 if (unlikely(inet_send_prepare(sk))) 817 return -EAGAIN; 818 819 return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg, udp_sendmsg, 820 sk, msg, size); 821 } 822 EXPORT_SYMBOL(inet_sendmsg); 823 824 ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 825 size_t size, int flags) 826 { 827 struct sock *sk = sock->sk; 828 829 if (unlikely(inet_send_prepare(sk))) 830 return -EAGAIN; 831 832 if (sk->sk_prot->sendpage) 833 return sk->sk_prot->sendpage(sk, page, offset, size, flags); 834 return sock_no_sendpage(sock, page, offset, size, flags); 835 } 836 EXPORT_SYMBOL(inet_sendpage); 837 838 INDIRECT_CALLABLE_DECLARE(int udp_recvmsg(struct sock *, struct msghdr *, 839 size_t, int, int *)); 840 int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 841 int flags) 842 { 843 struct sock *sk = sock->sk; 844 int addr_len = 0; 845 int err; 846 847 if (likely(!(flags & MSG_ERRQUEUE))) 848 sock_rps_record_flow(sk); 849 850 err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg, 851 sk, msg, size, flags, &addr_len); 852 if (err >= 0) 853 msg->msg_namelen = addr_len; 854 return err; 855 } 856 EXPORT_SYMBOL(inet_recvmsg); 857 858 int inet_shutdown(struct socket *sock, int how) 859 { 860 struct sock *sk = sock->sk; 861 int err = 0; 862 863 /* This should really check to make sure 864 * the socket is a TCP socket. (WHY AC...) 865 */ 866 how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 867 1->2 bit 2 snds. 868 2->3 */ 869 if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ 870 return -EINVAL; 871 872 lock_sock(sk); 873 if (sock->state == SS_CONNECTING) { 874 if ((1 << sk->sk_state) & 875 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 876 sock->state = SS_DISCONNECTING; 877 else 878 sock->state = SS_CONNECTED; 879 } 880 881 switch (sk->sk_state) { 882 case TCP_CLOSE: 883 err = -ENOTCONN; 884 /* Hack to wake up other listeners, who can poll for 885 EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ 886 fallthrough; 887 default: 888 sk->sk_shutdown |= how; 889 if (sk->sk_prot->shutdown) 890 sk->sk_prot->shutdown(sk, how); 891 break; 892 893 /* Remaining two branches are temporary solution for missing 894 * close() in multithreaded environment. It is _not_ a good idea, 895 * but we have no choice until close() is repaired at VFS level. 896 */ 897 case TCP_LISTEN: 898 if (!(how & RCV_SHUTDOWN)) 899 break; 900 fallthrough; 901 case TCP_SYN_SENT: 902 err = sk->sk_prot->disconnect(sk, O_NONBLOCK); 903 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 904 break; 905 } 906 907 /* Wake up anyone sleeping in poll. */ 908 sk->sk_state_change(sk); 909 release_sock(sk); 910 return err; 911 } 912 EXPORT_SYMBOL(inet_shutdown); 913 914 /* 915 * ioctl() calls you can issue on an INET socket. Most of these are 916 * device configuration and stuff and very rarely used. Some ioctls 917 * pass on to the socket itself. 918 * 919 * NOTE: I like the idea of a module for the config stuff. ie ifconfig 920 * loads the devconfigure module does its configuring and unloads it. 921 * There's a good 20K of config code hanging around the kernel. 922 */ 923 924 int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 925 { 926 struct sock *sk = sock->sk; 927 int err = 0; 928 struct net *net = sock_net(sk); 929 void __user *p = (void __user *)arg; 930 struct ifreq ifr; 931 struct rtentry rt; 932 933 switch (cmd) { 934 case SIOCADDRT: 935 case SIOCDELRT: 936 if (copy_from_user(&rt, p, sizeof(struct rtentry))) 937 return -EFAULT; 938 err = ip_rt_ioctl(net, cmd, &rt); 939 break; 940 case SIOCRTMSG: 941 err = -EINVAL; 942 break; 943 case SIOCDARP: 944 case SIOCGARP: 945 case SIOCSARP: 946 err = arp_ioctl(net, cmd, (void __user *)arg); 947 break; 948 case SIOCGIFADDR: 949 case SIOCGIFBRDADDR: 950 case SIOCGIFNETMASK: 951 case SIOCGIFDSTADDR: 952 case SIOCGIFPFLAGS: 953 if (get_user_ifreq(&ifr, NULL, p)) 954 return -EFAULT; 955 err = devinet_ioctl(net, cmd, &ifr); 956 if (!err && put_user_ifreq(&ifr, p)) 957 err = -EFAULT; 958 break; 959 960 case SIOCSIFADDR: 961 case SIOCSIFBRDADDR: 962 case SIOCSIFNETMASK: 963 case SIOCSIFDSTADDR: 964 case SIOCSIFPFLAGS: 965 case SIOCSIFFLAGS: 966 if (get_user_ifreq(&ifr, NULL, p)) 967 return -EFAULT; 968 err = devinet_ioctl(net, cmd, &ifr); 969 break; 970 default: 971 if (sk->sk_prot->ioctl) 972 err = sk->sk_prot->ioctl(sk, cmd, arg); 973 else 974 err = -ENOIOCTLCMD; 975 break; 976 } 977 return err; 978 } 979 EXPORT_SYMBOL(inet_ioctl); 980 981 #ifdef CONFIG_COMPAT 982 static int inet_compat_routing_ioctl(struct sock *sk, unsigned int cmd, 983 struct compat_rtentry __user *ur) 984 { 985 compat_uptr_t rtdev; 986 struct rtentry rt; 987 988 if (copy_from_user(&rt.rt_dst, &ur->rt_dst, 989 3 * sizeof(struct sockaddr)) || 990 get_user(rt.rt_flags, &ur->rt_flags) || 991 get_user(rt.rt_metric, &ur->rt_metric) || 992 get_user(rt.rt_mtu, &ur->rt_mtu) || 993 get_user(rt.rt_window, &ur->rt_window) || 994 get_user(rt.rt_irtt, &ur->rt_irtt) || 995 get_user(rtdev, &ur->rt_dev)) 996 return -EFAULT; 997 998 rt.rt_dev = compat_ptr(rtdev); 999 return ip_rt_ioctl(sock_net(sk), cmd, &rt); 1000 } 1001 1002 static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1003 { 1004 void __user *argp = compat_ptr(arg); 1005 struct sock *sk = sock->sk; 1006 1007 switch (cmd) { 1008 case SIOCADDRT: 1009 case SIOCDELRT: 1010 return inet_compat_routing_ioctl(sk, cmd, argp); 1011 default: 1012 if (!sk->sk_prot->compat_ioctl) 1013 return -ENOIOCTLCMD; 1014 return sk->sk_prot->compat_ioctl(sk, cmd, arg); 1015 } 1016 } 1017 #endif /* CONFIG_COMPAT */ 1018 1019 const struct proto_ops inet_stream_ops = { 1020 .family = PF_INET, 1021 .owner = THIS_MODULE, 1022 .release = inet_release, 1023 .bind = inet_bind, 1024 .connect = inet_stream_connect, 1025 .socketpair = sock_no_socketpair, 1026 .accept = inet_accept, 1027 .getname = inet_getname, 1028 .poll = tcp_poll, 1029 .ioctl = inet_ioctl, 1030 .gettstamp = sock_gettstamp, 1031 .listen = inet_listen, 1032 .shutdown = inet_shutdown, 1033 .setsockopt = sock_common_setsockopt, 1034 .getsockopt = sock_common_getsockopt, 1035 .sendmsg = inet_sendmsg, 1036 .recvmsg = inet_recvmsg, 1037 #ifdef CONFIG_MMU 1038 .mmap = tcp_mmap, 1039 #endif 1040 .sendpage = inet_sendpage, 1041 .splice_read = tcp_splice_read, 1042 .read_sock = tcp_read_sock, 1043 .read_skb = tcp_read_skb, 1044 .sendmsg_locked = tcp_sendmsg_locked, 1045 .sendpage_locked = tcp_sendpage_locked, 1046 .peek_len = tcp_peek_len, 1047 #ifdef CONFIG_COMPAT 1048 .compat_ioctl = inet_compat_ioctl, 1049 #endif 1050 .set_rcvlowat = tcp_set_rcvlowat, 1051 }; 1052 EXPORT_SYMBOL(inet_stream_ops); 1053 1054 const struct proto_ops inet_dgram_ops = { 1055 .family = PF_INET, 1056 .owner = THIS_MODULE, 1057 .release = inet_release, 1058 .bind = inet_bind, 1059 .connect = inet_dgram_connect, 1060 .socketpair = sock_no_socketpair, 1061 .accept = sock_no_accept, 1062 .getname = inet_getname, 1063 .poll = udp_poll, 1064 .ioctl = inet_ioctl, 1065 .gettstamp = sock_gettstamp, 1066 .listen = sock_no_listen, 1067 .shutdown = inet_shutdown, 1068 .setsockopt = sock_common_setsockopt, 1069 .getsockopt = sock_common_getsockopt, 1070 .sendmsg = inet_sendmsg, 1071 .read_skb = udp_read_skb, 1072 .recvmsg = inet_recvmsg, 1073 .mmap = sock_no_mmap, 1074 .sendpage = inet_sendpage, 1075 .set_peek_off = sk_set_peek_off, 1076 #ifdef CONFIG_COMPAT 1077 .compat_ioctl = inet_compat_ioctl, 1078 #endif 1079 }; 1080 EXPORT_SYMBOL(inet_dgram_ops); 1081 1082 /* 1083 * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without 1084 * udp_poll 1085 */ 1086 static const struct proto_ops inet_sockraw_ops = { 1087 .family = PF_INET, 1088 .owner = THIS_MODULE, 1089 .release = inet_release, 1090 .bind = inet_bind, 1091 .connect = inet_dgram_connect, 1092 .socketpair = sock_no_socketpair, 1093 .accept = sock_no_accept, 1094 .getname = inet_getname, 1095 .poll = datagram_poll, 1096 .ioctl = inet_ioctl, 1097 .gettstamp = sock_gettstamp, 1098 .listen = sock_no_listen, 1099 .shutdown = inet_shutdown, 1100 .setsockopt = sock_common_setsockopt, 1101 .getsockopt = sock_common_getsockopt, 1102 .sendmsg = inet_sendmsg, 1103 .recvmsg = inet_recvmsg, 1104 .mmap = sock_no_mmap, 1105 .sendpage = inet_sendpage, 1106 #ifdef CONFIG_COMPAT 1107 .compat_ioctl = inet_compat_ioctl, 1108 #endif 1109 }; 1110 1111 static const struct net_proto_family inet_family_ops = { 1112 .family = PF_INET, 1113 .create = inet_create, 1114 .owner = THIS_MODULE, 1115 }; 1116 1117 /* Upon startup we insert all the elements in inetsw_array[] into 1118 * the linked list inetsw. 1119 */ 1120 static struct inet_protosw inetsw_array[] = 1121 { 1122 { 1123 .type = SOCK_STREAM, 1124 .protocol = IPPROTO_TCP, 1125 .prot = &tcp_prot, 1126 .ops = &inet_stream_ops, 1127 .flags = INET_PROTOSW_PERMANENT | 1128 INET_PROTOSW_ICSK, 1129 }, 1130 1131 { 1132 .type = SOCK_DGRAM, 1133 .protocol = IPPROTO_UDP, 1134 .prot = &udp_prot, 1135 .ops = &inet_dgram_ops, 1136 .flags = INET_PROTOSW_PERMANENT, 1137 }, 1138 1139 { 1140 .type = SOCK_DGRAM, 1141 .protocol = IPPROTO_ICMP, 1142 .prot = &ping_prot, 1143 .ops = &inet_sockraw_ops, 1144 .flags = INET_PROTOSW_REUSE, 1145 }, 1146 1147 { 1148 .type = SOCK_RAW, 1149 .protocol = IPPROTO_IP, /* wild card */ 1150 .prot = &raw_prot, 1151 .ops = &inet_sockraw_ops, 1152 .flags = INET_PROTOSW_REUSE, 1153 } 1154 }; 1155 1156 #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) 1157 1158 void inet_register_protosw(struct inet_protosw *p) 1159 { 1160 struct list_head *lh; 1161 struct inet_protosw *answer; 1162 int protocol = p->protocol; 1163 struct list_head *last_perm; 1164 1165 spin_lock_bh(&inetsw_lock); 1166 1167 if (p->type >= SOCK_MAX) 1168 goto out_illegal; 1169 1170 /* If we are trying to override a permanent protocol, bail. */ 1171 last_perm = &inetsw[p->type]; 1172 list_for_each(lh, &inetsw[p->type]) { 1173 answer = list_entry(lh, struct inet_protosw, list); 1174 /* Check only the non-wild match. */ 1175 if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) 1176 break; 1177 if (protocol == answer->protocol) 1178 goto out_permanent; 1179 last_perm = lh; 1180 } 1181 1182 /* Add the new entry after the last permanent entry if any, so that 1183 * the new entry does not override a permanent entry when matched with 1184 * a wild-card protocol. But it is allowed to override any existing 1185 * non-permanent entry. This means that when we remove this entry, the 1186 * system automatically returns to the old behavior. 1187 */ 1188 list_add_rcu(&p->list, last_perm); 1189 out: 1190 spin_unlock_bh(&inetsw_lock); 1191 1192 return; 1193 1194 out_permanent: 1195 pr_err("Attempt to override permanent protocol %d\n", protocol); 1196 goto out; 1197 1198 out_illegal: 1199 pr_err("Ignoring attempt to register invalid socket type %d\n", 1200 p->type); 1201 goto out; 1202 } 1203 EXPORT_SYMBOL(inet_register_protosw); 1204 1205 void inet_unregister_protosw(struct inet_protosw *p) 1206 { 1207 if (INET_PROTOSW_PERMANENT & p->flags) { 1208 pr_err("Attempt to unregister permanent protocol %d\n", 1209 p->protocol); 1210 } else { 1211 spin_lock_bh(&inetsw_lock); 1212 list_del_rcu(&p->list); 1213 spin_unlock_bh(&inetsw_lock); 1214 1215 synchronize_net(); 1216 } 1217 } 1218 EXPORT_SYMBOL(inet_unregister_protosw); 1219 1220 static int inet_sk_reselect_saddr(struct sock *sk) 1221 { 1222 struct inet_bind_hashbucket *prev_addr_hashbucket; 1223 struct inet_sock *inet = inet_sk(sk); 1224 __be32 old_saddr = inet->inet_saddr; 1225 __be32 daddr = inet->inet_daddr; 1226 struct flowi4 *fl4; 1227 struct rtable *rt; 1228 __be32 new_saddr; 1229 struct ip_options_rcu *inet_opt; 1230 int err; 1231 1232 inet_opt = rcu_dereference_protected(inet->inet_opt, 1233 lockdep_sock_is_held(sk)); 1234 if (inet_opt && inet_opt->opt.srr) 1235 daddr = inet_opt->opt.faddr; 1236 1237 /* Query new route. */ 1238 fl4 = &inet->cork.fl.u.ip4; 1239 rt = ip_route_connect(fl4, daddr, 0, sk->sk_bound_dev_if, 1240 sk->sk_protocol, inet->inet_sport, 1241 inet->inet_dport, sk); 1242 if (IS_ERR(rt)) 1243 return PTR_ERR(rt); 1244 1245 new_saddr = fl4->saddr; 1246 1247 if (new_saddr == old_saddr) { 1248 sk_setup_caps(sk, &rt->dst); 1249 return 0; 1250 } 1251 1252 prev_addr_hashbucket = 1253 inet_bhashfn_portaddr(tcp_or_dccp_get_hashinfo(sk), sk, 1254 sock_net(sk), inet->inet_num); 1255 1256 inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; 1257 1258 err = inet_bhash2_update_saddr(prev_addr_hashbucket, sk); 1259 if (err) { 1260 inet->inet_saddr = old_saddr; 1261 inet->inet_rcv_saddr = old_saddr; 1262 ip_rt_put(rt); 1263 return err; 1264 } 1265 1266 sk_setup_caps(sk, &rt->dst); 1267 1268 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) > 1) { 1269 pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n", 1270 __func__, &old_saddr, &new_saddr); 1271 } 1272 1273 /* 1274 * XXX The only one ugly spot where we need to 1275 * XXX really change the sockets identity after 1276 * XXX it has entered the hashes. -DaveM 1277 * 1278 * Besides that, it does not check for connection 1279 * uniqueness. Wait for troubles. 1280 */ 1281 return __sk_prot_rehash(sk); 1282 } 1283 1284 int inet_sk_rebuild_header(struct sock *sk) 1285 { 1286 struct inet_sock *inet = inet_sk(sk); 1287 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); 1288 __be32 daddr; 1289 struct ip_options_rcu *inet_opt; 1290 struct flowi4 *fl4; 1291 int err; 1292 1293 /* Route is OK, nothing to do. */ 1294 if (rt) 1295 return 0; 1296 1297 /* Reroute. */ 1298 rcu_read_lock(); 1299 inet_opt = rcu_dereference(inet->inet_opt); 1300 daddr = inet->inet_daddr; 1301 if (inet_opt && inet_opt->opt.srr) 1302 daddr = inet_opt->opt.faddr; 1303 rcu_read_unlock(); 1304 fl4 = &inet->cork.fl.u.ip4; 1305 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, 1306 inet->inet_dport, inet->inet_sport, 1307 sk->sk_protocol, RT_CONN_FLAGS(sk), 1308 sk->sk_bound_dev_if); 1309 if (!IS_ERR(rt)) { 1310 err = 0; 1311 sk_setup_caps(sk, &rt->dst); 1312 } else { 1313 err = PTR_ERR(rt); 1314 1315 /* Routing failed... */ 1316 sk->sk_route_caps = 0; 1317 /* 1318 * Other protocols have to map its equivalent state to TCP_SYN_SENT. 1319 * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme 1320 */ 1321 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_ip_dynaddr) || 1322 sk->sk_state != TCP_SYN_SENT || 1323 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || 1324 (err = inet_sk_reselect_saddr(sk)) != 0) 1325 sk->sk_err_soft = -err; 1326 } 1327 1328 return err; 1329 } 1330 EXPORT_SYMBOL(inet_sk_rebuild_header); 1331 1332 void inet_sk_set_state(struct sock *sk, int state) 1333 { 1334 trace_inet_sock_set_state(sk, sk->sk_state, state); 1335 sk->sk_state = state; 1336 } 1337 EXPORT_SYMBOL(inet_sk_set_state); 1338 1339 void inet_sk_state_store(struct sock *sk, int newstate) 1340 { 1341 trace_inet_sock_set_state(sk, sk->sk_state, newstate); 1342 smp_store_release(&sk->sk_state, newstate); 1343 } 1344 1345 struct sk_buff *inet_gso_segment(struct sk_buff *skb, 1346 netdev_features_t features) 1347 { 1348 bool udpfrag = false, fixedid = false, gso_partial, encap; 1349 struct sk_buff *segs = ERR_PTR(-EINVAL); 1350 const struct net_offload *ops; 1351 unsigned int offset = 0; 1352 struct iphdr *iph; 1353 int proto, tot_len; 1354 int nhoff; 1355 int ihl; 1356 int id; 1357 1358 skb_reset_network_header(skb); 1359 nhoff = skb_network_header(skb) - skb_mac_header(skb); 1360 if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) 1361 goto out; 1362 1363 iph = ip_hdr(skb); 1364 ihl = iph->ihl * 4; 1365 if (ihl < sizeof(*iph)) 1366 goto out; 1367 1368 id = ntohs(iph->id); 1369 proto = iph->protocol; 1370 1371 /* Warning: after this point, iph might be no longer valid */ 1372 if (unlikely(!pskb_may_pull(skb, ihl))) 1373 goto out; 1374 __skb_pull(skb, ihl); 1375 1376 encap = SKB_GSO_CB(skb)->encap_level > 0; 1377 if (encap) 1378 features &= skb->dev->hw_enc_features; 1379 SKB_GSO_CB(skb)->encap_level += ihl; 1380 1381 skb_reset_transport_header(skb); 1382 1383 segs = ERR_PTR(-EPROTONOSUPPORT); 1384 1385 if (!skb->encapsulation || encap) { 1386 udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); 1387 fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); 1388 1389 /* fixed ID is invalid if DF bit is not set */ 1390 if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) 1391 goto out; 1392 } 1393 1394 ops = rcu_dereference(inet_offloads[proto]); 1395 if (likely(ops && ops->callbacks.gso_segment)) { 1396 segs = ops->callbacks.gso_segment(skb, features); 1397 if (!segs) 1398 skb->network_header = skb_mac_header(skb) + nhoff - skb->head; 1399 } 1400 1401 if (IS_ERR_OR_NULL(segs)) 1402 goto out; 1403 1404 gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); 1405 1406 skb = segs; 1407 do { 1408 iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); 1409 if (udpfrag) { 1410 iph->frag_off = htons(offset >> 3); 1411 if (skb->next) 1412 iph->frag_off |= htons(IP_MF); 1413 offset += skb->len - nhoff - ihl; 1414 tot_len = skb->len - nhoff; 1415 } else if (skb_is_gso(skb)) { 1416 if (!fixedid) { 1417 iph->id = htons(id); 1418 id += skb_shinfo(skb)->gso_segs; 1419 } 1420 1421 if (gso_partial) 1422 tot_len = skb_shinfo(skb)->gso_size + 1423 SKB_GSO_CB(skb)->data_offset + 1424 skb->head - (unsigned char *)iph; 1425 else 1426 tot_len = skb->len - nhoff; 1427 } else { 1428 if (!fixedid) 1429 iph->id = htons(id++); 1430 tot_len = skb->len - nhoff; 1431 } 1432 iph->tot_len = htons(tot_len); 1433 ip_send_check(iph); 1434 if (encap) 1435 skb_reset_inner_headers(skb); 1436 skb->network_header = (u8 *)iph - skb->head; 1437 skb_reset_mac_len(skb); 1438 } while ((skb = skb->next)); 1439 1440 out: 1441 return segs; 1442 } 1443 1444 static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, 1445 netdev_features_t features) 1446 { 1447 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) 1448 return ERR_PTR(-EINVAL); 1449 1450 return inet_gso_segment(skb, features); 1451 } 1452 1453 struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) 1454 { 1455 const struct net_offload *ops; 1456 struct sk_buff *pp = NULL; 1457 const struct iphdr *iph; 1458 struct sk_buff *p; 1459 unsigned int hlen; 1460 unsigned int off; 1461 unsigned int id; 1462 int flush = 1; 1463 int proto; 1464 1465 off = skb_gro_offset(skb); 1466 hlen = off + sizeof(*iph); 1467 iph = skb_gro_header(skb, hlen, off); 1468 if (unlikely(!iph)) 1469 goto out; 1470 1471 proto = iph->protocol; 1472 1473 ops = rcu_dereference(inet_offloads[proto]); 1474 if (!ops || !ops->callbacks.gro_receive) 1475 goto out; 1476 1477 if (*(u8 *)iph != 0x45) 1478 goto out; 1479 1480 if (ip_is_fragment(iph)) 1481 goto out; 1482 1483 if (unlikely(ip_fast_csum((u8 *)iph, 5))) 1484 goto out; 1485 1486 id = ntohl(*(__be32 *)&iph->id); 1487 flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); 1488 id >>= 16; 1489 1490 list_for_each_entry(p, head, list) { 1491 struct iphdr *iph2; 1492 u16 flush_id; 1493 1494 if (!NAPI_GRO_CB(p)->same_flow) 1495 continue; 1496 1497 iph2 = (struct iphdr *)(p->data + off); 1498 /* The above works because, with the exception of the top 1499 * (inner most) layer, we only aggregate pkts with the same 1500 * hdr length so all the hdrs we'll need to verify will start 1501 * at the same offset. 1502 */ 1503 if ((iph->protocol ^ iph2->protocol) | 1504 ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | 1505 ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { 1506 NAPI_GRO_CB(p)->same_flow = 0; 1507 continue; 1508 } 1509 1510 /* All fields must match except length and checksum. */ 1511 NAPI_GRO_CB(p)->flush |= 1512 (iph->ttl ^ iph2->ttl) | 1513 (iph->tos ^ iph2->tos) | 1514 ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); 1515 1516 NAPI_GRO_CB(p)->flush |= flush; 1517 1518 /* We need to store of the IP ID check to be included later 1519 * when we can verify that this packet does in fact belong 1520 * to a given flow. 1521 */ 1522 flush_id = (u16)(id - ntohs(iph2->id)); 1523 1524 /* This bit of code makes it much easier for us to identify 1525 * the cases where we are doing atomic vs non-atomic IP ID 1526 * checks. Specifically an atomic check can return IP ID 1527 * values 0 - 0xFFFF, while a non-atomic check can only 1528 * return 0 or 0xFFFF. 1529 */ 1530 if (!NAPI_GRO_CB(p)->is_atomic || 1531 !(iph->frag_off & htons(IP_DF))) { 1532 flush_id ^= NAPI_GRO_CB(p)->count; 1533 flush_id = flush_id ? 0xFFFF : 0; 1534 } 1535 1536 /* If the previous IP ID value was based on an atomic 1537 * datagram we can overwrite the value and ignore it. 1538 */ 1539 if (NAPI_GRO_CB(skb)->is_atomic) 1540 NAPI_GRO_CB(p)->flush_id = flush_id; 1541 else 1542 NAPI_GRO_CB(p)->flush_id |= flush_id; 1543 } 1544 1545 NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); 1546 NAPI_GRO_CB(skb)->flush |= flush; 1547 skb_set_network_header(skb, off); 1548 /* The above will be needed by the transport layer if there is one 1549 * immediately following this IP hdr. 1550 */ 1551 1552 /* Note : No need to call skb_gro_postpull_rcsum() here, 1553 * as we already checked checksum over ipv4 header was 0 1554 */ 1555 skb_gro_pull(skb, sizeof(*iph)); 1556 skb_set_transport_header(skb, skb_gro_offset(skb)); 1557 1558 pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, 1559 ops->callbacks.gro_receive, head, skb); 1560 1561 out: 1562 skb_gro_flush_final(skb, pp, flush); 1563 1564 return pp; 1565 } 1566 1567 static struct sk_buff *ipip_gro_receive(struct list_head *head, 1568 struct sk_buff *skb) 1569 { 1570 if (NAPI_GRO_CB(skb)->encap_mark) { 1571 NAPI_GRO_CB(skb)->flush = 1; 1572 return NULL; 1573 } 1574 1575 NAPI_GRO_CB(skb)->encap_mark = 1; 1576 1577 return inet_gro_receive(head, skb); 1578 } 1579 1580 #define SECONDS_PER_DAY 86400 1581 1582 /* inet_current_timestamp - Return IP network timestamp 1583 * 1584 * Return milliseconds since midnight in network byte order. 1585 */ 1586 __be32 inet_current_timestamp(void) 1587 { 1588 u32 secs; 1589 u32 msecs; 1590 struct timespec64 ts; 1591 1592 ktime_get_real_ts64(&ts); 1593 1594 /* Get secs since midnight. */ 1595 (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); 1596 /* Convert to msecs. */ 1597 msecs = secs * MSEC_PER_SEC; 1598 /* Convert nsec to msec. */ 1599 msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; 1600 1601 /* Convert to network byte order. */ 1602 return htonl(msecs); 1603 } 1604 EXPORT_SYMBOL(inet_current_timestamp); 1605 1606 int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) 1607 { 1608 if (sk->sk_family == AF_INET) 1609 return ip_recv_error(sk, msg, len, addr_len); 1610 #if IS_ENABLED(CONFIG_IPV6) 1611 if (sk->sk_family == AF_INET6) 1612 return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); 1613 #endif 1614 return -EINVAL; 1615 } 1616 1617 int inet_gro_complete(struct sk_buff *skb, int nhoff) 1618 { 1619 __be16 newlen = htons(skb->len - nhoff); 1620 struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); 1621 const struct net_offload *ops; 1622 int proto = iph->protocol; 1623 int err = -ENOSYS; 1624 1625 if (skb->encapsulation) { 1626 skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); 1627 skb_set_inner_network_header(skb, nhoff); 1628 } 1629 1630 csum_replace2(&iph->check, iph->tot_len, newlen); 1631 iph->tot_len = newlen; 1632 1633 ops = rcu_dereference(inet_offloads[proto]); 1634 if (WARN_ON(!ops || !ops->callbacks.gro_complete)) 1635 goto out; 1636 1637 /* Only need to add sizeof(*iph) to get to the next hdr below 1638 * because any hdr with option will have been flushed in 1639 * inet_gro_receive(). 1640 */ 1641 err = INDIRECT_CALL_2(ops->callbacks.gro_complete, 1642 tcp4_gro_complete, udp4_gro_complete, 1643 skb, nhoff + sizeof(*iph)); 1644 1645 out: 1646 return err; 1647 } 1648 1649 static int ipip_gro_complete(struct sk_buff *skb, int nhoff) 1650 { 1651 skb->encapsulation = 1; 1652 skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; 1653 return inet_gro_complete(skb, nhoff); 1654 } 1655 1656 int inet_ctl_sock_create(struct sock **sk, unsigned short family, 1657 unsigned short type, unsigned char protocol, 1658 struct net *net) 1659 { 1660 struct socket *sock; 1661 int rc = sock_create_kern(net, family, type, protocol, &sock); 1662 1663 if (rc == 0) { 1664 *sk = sock->sk; 1665 (*sk)->sk_allocation = GFP_ATOMIC; 1666 /* 1667 * Unhash it so that IP input processing does not even see it, 1668 * we do not wish this socket to see incoming packets. 1669 */ 1670 (*sk)->sk_prot->unhash(*sk); 1671 } 1672 return rc; 1673 } 1674 EXPORT_SYMBOL_GPL(inet_ctl_sock_create); 1675 1676 unsigned long snmp_fold_field(void __percpu *mib, int offt) 1677 { 1678 unsigned long res = 0; 1679 int i; 1680 1681 for_each_possible_cpu(i) 1682 res += snmp_get_cpu_field(mib, i, offt); 1683 return res; 1684 } 1685 EXPORT_SYMBOL_GPL(snmp_fold_field); 1686 1687 #if BITS_PER_LONG==32 1688 1689 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, 1690 size_t syncp_offset) 1691 { 1692 void *bhptr; 1693 struct u64_stats_sync *syncp; 1694 u64 v; 1695 unsigned int start; 1696 1697 bhptr = per_cpu_ptr(mib, cpu); 1698 syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); 1699 do { 1700 start = u64_stats_fetch_begin_irq(syncp); 1701 v = *(((u64 *)bhptr) + offt); 1702 } while (u64_stats_fetch_retry_irq(syncp, start)); 1703 1704 return v; 1705 } 1706 EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); 1707 1708 u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) 1709 { 1710 u64 res = 0; 1711 int cpu; 1712 1713 for_each_possible_cpu(cpu) { 1714 res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); 1715 } 1716 return res; 1717 } 1718 EXPORT_SYMBOL_GPL(snmp_fold_field64); 1719 #endif 1720 1721 #ifdef CONFIG_IP_MULTICAST 1722 static const struct net_protocol igmp_protocol = { 1723 .handler = igmp_rcv, 1724 }; 1725 #endif 1726 1727 static const struct net_protocol tcp_protocol = { 1728 .handler = tcp_v4_rcv, 1729 .err_handler = tcp_v4_err, 1730 .no_policy = 1, 1731 .icmp_strict_tag_validation = 1, 1732 }; 1733 1734 static const struct net_protocol udp_protocol = { 1735 .handler = udp_rcv, 1736 .err_handler = udp_err, 1737 .no_policy = 1, 1738 }; 1739 1740 static const struct net_protocol icmp_protocol = { 1741 .handler = icmp_rcv, 1742 .err_handler = icmp_err, 1743 .no_policy = 1, 1744 }; 1745 1746 static __net_init int ipv4_mib_init_net(struct net *net) 1747 { 1748 int i; 1749 1750 net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); 1751 if (!net->mib.tcp_statistics) 1752 goto err_tcp_mib; 1753 net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); 1754 if (!net->mib.ip_statistics) 1755 goto err_ip_mib; 1756 1757 for_each_possible_cpu(i) { 1758 struct ipstats_mib *af_inet_stats; 1759 af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); 1760 u64_stats_init(&af_inet_stats->syncp); 1761 } 1762 1763 net->mib.net_statistics = alloc_percpu(struct linux_mib); 1764 if (!net->mib.net_statistics) 1765 goto err_net_mib; 1766 net->mib.udp_statistics = alloc_percpu(struct udp_mib); 1767 if (!net->mib.udp_statistics) 1768 goto err_udp_mib; 1769 net->mib.udplite_statistics = alloc_percpu(struct udp_mib); 1770 if (!net->mib.udplite_statistics) 1771 goto err_udplite_mib; 1772 net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); 1773 if (!net->mib.icmp_statistics) 1774 goto err_icmp_mib; 1775 net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), 1776 GFP_KERNEL); 1777 if (!net->mib.icmpmsg_statistics) 1778 goto err_icmpmsg_mib; 1779 1780 tcp_mib_init(net); 1781 return 0; 1782 1783 err_icmpmsg_mib: 1784 free_percpu(net->mib.icmp_statistics); 1785 err_icmp_mib: 1786 free_percpu(net->mib.udplite_statistics); 1787 err_udplite_mib: 1788 free_percpu(net->mib.udp_statistics); 1789 err_udp_mib: 1790 free_percpu(net->mib.net_statistics); 1791 err_net_mib: 1792 free_percpu(net->mib.ip_statistics); 1793 err_ip_mib: 1794 free_percpu(net->mib.tcp_statistics); 1795 err_tcp_mib: 1796 return -ENOMEM; 1797 } 1798 1799 static __net_exit void ipv4_mib_exit_net(struct net *net) 1800 { 1801 kfree(net->mib.icmpmsg_statistics); 1802 free_percpu(net->mib.icmp_statistics); 1803 free_percpu(net->mib.udplite_statistics); 1804 free_percpu(net->mib.udp_statistics); 1805 free_percpu(net->mib.net_statistics); 1806 free_percpu(net->mib.ip_statistics); 1807 free_percpu(net->mib.tcp_statistics); 1808 #ifdef CONFIG_MPTCP 1809 /* allocated on demand, see mptcp_init_sock() */ 1810 free_percpu(net->mib.mptcp_statistics); 1811 #endif 1812 } 1813 1814 static __net_initdata struct pernet_operations ipv4_mib_ops = { 1815 .init = ipv4_mib_init_net, 1816 .exit = ipv4_mib_exit_net, 1817 }; 1818 1819 static int __init init_ipv4_mibs(void) 1820 { 1821 return register_pernet_subsys(&ipv4_mib_ops); 1822 } 1823 1824 static __net_init int inet_init_net(struct net *net) 1825 { 1826 /* 1827 * Set defaults for local port range 1828 */ 1829 seqlock_init(&net->ipv4.ip_local_ports.lock); 1830 net->ipv4.ip_local_ports.range[0] = 32768; 1831 net->ipv4.ip_local_ports.range[1] = 60999; 1832 1833 seqlock_init(&net->ipv4.ping_group_range.lock); 1834 /* 1835 * Sane defaults - nobody may create ping sockets. 1836 * Boot scripts should set this to distro-specific group. 1837 */ 1838 net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); 1839 net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); 1840 1841 /* Default values for sysctl-controlled parameters. 1842 * We set them here, in case sysctl is not compiled. 1843 */ 1844 net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; 1845 net->ipv4.sysctl_ip_fwd_update_priority = 1; 1846 net->ipv4.sysctl_ip_dynaddr = 0; 1847 net->ipv4.sysctl_ip_early_demux = 1; 1848 net->ipv4.sysctl_udp_early_demux = 1; 1849 net->ipv4.sysctl_tcp_early_demux = 1; 1850 net->ipv4.sysctl_nexthop_compat_mode = 1; 1851 #ifdef CONFIG_SYSCTL 1852 net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; 1853 #endif 1854 1855 /* Some igmp sysctl, whose values are always used */ 1856 net->ipv4.sysctl_igmp_max_memberships = 20; 1857 net->ipv4.sysctl_igmp_max_msf = 10; 1858 /* IGMP reports for link-local multicast groups are enabled by default */ 1859 net->ipv4.sysctl_igmp_llm_reports = 1; 1860 net->ipv4.sysctl_igmp_qrv = 2; 1861 1862 net->ipv4.sysctl_fib_notify_on_flag_change = 0; 1863 1864 return 0; 1865 } 1866 1867 static __net_initdata struct pernet_operations af_inet_ops = { 1868 .init = inet_init_net, 1869 }; 1870 1871 static int __init init_inet_pernet_ops(void) 1872 { 1873 return register_pernet_subsys(&af_inet_ops); 1874 } 1875 1876 static int ipv4_proc_init(void); 1877 1878 /* 1879 * IP protocol layer initialiser 1880 */ 1881 1882 static struct packet_offload ip_packet_offload __read_mostly = { 1883 .type = cpu_to_be16(ETH_P_IP), 1884 .callbacks = { 1885 .gso_segment = inet_gso_segment, 1886 .gro_receive = inet_gro_receive, 1887 .gro_complete = inet_gro_complete, 1888 }, 1889 }; 1890 1891 static const struct net_offload ipip_offload = { 1892 .callbacks = { 1893 .gso_segment = ipip_gso_segment, 1894 .gro_receive = ipip_gro_receive, 1895 .gro_complete = ipip_gro_complete, 1896 }, 1897 }; 1898 1899 static int __init ipip_offload_init(void) 1900 { 1901 return inet_add_offload(&ipip_offload, IPPROTO_IPIP); 1902 } 1903 1904 static int __init ipv4_offload_init(void) 1905 { 1906 /* 1907 * Add offloads 1908 */ 1909 if (udpv4_offload_init() < 0) 1910 pr_crit("%s: Cannot add UDP protocol offload\n", __func__); 1911 if (tcpv4_offload_init() < 0) 1912 pr_crit("%s: Cannot add TCP protocol offload\n", __func__); 1913 if (ipip_offload_init() < 0) 1914 pr_crit("%s: Cannot add IPIP protocol offload\n", __func__); 1915 1916 dev_add_offload(&ip_packet_offload); 1917 return 0; 1918 } 1919 1920 fs_initcall(ipv4_offload_init); 1921 1922 static struct packet_type ip_packet_type __read_mostly = { 1923 .type = cpu_to_be16(ETH_P_IP), 1924 .func = ip_rcv, 1925 .list_func = ip_list_rcv, 1926 }; 1927 1928 static int __init inet_init(void) 1929 { 1930 struct inet_protosw *q; 1931 struct list_head *r; 1932 int rc; 1933 1934 sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); 1935 1936 raw_hashinfo_init(&raw_v4_hashinfo); 1937 1938 rc = proto_register(&tcp_prot, 1); 1939 if (rc) 1940 goto out; 1941 1942 rc = proto_register(&udp_prot, 1); 1943 if (rc) 1944 goto out_unregister_tcp_proto; 1945 1946 rc = proto_register(&raw_prot, 1); 1947 if (rc) 1948 goto out_unregister_udp_proto; 1949 1950 rc = proto_register(&ping_prot, 1); 1951 if (rc) 1952 goto out_unregister_raw_proto; 1953 1954 /* 1955 * Tell SOCKET that we are alive... 1956 */ 1957 1958 (void)sock_register(&inet_family_ops); 1959 1960 #ifdef CONFIG_SYSCTL 1961 ip_static_sysctl_init(); 1962 #endif 1963 1964 /* 1965 * Add all the base protocols. 1966 */ 1967 1968 if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) 1969 pr_crit("%s: Cannot add ICMP protocol\n", __func__); 1970 if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) 1971 pr_crit("%s: Cannot add UDP protocol\n", __func__); 1972 if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) 1973 pr_crit("%s: Cannot add TCP protocol\n", __func__); 1974 #ifdef CONFIG_IP_MULTICAST 1975 if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) 1976 pr_crit("%s: Cannot add IGMP protocol\n", __func__); 1977 #endif 1978 1979 /* Register the socket-side information for inet_create. */ 1980 for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) 1981 INIT_LIST_HEAD(r); 1982 1983 for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) 1984 inet_register_protosw(q); 1985 1986 /* 1987 * Set the ARP module up 1988 */ 1989 1990 arp_init(); 1991 1992 /* 1993 * Set the IP module up 1994 */ 1995 1996 ip_init(); 1997 1998 /* Initialise per-cpu ipv4 mibs */ 1999 if (init_ipv4_mibs()) 2000 panic("%s: Cannot init ipv4 mibs\n", __func__); 2001 2002 /* Setup TCP slab cache for open requests. */ 2003 tcp_init(); 2004 2005 /* Setup UDP memory threshold */ 2006 udp_init(); 2007 2008 /* Add UDP-Lite (RFC 3828) */ 2009 udplite4_register(); 2010 2011 raw_init(); 2012 2013 ping_init(); 2014 2015 /* 2016 * Set the ICMP layer up 2017 */ 2018 2019 if (icmp_init() < 0) 2020 panic("Failed to create the ICMP control socket.\n"); 2021 2022 /* 2023 * Initialise the multicast router 2024 */ 2025 #if defined(CONFIG_IP_MROUTE) 2026 if (ip_mr_init()) 2027 pr_crit("%s: Cannot init ipv4 mroute\n", __func__); 2028 #endif 2029 2030 if (init_inet_pernet_ops()) 2031 pr_crit("%s: Cannot init ipv4 inet pernet ops\n", __func__); 2032 2033 ipv4_proc_init(); 2034 2035 ipfrag_init(); 2036 2037 dev_add_pack(&ip_packet_type); 2038 2039 ip_tunnel_core_init(); 2040 2041 rc = 0; 2042 out: 2043 return rc; 2044 out_unregister_raw_proto: 2045 proto_unregister(&raw_prot); 2046 out_unregister_udp_proto: 2047 proto_unregister(&udp_prot); 2048 out_unregister_tcp_proto: 2049 proto_unregister(&tcp_prot); 2050 goto out; 2051 } 2052 2053 fs_initcall(inet_init); 2054 2055 /* ------------------------------------------------------------------------ */ 2056 2057 #ifdef CONFIG_PROC_FS 2058 static int __init ipv4_proc_init(void) 2059 { 2060 int rc = 0; 2061 2062 if (raw_proc_init()) 2063 goto out_raw; 2064 if (tcp4_proc_init()) 2065 goto out_tcp; 2066 if (udp4_proc_init()) 2067 goto out_udp; 2068 if (ping_proc_init()) 2069 goto out_ping; 2070 if (ip_misc_proc_init()) 2071 goto out_misc; 2072 out: 2073 return rc; 2074 out_misc: 2075 ping_proc_exit(); 2076 out_ping: 2077 udp4_proc_exit(); 2078 out_udp: 2079 tcp4_proc_exit(); 2080 out_tcp: 2081 raw_proc_exit(); 2082 out_raw: 2083 rc = -ENOMEM; 2084 goto out; 2085 } 2086 2087 #else /* CONFIG_PROC_FS */ 2088 static int __init ipv4_proc_init(void) 2089 { 2090 return 0; 2091 } 2092 #endif /* CONFIG_PROC_FS */ 2093