xref: /linux/net/dsa/tag.h (revision cce0b334c3108b49b0d550c387cde949b6788f22)
1  /* SPDX-License-Identifier: GPL-2.0-or-later */
2  
3  #ifndef __DSA_TAG_H
4  #define __DSA_TAG_H
5  
6  #include <linux/if_vlan.h>
7  #include <linux/list.h>
8  #include <linux/types.h>
9  #include <net/dsa.h>
10  
11  #include "port.h"
12  #include "user.h"
13  
14  struct dsa_tag_driver {
15  	const struct dsa_device_ops *ops;
16  	struct list_head list;
17  	struct module *owner;
18  };
19  
20  extern struct packet_type dsa_pack_type;
21  
22  const struct dsa_device_ops *dsa_tag_driver_get_by_id(int tag_protocol);
23  const struct dsa_device_ops *dsa_tag_driver_get_by_name(const char *name);
24  void dsa_tag_driver_put(const struct dsa_device_ops *ops);
25  const char *dsa_tag_protocol_to_str(const struct dsa_device_ops *ops);
26  
27  static inline int dsa_tag_protocol_overhead(const struct dsa_device_ops *ops)
28  {
29  	return ops->needed_headroom + ops->needed_tailroom;
30  }
31  
32  static inline struct net_device *dsa_conduit_find_user(struct net_device *dev,
33  						       int device, int port)
34  {
35  	struct dsa_port *cpu_dp = dev->dsa_ptr;
36  	struct dsa_switch_tree *dst = cpu_dp->dst;
37  	struct dsa_port *dp;
38  
39  	list_for_each_entry(dp, &dst->ports, list)
40  		if (dp->ds->index == device && dp->index == port &&
41  		    dp->type == DSA_PORT_TYPE_USER)
42  			return dp->user;
43  
44  	return NULL;
45  }
46  
47  /**
48   * dsa_software_untag_vlan_aware_bridge: Software untagging for VLAN-aware bridge
49   * @skb: Pointer to received socket buffer (packet)
50   * @br: Pointer to bridge upper interface of ingress port
51   * @vid: Parsed VID from packet
52   *
53   * The bridge can process tagged packets. Software like STP/PTP may not. The
54   * bridge can also process untagged packets, to the same effect as if they were
55   * tagged with the PVID of the ingress port. So packets tagged with the PVID of
56   * the bridge port must be software-untagged, to support both use cases.
57   */
58  static inline void dsa_software_untag_vlan_aware_bridge(struct sk_buff *skb,
59  							struct net_device *br,
60  							u16 vid)
61  {
62  	u16 pvid, proto;
63  	int err;
64  
65  	err = br_vlan_get_proto(br, &proto);
66  	if (err)
67  		return;
68  
69  	err = br_vlan_get_pvid_rcu(skb->dev, &pvid);
70  	if (err)
71  		return;
72  
73  	if (vid == pvid && skb->vlan_proto == htons(proto))
74  		__vlan_hwaccel_clear_tag(skb);
75  }
76  
77  /**
78   * dsa_software_untag_vlan_unaware_bridge: Software untagging for VLAN-unaware bridge
79   * @skb: Pointer to received socket buffer (packet)
80   * @br: Pointer to bridge upper interface of ingress port
81   * @vid: Parsed VID from packet
82   *
83   * The bridge ignores all VLAN tags. Software like STP/PTP may not (it may run
84   * on the plain port, or on a VLAN upper interface). Maybe packets are coming
85   * to software as tagged with a driver-defined VID which is NOT equal to the
86   * PVID of the bridge port (since the bridge is VLAN-unaware, its configuration
87   * should NOT be committed to hardware). DSA needs a method for this private
88   * VID to be communicated by software to it, and if packets are tagged with it,
89   * software-untag them. Note: the private VID may be different per bridge, to
90   * support the FDB isolation use case.
91   *
92   * FIXME: this is currently implemented based on the broken assumption that
93   * the "private VID" used by the driver in VLAN-unaware mode is equal to the
94   * bridge PVID. It should not be, except for a coincidence; the bridge PVID is
95   * irrelevant to the data path in the VLAN-unaware mode. Thus, the VID that
96   * this function removes is wrong.
97   *
98   * All users of ds->untag_bridge_pvid should fix their drivers, if necessary,
99   * to make the two independent. Only then, if there still remains a need to
100   * strip the private VID from packets, then a new ds->ops->get_private_vid()
101   * API shall be introduced to communicate to DSA what this VID is, which needs
102   * to be stripped here.
103   */
104  static inline void dsa_software_untag_vlan_unaware_bridge(struct sk_buff *skb,
105  							  struct net_device *br,
106  							  u16 vid)
107  {
108  	struct net_device *upper_dev;
109  	u16 pvid, proto;
110  	int err;
111  
112  	err = br_vlan_get_proto(br, &proto);
113  	if (err)
114  		return;
115  
116  	err = br_vlan_get_pvid_rcu(skb->dev, &pvid);
117  	if (err)
118  		return;
119  
120  	if (vid != pvid || skb->vlan_proto != htons(proto))
121  		return;
122  
123  	/* The sad part about attempting to untag from DSA is that we
124  	 * don't know, unless we check, if the skb will end up in
125  	 * the bridge's data path - br_allowed_ingress() - or not.
126  	 * For example, there might be an 8021q upper for the
127  	 * default_pvid of the bridge, which will steal VLAN-tagged traffic
128  	 * from the bridge's data path. This is a configuration that DSA
129  	 * supports because vlan_filtering is 0. In that case, we should
130  	 * definitely keep the tag, to make sure it keeps working.
131  	 */
132  	upper_dev = __vlan_find_dev_deep_rcu(br, htons(proto), vid);
133  	if (!upper_dev)
134  		__vlan_hwaccel_clear_tag(skb);
135  }
136  
137  /**
138   * dsa_software_vlan_untag: Software VLAN untagging in DSA receive path
139   * @skb: Pointer to socket buffer (packet)
140   *
141   * Receive path method for switches which send some packets as VLAN-tagged
142   * towards the CPU port (generally from VLAN-aware bridge ports) even when the
143   * packet was not tagged on the wire. Called when ds->untag_bridge_pvid
144   * (legacy) or ds->untag_vlan_aware_bridge_pvid is set to true.
145   *
146   * As a side effect of this method, any VLAN tag from the skb head is moved
147   * to hwaccel.
148   */
149  static inline struct sk_buff *dsa_software_vlan_untag(struct sk_buff *skb)
150  {
151  	struct dsa_port *dp = dsa_user_to_port(skb->dev);
152  	struct net_device *br = dsa_port_bridge_dev_get(dp);
153  	u16 vid, proto;
154  	int err;
155  
156  	/* software untagging for standalone ports not yet necessary */
157  	if (!br)
158  		return skb;
159  
160  	err = br_vlan_get_proto(br, &proto);
161  	if (err)
162  		return skb;
163  
164  	/* Move VLAN tag from data to hwaccel */
165  	if (!skb_vlan_tag_present(skb) && skb->protocol == htons(proto)) {
166  		skb = skb_vlan_untag(skb);
167  		if (!skb)
168  			return NULL;
169  	}
170  
171  	if (!skb_vlan_tag_present(skb))
172  		return skb;
173  
174  	vid = skb_vlan_tag_get_id(skb);
175  
176  	if (br_vlan_enabled(br)) {
177  		if (dp->ds->untag_vlan_aware_bridge_pvid)
178  			dsa_software_untag_vlan_aware_bridge(skb, br, vid);
179  	} else {
180  		if (dp->ds->untag_bridge_pvid)
181  			dsa_software_untag_vlan_unaware_bridge(skb, br, vid);
182  	}
183  
184  	return skb;
185  }
186  
187  /* For switches without hardware support for DSA tagging to be able
188   * to support termination through the bridge.
189   */
190  static inline struct net_device *
191  dsa_find_designated_bridge_port_by_vid(struct net_device *conduit, u16 vid)
192  {
193  	struct dsa_port *cpu_dp = conduit->dsa_ptr;
194  	struct dsa_switch_tree *dst = cpu_dp->dst;
195  	struct bridge_vlan_info vinfo;
196  	struct net_device *user;
197  	struct dsa_port *dp;
198  	int err;
199  
200  	list_for_each_entry(dp, &dst->ports, list) {
201  		if (dp->type != DSA_PORT_TYPE_USER)
202  			continue;
203  
204  		if (!dp->bridge)
205  			continue;
206  
207  		if (dp->stp_state != BR_STATE_LEARNING &&
208  		    dp->stp_state != BR_STATE_FORWARDING)
209  			continue;
210  
211  		/* Since the bridge might learn this packet, keep the CPU port
212  		 * affinity with the port that will be used for the reply on
213  		 * xmit.
214  		 */
215  		if (dp->cpu_dp != cpu_dp)
216  			continue;
217  
218  		user = dp->user;
219  
220  		err = br_vlan_get_info_rcu(user, vid, &vinfo);
221  		if (err)
222  			continue;
223  
224  		return user;
225  	}
226  
227  	return NULL;
228  }
229  
230  /* If the ingress port offloads the bridge, we mark the frame as autonomously
231   * forwarded by hardware, so the software bridge doesn't forward in twice, back
232   * to us, because we already did. However, if we're in fallback mode and we do
233   * software bridging, we are not offloading it, therefore the dp->bridge
234   * pointer is not populated, and flooding needs to be done by software (we are
235   * effectively operating in standalone ports mode).
236   */
237  static inline void dsa_default_offload_fwd_mark(struct sk_buff *skb)
238  {
239  	struct dsa_port *dp = dsa_user_to_port(skb->dev);
240  
241  	skb->offload_fwd_mark = !!(dp->bridge);
242  }
243  
244  /* Helper for removing DSA header tags from packets in the RX path.
245   * Must not be called before skb_pull(len).
246   *                                                                 skb->data
247   *                                                                         |
248   *                                                                         v
249   * |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
250   * +-----------------------+-----------------------+---------------+-------+
251   * |    Destination MAC    |      Source MAC       |  DSA header   | EType |
252   * +-----------------------+-----------------------+---------------+-------+
253   *                                                 |               |
254   * <----- len ----->                               <----- len ----->
255   *                 |
256   *       >>>>>>>   v
257   *       >>>>>>>   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
258   *       >>>>>>>   +-----------------------+-----------------------+-------+
259   *       >>>>>>>   |    Destination MAC    |      Source MAC       | EType |
260   *                 +-----------------------+-----------------------+-------+
261   *                                                                         ^
262   *                                                                         |
263   *                                                                 skb->data
264   */
265  static inline void dsa_strip_etype_header(struct sk_buff *skb, int len)
266  {
267  	memmove(skb->data - ETH_HLEN, skb->data - ETH_HLEN - len, 2 * ETH_ALEN);
268  }
269  
270  /* Helper for creating space for DSA header tags in TX path packets.
271   * Must not be called before skb_push(len).
272   *
273   * Before:
274   *
275   *       <<<<<<<   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
276   * ^     <<<<<<<   +-----------------------+-----------------------+-------+
277   * |     <<<<<<<   |    Destination MAC    |      Source MAC       | EType |
278   * |               +-----------------------+-----------------------+-------+
279   * <----- len ----->
280   * |
281   * |
282   * skb->data
283   *
284   * After:
285   *
286   * |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
287   * +-----------------------+-----------------------+---------------+-------+
288   * |    Destination MAC    |      Source MAC       |  DSA header   | EType |
289   * +-----------------------+-----------------------+---------------+-------+
290   * ^                                               |               |
291   * |                                               <----- len ----->
292   * skb->data
293   */
294  static inline void dsa_alloc_etype_header(struct sk_buff *skb, int len)
295  {
296  	memmove(skb->data, skb->data + len, 2 * ETH_ALEN);
297  }
298  
299  /* On RX, eth_type_trans() on the DSA conduit pulls ETH_HLEN bytes starting from
300   * skb_mac_header(skb), which leaves skb->data pointing at the first byte after
301   * what the DSA conduit perceives as the EtherType (the beginning of the L3
302   * protocol). Since DSA EtherType header taggers treat the EtherType as part of
303   * the DSA tag itself, and the EtherType is 2 bytes in length, the DSA header
304   * is located 2 bytes behind skb->data. Note that EtherType in this context
305   * means the first 2 bytes of the DSA header, not the encapsulated EtherType
306   * that will become visible after the DSA header is stripped.
307   */
308  static inline void *dsa_etype_header_pos_rx(struct sk_buff *skb)
309  {
310  	return skb->data - 2;
311  }
312  
313  /* On TX, skb->data points to the MAC header, which means that EtherType
314   * header taggers start exactly where the EtherType is (the EtherType is
315   * treated as part of the DSA header).
316   */
317  static inline void *dsa_etype_header_pos_tx(struct sk_buff *skb)
318  {
319  	return skb->data + 2 * ETH_ALEN;
320  }
321  
322  /* Create 2 modaliases per tagging protocol, one to auto-load the module
323   * given the ID reported by get_tag_protocol(), and the other by name.
324   */
325  #define DSA_TAG_DRIVER_ALIAS "dsa_tag:"
326  #define MODULE_ALIAS_DSA_TAG_DRIVER(__proto, __name) \
327  	MODULE_ALIAS(DSA_TAG_DRIVER_ALIAS __name); \
328  	MODULE_ALIAS(DSA_TAG_DRIVER_ALIAS "id-" \
329  		     __stringify(__proto##_VALUE))
330  
331  void dsa_tag_drivers_register(struct dsa_tag_driver *dsa_tag_driver_array[],
332  			      unsigned int count,
333  			      struct module *owner);
334  void dsa_tag_drivers_unregister(struct dsa_tag_driver *dsa_tag_driver_array[],
335  				unsigned int count);
336  
337  #define dsa_tag_driver_module_drivers(__dsa_tag_drivers_array, __count)	\
338  static int __init dsa_tag_driver_module_init(void)			\
339  {									\
340  	dsa_tag_drivers_register(__dsa_tag_drivers_array, __count,	\
341  				 THIS_MODULE);				\
342  	return 0;							\
343  }									\
344  module_init(dsa_tag_driver_module_init);				\
345  									\
346  static void __exit dsa_tag_driver_module_exit(void)			\
347  {									\
348  	dsa_tag_drivers_unregister(__dsa_tag_drivers_array, __count);	\
349  }									\
350  module_exit(dsa_tag_driver_module_exit)
351  
352  /**
353   * module_dsa_tag_drivers() - Helper macro for registering DSA tag
354   * drivers
355   * @__ops_array: Array of tag driver structures
356   *
357   * Helper macro for DSA tag drivers which do not do anything special
358   * in module init/exit. Each module may only use this macro once, and
359   * calling it replaces module_init() and module_exit().
360   */
361  #define module_dsa_tag_drivers(__ops_array)				\
362  dsa_tag_driver_module_drivers(__ops_array, ARRAY_SIZE(__ops_array))
363  
364  #define DSA_TAG_DRIVER_NAME(__ops) dsa_tag_driver ## _ ## __ops
365  
366  /* Create a static structure we can build a linked list of dsa_tag
367   * drivers
368   */
369  #define DSA_TAG_DRIVER(__ops)						\
370  static struct dsa_tag_driver DSA_TAG_DRIVER_NAME(__ops) = {		\
371  	.ops = &__ops,							\
372  }
373  
374  /**
375   * module_dsa_tag_driver() - Helper macro for registering a single DSA tag
376   * driver
377   * @__ops: Single tag driver structures
378   *
379   * Helper macro for DSA tag drivers which do not do anything special
380   * in module init/exit. Each module may only use this macro once, and
381   * calling it replaces module_init() and module_exit().
382   */
383  #define module_dsa_tag_driver(__ops)					\
384  DSA_TAG_DRIVER(__ops);							\
385  									\
386  static struct dsa_tag_driver *dsa_tag_driver_array[] =	{		\
387  	&DSA_TAG_DRIVER_NAME(__ops)					\
388  };									\
389  module_dsa_tag_drivers(dsa_tag_driver_array)
390  
391  #endif
392