xref: /linux/net/dsa/tag.h (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 
3 #ifndef __DSA_TAG_H
4 #define __DSA_TAG_H
5 
6 #include <linux/if_vlan.h>
7 #include <linux/list.h>
8 #include <linux/types.h>
9 #include <net/dsa.h>
10 
11 #include "port.h"
12 #include "slave.h"
13 
14 struct dsa_tag_driver {
15 	const struct dsa_device_ops *ops;
16 	struct list_head list;
17 	struct module *owner;
18 };
19 
20 extern struct packet_type dsa_pack_type;
21 
22 const struct dsa_device_ops *dsa_tag_driver_get_by_id(int tag_protocol);
23 const struct dsa_device_ops *dsa_tag_driver_get_by_name(const char *name);
24 void dsa_tag_driver_put(const struct dsa_device_ops *ops);
25 const char *dsa_tag_protocol_to_str(const struct dsa_device_ops *ops);
26 
27 static inline int dsa_tag_protocol_overhead(const struct dsa_device_ops *ops)
28 {
29 	return ops->needed_headroom + ops->needed_tailroom;
30 }
31 
32 static inline struct net_device *dsa_master_find_slave(struct net_device *dev,
33 						       int device, int port)
34 {
35 	struct dsa_port *cpu_dp = dev->dsa_ptr;
36 	struct dsa_switch_tree *dst = cpu_dp->dst;
37 	struct dsa_port *dp;
38 
39 	list_for_each_entry(dp, &dst->ports, list)
40 		if (dp->ds->index == device && dp->index == port &&
41 		    dp->type == DSA_PORT_TYPE_USER)
42 			return dp->slave;
43 
44 	return NULL;
45 }
46 
47 /* If under a bridge with vlan_filtering=0, make sure to send pvid-tagged
48  * frames as untagged, since the bridge will not untag them.
49  */
50 static inline struct sk_buff *dsa_untag_bridge_pvid(struct sk_buff *skb)
51 {
52 	struct dsa_port *dp = dsa_slave_to_port(skb->dev);
53 	struct net_device *br = dsa_port_bridge_dev_get(dp);
54 	struct net_device *dev = skb->dev;
55 	struct net_device *upper_dev;
56 	u16 vid, pvid, proto;
57 	int err;
58 
59 	if (!br || br_vlan_enabled(br))
60 		return skb;
61 
62 	err = br_vlan_get_proto(br, &proto);
63 	if (err)
64 		return skb;
65 
66 	/* Move VLAN tag from data to hwaccel */
67 	if (!skb_vlan_tag_present(skb) && skb->protocol == htons(proto)) {
68 		skb = skb_vlan_untag(skb);
69 		if (!skb)
70 			return NULL;
71 	}
72 
73 	if (!skb_vlan_tag_present(skb))
74 		return skb;
75 
76 	vid = skb_vlan_tag_get_id(skb);
77 
78 	/* We already run under an RCU read-side critical section since
79 	 * we are called from netif_receive_skb_list_internal().
80 	 */
81 	err = br_vlan_get_pvid_rcu(dev, &pvid);
82 	if (err)
83 		return skb;
84 
85 	if (vid != pvid)
86 		return skb;
87 
88 	/* The sad part about attempting to untag from DSA is that we
89 	 * don't know, unless we check, if the skb will end up in
90 	 * the bridge's data path - br_allowed_ingress() - or not.
91 	 * For example, there might be an 8021q upper for the
92 	 * default_pvid of the bridge, which will steal VLAN-tagged traffic
93 	 * from the bridge's data path. This is a configuration that DSA
94 	 * supports because vlan_filtering is 0. In that case, we should
95 	 * definitely keep the tag, to make sure it keeps working.
96 	 */
97 	upper_dev = __vlan_find_dev_deep_rcu(br, htons(proto), vid);
98 	if (upper_dev)
99 		return skb;
100 
101 	__vlan_hwaccel_clear_tag(skb);
102 
103 	return skb;
104 }
105 
106 /* For switches without hardware support for DSA tagging to be able
107  * to support termination through the bridge.
108  */
109 static inline struct net_device *
110 dsa_find_designated_bridge_port_by_vid(struct net_device *master, u16 vid)
111 {
112 	struct dsa_port *cpu_dp = master->dsa_ptr;
113 	struct dsa_switch_tree *dst = cpu_dp->dst;
114 	struct bridge_vlan_info vinfo;
115 	struct net_device *slave;
116 	struct dsa_port *dp;
117 	int err;
118 
119 	list_for_each_entry(dp, &dst->ports, list) {
120 		if (dp->type != DSA_PORT_TYPE_USER)
121 			continue;
122 
123 		if (!dp->bridge)
124 			continue;
125 
126 		if (dp->stp_state != BR_STATE_LEARNING &&
127 		    dp->stp_state != BR_STATE_FORWARDING)
128 			continue;
129 
130 		/* Since the bridge might learn this packet, keep the CPU port
131 		 * affinity with the port that will be used for the reply on
132 		 * xmit.
133 		 */
134 		if (dp->cpu_dp != cpu_dp)
135 			continue;
136 
137 		slave = dp->slave;
138 
139 		err = br_vlan_get_info_rcu(slave, vid, &vinfo);
140 		if (err)
141 			continue;
142 
143 		return slave;
144 	}
145 
146 	return NULL;
147 }
148 
149 /* If the ingress port offloads the bridge, we mark the frame as autonomously
150  * forwarded by hardware, so the software bridge doesn't forward in twice, back
151  * to us, because we already did. However, if we're in fallback mode and we do
152  * software bridging, we are not offloading it, therefore the dp->bridge
153  * pointer is not populated, and flooding needs to be done by software (we are
154  * effectively operating in standalone ports mode).
155  */
156 static inline void dsa_default_offload_fwd_mark(struct sk_buff *skb)
157 {
158 	struct dsa_port *dp = dsa_slave_to_port(skb->dev);
159 
160 	skb->offload_fwd_mark = !!(dp->bridge);
161 }
162 
163 /* Helper for removing DSA header tags from packets in the RX path.
164  * Must not be called before skb_pull(len).
165  *                                                                 skb->data
166  *                                                                         |
167  *                                                                         v
168  * |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
169  * +-----------------------+-----------------------+---------------+-------+
170  * |    Destination MAC    |      Source MAC       |  DSA header   | EType |
171  * +-----------------------+-----------------------+---------------+-------+
172  *                                                 |               |
173  * <----- len ----->                               <----- len ----->
174  *                 |
175  *       >>>>>>>   v
176  *       >>>>>>>   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
177  *       >>>>>>>   +-----------------------+-----------------------+-------+
178  *       >>>>>>>   |    Destination MAC    |      Source MAC       | EType |
179  *                 +-----------------------+-----------------------+-------+
180  *                                                                         ^
181  *                                                                         |
182  *                                                                 skb->data
183  */
184 static inline void dsa_strip_etype_header(struct sk_buff *skb, int len)
185 {
186 	memmove(skb->data - ETH_HLEN, skb->data - ETH_HLEN - len, 2 * ETH_ALEN);
187 }
188 
189 /* Helper for creating space for DSA header tags in TX path packets.
190  * Must not be called before skb_push(len).
191  *
192  * Before:
193  *
194  *       <<<<<<<   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
195  * ^     <<<<<<<   +-----------------------+-----------------------+-------+
196  * |     <<<<<<<   |    Destination MAC    |      Source MAC       | EType |
197  * |               +-----------------------+-----------------------+-------+
198  * <----- len ----->
199  * |
200  * |
201  * skb->data
202  *
203  * After:
204  *
205  * |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
206  * +-----------------------+-----------------------+---------------+-------+
207  * |    Destination MAC    |      Source MAC       |  DSA header   | EType |
208  * +-----------------------+-----------------------+---------------+-------+
209  * ^                                               |               |
210  * |                                               <----- len ----->
211  * skb->data
212  */
213 static inline void dsa_alloc_etype_header(struct sk_buff *skb, int len)
214 {
215 	memmove(skb->data, skb->data + len, 2 * ETH_ALEN);
216 }
217 
218 /* On RX, eth_type_trans() on the DSA master pulls ETH_HLEN bytes starting from
219  * skb_mac_header(skb), which leaves skb->data pointing at the first byte after
220  * what the DSA master perceives as the EtherType (the beginning of the L3
221  * protocol). Since DSA EtherType header taggers treat the EtherType as part of
222  * the DSA tag itself, and the EtherType is 2 bytes in length, the DSA header
223  * is located 2 bytes behind skb->data. Note that EtherType in this context
224  * means the first 2 bytes of the DSA header, not the encapsulated EtherType
225  * that will become visible after the DSA header is stripped.
226  */
227 static inline void *dsa_etype_header_pos_rx(struct sk_buff *skb)
228 {
229 	return skb->data - 2;
230 }
231 
232 /* On TX, skb->data points to the MAC header, which means that EtherType
233  * header taggers start exactly where the EtherType is (the EtherType is
234  * treated as part of the DSA header).
235  */
236 static inline void *dsa_etype_header_pos_tx(struct sk_buff *skb)
237 {
238 	return skb->data + 2 * ETH_ALEN;
239 }
240 
241 /* Create 2 modaliases per tagging protocol, one to auto-load the module
242  * given the ID reported by get_tag_protocol(), and the other by name.
243  */
244 #define DSA_TAG_DRIVER_ALIAS "dsa_tag:"
245 #define MODULE_ALIAS_DSA_TAG_DRIVER(__proto, __name) \
246 	MODULE_ALIAS(DSA_TAG_DRIVER_ALIAS __name); \
247 	MODULE_ALIAS(DSA_TAG_DRIVER_ALIAS "id-" \
248 		     __stringify(__proto##_VALUE))
249 
250 void dsa_tag_drivers_register(struct dsa_tag_driver *dsa_tag_driver_array[],
251 			      unsigned int count,
252 			      struct module *owner);
253 void dsa_tag_drivers_unregister(struct dsa_tag_driver *dsa_tag_driver_array[],
254 				unsigned int count);
255 
256 #define dsa_tag_driver_module_drivers(__dsa_tag_drivers_array, __count)	\
257 static int __init dsa_tag_driver_module_init(void)			\
258 {									\
259 	dsa_tag_drivers_register(__dsa_tag_drivers_array, __count,	\
260 				 THIS_MODULE);				\
261 	return 0;							\
262 }									\
263 module_init(dsa_tag_driver_module_init);				\
264 									\
265 static void __exit dsa_tag_driver_module_exit(void)			\
266 {									\
267 	dsa_tag_drivers_unregister(__dsa_tag_drivers_array, __count);	\
268 }									\
269 module_exit(dsa_tag_driver_module_exit)
270 
271 /**
272  * module_dsa_tag_drivers() - Helper macro for registering DSA tag
273  * drivers
274  * @__ops_array: Array of tag driver structures
275  *
276  * Helper macro for DSA tag drivers which do not do anything special
277  * in module init/exit. Each module may only use this macro once, and
278  * calling it replaces module_init() and module_exit().
279  */
280 #define module_dsa_tag_drivers(__ops_array)				\
281 dsa_tag_driver_module_drivers(__ops_array, ARRAY_SIZE(__ops_array))
282 
283 #define DSA_TAG_DRIVER_NAME(__ops) dsa_tag_driver ## _ ## __ops
284 
285 /* Create a static structure we can build a linked list of dsa_tag
286  * drivers
287  */
288 #define DSA_TAG_DRIVER(__ops)						\
289 static struct dsa_tag_driver DSA_TAG_DRIVER_NAME(__ops) = {		\
290 	.ops = &__ops,							\
291 }
292 
293 /**
294  * module_dsa_tag_driver() - Helper macro for registering a single DSA tag
295  * driver
296  * @__ops: Single tag driver structures
297  *
298  * Helper macro for DSA tag drivers which do not do anything special
299  * in module init/exit. Each module may only use this macro once, and
300  * calling it replaces module_init() and module_exit().
301  */
302 #define module_dsa_tag_driver(__ops)					\
303 DSA_TAG_DRIVER(__ops);							\
304 									\
305 static struct dsa_tag_driver *dsa_tag_driver_array[] =	{		\
306 	&DSA_TAG_DRIVER_NAME(__ops)					\
307 };									\
308 module_dsa_tag_drivers(dsa_tag_driver_array)
309 
310 #endif
311