xref: /linux/net/ethernet/eth.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Ethernet-type device handling.
8  *
9  * Version:	@(#)eth.c	1.0.7	05/25/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
14  *		Florian  La Roche, <rzsfl@rz.uni-sb.de>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *
17  * Fixes:
18  *		Mr Linux	: Arp problems
19  *		Alan Cox	: Generic queue tidyup (very tiny here)
20  *		Alan Cox	: eth_header ntohs should be htons
21  *		Alan Cox	: eth_rebuild_header missing an htons and
22  *				  minor other things.
23  *		Tegge		: Arp bug fixes.
24  *		Florian		: Removed many unnecessary functions, code cleanup
25  *				  and changes for new arp and skbuff.
26  *		Alan Cox	: Redid header building to reflect new format.
27  *		Alan Cox	: ARP only when compiled with CONFIG_INET
28  *		Greg Page	: 802.2 and SNAP stuff.
29  *		Alan Cox	: MAC layer pointers/new format.
30  *		Paul Gortmaker	: eth_copy_and_sum shouldn't csum padding.
31  *		Alan Cox	: Protect against forwarding explosions with
32  *				  older network drivers and IFF_ALLMULTI.
33  *	Christer Weinigel	: Better rebuild header message.
34  *             Andrew Morton    : 26Feb01: kill ether_setup() - use netdev_boot_setup().
35  */
36 #include <linux/module.h>
37 #include <linux/types.h>
38 #include <linux/kernel.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/socket.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/ip.h>
45 #include <linux/netdevice.h>
46 #include <linux/nvmem-consumer.h>
47 #include <linux/etherdevice.h>
48 #include <linux/skbuff.h>
49 #include <linux/errno.h>
50 #include <linux/init.h>
51 #include <linux/if_ether.h>
52 #include <linux/of_net.h>
53 #include <linux/pci.h>
54 #include <linux/property.h>
55 #include <net/dst.h>
56 #include <net/arp.h>
57 #include <net/sock.h>
58 #include <net/ipv6.h>
59 #include <net/ip.h>
60 #include <net/dsa.h>
61 #include <net/flow_dissector.h>
62 #include <net/gro.h>
63 #include <linux/uaccess.h>
64 #include <net/pkt_sched.h>
65 
66 /**
67  * eth_header - create the Ethernet header
68  * @skb:	buffer to alter
69  * @dev:	source device
70  * @type:	Ethernet type field
71  * @daddr: destination address (NULL leave destination address)
72  * @saddr: source address (NULL use device source address)
73  * @len:   packet length (<= skb->len)
74  *
75  *
76  * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length
77  * in here instead.
78  */
79 int eth_header(struct sk_buff *skb, struct net_device *dev,
80 	       unsigned short type,
81 	       const void *daddr, const void *saddr, unsigned int len)
82 {
83 	struct ethhdr *eth = skb_push(skb, ETH_HLEN);
84 
85 	if (type != ETH_P_802_3 && type != ETH_P_802_2)
86 		eth->h_proto = htons(type);
87 	else
88 		eth->h_proto = htons(len);
89 
90 	/*
91 	 *      Set the source hardware address.
92 	 */
93 
94 	if (!saddr)
95 		saddr = dev->dev_addr;
96 	memcpy(eth->h_source, saddr, ETH_ALEN);
97 
98 	if (daddr) {
99 		memcpy(eth->h_dest, daddr, ETH_ALEN);
100 		return ETH_HLEN;
101 	}
102 
103 	/*
104 	 *      Anyway, the loopback-device should never use this function...
105 	 */
106 
107 	if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
108 		eth_zero_addr(eth->h_dest);
109 		return ETH_HLEN;
110 	}
111 
112 	return -ETH_HLEN;
113 }
114 EXPORT_SYMBOL(eth_header);
115 
116 /**
117  * eth_get_headlen - determine the length of header for an ethernet frame
118  * @dev: pointer to network device
119  * @data: pointer to start of frame
120  * @len: total length of frame
121  *
122  * Make a best effort attempt to pull the length for all of the headers for
123  * a given frame in a linear buffer.
124  */
125 u32 eth_get_headlen(const struct net_device *dev, const void *data, u32 len)
126 {
127 	const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG;
128 	const struct ethhdr *eth = (const struct ethhdr *)data;
129 	struct flow_keys_basic keys;
130 
131 	/* this should never happen, but better safe than sorry */
132 	if (unlikely(len < sizeof(*eth)))
133 		return len;
134 
135 	/* parse any remaining L2/L3 headers, check for L4 */
136 	if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data,
137 					      eth->h_proto, sizeof(*eth),
138 					      len, flags))
139 		return max_t(u32, keys.control.thoff, sizeof(*eth));
140 
141 	/* parse for any L4 headers */
142 	return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len);
143 }
144 EXPORT_SYMBOL(eth_get_headlen);
145 
146 /**
147  * eth_type_trans - determine the packet's protocol ID.
148  * @skb: received socket data
149  * @dev: receiving network device
150  *
151  * The rule here is that we
152  * assume 802.3 if the type field is short enough to be a length.
153  * This is normal practice and works for any 'now in use' protocol.
154  */
155 __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev)
156 {
157 	unsigned short _service_access_point;
158 	const unsigned short *sap;
159 	const struct ethhdr *eth;
160 
161 	skb->dev = dev;
162 	skb_reset_mac_header(skb);
163 
164 	eth = (struct ethhdr *)skb->data;
165 	skb_pull_inline(skb, ETH_HLEN);
166 
167 	if (unlikely(!ether_addr_equal_64bits(eth->h_dest,
168 					      dev->dev_addr))) {
169 		if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) {
170 			if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast))
171 				skb->pkt_type = PACKET_BROADCAST;
172 			else
173 				skb->pkt_type = PACKET_MULTICAST;
174 		} else {
175 			skb->pkt_type = PACKET_OTHERHOST;
176 		}
177 	}
178 
179 	/*
180 	 * Some variants of DSA tagging don't have an ethertype field
181 	 * at all, so we check here whether one of those tagging
182 	 * variants has been configured on the receiving interface,
183 	 * and if so, set skb->protocol without looking at the packet.
184 	 */
185 	if (unlikely(netdev_uses_dsa(dev)))
186 		return htons(ETH_P_XDSA);
187 
188 	if (likely(eth_proto_is_802_3(eth->h_proto)))
189 		return eth->h_proto;
190 
191 	/*
192 	 *      This is a magic hack to spot IPX packets. Older Novell breaks
193 	 *      the protocol design and runs IPX over 802.3 without an 802.2 LLC
194 	 *      layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
195 	 *      won't work for fault tolerant netware but does for the rest.
196 	 */
197 	sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point);
198 	if (sap && *sap == 0xFFFF)
199 		return htons(ETH_P_802_3);
200 
201 	/*
202 	 *      Real 802.2 LLC
203 	 */
204 	return htons(ETH_P_802_2);
205 }
206 EXPORT_SYMBOL(eth_type_trans);
207 
208 /**
209  * eth_header_parse - extract hardware address from packet
210  * @skb: packet to extract header from
211  * @haddr: destination buffer
212  */
213 int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr)
214 {
215 	const struct ethhdr *eth = eth_hdr(skb);
216 	memcpy(haddr, eth->h_source, ETH_ALEN);
217 	return ETH_ALEN;
218 }
219 EXPORT_SYMBOL(eth_header_parse);
220 
221 /**
222  * eth_header_cache - fill cache entry from neighbour
223  * @neigh: source neighbour
224  * @hh: destination cache entry
225  * @type: Ethernet type field
226  *
227  * Create an Ethernet header template from the neighbour.
228  */
229 int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type)
230 {
231 	struct ethhdr *eth;
232 	const struct net_device *dev = neigh->dev;
233 
234 	eth = (struct ethhdr *)
235 	    (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));
236 
237 	if (type == htons(ETH_P_802_3))
238 		return -1;
239 
240 	eth->h_proto = type;
241 	memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);
242 	memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
243 
244 	/* Pairs with READ_ONCE() in neigh_resolve_output(),
245 	 * neigh_hh_output() and neigh_update_hhs().
246 	 */
247 	smp_store_release(&hh->hh_len, ETH_HLEN);
248 
249 	return 0;
250 }
251 EXPORT_SYMBOL(eth_header_cache);
252 
253 /**
254  * eth_header_cache_update - update cache entry
255  * @hh: destination cache entry
256  * @dev: network device
257  * @haddr: new hardware address
258  *
259  * Called by Address Resolution module to notify changes in address.
260  */
261 void eth_header_cache_update(struct hh_cache *hh,
262 			     const struct net_device *dev,
263 			     const unsigned char *haddr)
264 {
265 	memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
266 	       haddr, ETH_ALEN);
267 }
268 EXPORT_SYMBOL(eth_header_cache_update);
269 
270 /**
271  * eth_header_parse_protocol - extract protocol from L2 header
272  * @skb: packet to extract protocol from
273  */
274 __be16 eth_header_parse_protocol(const struct sk_buff *skb)
275 {
276 	const struct ethhdr *eth = eth_hdr(skb);
277 
278 	return eth->h_proto;
279 }
280 EXPORT_SYMBOL(eth_header_parse_protocol);
281 
282 /**
283  * eth_prepare_mac_addr_change - prepare for mac change
284  * @dev: network device
285  * @p: socket address
286  */
287 int eth_prepare_mac_addr_change(struct net_device *dev, void *p)
288 {
289 	struct sockaddr *addr = p;
290 
291 	if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev))
292 		return -EBUSY;
293 	if (!is_valid_ether_addr(addr->sa_data))
294 		return -EADDRNOTAVAIL;
295 	return 0;
296 }
297 EXPORT_SYMBOL(eth_prepare_mac_addr_change);
298 
299 /**
300  * eth_commit_mac_addr_change - commit mac change
301  * @dev: network device
302  * @p: socket address
303  */
304 void eth_commit_mac_addr_change(struct net_device *dev, void *p)
305 {
306 	struct sockaddr *addr = p;
307 
308 	eth_hw_addr_set(dev, addr->sa_data);
309 }
310 EXPORT_SYMBOL(eth_commit_mac_addr_change);
311 
312 /**
313  * eth_mac_addr - set new Ethernet hardware address
314  * @dev: network device
315  * @p: socket address
316  *
317  * Change hardware address of device.
318  *
319  * This doesn't change hardware matching, so needs to be overridden
320  * for most real devices.
321  */
322 int eth_mac_addr(struct net_device *dev, void *p)
323 {
324 	int ret;
325 
326 	ret = eth_prepare_mac_addr_change(dev, p);
327 	if (ret < 0)
328 		return ret;
329 	eth_commit_mac_addr_change(dev, p);
330 	return 0;
331 }
332 EXPORT_SYMBOL(eth_mac_addr);
333 
334 int eth_validate_addr(struct net_device *dev)
335 {
336 	if (!is_valid_ether_addr(dev->dev_addr))
337 		return -EADDRNOTAVAIL;
338 
339 	return 0;
340 }
341 EXPORT_SYMBOL(eth_validate_addr);
342 
343 const struct header_ops eth_header_ops ____cacheline_aligned = {
344 	.create		= eth_header,
345 	.parse		= eth_header_parse,
346 	.cache		= eth_header_cache,
347 	.cache_update	= eth_header_cache_update,
348 	.parse_protocol	= eth_header_parse_protocol,
349 };
350 
351 /**
352  * ether_setup - setup Ethernet network device
353  * @dev: network device
354  *
355  * Fill in the fields of the device structure with Ethernet-generic values.
356  */
357 void ether_setup(struct net_device *dev)
358 {
359 	dev->header_ops		= &eth_header_ops;
360 	dev->type		= ARPHRD_ETHER;
361 	dev->hard_header_len 	= ETH_HLEN;
362 	dev->min_header_len	= ETH_HLEN;
363 	dev->mtu		= ETH_DATA_LEN;
364 	dev->min_mtu		= ETH_MIN_MTU;
365 	dev->max_mtu		= ETH_DATA_LEN;
366 	dev->addr_len		= ETH_ALEN;
367 	dev->tx_queue_len	= DEFAULT_TX_QUEUE_LEN;
368 	dev->flags		= IFF_BROADCAST|IFF_MULTICAST;
369 	dev->priv_flags		|= IFF_TX_SKB_SHARING;
370 
371 	eth_broadcast_addr(dev->broadcast);
372 
373 }
374 EXPORT_SYMBOL(ether_setup);
375 
376 /**
377  * alloc_etherdev_mqs - Allocates and sets up an Ethernet device
378  * @sizeof_priv: Size of additional driver-private structure to be allocated
379  *	for this Ethernet device
380  * @txqs: The number of TX queues this device has.
381  * @rxqs: The number of RX queues this device has.
382  *
383  * Fill in the fields of the device structure with Ethernet-generic
384  * values. Basically does everything except registering the device.
385  *
386  * Constructs a new net device, complete with a private data area of
387  * size (sizeof_priv).  A 32-byte (not bit) alignment is enforced for
388  * this private data area.
389  */
390 
391 struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs,
392 				      unsigned int rxqs)
393 {
394 	return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_ENUM,
395 				ether_setup, txqs, rxqs);
396 }
397 EXPORT_SYMBOL(alloc_etherdev_mqs);
398 
399 ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len)
400 {
401 	return sysfs_emit(buf, "%*phC\n", len, addr);
402 }
403 EXPORT_SYMBOL(sysfs_format_mac);
404 
405 struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb)
406 {
407 	const struct packet_offload *ptype;
408 	unsigned int hlen, off_eth;
409 	struct sk_buff *pp = NULL;
410 	struct ethhdr *eh, *eh2;
411 	struct sk_buff *p;
412 	__be16 type;
413 	int flush = 1;
414 
415 	off_eth = skb_gro_offset(skb);
416 	hlen = off_eth + sizeof(*eh);
417 	eh = skb_gro_header(skb, hlen, off_eth);
418 	if (unlikely(!eh))
419 		goto out;
420 
421 	flush = 0;
422 
423 	list_for_each_entry(p, head, list) {
424 		if (!NAPI_GRO_CB(p)->same_flow)
425 			continue;
426 
427 		eh2 = (struct ethhdr *)(p->data + off_eth);
428 		if (compare_ether_header(eh, eh2)) {
429 			NAPI_GRO_CB(p)->same_flow = 0;
430 			continue;
431 		}
432 	}
433 
434 	type = eh->h_proto;
435 
436 	ptype = gro_find_receive_by_type(type);
437 	if (ptype == NULL) {
438 		flush = 1;
439 		goto out;
440 	}
441 
442 	skb_gro_pull(skb, sizeof(*eh));
443 	skb_gro_postpull_rcsum(skb, eh, sizeof(*eh));
444 
445 	pp = indirect_call_gro_receive_inet(ptype->callbacks.gro_receive,
446 					    ipv6_gro_receive, inet_gro_receive,
447 					    head, skb);
448 
449 out:
450 	skb_gro_flush_final(skb, pp, flush);
451 
452 	return pp;
453 }
454 EXPORT_SYMBOL(eth_gro_receive);
455 
456 int eth_gro_complete(struct sk_buff *skb, int nhoff)
457 {
458 	struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff);
459 	__be16 type = eh->h_proto;
460 	struct packet_offload *ptype;
461 	int err = -ENOSYS;
462 
463 	if (skb->encapsulation)
464 		skb_set_inner_mac_header(skb, nhoff);
465 
466 	ptype = gro_find_complete_by_type(type);
467 	if (ptype != NULL)
468 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
469 					 ipv6_gro_complete, inet_gro_complete,
470 					 skb, nhoff + sizeof(*eh));
471 
472 	return err;
473 }
474 EXPORT_SYMBOL(eth_gro_complete);
475 
476 static struct packet_offload eth_packet_offload __read_mostly = {
477 	.type = cpu_to_be16(ETH_P_TEB),
478 	.priority = 10,
479 	.callbacks = {
480 		.gro_receive = eth_gro_receive,
481 		.gro_complete = eth_gro_complete,
482 	},
483 };
484 
485 static int __init eth_offload_init(void)
486 {
487 	dev_add_offload(&eth_packet_offload);
488 
489 	return 0;
490 }
491 
492 fs_initcall(eth_offload_init);
493 
494 unsigned char * __weak arch_get_platform_mac_address(void)
495 {
496 	return NULL;
497 }
498 
499 int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr)
500 {
501 	unsigned char *addr;
502 	int ret;
503 
504 	ret = of_get_mac_address(dev->of_node, mac_addr);
505 	if (!ret)
506 		return 0;
507 
508 	addr = arch_get_platform_mac_address();
509 	if (!addr)
510 		return -ENODEV;
511 
512 	ether_addr_copy(mac_addr, addr);
513 
514 	return 0;
515 }
516 EXPORT_SYMBOL(eth_platform_get_mac_address);
517 
518 /**
519  * platform_get_ethdev_address - Set netdev's MAC address from a given device
520  * @dev:	Pointer to the device
521  * @netdev:	Pointer to netdev to write the address to
522  *
523  * Wrapper around eth_platform_get_mac_address() which writes the address
524  * directly to netdev->dev_addr.
525  */
526 int platform_get_ethdev_address(struct device *dev, struct net_device *netdev)
527 {
528 	u8 addr[ETH_ALEN] __aligned(2);
529 	int ret;
530 
531 	ret = eth_platform_get_mac_address(dev, addr);
532 	if (!ret)
533 		eth_hw_addr_set(netdev, addr);
534 	return ret;
535 }
536 EXPORT_SYMBOL(platform_get_ethdev_address);
537 
538 /**
539  * nvmem_get_mac_address - Obtain the MAC address from an nvmem cell named
540  * 'mac-address' associated with given device.
541  *
542  * @dev:	Device with which the mac-address cell is associated.
543  * @addrbuf:	Buffer to which the MAC address will be copied on success.
544  *
545  * Returns 0 on success or a negative error number on failure.
546  */
547 int nvmem_get_mac_address(struct device *dev, void *addrbuf)
548 {
549 	struct nvmem_cell *cell;
550 	const void *mac;
551 	size_t len;
552 
553 	cell = nvmem_cell_get(dev, "mac-address");
554 	if (IS_ERR(cell))
555 		return PTR_ERR(cell);
556 
557 	mac = nvmem_cell_read(cell, &len);
558 	nvmem_cell_put(cell);
559 
560 	if (IS_ERR(mac))
561 		return PTR_ERR(mac);
562 
563 	if (len != ETH_ALEN || !is_valid_ether_addr(mac)) {
564 		kfree(mac);
565 		return -EINVAL;
566 	}
567 
568 	ether_addr_copy(addrbuf, mac);
569 	kfree(mac);
570 
571 	return 0;
572 }
573 
574 static int fwnode_get_mac_addr(struct fwnode_handle *fwnode,
575 			       const char *name, char *addr)
576 {
577 	int ret;
578 
579 	ret = fwnode_property_read_u8_array(fwnode, name, addr, ETH_ALEN);
580 	if (ret)
581 		return ret;
582 
583 	if (!is_valid_ether_addr(addr))
584 		return -EINVAL;
585 	return 0;
586 }
587 
588 /**
589  * fwnode_get_mac_address - Get the MAC from the firmware node
590  * @fwnode:	Pointer to the firmware node
591  * @addr:	Address of buffer to store the MAC in
592  *
593  * Search the firmware node for the best MAC address to use.  'mac-address' is
594  * checked first, because that is supposed to contain to "most recent" MAC
595  * address. If that isn't set, then 'local-mac-address' is checked next,
596  * because that is the default address.  If that isn't set, then the obsolete
597  * 'address' is checked, just in case we're using an old device tree.
598  *
599  * Note that the 'address' property is supposed to contain a virtual address of
600  * the register set, but some DTS files have redefined that property to be the
601  * MAC address.
602  *
603  * All-zero MAC addresses are rejected, because those could be properties that
604  * exist in the firmware tables, but were not updated by the firmware.  For
605  * example, the DTS could define 'mac-address' and 'local-mac-address', with
606  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
607  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
608  * exists but is all zeros.
609  */
610 int fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr)
611 {
612 	if (!fwnode_get_mac_addr(fwnode, "mac-address", addr) ||
613 	    !fwnode_get_mac_addr(fwnode, "local-mac-address", addr) ||
614 	    !fwnode_get_mac_addr(fwnode, "address", addr))
615 		return 0;
616 
617 	return -ENOENT;
618 }
619 EXPORT_SYMBOL(fwnode_get_mac_address);
620 
621 /**
622  * device_get_mac_address - Get the MAC for a given device
623  * @dev:	Pointer to the device
624  * @addr:	Address of buffer to store the MAC in
625  */
626 int device_get_mac_address(struct device *dev, char *addr)
627 {
628 	return fwnode_get_mac_address(dev_fwnode(dev), addr);
629 }
630 EXPORT_SYMBOL(device_get_mac_address);
631 
632 /**
633  * device_get_ethdev_address - Set netdev's MAC address from a given device
634  * @dev:	Pointer to the device
635  * @netdev:	Pointer to netdev to write the address to
636  *
637  * Wrapper around device_get_mac_address() which writes the address
638  * directly to netdev->dev_addr.
639  */
640 int device_get_ethdev_address(struct device *dev, struct net_device *netdev)
641 {
642 	u8 addr[ETH_ALEN];
643 	int ret;
644 
645 	ret = device_get_mac_address(dev, addr);
646 	if (!ret)
647 		eth_hw_addr_set(netdev, addr);
648 	return ret;
649 }
650 EXPORT_SYMBOL(device_get_ethdev_address);
651