xref: /linux/net/dsa/dsa.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DSA topology and switch handling
4  *
5  * Copyright (c) 2008-2009 Marvell Semiconductor
6  * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/slab.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/of.h>
18 #include <linux/of_net.h>
19 #include <net/dsa_stubs.h>
20 #include <net/sch_generic.h>
21 
22 #include "conduit.h"
23 #include "devlink.h"
24 #include "dsa.h"
25 #include "netlink.h"
26 #include "port.h"
27 #include "switch.h"
28 #include "tag.h"
29 #include "user.h"
30 
31 #define DSA_MAX_NUM_OFFLOADING_BRIDGES		BITS_PER_LONG
32 
33 static DEFINE_MUTEX(dsa2_mutex);
34 LIST_HEAD(dsa_tree_list);
35 
36 static struct workqueue_struct *dsa_owq;
37 
38 /* Track the bridges with forwarding offload enabled */
39 static unsigned long dsa_fwd_offloading_bridges;
40 
41 bool dsa_schedule_work(struct work_struct *work)
42 {
43 	return queue_work(dsa_owq, work);
44 }
45 
46 void dsa_flush_workqueue(void)
47 {
48 	flush_workqueue(dsa_owq);
49 }
50 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51 
52 /**
53  * dsa_lag_map() - Map LAG structure to a linear LAG array
54  * @dst: Tree in which to record the mapping.
55  * @lag: LAG structure that is to be mapped to the tree's array.
56  *
57  * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58  * two spaces. The size of the mapping space is determined by the
59  * driver by setting ds->num_lag_ids. It is perfectly legal to leave
60  * it unset if it is not needed, in which case these functions become
61  * no-ops.
62  */
63 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64 {
65 	unsigned int id;
66 
67 	for (id = 1; id <= dst->lags_len; id++) {
68 		if (!dsa_lag_by_id(dst, id)) {
69 			dst->lags[id - 1] = lag;
70 			lag->id = id;
71 			return;
72 		}
73 	}
74 
75 	/* No IDs left, which is OK. Some drivers do not need it. The
76 	 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77 	 * returns an error for this device when joining the LAG. The
78 	 * driver can then return -EOPNOTSUPP back to DSA, which will
79 	 * fall back to a software LAG.
80 	 */
81 }
82 
83 /**
84  * dsa_lag_unmap() - Remove a LAG ID mapping
85  * @dst: Tree in which the mapping is recorded.
86  * @lag: LAG structure that was mapped.
87  *
88  * As there may be multiple users of the mapping, it is only removed
89  * if there are no other references to it.
90  */
91 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92 {
93 	unsigned int id;
94 
95 	dsa_lags_foreach_id(id, dst) {
96 		if (dsa_lag_by_id(dst, id) == lag) {
97 			dst->lags[id - 1] = NULL;
98 			lag->id = 0;
99 			break;
100 		}
101 	}
102 }
103 
104 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105 				  const struct net_device *lag_dev)
106 {
107 	struct dsa_port *dp;
108 
109 	list_for_each_entry(dp, &dst->ports, list)
110 		if (dsa_port_lag_dev_get(dp) == lag_dev)
111 			return dp->lag;
112 
113 	return NULL;
114 }
115 
116 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117 					const struct net_device *br)
118 {
119 	struct dsa_port *dp;
120 
121 	list_for_each_entry(dp, &dst->ports, list)
122 		if (dsa_port_bridge_dev_get(dp) == br)
123 			return dp->bridge;
124 
125 	return NULL;
126 }
127 
128 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129 {
130 	struct dsa_switch_tree *dst;
131 
132 	list_for_each_entry(dst, &dsa_tree_list, list) {
133 		struct dsa_bridge *bridge;
134 
135 		bridge = dsa_tree_bridge_find(dst, bridge_dev);
136 		if (bridge)
137 			return bridge->num;
138 	}
139 
140 	return 0;
141 }
142 
143 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144 {
145 	unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146 
147 	/* Switches without FDB isolation support don't get unique
148 	 * bridge numbering
149 	 */
150 	if (!max)
151 		return 0;
152 
153 	if (!bridge_num) {
154 		/* First port that requests FDB isolation or TX forwarding
155 		 * offload for this bridge
156 		 */
157 		bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
158 						DSA_MAX_NUM_OFFLOADING_BRIDGES,
159 						1);
160 		if (bridge_num >= max)
161 			return 0;
162 
163 		set_bit(bridge_num, &dsa_fwd_offloading_bridges);
164 	}
165 
166 	return bridge_num;
167 }
168 
169 void dsa_bridge_num_put(const struct net_device *bridge_dev,
170 			unsigned int bridge_num)
171 {
172 	/* Since we refcount bridges, we know that when we call this function
173 	 * it is no longer in use, so we can just go ahead and remove it from
174 	 * the bit mask.
175 	 */
176 	clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
177 }
178 
179 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180 {
181 	struct dsa_switch_tree *dst;
182 	struct dsa_port *dp;
183 
184 	list_for_each_entry(dst, &dsa_tree_list, list) {
185 		if (dst->index != tree_index)
186 			continue;
187 
188 		list_for_each_entry(dp, &dst->ports, list) {
189 			if (dp->ds->index != sw_index)
190 				continue;
191 
192 			return dp->ds;
193 		}
194 	}
195 
196 	return NULL;
197 }
198 EXPORT_SYMBOL_GPL(dsa_switch_find);
199 
200 static struct dsa_switch_tree *dsa_tree_find(int index)
201 {
202 	struct dsa_switch_tree *dst;
203 
204 	list_for_each_entry(dst, &dsa_tree_list, list)
205 		if (dst->index == index)
206 			return dst;
207 
208 	return NULL;
209 }
210 
211 static struct dsa_switch_tree *dsa_tree_alloc(int index)
212 {
213 	struct dsa_switch_tree *dst;
214 
215 	dst = kzalloc(sizeof(*dst), GFP_KERNEL);
216 	if (!dst)
217 		return NULL;
218 
219 	dst->index = index;
220 
221 	INIT_LIST_HEAD(&dst->rtable);
222 
223 	INIT_LIST_HEAD(&dst->ports);
224 
225 	INIT_LIST_HEAD(&dst->list);
226 	list_add_tail(&dst->list, &dsa_tree_list);
227 
228 	kref_init(&dst->refcount);
229 
230 	return dst;
231 }
232 
233 static void dsa_tree_free(struct dsa_switch_tree *dst)
234 {
235 	if (dst->tag_ops)
236 		dsa_tag_driver_put(dst->tag_ops);
237 	list_del(&dst->list);
238 	kfree(dst);
239 }
240 
241 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242 {
243 	if (dst)
244 		kref_get(&dst->refcount);
245 
246 	return dst;
247 }
248 
249 static struct dsa_switch_tree *dsa_tree_touch(int index)
250 {
251 	struct dsa_switch_tree *dst;
252 
253 	dst = dsa_tree_find(index);
254 	if (dst)
255 		return dsa_tree_get(dst);
256 	else
257 		return dsa_tree_alloc(index);
258 }
259 
260 static void dsa_tree_release(struct kref *ref)
261 {
262 	struct dsa_switch_tree *dst;
263 
264 	dst = container_of(ref, struct dsa_switch_tree, refcount);
265 
266 	dsa_tree_free(dst);
267 }
268 
269 static void dsa_tree_put(struct dsa_switch_tree *dst)
270 {
271 	if (dst)
272 		kref_put(&dst->refcount, dsa_tree_release);
273 }
274 
275 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276 						   struct device_node *dn)
277 {
278 	struct dsa_port *dp;
279 
280 	list_for_each_entry(dp, &dst->ports, list)
281 		if (dp->dn == dn)
282 			return dp;
283 
284 	return NULL;
285 }
286 
287 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288 				       struct dsa_port *link_dp)
289 {
290 	struct dsa_switch *ds = dp->ds;
291 	struct dsa_switch_tree *dst;
292 	struct dsa_link *dl;
293 
294 	dst = ds->dst;
295 
296 	list_for_each_entry(dl, &dst->rtable, list)
297 		if (dl->dp == dp && dl->link_dp == link_dp)
298 			return dl;
299 
300 	dl = kzalloc(sizeof(*dl), GFP_KERNEL);
301 	if (!dl)
302 		return NULL;
303 
304 	dl->dp = dp;
305 	dl->link_dp = link_dp;
306 
307 	INIT_LIST_HEAD(&dl->list);
308 	list_add_tail(&dl->list, &dst->rtable);
309 
310 	return dl;
311 }
312 
313 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314 {
315 	struct dsa_switch *ds = dp->ds;
316 	struct dsa_switch_tree *dst = ds->dst;
317 	struct device_node *dn = dp->dn;
318 	struct of_phandle_iterator it;
319 	struct dsa_port *link_dp;
320 	struct dsa_link *dl;
321 	int err;
322 
323 	of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324 		link_dp = dsa_tree_find_port_by_node(dst, it.node);
325 		if (!link_dp) {
326 			of_node_put(it.node);
327 			return false;
328 		}
329 
330 		dl = dsa_link_touch(dp, link_dp);
331 		if (!dl) {
332 			of_node_put(it.node);
333 			return false;
334 		}
335 	}
336 
337 	return true;
338 }
339 
340 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341 {
342 	bool complete = true;
343 	struct dsa_port *dp;
344 
345 	list_for_each_entry(dp, &dst->ports, list) {
346 		if (dsa_port_is_dsa(dp)) {
347 			complete = dsa_port_setup_routing_table(dp);
348 			if (!complete)
349 				break;
350 		}
351 	}
352 
353 	return complete;
354 }
355 
356 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357 {
358 	struct dsa_port *dp;
359 
360 	list_for_each_entry(dp, &dst->ports, list)
361 		if (dsa_port_is_cpu(dp))
362 			return dp;
363 
364 	return NULL;
365 }
366 
367 struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
368 {
369 	struct device_node *ethernet;
370 	struct net_device *conduit;
371 	struct dsa_port *cpu_dp;
372 
373 	cpu_dp = dsa_tree_find_first_cpu(dst);
374 	ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
375 	conduit = of_find_net_device_by_node(ethernet);
376 	of_node_put(ethernet);
377 
378 	return conduit;
379 }
380 
381 /* Assign the default CPU port (the first one in the tree) to all ports of the
382  * fabric which don't already have one as part of their own switch.
383  */
384 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385 {
386 	struct dsa_port *cpu_dp, *dp;
387 
388 	cpu_dp = dsa_tree_find_first_cpu(dst);
389 	if (!cpu_dp) {
390 		pr_err("DSA: tree %d has no CPU port\n", dst->index);
391 		return -EINVAL;
392 	}
393 
394 	list_for_each_entry(dp, &dst->ports, list) {
395 		if (dp->cpu_dp)
396 			continue;
397 
398 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
399 			dp->cpu_dp = cpu_dp;
400 	}
401 
402 	return 0;
403 }
404 
405 static struct dsa_port *
406 dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp;
409 
410 	if (!ds->ops->preferred_default_local_cpu_port)
411 		return NULL;
412 
413 	cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
414 	if (!cpu_dp)
415 		return NULL;
416 
417 	if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
418 		return NULL;
419 
420 	return cpu_dp;
421 }
422 
423 /* Perform initial assignment of CPU ports to user ports and DSA links in the
424  * fabric, giving preference to CPU ports local to each switch. Default to
425  * using the first CPU port in the switch tree if the port does not have a CPU
426  * port local to this switch.
427  */
428 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
429 {
430 	struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
431 
432 	list_for_each_entry(cpu_dp, &dst->ports, list) {
433 		if (!dsa_port_is_cpu(cpu_dp))
434 			continue;
435 
436 		preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
437 		if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
438 			continue;
439 
440 		/* Prefer a local CPU port */
441 		dsa_switch_for_each_port(dp, cpu_dp->ds) {
442 			/* Prefer the first local CPU port found */
443 			if (dp->cpu_dp)
444 				continue;
445 
446 			if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
447 				dp->cpu_dp = cpu_dp;
448 		}
449 	}
450 
451 	return dsa_tree_setup_default_cpu(dst);
452 }
453 
454 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
455 {
456 	struct dsa_port *dp;
457 
458 	list_for_each_entry(dp, &dst->ports, list)
459 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
460 			dp->cpu_dp = NULL;
461 }
462 
463 static int dsa_port_setup(struct dsa_port *dp)
464 {
465 	bool dsa_port_link_registered = false;
466 	struct dsa_switch *ds = dp->ds;
467 	bool dsa_port_enabled = false;
468 	int err = 0;
469 
470 	if (dp->setup)
471 		return 0;
472 
473 	err = dsa_port_devlink_setup(dp);
474 	if (err)
475 		return err;
476 
477 	switch (dp->type) {
478 	case DSA_PORT_TYPE_UNUSED:
479 		dsa_port_disable(dp);
480 		break;
481 	case DSA_PORT_TYPE_CPU:
482 		if (dp->dn) {
483 			err = dsa_shared_port_link_register_of(dp);
484 			if (err)
485 				break;
486 			dsa_port_link_registered = true;
487 		} else {
488 			dev_warn(ds->dev,
489 				 "skipping link registration for CPU port %d\n",
490 				 dp->index);
491 		}
492 
493 		err = dsa_port_enable(dp, NULL);
494 		if (err)
495 			break;
496 		dsa_port_enabled = true;
497 
498 		break;
499 	case DSA_PORT_TYPE_DSA:
500 		if (dp->dn) {
501 			err = dsa_shared_port_link_register_of(dp);
502 			if (err)
503 				break;
504 			dsa_port_link_registered = true;
505 		} else {
506 			dev_warn(ds->dev,
507 				 "skipping link registration for DSA port %d\n",
508 				 dp->index);
509 		}
510 
511 		err = dsa_port_enable(dp, NULL);
512 		if (err)
513 			break;
514 		dsa_port_enabled = true;
515 
516 		break;
517 	case DSA_PORT_TYPE_USER:
518 		of_get_mac_address(dp->dn, dp->mac);
519 		err = dsa_user_create(dp);
520 		break;
521 	}
522 
523 	if (err && dsa_port_enabled)
524 		dsa_port_disable(dp);
525 	if (err && dsa_port_link_registered)
526 		dsa_shared_port_link_unregister_of(dp);
527 	if (err) {
528 		dsa_port_devlink_teardown(dp);
529 		return err;
530 	}
531 
532 	dp->setup = true;
533 
534 	return 0;
535 }
536 
537 static void dsa_port_teardown(struct dsa_port *dp)
538 {
539 	if (!dp->setup)
540 		return;
541 
542 	switch (dp->type) {
543 	case DSA_PORT_TYPE_UNUSED:
544 		break;
545 	case DSA_PORT_TYPE_CPU:
546 		dsa_port_disable(dp);
547 		if (dp->dn)
548 			dsa_shared_port_link_unregister_of(dp);
549 		break;
550 	case DSA_PORT_TYPE_DSA:
551 		dsa_port_disable(dp);
552 		if (dp->dn)
553 			dsa_shared_port_link_unregister_of(dp);
554 		break;
555 	case DSA_PORT_TYPE_USER:
556 		if (dp->user) {
557 			dsa_user_destroy(dp->user);
558 			dp->user = NULL;
559 		}
560 		break;
561 	}
562 
563 	dsa_port_devlink_teardown(dp);
564 
565 	dp->setup = false;
566 }
567 
568 static int dsa_port_setup_as_unused(struct dsa_port *dp)
569 {
570 	dp->type = DSA_PORT_TYPE_UNUSED;
571 	return dsa_port_setup(dp);
572 }
573 
574 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
575 {
576 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
577 	struct dsa_switch_tree *dst = ds->dst;
578 	int err;
579 
580 	if (tag_ops->proto == dst->default_proto)
581 		goto connect;
582 
583 	rtnl_lock();
584 	err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
585 	rtnl_unlock();
586 	if (err) {
587 		dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
588 			tag_ops->name, ERR_PTR(err));
589 		return err;
590 	}
591 
592 connect:
593 	if (tag_ops->connect) {
594 		err = tag_ops->connect(ds);
595 		if (err)
596 			return err;
597 	}
598 
599 	if (ds->ops->connect_tag_protocol) {
600 		err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
601 		if (err) {
602 			dev_err(ds->dev,
603 				"Unable to connect to tag protocol \"%s\": %pe\n",
604 				tag_ops->name, ERR_PTR(err));
605 			goto disconnect;
606 		}
607 	}
608 
609 	return 0;
610 
611 disconnect:
612 	if (tag_ops->disconnect)
613 		tag_ops->disconnect(ds);
614 
615 	return err;
616 }
617 
618 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
619 {
620 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
621 
622 	if (tag_ops->disconnect)
623 		tag_ops->disconnect(ds);
624 }
625 
626 static int dsa_switch_setup(struct dsa_switch *ds)
627 {
628 	int err;
629 
630 	if (ds->setup)
631 		return 0;
632 
633 	/* Initialize ds->phys_mii_mask before registering the user MDIO bus
634 	 * driver and before ops->setup() has run, since the switch drivers and
635 	 * the user MDIO bus driver rely on these values for probing PHY
636 	 * devices or not
637 	 */
638 	ds->phys_mii_mask |= dsa_user_ports(ds);
639 
640 	err = dsa_switch_devlink_alloc(ds);
641 	if (err)
642 		return err;
643 
644 	err = dsa_switch_register_notifier(ds);
645 	if (err)
646 		goto devlink_free;
647 
648 	ds->configure_vlan_while_not_filtering = true;
649 
650 	err = ds->ops->setup(ds);
651 	if (err < 0)
652 		goto unregister_notifier;
653 
654 	err = dsa_switch_setup_tag_protocol(ds);
655 	if (err)
656 		goto teardown;
657 
658 	if (!ds->user_mii_bus && ds->ops->phy_read) {
659 		ds->user_mii_bus = mdiobus_alloc();
660 		if (!ds->user_mii_bus) {
661 			err = -ENOMEM;
662 			goto teardown;
663 		}
664 
665 		dsa_user_mii_bus_init(ds);
666 
667 		err = mdiobus_register(ds->user_mii_bus);
668 		if (err < 0)
669 			goto free_user_mii_bus;
670 	}
671 
672 	dsa_switch_devlink_register(ds);
673 
674 	ds->setup = true;
675 	return 0;
676 
677 free_user_mii_bus:
678 	if (ds->user_mii_bus && ds->ops->phy_read)
679 		mdiobus_free(ds->user_mii_bus);
680 teardown:
681 	if (ds->ops->teardown)
682 		ds->ops->teardown(ds);
683 unregister_notifier:
684 	dsa_switch_unregister_notifier(ds);
685 devlink_free:
686 	dsa_switch_devlink_free(ds);
687 	return err;
688 }
689 
690 static void dsa_switch_teardown(struct dsa_switch *ds)
691 {
692 	if (!ds->setup)
693 		return;
694 
695 	dsa_switch_devlink_unregister(ds);
696 
697 	if (ds->user_mii_bus && ds->ops->phy_read) {
698 		mdiobus_unregister(ds->user_mii_bus);
699 		mdiobus_free(ds->user_mii_bus);
700 		ds->user_mii_bus = NULL;
701 	}
702 
703 	dsa_switch_teardown_tag_protocol(ds);
704 
705 	if (ds->ops->teardown)
706 		ds->ops->teardown(ds);
707 
708 	dsa_switch_unregister_notifier(ds);
709 
710 	dsa_switch_devlink_free(ds);
711 
712 	ds->setup = false;
713 }
714 
715 /* First tear down the non-shared, then the shared ports. This ensures that
716  * all work items scheduled by our switchdev handlers for user ports have
717  * completed before we destroy the refcounting kept on the shared ports.
718  */
719 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
720 {
721 	struct dsa_port *dp;
722 
723 	list_for_each_entry(dp, &dst->ports, list)
724 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
725 			dsa_port_teardown(dp);
726 
727 	dsa_flush_workqueue();
728 
729 	list_for_each_entry(dp, &dst->ports, list)
730 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
731 			dsa_port_teardown(dp);
732 }
733 
734 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
735 {
736 	struct dsa_port *dp;
737 
738 	list_for_each_entry(dp, &dst->ports, list)
739 		dsa_switch_teardown(dp->ds);
740 }
741 
742 /* Bring shared ports up first, then non-shared ports */
743 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
744 {
745 	struct dsa_port *dp;
746 	int err = 0;
747 
748 	list_for_each_entry(dp, &dst->ports, list) {
749 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
750 			err = dsa_port_setup(dp);
751 			if (err)
752 				goto teardown;
753 		}
754 	}
755 
756 	list_for_each_entry(dp, &dst->ports, list) {
757 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
758 			err = dsa_port_setup(dp);
759 			if (err) {
760 				err = dsa_port_setup_as_unused(dp);
761 				if (err)
762 					goto teardown;
763 			}
764 		}
765 	}
766 
767 	return 0;
768 
769 teardown:
770 	dsa_tree_teardown_ports(dst);
771 
772 	return err;
773 }
774 
775 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
776 {
777 	struct dsa_port *dp;
778 	int err = 0;
779 
780 	list_for_each_entry(dp, &dst->ports, list) {
781 		err = dsa_switch_setup(dp->ds);
782 		if (err) {
783 			dsa_tree_teardown_switches(dst);
784 			break;
785 		}
786 	}
787 
788 	return err;
789 }
790 
791 static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
792 {
793 	struct dsa_port *cpu_dp;
794 	int err = 0;
795 
796 	rtnl_lock();
797 
798 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
799 		struct net_device *conduit = cpu_dp->conduit;
800 		bool admin_up = (conduit->flags & IFF_UP) &&
801 				!qdisc_tx_is_noop(conduit);
802 
803 		err = dsa_conduit_setup(conduit, cpu_dp);
804 		if (err)
805 			break;
806 
807 		/* Replay conduit state event */
808 		dsa_tree_conduit_admin_state_change(dst, conduit, admin_up);
809 		dsa_tree_conduit_oper_state_change(dst, conduit,
810 						   netif_oper_up(conduit));
811 	}
812 
813 	rtnl_unlock();
814 
815 	return err;
816 }
817 
818 static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
819 {
820 	struct dsa_port *cpu_dp;
821 
822 	rtnl_lock();
823 
824 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
825 		struct net_device *conduit = cpu_dp->conduit;
826 
827 		/* Synthesizing an "admin down" state is sufficient for
828 		 * the switches to get a notification if the conduit is
829 		 * currently up and running.
830 		 */
831 		dsa_tree_conduit_admin_state_change(dst, conduit, false);
832 
833 		dsa_conduit_teardown(conduit);
834 	}
835 
836 	rtnl_unlock();
837 }
838 
839 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
840 {
841 	unsigned int len = 0;
842 	struct dsa_port *dp;
843 
844 	list_for_each_entry(dp, &dst->ports, list) {
845 		if (dp->ds->num_lag_ids > len)
846 			len = dp->ds->num_lag_ids;
847 	}
848 
849 	if (!len)
850 		return 0;
851 
852 	dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
853 	if (!dst->lags)
854 		return -ENOMEM;
855 
856 	dst->lags_len = len;
857 	return 0;
858 }
859 
860 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
861 {
862 	kfree(dst->lags);
863 }
864 
865 static int dsa_tree_setup(struct dsa_switch_tree *dst)
866 {
867 	bool complete;
868 	int err;
869 
870 	if (dst->setup) {
871 		pr_err("DSA: tree %d already setup! Disjoint trees?\n",
872 		       dst->index);
873 		return -EEXIST;
874 	}
875 
876 	complete = dsa_tree_setup_routing_table(dst);
877 	if (!complete)
878 		return 0;
879 
880 	err = dsa_tree_setup_cpu_ports(dst);
881 	if (err)
882 		return err;
883 
884 	err = dsa_tree_setup_switches(dst);
885 	if (err)
886 		goto teardown_cpu_ports;
887 
888 	err = dsa_tree_setup_ports(dst);
889 	if (err)
890 		goto teardown_switches;
891 
892 	err = dsa_tree_setup_conduit(dst);
893 	if (err)
894 		goto teardown_ports;
895 
896 	err = dsa_tree_setup_lags(dst);
897 	if (err)
898 		goto teardown_conduit;
899 
900 	dst->setup = true;
901 
902 	pr_info("DSA: tree %d setup\n", dst->index);
903 
904 	return 0;
905 
906 teardown_conduit:
907 	dsa_tree_teardown_conduit(dst);
908 teardown_ports:
909 	dsa_tree_teardown_ports(dst);
910 teardown_switches:
911 	dsa_tree_teardown_switches(dst);
912 teardown_cpu_ports:
913 	dsa_tree_teardown_cpu_ports(dst);
914 
915 	return err;
916 }
917 
918 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
919 {
920 	struct dsa_link *dl, *next;
921 
922 	if (!dst->setup)
923 		return;
924 
925 	dsa_tree_teardown_lags(dst);
926 
927 	dsa_tree_teardown_conduit(dst);
928 
929 	dsa_tree_teardown_ports(dst);
930 
931 	dsa_tree_teardown_switches(dst);
932 
933 	dsa_tree_teardown_cpu_ports(dst);
934 
935 	list_for_each_entry_safe(dl, next, &dst->rtable, list) {
936 		list_del(&dl->list);
937 		kfree(dl);
938 	}
939 
940 	pr_info("DSA: tree %d torn down\n", dst->index);
941 
942 	dst->setup = false;
943 }
944 
945 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
946 				   const struct dsa_device_ops *tag_ops)
947 {
948 	const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
949 	struct dsa_notifier_tag_proto_info info;
950 	int err;
951 
952 	dst->tag_ops = tag_ops;
953 
954 	/* Notify the switches from this tree about the connection
955 	 * to the new tagger
956 	 */
957 	info.tag_ops = tag_ops;
958 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
959 	if (err && err != -EOPNOTSUPP)
960 		goto out_disconnect;
961 
962 	/* Notify the old tagger about the disconnection from this tree */
963 	info.tag_ops = old_tag_ops;
964 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
965 
966 	return 0;
967 
968 out_disconnect:
969 	info.tag_ops = tag_ops;
970 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
971 	dst->tag_ops = old_tag_ops;
972 
973 	return err;
974 }
975 
976 /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
977  * is that all DSA switches within a tree share the same tagger, otherwise
978  * they would have formed disjoint trees (different "dsa,member" values).
979  */
980 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
981 			      const struct dsa_device_ops *tag_ops,
982 			      const struct dsa_device_ops *old_tag_ops)
983 {
984 	struct dsa_notifier_tag_proto_info info;
985 	struct dsa_port *dp;
986 	int err = -EBUSY;
987 
988 	if (!rtnl_trylock())
989 		return restart_syscall();
990 
991 	/* At the moment we don't allow changing the tag protocol under
992 	 * traffic. The rtnl_mutex also happens to serialize concurrent
993 	 * attempts to change the tagging protocol. If we ever lift the IFF_UP
994 	 * restriction, there needs to be another mutex which serializes this.
995 	 */
996 	dsa_tree_for_each_user_port(dp, dst) {
997 		if (dsa_port_to_conduit(dp)->flags & IFF_UP)
998 			goto out_unlock;
999 
1000 		if (dp->user->flags & IFF_UP)
1001 			goto out_unlock;
1002 	}
1003 
1004 	/* Notify the tag protocol change */
1005 	info.tag_ops = tag_ops;
1006 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1007 	if (err)
1008 		goto out_unwind_tagger;
1009 
1010 	err = dsa_tree_bind_tag_proto(dst, tag_ops);
1011 	if (err)
1012 		goto out_unwind_tagger;
1013 
1014 	rtnl_unlock();
1015 
1016 	return 0;
1017 
1018 out_unwind_tagger:
1019 	info.tag_ops = old_tag_ops;
1020 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1021 out_unlock:
1022 	rtnl_unlock();
1023 	return err;
1024 }
1025 
1026 static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1027 					  struct net_device *conduit)
1028 {
1029 	struct dsa_notifier_conduit_state_info info;
1030 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1031 
1032 	info.conduit = conduit;
1033 	info.operational = dsa_port_conduit_is_operational(cpu_dp);
1034 
1035 	dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info);
1036 }
1037 
1038 void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1039 					 struct net_device *conduit,
1040 					 bool up)
1041 {
1042 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1043 	bool notify = false;
1044 
1045 	/* Don't keep track of admin state on LAG DSA conduits,
1046 	 * but rather just of physical DSA conduits
1047 	 */
1048 	if (netif_is_lag_master(conduit))
1049 		return;
1050 
1051 	if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1052 	    (up && cpu_dp->conduit_oper_up))
1053 		notify = true;
1054 
1055 	cpu_dp->conduit_admin_up = up;
1056 
1057 	if (notify)
1058 		dsa_tree_conduit_state_change(dst, conduit);
1059 }
1060 
1061 void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1062 					struct net_device *conduit,
1063 					bool up)
1064 {
1065 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1066 	bool notify = false;
1067 
1068 	/* Don't keep track of oper state on LAG DSA conduits,
1069 	 * but rather just of physical DSA conduits
1070 	 */
1071 	if (netif_is_lag_master(conduit))
1072 		return;
1073 
1074 	if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1075 	    (cpu_dp->conduit_admin_up && up))
1076 		notify = true;
1077 
1078 	cpu_dp->conduit_oper_up = up;
1079 
1080 	if (notify)
1081 		dsa_tree_conduit_state_change(dst, conduit);
1082 }
1083 
1084 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1085 {
1086 	struct dsa_switch_tree *dst = ds->dst;
1087 	struct dsa_port *dp;
1088 
1089 	dsa_switch_for_each_port(dp, ds)
1090 		if (dp->index == index)
1091 			return dp;
1092 
1093 	dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1094 	if (!dp)
1095 		return NULL;
1096 
1097 	dp->ds = ds;
1098 	dp->index = index;
1099 
1100 	mutex_init(&dp->addr_lists_lock);
1101 	mutex_init(&dp->vlans_lock);
1102 	INIT_LIST_HEAD(&dp->fdbs);
1103 	INIT_LIST_HEAD(&dp->mdbs);
1104 	INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1105 	INIT_LIST_HEAD(&dp->list);
1106 	list_add_tail(&dp->list, &dst->ports);
1107 
1108 	return dp;
1109 }
1110 
1111 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1112 {
1113 	dp->type = DSA_PORT_TYPE_USER;
1114 	dp->name = name;
1115 
1116 	return 0;
1117 }
1118 
1119 static int dsa_port_parse_dsa(struct dsa_port *dp)
1120 {
1121 	dp->type = DSA_PORT_TYPE_DSA;
1122 
1123 	return 0;
1124 }
1125 
1126 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1127 						  struct net_device *conduit)
1128 {
1129 	enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1130 	struct dsa_switch *mds, *ds = dp->ds;
1131 	unsigned int mdp_upstream;
1132 	struct dsa_port *mdp;
1133 
1134 	/* It is possible to stack DSA switches onto one another when that
1135 	 * happens the switch driver may want to know if its tagging protocol
1136 	 * is going to work in such a configuration.
1137 	 */
1138 	if (dsa_user_dev_check(conduit)) {
1139 		mdp = dsa_user_to_port(conduit);
1140 		mds = mdp->ds;
1141 		mdp_upstream = dsa_upstream_port(mds, mdp->index);
1142 		tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1143 							  DSA_TAG_PROTO_NONE);
1144 	}
1145 
1146 	/* If the conduit device is not itself a DSA user in a disjoint DSA
1147 	 * tree, then return immediately.
1148 	 */
1149 	return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1150 }
1151 
1152 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1153 			      const char *user_protocol)
1154 {
1155 	const struct dsa_device_ops *tag_ops = NULL;
1156 	struct dsa_switch *ds = dp->ds;
1157 	struct dsa_switch_tree *dst = ds->dst;
1158 	enum dsa_tag_protocol default_proto;
1159 
1160 	/* Find out which protocol the switch would prefer. */
1161 	default_proto = dsa_get_tag_protocol(dp, conduit);
1162 	if (dst->default_proto) {
1163 		if (dst->default_proto != default_proto) {
1164 			dev_err(ds->dev,
1165 				"A DSA switch tree can have only one tagging protocol\n");
1166 			return -EINVAL;
1167 		}
1168 	} else {
1169 		dst->default_proto = default_proto;
1170 	}
1171 
1172 	/* See if the user wants to override that preference. */
1173 	if (user_protocol) {
1174 		if (!ds->ops->change_tag_protocol) {
1175 			dev_err(ds->dev, "Tag protocol cannot be modified\n");
1176 			return -EINVAL;
1177 		}
1178 
1179 		tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1180 		if (IS_ERR(tag_ops)) {
1181 			dev_warn(ds->dev,
1182 				 "Failed to find a tagging driver for protocol %s, using default\n",
1183 				 user_protocol);
1184 			tag_ops = NULL;
1185 		}
1186 	}
1187 
1188 	if (!tag_ops)
1189 		tag_ops = dsa_tag_driver_get_by_id(default_proto);
1190 
1191 	if (IS_ERR(tag_ops)) {
1192 		if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1193 			return -EPROBE_DEFER;
1194 
1195 		dev_warn(ds->dev, "No tagger for this switch\n");
1196 		return PTR_ERR(tag_ops);
1197 	}
1198 
1199 	if (dst->tag_ops) {
1200 		if (dst->tag_ops != tag_ops) {
1201 			dev_err(ds->dev,
1202 				"A DSA switch tree can have only one tagging protocol\n");
1203 
1204 			dsa_tag_driver_put(tag_ops);
1205 			return -EINVAL;
1206 		}
1207 
1208 		/* In the case of multiple CPU ports per switch, the tagging
1209 		 * protocol is still reference-counted only per switch tree.
1210 		 */
1211 		dsa_tag_driver_put(tag_ops);
1212 	} else {
1213 		dst->tag_ops = tag_ops;
1214 	}
1215 
1216 	dp->conduit = conduit;
1217 	dp->type = DSA_PORT_TYPE_CPU;
1218 	dsa_port_set_tag_protocol(dp, dst->tag_ops);
1219 	dp->dst = dst;
1220 
1221 	/* At this point, the tree may be configured to use a different
1222 	 * tagger than the one chosen by the switch driver during
1223 	 * .setup, in the case when a user selects a custom protocol
1224 	 * through the DT.
1225 	 *
1226 	 * This is resolved by syncing the driver with the tree in
1227 	 * dsa_switch_setup_tag_protocol once .setup has run and the
1228 	 * driver is ready to accept calls to .change_tag_protocol. If
1229 	 * the driver does not support the custom protocol at that
1230 	 * point, the tree is wholly rejected, thereby ensuring that the
1231 	 * tree and driver are always in agreement on the protocol to
1232 	 * use.
1233 	 */
1234 	return 0;
1235 }
1236 
1237 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1238 {
1239 	struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1240 	const char *name = of_get_property(dn, "label", NULL);
1241 	bool link = of_property_read_bool(dn, "link");
1242 
1243 	dp->dn = dn;
1244 
1245 	if (ethernet) {
1246 		struct net_device *conduit;
1247 		const char *user_protocol;
1248 
1249 		conduit = of_find_net_device_by_node(ethernet);
1250 		of_node_put(ethernet);
1251 		if (!conduit)
1252 			return -EPROBE_DEFER;
1253 
1254 		user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1255 		return dsa_port_parse_cpu(dp, conduit, user_protocol);
1256 	}
1257 
1258 	if (link)
1259 		return dsa_port_parse_dsa(dp);
1260 
1261 	return dsa_port_parse_user(dp, name);
1262 }
1263 
1264 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1265 				     struct device_node *dn)
1266 {
1267 	struct device_node *ports, *port;
1268 	struct dsa_port *dp;
1269 	int err = 0;
1270 	u32 reg;
1271 
1272 	ports = of_get_child_by_name(dn, "ports");
1273 	if (!ports) {
1274 		/* The second possibility is "ethernet-ports" */
1275 		ports = of_get_child_by_name(dn, "ethernet-ports");
1276 		if (!ports) {
1277 			dev_err(ds->dev, "no ports child node found\n");
1278 			return -EINVAL;
1279 		}
1280 	}
1281 
1282 	for_each_available_child_of_node(ports, port) {
1283 		err = of_property_read_u32(port, "reg", &reg);
1284 		if (err) {
1285 			of_node_put(port);
1286 			goto out_put_node;
1287 		}
1288 
1289 		if (reg >= ds->num_ports) {
1290 			dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1291 				port, reg, ds->num_ports);
1292 			of_node_put(port);
1293 			err = -EINVAL;
1294 			goto out_put_node;
1295 		}
1296 
1297 		dp = dsa_to_port(ds, reg);
1298 
1299 		err = dsa_port_parse_of(dp, port);
1300 		if (err) {
1301 			of_node_put(port);
1302 			goto out_put_node;
1303 		}
1304 	}
1305 
1306 out_put_node:
1307 	of_node_put(ports);
1308 	return err;
1309 }
1310 
1311 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1312 				      struct device_node *dn)
1313 {
1314 	u32 m[2] = { 0, 0 };
1315 	int sz;
1316 
1317 	/* Don't error out if this optional property isn't found */
1318 	sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1319 	if (sz < 0 && sz != -EINVAL)
1320 		return sz;
1321 
1322 	ds->index = m[1];
1323 
1324 	ds->dst = dsa_tree_touch(m[0]);
1325 	if (!ds->dst)
1326 		return -ENOMEM;
1327 
1328 	if (dsa_switch_find(ds->dst->index, ds->index)) {
1329 		dev_err(ds->dev,
1330 			"A DSA switch with index %d already exists in tree %d\n",
1331 			ds->index, ds->dst->index);
1332 		return -EEXIST;
1333 	}
1334 
1335 	if (ds->dst->last_switch < ds->index)
1336 		ds->dst->last_switch = ds->index;
1337 
1338 	return 0;
1339 }
1340 
1341 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1342 {
1343 	struct dsa_port *dp;
1344 	int port;
1345 
1346 	for (port = 0; port < ds->num_ports; port++) {
1347 		dp = dsa_port_touch(ds, port);
1348 		if (!dp)
1349 			return -ENOMEM;
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1356 {
1357 	int err;
1358 
1359 	err = dsa_switch_parse_member_of(ds, dn);
1360 	if (err)
1361 		return err;
1362 
1363 	err = dsa_switch_touch_ports(ds);
1364 	if (err)
1365 		return err;
1366 
1367 	return dsa_switch_parse_ports_of(ds, dn);
1368 }
1369 
1370 static int dev_is_class(struct device *dev, void *class)
1371 {
1372 	if (dev->class != NULL && !strcmp(dev->class->name, class))
1373 		return 1;
1374 
1375 	return 0;
1376 }
1377 
1378 static struct device *dev_find_class(struct device *parent, char *class)
1379 {
1380 	if (dev_is_class(parent, class)) {
1381 		get_device(parent);
1382 		return parent;
1383 	}
1384 
1385 	return device_find_child(parent, class, dev_is_class);
1386 }
1387 
1388 static struct net_device *dsa_dev_to_net_device(struct device *dev)
1389 {
1390 	struct device *d;
1391 
1392 	d = dev_find_class(dev, "net");
1393 	if (d != NULL) {
1394 		struct net_device *nd;
1395 
1396 		nd = to_net_dev(d);
1397 		dev_hold(nd);
1398 		put_device(d);
1399 
1400 		return nd;
1401 	}
1402 
1403 	return NULL;
1404 }
1405 
1406 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1407 			  struct device *dev)
1408 {
1409 	if (!strcmp(name, "cpu")) {
1410 		struct net_device *conduit;
1411 
1412 		conduit = dsa_dev_to_net_device(dev);
1413 		if (!conduit)
1414 			return -EPROBE_DEFER;
1415 
1416 		dev_put(conduit);
1417 
1418 		return dsa_port_parse_cpu(dp, conduit, NULL);
1419 	}
1420 
1421 	if (!strcmp(name, "dsa"))
1422 		return dsa_port_parse_dsa(dp);
1423 
1424 	return dsa_port_parse_user(dp, name);
1425 }
1426 
1427 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1428 				  struct dsa_chip_data *cd)
1429 {
1430 	bool valid_name_found = false;
1431 	struct dsa_port *dp;
1432 	struct device *dev;
1433 	const char *name;
1434 	unsigned int i;
1435 	int err;
1436 
1437 	for (i = 0; i < DSA_MAX_PORTS; i++) {
1438 		name = cd->port_names[i];
1439 		dev = cd->netdev[i];
1440 		dp = dsa_to_port(ds, i);
1441 
1442 		if (!name)
1443 			continue;
1444 
1445 		err = dsa_port_parse(dp, name, dev);
1446 		if (err)
1447 			return err;
1448 
1449 		valid_name_found = true;
1450 	}
1451 
1452 	if (!valid_name_found && i == DSA_MAX_PORTS)
1453 		return -EINVAL;
1454 
1455 	return 0;
1456 }
1457 
1458 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1459 {
1460 	int err;
1461 
1462 	ds->cd = cd;
1463 
1464 	/* We don't support interconnected switches nor multiple trees via
1465 	 * platform data, so this is the unique switch of the tree.
1466 	 */
1467 	ds->index = 0;
1468 	ds->dst = dsa_tree_touch(0);
1469 	if (!ds->dst)
1470 		return -ENOMEM;
1471 
1472 	err = dsa_switch_touch_ports(ds);
1473 	if (err)
1474 		return err;
1475 
1476 	return dsa_switch_parse_ports(ds, cd);
1477 }
1478 
1479 static void dsa_switch_release_ports(struct dsa_switch *ds)
1480 {
1481 	struct dsa_port *dp, *next;
1482 
1483 	dsa_switch_for_each_port_safe(dp, next, ds) {
1484 		WARN_ON(!list_empty(&dp->fdbs));
1485 		WARN_ON(!list_empty(&dp->mdbs));
1486 		WARN_ON(!list_empty(&dp->vlans));
1487 		list_del(&dp->list);
1488 		kfree(dp);
1489 	}
1490 }
1491 
1492 static int dsa_switch_probe(struct dsa_switch *ds)
1493 {
1494 	struct dsa_switch_tree *dst;
1495 	struct dsa_chip_data *pdata;
1496 	struct device_node *np;
1497 	int err;
1498 
1499 	if (!ds->dev)
1500 		return -ENODEV;
1501 
1502 	pdata = ds->dev->platform_data;
1503 	np = ds->dev->of_node;
1504 
1505 	if (!ds->num_ports)
1506 		return -EINVAL;
1507 
1508 	if (ds->phylink_mac_ops) {
1509 		if (ds->ops->phylink_mac_select_pcs ||
1510 		    ds->ops->phylink_mac_config ||
1511 		    ds->ops->phylink_mac_link_down ||
1512 		    ds->ops->phylink_mac_link_up)
1513 			return -EINVAL;
1514 	}
1515 
1516 	if (np) {
1517 		err = dsa_switch_parse_of(ds, np);
1518 		if (err)
1519 			dsa_switch_release_ports(ds);
1520 	} else if (pdata) {
1521 		err = dsa_switch_parse(ds, pdata);
1522 		if (err)
1523 			dsa_switch_release_ports(ds);
1524 	} else {
1525 		err = -ENODEV;
1526 	}
1527 
1528 	if (err)
1529 		return err;
1530 
1531 	dst = ds->dst;
1532 	dsa_tree_get(dst);
1533 	err = dsa_tree_setup(dst);
1534 	if (err) {
1535 		dsa_switch_release_ports(ds);
1536 		dsa_tree_put(dst);
1537 	}
1538 
1539 	return err;
1540 }
1541 
1542 int dsa_register_switch(struct dsa_switch *ds)
1543 {
1544 	int err;
1545 
1546 	mutex_lock(&dsa2_mutex);
1547 	err = dsa_switch_probe(ds);
1548 	dsa_tree_put(ds->dst);
1549 	mutex_unlock(&dsa2_mutex);
1550 
1551 	return err;
1552 }
1553 EXPORT_SYMBOL_GPL(dsa_register_switch);
1554 
1555 static void dsa_switch_remove(struct dsa_switch *ds)
1556 {
1557 	struct dsa_switch_tree *dst = ds->dst;
1558 
1559 	dsa_tree_teardown(dst);
1560 	dsa_switch_release_ports(ds);
1561 	dsa_tree_put(dst);
1562 }
1563 
1564 void dsa_unregister_switch(struct dsa_switch *ds)
1565 {
1566 	mutex_lock(&dsa2_mutex);
1567 	dsa_switch_remove(ds);
1568 	mutex_unlock(&dsa2_mutex);
1569 }
1570 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1571 
1572 /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1573  * blocking that operation from completion, due to the dev_hold taken inside
1574  * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1575  * the DSA conduit, so that the system can reboot successfully.
1576  */
1577 void dsa_switch_shutdown(struct dsa_switch *ds)
1578 {
1579 	struct net_device *conduit, *user_dev;
1580 	LIST_HEAD(close_list);
1581 	struct dsa_port *dp;
1582 
1583 	mutex_lock(&dsa2_mutex);
1584 
1585 	if (!ds->setup)
1586 		goto out;
1587 
1588 	rtnl_lock();
1589 
1590 	dsa_switch_for_each_cpu_port(dp, ds)
1591 		list_add(&dp->conduit->close_list, &close_list);
1592 
1593 	dev_close_many(&close_list, true);
1594 
1595 	dsa_switch_for_each_user_port(dp, ds) {
1596 		conduit = dsa_port_to_conduit(dp);
1597 		user_dev = dp->user;
1598 
1599 		netif_device_detach(user_dev);
1600 		netdev_upper_dev_unlink(conduit, user_dev);
1601 	}
1602 
1603 	/* Disconnect from further netdevice notifiers on the conduit,
1604 	 * since netdev_uses_dsa() will now return false.
1605 	 */
1606 	dsa_switch_for_each_cpu_port(dp, ds)
1607 		dp->conduit->dsa_ptr = NULL;
1608 
1609 	rtnl_unlock();
1610 out:
1611 	mutex_unlock(&dsa2_mutex);
1612 }
1613 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1614 
1615 #ifdef CONFIG_PM_SLEEP
1616 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1617 {
1618 	return dp->type == DSA_PORT_TYPE_USER && dp->user;
1619 }
1620 
1621 int dsa_switch_suspend(struct dsa_switch *ds)
1622 {
1623 	struct dsa_port *dp;
1624 	int ret = 0;
1625 
1626 	/* Suspend user network devices */
1627 	dsa_switch_for_each_port(dp, ds) {
1628 		if (!dsa_port_is_initialized(dp))
1629 			continue;
1630 
1631 		ret = dsa_user_suspend(dp->user);
1632 		if (ret)
1633 			return ret;
1634 	}
1635 
1636 	if (ds->ops->suspend)
1637 		ret = ds->ops->suspend(ds);
1638 
1639 	return ret;
1640 }
1641 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1642 
1643 int dsa_switch_resume(struct dsa_switch *ds)
1644 {
1645 	struct dsa_port *dp;
1646 	int ret = 0;
1647 
1648 	if (ds->ops->resume)
1649 		ret = ds->ops->resume(ds);
1650 
1651 	if (ret)
1652 		return ret;
1653 
1654 	/* Resume user network devices */
1655 	dsa_switch_for_each_port(dp, ds) {
1656 		if (!dsa_port_is_initialized(dp))
1657 			continue;
1658 
1659 		ret = dsa_user_resume(dp->user);
1660 		if (ret)
1661 			return ret;
1662 	}
1663 
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1667 #endif
1668 
1669 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1670 {
1671 	if (!netdev || !dsa_user_dev_check(netdev))
1672 		return ERR_PTR(-ENODEV);
1673 
1674 	return dsa_user_to_port(netdev);
1675 }
1676 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1677 
1678 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1679 {
1680 	if (a->type != b->type)
1681 		return false;
1682 
1683 	switch (a->type) {
1684 	case DSA_DB_PORT:
1685 		return a->dp == b->dp;
1686 	case DSA_DB_LAG:
1687 		return a->lag.dev == b->lag.dev;
1688 	case DSA_DB_BRIDGE:
1689 		return a->bridge.num == b->bridge.num;
1690 	default:
1691 		WARN_ON(1);
1692 		return false;
1693 	}
1694 }
1695 
1696 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1697 				 const unsigned char *addr, u16 vid,
1698 				 struct dsa_db db)
1699 {
1700 	struct dsa_port *dp = dsa_to_port(ds, port);
1701 	struct dsa_mac_addr *a;
1702 
1703 	lockdep_assert_held(&dp->addr_lists_lock);
1704 
1705 	list_for_each_entry(a, &dp->fdbs, list) {
1706 		if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1707 			continue;
1708 
1709 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1710 			return true;
1711 	}
1712 
1713 	return false;
1714 }
1715 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1716 
1717 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1718 				 const struct switchdev_obj_port_mdb *mdb,
1719 				 struct dsa_db db)
1720 {
1721 	struct dsa_port *dp = dsa_to_port(ds, port);
1722 	struct dsa_mac_addr *a;
1723 
1724 	lockdep_assert_held(&dp->addr_lists_lock);
1725 
1726 	list_for_each_entry(a, &dp->mdbs, list) {
1727 		if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1728 			continue;
1729 
1730 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1731 			return true;
1732 	}
1733 
1734 	return false;
1735 }
1736 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1737 
1738 static const struct dsa_stubs __dsa_stubs = {
1739 	.conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1740 };
1741 
1742 static void dsa_register_stubs(void)
1743 {
1744 	dsa_stubs = &__dsa_stubs;
1745 }
1746 
1747 static void dsa_unregister_stubs(void)
1748 {
1749 	dsa_stubs = NULL;
1750 }
1751 
1752 static int __init dsa_init_module(void)
1753 {
1754 	int rc;
1755 
1756 	dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1757 					  WQ_MEM_RECLAIM);
1758 	if (!dsa_owq)
1759 		return -ENOMEM;
1760 
1761 	rc = dsa_user_register_notifier();
1762 	if (rc)
1763 		goto register_notifier_fail;
1764 
1765 	dev_add_pack(&dsa_pack_type);
1766 
1767 	rc = rtnl_link_register(&dsa_link_ops);
1768 	if (rc)
1769 		goto netlink_register_fail;
1770 
1771 	dsa_register_stubs();
1772 
1773 	return 0;
1774 
1775 netlink_register_fail:
1776 	dsa_user_unregister_notifier();
1777 	dev_remove_pack(&dsa_pack_type);
1778 register_notifier_fail:
1779 	destroy_workqueue(dsa_owq);
1780 
1781 	return rc;
1782 }
1783 module_init(dsa_init_module);
1784 
1785 static void __exit dsa_cleanup_module(void)
1786 {
1787 	dsa_unregister_stubs();
1788 
1789 	rtnl_link_unregister(&dsa_link_ops);
1790 
1791 	dsa_user_unregister_notifier();
1792 	dev_remove_pack(&dsa_pack_type);
1793 	destroy_workqueue(dsa_owq);
1794 }
1795 module_exit(dsa_cleanup_module);
1796 
1797 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1798 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1799 MODULE_LICENSE("GPL");
1800 MODULE_ALIAS("platform:dsa");
1801