1 // SPDX-License-Identifier: GPL-2.0-only 2 /* net/core/xdp.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 #include <linux/filter.h> 10 #include <linux/types.h> 11 #include <linux/mm.h> 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/idr.h> 15 #include <linux/rhashtable.h> 16 #include <linux/bug.h> 17 #include <net/page_pool/helpers.h> 18 19 #include <net/hotdata.h> 20 #include <net/xdp.h> 21 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */ 22 #include <trace/events/xdp.h> 23 #include <net/xdp_sock_drv.h> 24 25 #define REG_STATE_NEW 0x0 26 #define REG_STATE_REGISTERED 0x1 27 #define REG_STATE_UNREGISTERED 0x2 28 #define REG_STATE_UNUSED 0x3 29 30 static DEFINE_IDA(mem_id_pool); 31 static DEFINE_MUTEX(mem_id_lock); 32 #define MEM_ID_MAX 0xFFFE 33 #define MEM_ID_MIN 1 34 static int mem_id_next = MEM_ID_MIN; 35 36 static bool mem_id_init; /* false */ 37 static struct rhashtable *mem_id_ht; 38 39 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed) 40 { 41 const u32 *k = data; 42 const u32 key = *k; 43 44 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id) 45 != sizeof(u32)); 46 47 /* Use cyclic increasing ID as direct hash key */ 48 return key; 49 } 50 51 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg, 52 const void *ptr) 53 { 54 const struct xdp_mem_allocator *xa = ptr; 55 u32 mem_id = *(u32 *)arg->key; 56 57 return xa->mem.id != mem_id; 58 } 59 60 static const struct rhashtable_params mem_id_rht_params = { 61 .nelem_hint = 64, 62 .head_offset = offsetof(struct xdp_mem_allocator, node), 63 .key_offset = offsetof(struct xdp_mem_allocator, mem.id), 64 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id), 65 .max_size = MEM_ID_MAX, 66 .min_size = 8, 67 .automatic_shrinking = true, 68 .hashfn = xdp_mem_id_hashfn, 69 .obj_cmpfn = xdp_mem_id_cmp, 70 }; 71 72 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu) 73 { 74 struct xdp_mem_allocator *xa; 75 76 xa = container_of(rcu, struct xdp_mem_allocator, rcu); 77 78 /* Allow this ID to be reused */ 79 ida_free(&mem_id_pool, xa->mem.id); 80 81 kfree(xa); 82 } 83 84 static void mem_xa_remove(struct xdp_mem_allocator *xa) 85 { 86 trace_mem_disconnect(xa); 87 88 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params)) 89 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free); 90 } 91 92 static void mem_allocator_disconnect(void *allocator) 93 { 94 struct xdp_mem_allocator *xa; 95 struct rhashtable_iter iter; 96 97 mutex_lock(&mem_id_lock); 98 99 rhashtable_walk_enter(mem_id_ht, &iter); 100 do { 101 rhashtable_walk_start(&iter); 102 103 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) { 104 if (xa->allocator == allocator) 105 mem_xa_remove(xa); 106 } 107 108 rhashtable_walk_stop(&iter); 109 110 } while (xa == ERR_PTR(-EAGAIN)); 111 rhashtable_walk_exit(&iter); 112 113 mutex_unlock(&mem_id_lock); 114 } 115 116 void xdp_unreg_mem_model(struct xdp_mem_info *mem) 117 { 118 struct xdp_mem_allocator *xa; 119 int type = mem->type; 120 int id = mem->id; 121 122 /* Reset mem info to defaults */ 123 mem->id = 0; 124 mem->type = 0; 125 126 if (id == 0) 127 return; 128 129 if (type == MEM_TYPE_PAGE_POOL) { 130 rcu_read_lock(); 131 xa = rhashtable_lookup(mem_id_ht, &id, mem_id_rht_params); 132 page_pool_destroy(xa->page_pool); 133 rcu_read_unlock(); 134 } 135 } 136 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model); 137 138 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq) 139 { 140 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 141 WARN(1, "Missing register, driver bug"); 142 return; 143 } 144 145 xdp_unreg_mem_model(&xdp_rxq->mem); 146 } 147 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model); 148 149 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq) 150 { 151 /* Simplify driver cleanup code paths, allow unreg "unused" */ 152 if (xdp_rxq->reg_state == REG_STATE_UNUSED) 153 return; 154 155 xdp_rxq_info_unreg_mem_model(xdp_rxq); 156 157 xdp_rxq->reg_state = REG_STATE_UNREGISTERED; 158 xdp_rxq->dev = NULL; 159 } 160 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg); 161 162 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq) 163 { 164 memset(xdp_rxq, 0, sizeof(*xdp_rxq)); 165 } 166 167 /* Returns 0 on success, negative on failure */ 168 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, 169 struct net_device *dev, u32 queue_index, 170 unsigned int napi_id, u32 frag_size) 171 { 172 if (!dev) { 173 WARN(1, "Missing net_device from driver"); 174 return -ENODEV; 175 } 176 177 if (xdp_rxq->reg_state == REG_STATE_UNUSED) { 178 WARN(1, "Driver promised not to register this"); 179 return -EINVAL; 180 } 181 182 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) { 183 WARN(1, "Missing unregister, handled but fix driver"); 184 xdp_rxq_info_unreg(xdp_rxq); 185 } 186 187 /* State either UNREGISTERED or NEW */ 188 xdp_rxq_info_init(xdp_rxq); 189 xdp_rxq->dev = dev; 190 xdp_rxq->queue_index = queue_index; 191 xdp_rxq->napi_id = napi_id; 192 xdp_rxq->frag_size = frag_size; 193 194 xdp_rxq->reg_state = REG_STATE_REGISTERED; 195 return 0; 196 } 197 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg); 198 199 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq) 200 { 201 xdp_rxq->reg_state = REG_STATE_UNUSED; 202 } 203 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused); 204 205 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq) 206 { 207 return (xdp_rxq->reg_state == REG_STATE_REGISTERED); 208 } 209 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg); 210 211 static int __mem_id_init_hash_table(void) 212 { 213 struct rhashtable *rht; 214 int ret; 215 216 if (unlikely(mem_id_init)) 217 return 0; 218 219 rht = kzalloc(sizeof(*rht), GFP_KERNEL); 220 if (!rht) 221 return -ENOMEM; 222 223 ret = rhashtable_init(rht, &mem_id_rht_params); 224 if (ret < 0) { 225 kfree(rht); 226 return ret; 227 } 228 mem_id_ht = rht; 229 smp_mb(); /* mutex lock should provide enough pairing */ 230 mem_id_init = true; 231 232 return 0; 233 } 234 235 /* Allocate a cyclic ID that maps to allocator pointer. 236 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html 237 * 238 * Caller must lock mem_id_lock. 239 */ 240 static int __mem_id_cyclic_get(gfp_t gfp) 241 { 242 int retries = 1; 243 int id; 244 245 again: 246 id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp); 247 if (id < 0) { 248 if (id == -ENOSPC) { 249 /* Cyclic allocator, reset next id */ 250 if (retries--) { 251 mem_id_next = MEM_ID_MIN; 252 goto again; 253 } 254 } 255 return id; /* errno */ 256 } 257 mem_id_next = id + 1; 258 259 return id; 260 } 261 262 static bool __is_supported_mem_type(enum xdp_mem_type type) 263 { 264 if (type == MEM_TYPE_PAGE_POOL) 265 return is_page_pool_compiled_in(); 266 267 if (type >= MEM_TYPE_MAX) 268 return false; 269 270 return true; 271 } 272 273 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem, 274 enum xdp_mem_type type, 275 void *allocator) 276 { 277 struct xdp_mem_allocator *xdp_alloc; 278 gfp_t gfp = GFP_KERNEL; 279 int id, errno, ret; 280 void *ptr; 281 282 if (!__is_supported_mem_type(type)) 283 return ERR_PTR(-EOPNOTSUPP); 284 285 mem->type = type; 286 287 if (!allocator) { 288 if (type == MEM_TYPE_PAGE_POOL) 289 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */ 290 return NULL; 291 } 292 293 /* Delay init of rhashtable to save memory if feature isn't used */ 294 if (!mem_id_init) { 295 mutex_lock(&mem_id_lock); 296 ret = __mem_id_init_hash_table(); 297 mutex_unlock(&mem_id_lock); 298 if (ret < 0) 299 return ERR_PTR(ret); 300 } 301 302 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp); 303 if (!xdp_alloc) 304 return ERR_PTR(-ENOMEM); 305 306 mutex_lock(&mem_id_lock); 307 id = __mem_id_cyclic_get(gfp); 308 if (id < 0) { 309 errno = id; 310 goto err; 311 } 312 mem->id = id; 313 xdp_alloc->mem = *mem; 314 xdp_alloc->allocator = allocator; 315 316 /* Insert allocator into ID lookup table */ 317 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node); 318 if (IS_ERR(ptr)) { 319 ida_free(&mem_id_pool, mem->id); 320 mem->id = 0; 321 errno = PTR_ERR(ptr); 322 goto err; 323 } 324 325 if (type == MEM_TYPE_PAGE_POOL) 326 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem); 327 328 mutex_unlock(&mem_id_lock); 329 330 return xdp_alloc; 331 err: 332 mutex_unlock(&mem_id_lock); 333 kfree(xdp_alloc); 334 return ERR_PTR(errno); 335 } 336 337 int xdp_reg_mem_model(struct xdp_mem_info *mem, 338 enum xdp_mem_type type, void *allocator) 339 { 340 struct xdp_mem_allocator *xdp_alloc; 341 342 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator); 343 if (IS_ERR(xdp_alloc)) 344 return PTR_ERR(xdp_alloc); 345 return 0; 346 } 347 EXPORT_SYMBOL_GPL(xdp_reg_mem_model); 348 349 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq, 350 enum xdp_mem_type type, void *allocator) 351 { 352 struct xdp_mem_allocator *xdp_alloc; 353 354 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 355 WARN(1, "Missing register, driver bug"); 356 return -EFAULT; 357 } 358 359 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator); 360 if (IS_ERR(xdp_alloc)) 361 return PTR_ERR(xdp_alloc); 362 363 if (trace_mem_connect_enabled() && xdp_alloc) 364 trace_mem_connect(xdp_alloc, xdp_rxq); 365 return 0; 366 } 367 368 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model); 369 370 /* XDP RX runs under NAPI protection, and in different delivery error 371 * scenarios (e.g. queue full), it is possible to return the xdp_frame 372 * while still leveraging this protection. The @napi_direct boolean 373 * is used for those calls sites. Thus, allowing for faster recycling 374 * of xdp_frames/pages in those cases. 375 */ 376 void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct, 377 struct xdp_buff *xdp) 378 { 379 struct page *page; 380 381 switch (mem->type) { 382 case MEM_TYPE_PAGE_POOL: 383 page = virt_to_head_page(data); 384 if (napi_direct && xdp_return_frame_no_direct()) 385 napi_direct = false; 386 /* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) 387 * as mem->type knows this a page_pool page 388 */ 389 page_pool_put_full_page(page->pp, page, napi_direct); 390 break; 391 case MEM_TYPE_PAGE_SHARED: 392 page_frag_free(data); 393 break; 394 case MEM_TYPE_PAGE_ORDER0: 395 page = virt_to_page(data); /* Assumes order0 page*/ 396 put_page(page); 397 break; 398 case MEM_TYPE_XSK_BUFF_POOL: 399 /* NB! Only valid from an xdp_buff! */ 400 xsk_buff_free(xdp); 401 break; 402 default: 403 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */ 404 WARN(1, "Incorrect XDP memory type (%d) usage", mem->type); 405 break; 406 } 407 } 408 409 void xdp_return_frame(struct xdp_frame *xdpf) 410 { 411 struct skb_shared_info *sinfo; 412 int i; 413 414 if (likely(!xdp_frame_has_frags(xdpf))) 415 goto out; 416 417 sinfo = xdp_get_shared_info_from_frame(xdpf); 418 for (i = 0; i < sinfo->nr_frags; i++) { 419 struct page *page = skb_frag_page(&sinfo->frags[i]); 420 421 __xdp_return(page_address(page), &xdpf->mem, false, NULL); 422 } 423 out: 424 __xdp_return(xdpf->data, &xdpf->mem, false, NULL); 425 } 426 EXPORT_SYMBOL_GPL(xdp_return_frame); 427 428 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf) 429 { 430 struct skb_shared_info *sinfo; 431 int i; 432 433 if (likely(!xdp_frame_has_frags(xdpf))) 434 goto out; 435 436 sinfo = xdp_get_shared_info_from_frame(xdpf); 437 for (i = 0; i < sinfo->nr_frags; i++) { 438 struct page *page = skb_frag_page(&sinfo->frags[i]); 439 440 __xdp_return(page_address(page), &xdpf->mem, true, NULL); 441 } 442 out: 443 __xdp_return(xdpf->data, &xdpf->mem, true, NULL); 444 } 445 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi); 446 447 /* XDP bulk APIs introduce a defer/flush mechanism to return 448 * pages belonging to the same xdp_mem_allocator object 449 * (identified via the mem.id field) in bulk to optimize 450 * I-cache and D-cache. 451 * The bulk queue size is set to 16 to be aligned to how 452 * XDP_REDIRECT bulking works. The bulk is flushed when 453 * it is full or when mem.id changes. 454 * xdp_frame_bulk is usually stored/allocated on the function 455 * call-stack to avoid locking penalties. 456 */ 457 void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq) 458 { 459 struct xdp_mem_allocator *xa = bq->xa; 460 461 if (unlikely(!xa || !bq->count)) 462 return; 463 464 page_pool_put_page_bulk(xa->page_pool, bq->q, bq->count); 465 /* bq->xa is not cleared to save lookup, if mem.id same in next bulk */ 466 bq->count = 0; 467 } 468 EXPORT_SYMBOL_GPL(xdp_flush_frame_bulk); 469 470 /* Must be called with rcu_read_lock held */ 471 void xdp_return_frame_bulk(struct xdp_frame *xdpf, 472 struct xdp_frame_bulk *bq) 473 { 474 struct xdp_mem_info *mem = &xdpf->mem; 475 struct xdp_mem_allocator *xa; 476 477 if (mem->type != MEM_TYPE_PAGE_POOL) { 478 xdp_return_frame(xdpf); 479 return; 480 } 481 482 xa = bq->xa; 483 if (unlikely(!xa)) { 484 xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 485 bq->count = 0; 486 bq->xa = xa; 487 } 488 489 if (bq->count == XDP_BULK_QUEUE_SIZE) 490 xdp_flush_frame_bulk(bq); 491 492 if (unlikely(mem->id != xa->mem.id)) { 493 xdp_flush_frame_bulk(bq); 494 bq->xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 495 } 496 497 if (unlikely(xdp_frame_has_frags(xdpf))) { 498 struct skb_shared_info *sinfo; 499 int i; 500 501 sinfo = xdp_get_shared_info_from_frame(xdpf); 502 for (i = 0; i < sinfo->nr_frags; i++) { 503 skb_frag_t *frag = &sinfo->frags[i]; 504 505 bq->q[bq->count++] = skb_frag_address(frag); 506 if (bq->count == XDP_BULK_QUEUE_SIZE) 507 xdp_flush_frame_bulk(bq); 508 } 509 } 510 bq->q[bq->count++] = xdpf->data; 511 } 512 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk); 513 514 void xdp_return_buff(struct xdp_buff *xdp) 515 { 516 struct skb_shared_info *sinfo; 517 int i; 518 519 if (likely(!xdp_buff_has_frags(xdp))) 520 goto out; 521 522 sinfo = xdp_get_shared_info_from_buff(xdp); 523 for (i = 0; i < sinfo->nr_frags; i++) { 524 struct page *page = skb_frag_page(&sinfo->frags[i]); 525 526 __xdp_return(page_address(page), &xdp->rxq->mem, true, xdp); 527 } 528 out: 529 __xdp_return(xdp->data, &xdp->rxq->mem, true, xdp); 530 } 531 EXPORT_SYMBOL_GPL(xdp_return_buff); 532 533 void xdp_attachment_setup(struct xdp_attachment_info *info, 534 struct netdev_bpf *bpf) 535 { 536 if (info->prog) 537 bpf_prog_put(info->prog); 538 info->prog = bpf->prog; 539 info->flags = bpf->flags; 540 } 541 EXPORT_SYMBOL_GPL(xdp_attachment_setup); 542 543 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp) 544 { 545 unsigned int metasize, totsize; 546 void *addr, *data_to_copy; 547 struct xdp_frame *xdpf; 548 struct page *page; 549 550 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */ 551 metasize = xdp_data_meta_unsupported(xdp) ? 0 : 552 xdp->data - xdp->data_meta; 553 totsize = xdp->data_end - xdp->data + metasize; 554 555 if (sizeof(*xdpf) + totsize > PAGE_SIZE) 556 return NULL; 557 558 page = dev_alloc_page(); 559 if (!page) 560 return NULL; 561 562 addr = page_to_virt(page); 563 xdpf = addr; 564 memset(xdpf, 0, sizeof(*xdpf)); 565 566 addr += sizeof(*xdpf); 567 data_to_copy = metasize ? xdp->data_meta : xdp->data; 568 memcpy(addr, data_to_copy, totsize); 569 570 xdpf->data = addr + metasize; 571 xdpf->len = totsize - metasize; 572 xdpf->headroom = 0; 573 xdpf->metasize = metasize; 574 xdpf->frame_sz = PAGE_SIZE; 575 xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 576 577 xsk_buff_free(xdp); 578 return xdpf; 579 } 580 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame); 581 582 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */ 583 void xdp_warn(const char *msg, const char *func, const int line) 584 { 585 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg); 586 }; 587 EXPORT_SYMBOL_GPL(xdp_warn); 588 589 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp) 590 { 591 n_skb = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, gfp, n_skb, skbs); 592 if (unlikely(!n_skb)) 593 return -ENOMEM; 594 595 return 0; 596 } 597 EXPORT_SYMBOL_GPL(xdp_alloc_skb_bulk); 598 599 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf, 600 struct sk_buff *skb, 601 struct net_device *dev) 602 { 603 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 604 unsigned int headroom, frame_size; 605 void *hard_start; 606 u8 nr_frags; 607 608 /* xdp frags frame */ 609 if (unlikely(xdp_frame_has_frags(xdpf))) 610 nr_frags = sinfo->nr_frags; 611 612 /* Part of headroom was reserved to xdpf */ 613 headroom = sizeof(*xdpf) + xdpf->headroom; 614 615 /* Memory size backing xdp_frame data already have reserved 616 * room for build_skb to place skb_shared_info in tailroom. 617 */ 618 frame_size = xdpf->frame_sz; 619 620 hard_start = xdpf->data - headroom; 621 skb = build_skb_around(skb, hard_start, frame_size); 622 if (unlikely(!skb)) 623 return NULL; 624 625 skb_reserve(skb, headroom); 626 __skb_put(skb, xdpf->len); 627 if (xdpf->metasize) 628 skb_metadata_set(skb, xdpf->metasize); 629 630 if (unlikely(xdp_frame_has_frags(xdpf))) 631 xdp_update_skb_shared_info(skb, nr_frags, 632 sinfo->xdp_frags_size, 633 nr_frags * xdpf->frame_sz, 634 xdp_frame_is_frag_pfmemalloc(xdpf)); 635 636 /* Essential SKB info: protocol and skb->dev */ 637 skb->protocol = eth_type_trans(skb, dev); 638 639 /* Optional SKB info, currently missing: 640 * - HW checksum info (skb->ip_summed) 641 * - HW RX hash (skb_set_hash) 642 * - RX ring dev queue index (skb_record_rx_queue) 643 */ 644 645 if (xdpf->mem.type == MEM_TYPE_PAGE_POOL) 646 skb_mark_for_recycle(skb); 647 648 /* Allow SKB to reuse area used by xdp_frame */ 649 xdp_scrub_frame(xdpf); 650 651 return skb; 652 } 653 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame); 654 655 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf, 656 struct net_device *dev) 657 { 658 struct sk_buff *skb; 659 660 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 661 if (unlikely(!skb)) 662 return NULL; 663 664 memset(skb, 0, offsetof(struct sk_buff, tail)); 665 666 return __xdp_build_skb_from_frame(xdpf, skb, dev); 667 } 668 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame); 669 670 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf) 671 { 672 unsigned int headroom, totalsize; 673 struct xdp_frame *nxdpf; 674 struct page *page; 675 void *addr; 676 677 headroom = xdpf->headroom + sizeof(*xdpf); 678 totalsize = headroom + xdpf->len; 679 680 if (unlikely(totalsize > PAGE_SIZE)) 681 return NULL; 682 page = dev_alloc_page(); 683 if (!page) 684 return NULL; 685 addr = page_to_virt(page); 686 687 memcpy(addr, xdpf, totalsize); 688 689 nxdpf = addr; 690 nxdpf->data = addr + headroom; 691 nxdpf->frame_sz = PAGE_SIZE; 692 nxdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 693 nxdpf->mem.id = 0; 694 695 return nxdpf; 696 } 697 698 __bpf_kfunc_start_defs(); 699 700 /** 701 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp. 702 * @ctx: XDP context pointer. 703 * @timestamp: Return value pointer. 704 * 705 * Return: 706 * * Returns 0 on success or ``-errno`` on error. 707 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc 708 * * ``-ENODATA`` : means no RX-timestamp available for this frame 709 */ 710 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) 711 { 712 return -EOPNOTSUPP; 713 } 714 715 /** 716 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash. 717 * @ctx: XDP context pointer. 718 * @hash: Return value pointer. 719 * @rss_type: Return value pointer for RSS type. 720 * 721 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC 722 * hardware used when calculating RSS hash value. The RSS type can be decoded 723 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits 724 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types* 725 * ``XDP_RSS_TYPE_L*``. 726 * 727 * Return: 728 * * Returns 0 on success or ``-errno`` on error. 729 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc 730 * * ``-ENODATA`` : means no RX-hash available for this frame 731 */ 732 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash, 733 enum xdp_rss_hash_type *rss_type) 734 { 735 return -EOPNOTSUPP; 736 } 737 738 /** 739 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag 740 * @ctx: XDP context pointer. 741 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID). 742 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP) 743 * 744 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*, 745 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use 746 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)** 747 * and should be used as follows: 748 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();`` 749 * 750 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag. 751 * Driver is expected to provide those in **host byte order (usually LE)**, 752 * so the bpf program should not perform byte conversion. 753 * According to 802.1Q standard, *VLAN TCI (Tag control information)* 754 * is a bit field that contains: 755 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``, 756 * *Drop eligible indicator (DEI)* - 1 bit, 757 * *Priority code point (PCP)* - 3 bits. 758 * For detailed meaning of DEI and PCP, please refer to other sources. 759 * 760 * Return: 761 * * Returns 0 on success or ``-errno`` on error. 762 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc 763 * * ``-ENODATA`` : VLAN tag was not stripped or is not available 764 */ 765 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx, 766 __be16 *vlan_proto, u16 *vlan_tci) 767 { 768 return -EOPNOTSUPP; 769 } 770 771 __bpf_kfunc_end_defs(); 772 773 BTF_KFUNCS_START(xdp_metadata_kfunc_ids) 774 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS) 775 XDP_METADATA_KFUNC_xxx 776 #undef XDP_METADATA_KFUNC 777 BTF_KFUNCS_END(xdp_metadata_kfunc_ids) 778 779 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = { 780 .owner = THIS_MODULE, 781 .set = &xdp_metadata_kfunc_ids, 782 }; 783 784 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted) 785 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str) 786 XDP_METADATA_KFUNC_xxx 787 #undef XDP_METADATA_KFUNC 788 789 u32 bpf_xdp_metadata_kfunc_id(int id) 790 { 791 /* xdp_metadata_kfunc_ids is sorted and can't be used */ 792 return xdp_metadata_kfunc_ids_unsorted[id]; 793 } 794 795 bool bpf_dev_bound_kfunc_id(u32 btf_id) 796 { 797 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id); 798 } 799 800 static int __init xdp_metadata_init(void) 801 { 802 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set); 803 } 804 late_initcall(xdp_metadata_init); 805 806 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val) 807 { 808 val &= NETDEV_XDP_ACT_MASK; 809 if (dev->xdp_features == val) 810 return; 811 812 dev->xdp_features = val; 813 814 if (dev->reg_state == NETREG_REGISTERED) 815 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev); 816 } 817 EXPORT_SYMBOL_GPL(xdp_set_features_flag); 818 819 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg) 820 { 821 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT); 822 823 if (support_sg) 824 val |= NETDEV_XDP_ACT_NDO_XMIT_SG; 825 xdp_set_features_flag(dev, val); 826 } 827 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target); 828 829 void xdp_features_clear_redirect_target(struct net_device *dev) 830 { 831 xdp_features_t val = dev->xdp_features; 832 833 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG); 834 xdp_set_features_flag(dev, val); 835 } 836 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target); 837