1 /* Copyright 2011-2013 Autronica Fire and Security AS 2 * 3 * This program is free software; you can redistribute it and/or modify it 4 * under the terms of the GNU General Public License as published by the Free 5 * Software Foundation; either version 2 of the License, or (at your option) 6 * any later version. 7 * 8 * Author(s): 9 * 2011-2013 Arvid Brodin, arvid.brodin@xdin.com 10 * 11 * The HSR spec says never to forward the same frame twice on the same 12 * interface. A frame is identified by its source MAC address and its HSR 13 * sequence number. This code keeps track of senders and their sequence numbers 14 * to allow filtering of duplicate frames, and to detect HSR ring errors. 15 */ 16 17 #include <linux/if_ether.h> 18 #include <linux/etherdevice.h> 19 #include <linux/slab.h> 20 #include <linux/rculist.h> 21 #include "hsr_main.h" 22 #include "hsr_framereg.h" 23 #include "hsr_netlink.h" 24 25 26 struct node_entry { 27 struct list_head mac_list; 28 unsigned char MacAddressA[ETH_ALEN]; 29 unsigned char MacAddressB[ETH_ALEN]; 30 enum hsr_dev_idx AddrB_if; /* The local slave through which AddrB 31 * frames are received from this node 32 */ 33 unsigned long time_in[HSR_MAX_SLAVE]; 34 bool time_in_stale[HSR_MAX_SLAVE]; 35 u16 seq_out[HSR_MAX_DEV]; 36 struct rcu_head rcu_head; 37 }; 38 39 /* TODO: use hash lists for mac addresses (linux/jhash.h)? */ 40 41 42 43 /* Search for mac entry. Caller must hold rcu read lock. 44 */ 45 static struct node_entry *find_node_by_AddrA(struct list_head *node_db, 46 const unsigned char addr[ETH_ALEN]) 47 { 48 struct node_entry *node; 49 50 list_for_each_entry_rcu(node, node_db, mac_list) { 51 if (ether_addr_equal(node->MacAddressA, addr)) 52 return node; 53 } 54 55 return NULL; 56 } 57 58 59 /* Search for mac entry. Caller must hold rcu read lock. 60 */ 61 static struct node_entry *find_node_by_AddrB(struct list_head *node_db, 62 const unsigned char addr[ETH_ALEN]) 63 { 64 struct node_entry *node; 65 66 list_for_each_entry_rcu(node, node_db, mac_list) { 67 if (ether_addr_equal(node->MacAddressB, addr)) 68 return node; 69 } 70 71 return NULL; 72 } 73 74 75 /* Search for mac entry. Caller must hold rcu read lock. 76 */ 77 struct node_entry *hsr_find_node(struct list_head *node_db, struct sk_buff *skb) 78 { 79 struct node_entry *node; 80 struct ethhdr *ethhdr; 81 82 if (!skb_mac_header_was_set(skb)) 83 return NULL; 84 85 ethhdr = (struct ethhdr *) skb_mac_header(skb); 86 87 list_for_each_entry_rcu(node, node_db, mac_list) { 88 if (ether_addr_equal(node->MacAddressA, ethhdr->h_source)) 89 return node; 90 if (ether_addr_equal(node->MacAddressB, ethhdr->h_source)) 91 return node; 92 } 93 94 return NULL; 95 } 96 97 98 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize 99 * frames from self that's been looped over the HSR ring. 100 */ 101 int hsr_create_self_node(struct list_head *self_node_db, 102 unsigned char addr_a[ETH_ALEN], 103 unsigned char addr_b[ETH_ALEN]) 104 { 105 struct node_entry *node, *oldnode; 106 107 node = kmalloc(sizeof(*node), GFP_KERNEL); 108 if (!node) 109 return -ENOMEM; 110 111 memcpy(node->MacAddressA, addr_a, ETH_ALEN); 112 memcpy(node->MacAddressB, addr_b, ETH_ALEN); 113 114 rcu_read_lock(); 115 oldnode = list_first_or_null_rcu(self_node_db, 116 struct node_entry, mac_list); 117 if (oldnode) { 118 list_replace_rcu(&oldnode->mac_list, &node->mac_list); 119 rcu_read_unlock(); 120 synchronize_rcu(); 121 kfree(oldnode); 122 } else { 123 rcu_read_unlock(); 124 list_add_tail_rcu(&node->mac_list, self_node_db); 125 } 126 127 return 0; 128 } 129 130 static void node_entry_reclaim(struct rcu_head *rh) 131 { 132 kfree(container_of(rh, struct node_entry, rcu_head)); 133 } 134 135 136 /* Add/merge node to the database of nodes. 'skb' must contain an HSR 137 * supervision frame. 138 * - If the supervision header's MacAddressA field is not yet in the database, 139 * this frame is from an hitherto unknown node - add it to the database. 140 * - If the sender's MAC address is not the same as its MacAddressA address, 141 * the node is using PICS_SUBS (address substitution). Record the sender's 142 * address as the node's MacAddressB. 143 * 144 * This function needs to work even if the sender node has changed one of its 145 * slaves' MAC addresses. In this case, there are four different cases described 146 * by (Addr-changed, received-from) pairs as follows. Note that changing the 147 * SlaveA address is equal to changing the node's own address: 148 * 149 * - (AddrB, SlaveB): The new AddrB will be recorded by PICS_SUBS code since 150 * node == NULL. 151 * - (AddrB, SlaveA): Will work as usual (the AddrB change won't be detected 152 * from this frame). 153 * 154 * - (AddrA, SlaveB): The old node will be found. We need to detect this and 155 * remove the node. 156 * - (AddrA, SlaveA): A new node will be registered (non-PICS_SUBS at first). 157 * The old one will be pruned after HSR_NODE_FORGET_TIME. 158 * 159 * We also need to detect if the sender's SlaveA and SlaveB cables have been 160 * swapped. 161 */ 162 struct node_entry *hsr_merge_node(struct hsr_priv *hsr_priv, 163 struct node_entry *node, 164 struct sk_buff *skb, 165 enum hsr_dev_idx dev_idx) 166 { 167 struct hsr_sup_payload *hsr_sp; 168 struct hsr_ethhdr_sp *hsr_ethsup; 169 int i; 170 unsigned long now; 171 172 hsr_ethsup = (struct hsr_ethhdr_sp *) skb_mac_header(skb); 173 hsr_sp = (struct hsr_sup_payload *) skb->data; 174 175 if (node && !ether_addr_equal(node->MacAddressA, hsr_sp->MacAddressA)) { 176 /* Node has changed its AddrA, frame was received from SlaveB */ 177 list_del_rcu(&node->mac_list); 178 call_rcu(&node->rcu_head, node_entry_reclaim); 179 node = NULL; 180 } 181 182 if (node && (dev_idx == node->AddrB_if) && 183 !ether_addr_equal(node->MacAddressB, hsr_ethsup->ethhdr.h_source)) { 184 /* Cables have been swapped */ 185 list_del_rcu(&node->mac_list); 186 call_rcu(&node->rcu_head, node_entry_reclaim); 187 node = NULL; 188 } 189 190 if (node && (dev_idx != node->AddrB_if) && 191 (node->AddrB_if != HSR_DEV_NONE) && 192 !ether_addr_equal(node->MacAddressA, hsr_ethsup->ethhdr.h_source)) { 193 /* Cables have been swapped */ 194 list_del_rcu(&node->mac_list); 195 call_rcu(&node->rcu_head, node_entry_reclaim); 196 node = NULL; 197 } 198 199 if (node) 200 return node; 201 202 node = find_node_by_AddrA(&hsr_priv->node_db, hsr_sp->MacAddressA); 203 if (node) { 204 /* Node is known, but frame was received from an unknown 205 * address. Node is PICS_SUBS capable; merge its AddrB. 206 */ 207 memcpy(node->MacAddressB, hsr_ethsup->ethhdr.h_source, ETH_ALEN); 208 node->AddrB_if = dev_idx; 209 return node; 210 } 211 212 node = kzalloc(sizeof(*node), GFP_ATOMIC); 213 if (!node) 214 return NULL; 215 216 memcpy(node->MacAddressA, hsr_sp->MacAddressA, ETH_ALEN); 217 memcpy(node->MacAddressB, hsr_ethsup->ethhdr.h_source, ETH_ALEN); 218 if (!ether_addr_equal(hsr_sp->MacAddressA, hsr_ethsup->ethhdr.h_source)) 219 node->AddrB_if = dev_idx; 220 else 221 node->AddrB_if = HSR_DEV_NONE; 222 223 /* We are only interested in time diffs here, so use current jiffies 224 * as initialization. (0 could trigger an spurious ring error warning). 225 */ 226 now = jiffies; 227 for (i = 0; i < HSR_MAX_SLAVE; i++) 228 node->time_in[i] = now; 229 for (i = 0; i < HSR_MAX_DEV; i++) 230 node->seq_out[i] = ntohs(hsr_ethsup->hsr_sup.sequence_nr) - 1; 231 232 list_add_tail_rcu(&node->mac_list, &hsr_priv->node_db); 233 234 return node; 235 } 236 237 238 /* 'skb' is a frame meant for this host, that is to be passed to upper layers. 239 * 240 * If the frame was sent by a node's B interface, replace the sender 241 * address with that node's "official" address (MacAddressA) so that upper 242 * layers recognize where it came from. 243 */ 244 void hsr_addr_subst_source(struct hsr_priv *hsr_priv, struct sk_buff *skb) 245 { 246 struct ethhdr *ethhdr; 247 struct node_entry *node; 248 249 if (!skb_mac_header_was_set(skb)) { 250 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 251 return; 252 } 253 ethhdr = (struct ethhdr *) skb_mac_header(skb); 254 255 rcu_read_lock(); 256 node = find_node_by_AddrB(&hsr_priv->node_db, ethhdr->h_source); 257 if (node) 258 memcpy(ethhdr->h_source, node->MacAddressA, ETH_ALEN); 259 rcu_read_unlock(); 260 } 261 262 263 /* 'skb' is a frame meant for another host. 264 * 'hsr_dev_idx' is the HSR index of the outgoing device 265 * 266 * Substitute the target (dest) MAC address if necessary, so the it matches the 267 * recipient interface MAC address, regardless of whether that is the 268 * recipient's A or B interface. 269 * This is needed to keep the packets flowing through switches that learn on 270 * which "side" the different interfaces are. 271 */ 272 void hsr_addr_subst_dest(struct hsr_priv *hsr_priv, struct ethhdr *ethhdr, 273 enum hsr_dev_idx dev_idx) 274 { 275 struct node_entry *node; 276 277 rcu_read_lock(); 278 node = find_node_by_AddrA(&hsr_priv->node_db, ethhdr->h_dest); 279 if (node && (node->AddrB_if == dev_idx)) 280 memcpy(ethhdr->h_dest, node->MacAddressB, ETH_ALEN); 281 rcu_read_unlock(); 282 } 283 284 285 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b, 286 * false otherwise. 287 */ 288 static bool seq_nr_after(u16 a, u16 b) 289 { 290 /* Remove inconsistency where 291 * seq_nr_after(a, b) == seq_nr_before(a, b) 292 */ 293 if ((int) b - a == 32768) 294 return false; 295 296 return (((s16) (b - a)) < 0); 297 } 298 #define seq_nr_before(a, b) seq_nr_after((b), (a)) 299 #define seq_nr_after_or_eq(a, b) (!seq_nr_before((a), (b))) 300 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b))) 301 302 303 void hsr_register_frame_in(struct node_entry *node, enum hsr_dev_idx dev_idx) 304 { 305 if ((dev_idx < 0) || (dev_idx >= HSR_MAX_DEV)) { 306 WARN_ONCE(1, "%s: Invalid dev_idx (%d)\n", __func__, dev_idx); 307 return; 308 } 309 node->time_in[dev_idx] = jiffies; 310 node->time_in_stale[dev_idx] = false; 311 } 312 313 314 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid 315 * ethhdr->h_source address and skb->mac_header set. 316 * 317 * Return: 318 * 1 if frame can be shown to have been sent recently on this interface, 319 * 0 otherwise, or 320 * negative error code on error 321 */ 322 int hsr_register_frame_out(struct node_entry *node, enum hsr_dev_idx dev_idx, 323 struct sk_buff *skb) 324 { 325 struct hsr_ethhdr *hsr_ethhdr; 326 u16 sequence_nr; 327 328 if ((dev_idx < 0) || (dev_idx >= HSR_MAX_DEV)) { 329 WARN_ONCE(1, "%s: Invalid dev_idx (%d)\n", __func__, dev_idx); 330 return -EINVAL; 331 } 332 if (!skb_mac_header_was_set(skb)) { 333 WARN_ONCE(1, "%s: Mac header not set\n", __func__); 334 return -EINVAL; 335 } 336 hsr_ethhdr = (struct hsr_ethhdr *) skb_mac_header(skb); 337 338 sequence_nr = ntohs(hsr_ethhdr->hsr_tag.sequence_nr); 339 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[dev_idx])) 340 return 1; 341 342 node->seq_out[dev_idx] = sequence_nr; 343 return 0; 344 } 345 346 347 348 static bool is_late(struct node_entry *node, enum hsr_dev_idx dev_idx) 349 { 350 enum hsr_dev_idx other; 351 352 if (node->time_in_stale[dev_idx]) 353 return true; 354 355 if (dev_idx == HSR_DEV_SLAVE_A) 356 other = HSR_DEV_SLAVE_B; 357 else 358 other = HSR_DEV_SLAVE_A; 359 360 if (node->time_in_stale[other]) 361 return false; 362 363 if (time_after(node->time_in[other], node->time_in[dev_idx] + 364 msecs_to_jiffies(MAX_SLAVE_DIFF))) 365 return true; 366 367 return false; 368 } 369 370 371 /* Remove stale sequence_nr records. Called by timer every 372 * HSR_LIFE_CHECK_INTERVAL (two seconds or so). 373 */ 374 void hsr_prune_nodes(struct hsr_priv *hsr_priv) 375 { 376 struct node_entry *node; 377 unsigned long timestamp; 378 unsigned long time_a, time_b; 379 380 rcu_read_lock(); 381 list_for_each_entry_rcu(node, &hsr_priv->node_db, mac_list) { 382 /* Shorthand */ 383 time_a = node->time_in[HSR_DEV_SLAVE_A]; 384 time_b = node->time_in[HSR_DEV_SLAVE_B]; 385 386 /* Check for timestamps old enough to risk wrap-around */ 387 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET/2)) 388 node->time_in_stale[HSR_DEV_SLAVE_A] = true; 389 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET/2)) 390 node->time_in_stale[HSR_DEV_SLAVE_B] = true; 391 392 /* Get age of newest frame from node. 393 * At least one time_in is OK here; nodes get pruned long 394 * before both time_ins can get stale 395 */ 396 timestamp = time_a; 397 if (node->time_in_stale[HSR_DEV_SLAVE_A] || 398 (!node->time_in_stale[HSR_DEV_SLAVE_B] && 399 time_after(time_b, time_a))) 400 timestamp = time_b; 401 402 /* Warn of ring error only as long as we get frames at all */ 403 if (time_is_after_jiffies(timestamp + 404 msecs_to_jiffies(1.5*MAX_SLAVE_DIFF))) { 405 406 if (is_late(node, HSR_DEV_SLAVE_A)) 407 hsr_nl_ringerror(hsr_priv, node->MacAddressA, 408 HSR_DEV_SLAVE_A); 409 else if (is_late(node, HSR_DEV_SLAVE_B)) 410 hsr_nl_ringerror(hsr_priv, node->MacAddressA, 411 HSR_DEV_SLAVE_B); 412 } 413 414 /* Prune old entries */ 415 if (time_is_before_jiffies(timestamp + 416 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) { 417 hsr_nl_nodedown(hsr_priv, node->MacAddressA); 418 list_del_rcu(&node->mac_list); 419 /* Note that we need to free this entry later: */ 420 call_rcu(&node->rcu_head, node_entry_reclaim); 421 } 422 } 423 rcu_read_unlock(); 424 } 425 426 427 void *hsr_get_next_node(struct hsr_priv *hsr_priv, void *_pos, 428 unsigned char addr[ETH_ALEN]) 429 { 430 struct node_entry *node; 431 432 if (!_pos) { 433 node = list_first_or_null_rcu(&hsr_priv->node_db, 434 struct node_entry, mac_list); 435 if (node) 436 memcpy(addr, node->MacAddressA, ETH_ALEN); 437 return node; 438 } 439 440 node = _pos; 441 list_for_each_entry_continue_rcu(node, &hsr_priv->node_db, mac_list) { 442 memcpy(addr, node->MacAddressA, ETH_ALEN); 443 return node; 444 } 445 446 return NULL; 447 } 448 449 450 int hsr_get_node_data(struct hsr_priv *hsr_priv, 451 const unsigned char *addr, 452 unsigned char addr_b[ETH_ALEN], 453 unsigned int *addr_b_ifindex, 454 int *if1_age, 455 u16 *if1_seq, 456 int *if2_age, 457 u16 *if2_seq) 458 { 459 struct node_entry *node; 460 unsigned long tdiff; 461 462 463 rcu_read_lock(); 464 node = find_node_by_AddrA(&hsr_priv->node_db, addr); 465 if (!node) { 466 rcu_read_unlock(); 467 return -ENOENT; /* No such entry */ 468 } 469 470 memcpy(addr_b, node->MacAddressB, ETH_ALEN); 471 472 tdiff = jiffies - node->time_in[HSR_DEV_SLAVE_A]; 473 if (node->time_in_stale[HSR_DEV_SLAVE_A]) 474 *if1_age = INT_MAX; 475 #if HZ <= MSEC_PER_SEC 476 else if (tdiff > msecs_to_jiffies(INT_MAX)) 477 *if1_age = INT_MAX; 478 #endif 479 else 480 *if1_age = jiffies_to_msecs(tdiff); 481 482 tdiff = jiffies - node->time_in[HSR_DEV_SLAVE_B]; 483 if (node->time_in_stale[HSR_DEV_SLAVE_B]) 484 *if2_age = INT_MAX; 485 #if HZ <= MSEC_PER_SEC 486 else if (tdiff > msecs_to_jiffies(INT_MAX)) 487 *if2_age = INT_MAX; 488 #endif 489 else 490 *if2_age = jiffies_to_msecs(tdiff); 491 492 /* Present sequence numbers as if they were incoming on interface */ 493 *if1_seq = node->seq_out[HSR_DEV_SLAVE_B]; 494 *if2_seq = node->seq_out[HSR_DEV_SLAVE_A]; 495 496 if ((node->AddrB_if != HSR_DEV_NONE) && hsr_priv->slave[node->AddrB_if]) 497 *addr_b_ifindex = hsr_priv->slave[node->AddrB_if]->ifindex; 498 else 499 *addr_b_ifindex = -1; 500 501 rcu_read_unlock(); 502 503 return 0; 504 } 505