1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Ethernet-type device handling. 7 * 8 * Version: @(#)eth.c 1.0.7 05/25/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Florian La Roche, <rzsfl@rz.uni-sb.de> 14 * Alan Cox, <gw4pts@gw4pts.ampr.org> 15 * 16 * Fixes: 17 * Mr Linux : Arp problems 18 * Alan Cox : Generic queue tidyup (very tiny here) 19 * Alan Cox : eth_header ntohs should be htons 20 * Alan Cox : eth_rebuild_header missing an htons and 21 * minor other things. 22 * Tegge : Arp bug fixes. 23 * Florian : Removed many unnecessary functions, code cleanup 24 * and changes for new arp and skbuff. 25 * Alan Cox : Redid header building to reflect new format. 26 * Alan Cox : ARP only when compiled with CONFIG_INET 27 * Greg Page : 802.2 and SNAP stuff. 28 * Alan Cox : MAC layer pointers/new format. 29 * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding. 30 * Alan Cox : Protect against forwarding explosions with 31 * older network drivers and IFF_ALLMULTI. 32 * Christer Weinigel : Better rebuild header message. 33 * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup(). 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #include <linux/module.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/string.h> 44 #include <linux/mm.h> 45 #include <linux/socket.h> 46 #include <linux/in.h> 47 #include <linux/inet.h> 48 #include <linux/ip.h> 49 #include <linux/netdevice.h> 50 #include <linux/etherdevice.h> 51 #include <linux/skbuff.h> 52 #include <linux/errno.h> 53 #include <linux/init.h> 54 #include <linux/if_ether.h> 55 #include <linux/of_net.h> 56 #include <linux/pci.h> 57 #include <net/dst.h> 58 #include <net/arp.h> 59 #include <net/sock.h> 60 #include <net/ipv6.h> 61 #include <net/ip.h> 62 #include <net/dsa.h> 63 #include <net/flow_dissector.h> 64 #include <linux/uaccess.h> 65 #include <net/pkt_sched.h> 66 67 __setup("ether=", netdev_boot_setup); 68 69 /** 70 * eth_header - create the Ethernet header 71 * @skb: buffer to alter 72 * @dev: source device 73 * @type: Ethernet type field 74 * @daddr: destination address (NULL leave destination address) 75 * @saddr: source address (NULL use device source address) 76 * @len: packet length (<= skb->len) 77 * 78 * 79 * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length 80 * in here instead. 81 */ 82 int eth_header(struct sk_buff *skb, struct net_device *dev, 83 unsigned short type, 84 const void *daddr, const void *saddr, unsigned int len) 85 { 86 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 87 88 if (type != ETH_P_802_3 && type != ETH_P_802_2) 89 eth->h_proto = htons(type); 90 else 91 eth->h_proto = htons(len); 92 93 /* 94 * Set the source hardware address. 95 */ 96 97 if (!saddr) 98 saddr = dev->dev_addr; 99 memcpy(eth->h_source, saddr, ETH_ALEN); 100 101 if (daddr) { 102 memcpy(eth->h_dest, daddr, ETH_ALEN); 103 return ETH_HLEN; 104 } 105 106 /* 107 * Anyway, the loopback-device should never use this function... 108 */ 109 110 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) { 111 eth_zero_addr(eth->h_dest); 112 return ETH_HLEN; 113 } 114 115 return -ETH_HLEN; 116 } 117 EXPORT_SYMBOL(eth_header); 118 119 /** 120 * eth_get_headlen - determine the length of header for an ethernet frame 121 * @data: pointer to start of frame 122 * @len: total length of frame 123 * 124 * Make a best effort attempt to pull the length for all of the headers for 125 * a given frame in a linear buffer. 126 */ 127 u32 eth_get_headlen(void *data, unsigned int len) 128 { 129 const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG; 130 const struct ethhdr *eth = (const struct ethhdr *)data; 131 struct flow_keys_basic keys; 132 133 /* this should never happen, but better safe than sorry */ 134 if (unlikely(len < sizeof(*eth))) 135 return len; 136 137 /* parse any remaining L2/L3 headers, check for L4 */ 138 if (!skb_flow_dissect_flow_keys_basic(NULL, &keys, data, eth->h_proto, 139 sizeof(*eth), len, flags)) 140 return max_t(u32, keys.control.thoff, sizeof(*eth)); 141 142 /* parse for any L4 headers */ 143 return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len); 144 } 145 EXPORT_SYMBOL(eth_get_headlen); 146 147 /** 148 * eth_type_trans - determine the packet's protocol ID. 149 * @skb: received socket data 150 * @dev: receiving network device 151 * 152 * The rule here is that we 153 * assume 802.3 if the type field is short enough to be a length. 154 * This is normal practice and works for any 'now in use' protocol. 155 */ 156 __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev) 157 { 158 unsigned short _service_access_point; 159 const unsigned short *sap; 160 const struct ethhdr *eth; 161 162 skb->dev = dev; 163 skb_reset_mac_header(skb); 164 165 eth = (struct ethhdr *)skb->data; 166 skb_pull_inline(skb, ETH_HLEN); 167 168 if (unlikely(!ether_addr_equal_64bits(eth->h_dest, 169 dev->dev_addr))) { 170 if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) { 171 if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) 172 skb->pkt_type = PACKET_BROADCAST; 173 else 174 skb->pkt_type = PACKET_MULTICAST; 175 } else { 176 skb->pkt_type = PACKET_OTHERHOST; 177 } 178 } 179 180 /* 181 * Some variants of DSA tagging don't have an ethertype field 182 * at all, so we check here whether one of those tagging 183 * variants has been configured on the receiving interface, 184 * and if so, set skb->protocol without looking at the packet. 185 */ 186 if (unlikely(netdev_uses_dsa(dev))) 187 return htons(ETH_P_XDSA); 188 189 if (likely(eth_proto_is_802_3(eth->h_proto))) 190 return eth->h_proto; 191 192 /* 193 * This is a magic hack to spot IPX packets. Older Novell breaks 194 * the protocol design and runs IPX over 802.3 without an 802.2 LLC 195 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This 196 * won't work for fault tolerant netware but does for the rest. 197 */ 198 sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point); 199 if (sap && *sap == 0xFFFF) 200 return htons(ETH_P_802_3); 201 202 /* 203 * Real 802.2 LLC 204 */ 205 return htons(ETH_P_802_2); 206 } 207 EXPORT_SYMBOL(eth_type_trans); 208 209 /** 210 * eth_header_parse - extract hardware address from packet 211 * @skb: packet to extract header from 212 * @haddr: destination buffer 213 */ 214 int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr) 215 { 216 const struct ethhdr *eth = eth_hdr(skb); 217 memcpy(haddr, eth->h_source, ETH_ALEN); 218 return ETH_ALEN; 219 } 220 EXPORT_SYMBOL(eth_header_parse); 221 222 /** 223 * eth_header_cache - fill cache entry from neighbour 224 * @neigh: source neighbour 225 * @hh: destination cache entry 226 * @type: Ethernet type field 227 * 228 * Create an Ethernet header template from the neighbour. 229 */ 230 int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type) 231 { 232 struct ethhdr *eth; 233 const struct net_device *dev = neigh->dev; 234 235 eth = (struct ethhdr *) 236 (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth)))); 237 238 if (type == htons(ETH_P_802_3)) 239 return -1; 240 241 eth->h_proto = type; 242 memcpy(eth->h_source, dev->dev_addr, ETH_ALEN); 243 memcpy(eth->h_dest, neigh->ha, ETH_ALEN); 244 hh->hh_len = ETH_HLEN; 245 return 0; 246 } 247 EXPORT_SYMBOL(eth_header_cache); 248 249 /** 250 * eth_header_cache_update - update cache entry 251 * @hh: destination cache entry 252 * @dev: network device 253 * @haddr: new hardware address 254 * 255 * Called by Address Resolution module to notify changes in address. 256 */ 257 void eth_header_cache_update(struct hh_cache *hh, 258 const struct net_device *dev, 259 const unsigned char *haddr) 260 { 261 memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)), 262 haddr, ETH_ALEN); 263 } 264 EXPORT_SYMBOL(eth_header_cache_update); 265 266 /** 267 * eth_prepare_mac_addr_change - prepare for mac change 268 * @dev: network device 269 * @p: socket address 270 */ 271 int eth_prepare_mac_addr_change(struct net_device *dev, void *p) 272 { 273 struct sockaddr *addr = p; 274 275 if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) 276 return -EBUSY; 277 if (!is_valid_ether_addr(addr->sa_data)) 278 return -EADDRNOTAVAIL; 279 return 0; 280 } 281 EXPORT_SYMBOL(eth_prepare_mac_addr_change); 282 283 /** 284 * eth_commit_mac_addr_change - commit mac change 285 * @dev: network device 286 * @p: socket address 287 */ 288 void eth_commit_mac_addr_change(struct net_device *dev, void *p) 289 { 290 struct sockaddr *addr = p; 291 292 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 293 } 294 EXPORT_SYMBOL(eth_commit_mac_addr_change); 295 296 /** 297 * eth_mac_addr - set new Ethernet hardware address 298 * @dev: network device 299 * @p: socket address 300 * 301 * Change hardware address of device. 302 * 303 * This doesn't change hardware matching, so needs to be overridden 304 * for most real devices. 305 */ 306 int eth_mac_addr(struct net_device *dev, void *p) 307 { 308 int ret; 309 310 ret = eth_prepare_mac_addr_change(dev, p); 311 if (ret < 0) 312 return ret; 313 eth_commit_mac_addr_change(dev, p); 314 return 0; 315 } 316 EXPORT_SYMBOL(eth_mac_addr); 317 318 /** 319 * eth_change_mtu - set new MTU size 320 * @dev: network device 321 * @new_mtu: new Maximum Transfer Unit 322 * 323 * Allow changing MTU size. Needs to be overridden for devices 324 * supporting jumbo frames. 325 */ 326 int eth_change_mtu(struct net_device *dev, int new_mtu) 327 { 328 netdev_warn(dev, "%s is deprecated\n", __func__); 329 dev->mtu = new_mtu; 330 return 0; 331 } 332 EXPORT_SYMBOL(eth_change_mtu); 333 334 int eth_validate_addr(struct net_device *dev) 335 { 336 if (!is_valid_ether_addr(dev->dev_addr)) 337 return -EADDRNOTAVAIL; 338 339 return 0; 340 } 341 EXPORT_SYMBOL(eth_validate_addr); 342 343 const struct header_ops eth_header_ops ____cacheline_aligned = { 344 .create = eth_header, 345 .parse = eth_header_parse, 346 .cache = eth_header_cache, 347 .cache_update = eth_header_cache_update, 348 }; 349 350 /** 351 * ether_setup - setup Ethernet network device 352 * @dev: network device 353 * 354 * Fill in the fields of the device structure with Ethernet-generic values. 355 */ 356 void ether_setup(struct net_device *dev) 357 { 358 dev->header_ops = ð_header_ops; 359 dev->type = ARPHRD_ETHER; 360 dev->hard_header_len = ETH_HLEN; 361 dev->min_header_len = ETH_HLEN; 362 dev->mtu = ETH_DATA_LEN; 363 dev->min_mtu = ETH_MIN_MTU; 364 dev->max_mtu = ETH_DATA_LEN; 365 dev->addr_len = ETH_ALEN; 366 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 367 dev->flags = IFF_BROADCAST|IFF_MULTICAST; 368 dev->priv_flags |= IFF_TX_SKB_SHARING; 369 370 eth_broadcast_addr(dev->broadcast); 371 372 } 373 EXPORT_SYMBOL(ether_setup); 374 375 /** 376 * alloc_etherdev_mqs - Allocates and sets up an Ethernet device 377 * @sizeof_priv: Size of additional driver-private structure to be allocated 378 * for this Ethernet device 379 * @txqs: The number of TX queues this device has. 380 * @rxqs: The number of RX queues this device has. 381 * 382 * Fill in the fields of the device structure with Ethernet-generic 383 * values. Basically does everything except registering the device. 384 * 385 * Constructs a new net device, complete with a private data area of 386 * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for 387 * this private data area. 388 */ 389 390 struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, 391 unsigned int rxqs) 392 { 393 return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN, 394 ether_setup, txqs, rxqs); 395 } 396 EXPORT_SYMBOL(alloc_etherdev_mqs); 397 398 static void devm_free_netdev(struct device *dev, void *res) 399 { 400 free_netdev(*(struct net_device **)res); 401 } 402 403 struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv, 404 unsigned int txqs, unsigned int rxqs) 405 { 406 struct net_device **dr; 407 struct net_device *netdev; 408 409 dr = devres_alloc(devm_free_netdev, sizeof(*dr), GFP_KERNEL); 410 if (!dr) 411 return NULL; 412 413 netdev = alloc_etherdev_mqs(sizeof_priv, txqs, rxqs); 414 if (!netdev) { 415 devres_free(dr); 416 return NULL; 417 } 418 419 *dr = netdev; 420 devres_add(dev, dr); 421 422 return netdev; 423 } 424 EXPORT_SYMBOL(devm_alloc_etherdev_mqs); 425 426 ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len) 427 { 428 return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr); 429 } 430 EXPORT_SYMBOL(sysfs_format_mac); 431 432 struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb) 433 { 434 const struct packet_offload *ptype; 435 unsigned int hlen, off_eth; 436 struct sk_buff *pp = NULL; 437 struct ethhdr *eh, *eh2; 438 struct sk_buff *p; 439 __be16 type; 440 int flush = 1; 441 442 off_eth = skb_gro_offset(skb); 443 hlen = off_eth + sizeof(*eh); 444 eh = skb_gro_header_fast(skb, off_eth); 445 if (skb_gro_header_hard(skb, hlen)) { 446 eh = skb_gro_header_slow(skb, hlen, off_eth); 447 if (unlikely(!eh)) 448 goto out; 449 } 450 451 flush = 0; 452 453 list_for_each_entry(p, head, list) { 454 if (!NAPI_GRO_CB(p)->same_flow) 455 continue; 456 457 eh2 = (struct ethhdr *)(p->data + off_eth); 458 if (compare_ether_header(eh, eh2)) { 459 NAPI_GRO_CB(p)->same_flow = 0; 460 continue; 461 } 462 } 463 464 type = eh->h_proto; 465 466 rcu_read_lock(); 467 ptype = gro_find_receive_by_type(type); 468 if (ptype == NULL) { 469 flush = 1; 470 goto out_unlock; 471 } 472 473 skb_gro_pull(skb, sizeof(*eh)); 474 skb_gro_postpull_rcsum(skb, eh, sizeof(*eh)); 475 pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb); 476 477 out_unlock: 478 rcu_read_unlock(); 479 out: 480 skb_gro_flush_final(skb, pp, flush); 481 482 return pp; 483 } 484 EXPORT_SYMBOL(eth_gro_receive); 485 486 int eth_gro_complete(struct sk_buff *skb, int nhoff) 487 { 488 struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff); 489 __be16 type = eh->h_proto; 490 struct packet_offload *ptype; 491 int err = -ENOSYS; 492 493 if (skb->encapsulation) 494 skb_set_inner_mac_header(skb, nhoff); 495 496 rcu_read_lock(); 497 ptype = gro_find_complete_by_type(type); 498 if (ptype != NULL) 499 err = ptype->callbacks.gro_complete(skb, nhoff + 500 sizeof(struct ethhdr)); 501 502 rcu_read_unlock(); 503 return err; 504 } 505 EXPORT_SYMBOL(eth_gro_complete); 506 507 static struct packet_offload eth_packet_offload __read_mostly = { 508 .type = cpu_to_be16(ETH_P_TEB), 509 .priority = 10, 510 .callbacks = { 511 .gro_receive = eth_gro_receive, 512 .gro_complete = eth_gro_complete, 513 }, 514 }; 515 516 static int __init eth_offload_init(void) 517 { 518 dev_add_offload(ð_packet_offload); 519 520 return 0; 521 } 522 523 fs_initcall(eth_offload_init); 524 525 unsigned char * __weak arch_get_platform_mac_address(void) 526 { 527 return NULL; 528 } 529 530 int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr) 531 { 532 const unsigned char *addr; 533 struct device_node *dp; 534 535 if (dev_is_pci(dev)) 536 dp = pci_device_to_OF_node(to_pci_dev(dev)); 537 else 538 dp = dev->of_node; 539 540 addr = NULL; 541 if (dp) 542 addr = of_get_mac_address(dp); 543 if (!addr) 544 addr = arch_get_platform_mac_address(); 545 546 if (!addr) 547 return -ENODEV; 548 549 ether_addr_copy(mac_addr, addr); 550 return 0; 551 } 552 EXPORT_SYMBOL(eth_platform_get_mac_address); 553