1 // SPDX-License-Identifier: GPL-2.0-only 2 /* net/core/xdp.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 #include <linux/filter.h> 10 #include <linux/types.h> 11 #include <linux/mm.h> 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/idr.h> 15 #include <linux/rhashtable.h> 16 #include <linux/bug.h> 17 #include <net/page_pool/helpers.h> 18 19 #include <net/hotdata.h> 20 #include <net/xdp.h> 21 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */ 22 #include <trace/events/xdp.h> 23 #include <net/xdp_sock_drv.h> 24 25 #define REG_STATE_NEW 0x0 26 #define REG_STATE_REGISTERED 0x1 27 #define REG_STATE_UNREGISTERED 0x2 28 #define REG_STATE_UNUSED 0x3 29 30 static DEFINE_IDA(mem_id_pool); 31 static DEFINE_MUTEX(mem_id_lock); 32 #define MEM_ID_MAX 0xFFFE 33 #define MEM_ID_MIN 1 34 static int mem_id_next = MEM_ID_MIN; 35 36 static bool mem_id_init; /* false */ 37 static struct rhashtable *mem_id_ht; 38 39 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed) 40 { 41 const u32 *k = data; 42 const u32 key = *k; 43 44 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id) 45 != sizeof(u32)); 46 47 /* Use cyclic increasing ID as direct hash key */ 48 return key; 49 } 50 51 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg, 52 const void *ptr) 53 { 54 const struct xdp_mem_allocator *xa = ptr; 55 u32 mem_id = *(u32 *)arg->key; 56 57 return xa->mem.id != mem_id; 58 } 59 60 static const struct rhashtable_params mem_id_rht_params = { 61 .nelem_hint = 64, 62 .head_offset = offsetof(struct xdp_mem_allocator, node), 63 .key_offset = offsetof(struct xdp_mem_allocator, mem.id), 64 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id), 65 .max_size = MEM_ID_MAX, 66 .min_size = 8, 67 .automatic_shrinking = true, 68 .hashfn = xdp_mem_id_hashfn, 69 .obj_cmpfn = xdp_mem_id_cmp, 70 }; 71 72 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu) 73 { 74 struct xdp_mem_allocator *xa; 75 76 xa = container_of(rcu, struct xdp_mem_allocator, rcu); 77 78 /* Allow this ID to be reused */ 79 ida_free(&mem_id_pool, xa->mem.id); 80 81 kfree(xa); 82 } 83 84 static void mem_xa_remove(struct xdp_mem_allocator *xa) 85 { 86 trace_mem_disconnect(xa); 87 88 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params)) 89 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free); 90 } 91 92 static void mem_allocator_disconnect(void *allocator) 93 { 94 struct xdp_mem_allocator *xa; 95 struct rhashtable_iter iter; 96 97 mutex_lock(&mem_id_lock); 98 99 rhashtable_walk_enter(mem_id_ht, &iter); 100 do { 101 rhashtable_walk_start(&iter); 102 103 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) { 104 if (xa->allocator == allocator) 105 mem_xa_remove(xa); 106 } 107 108 rhashtable_walk_stop(&iter); 109 110 } while (xa == ERR_PTR(-EAGAIN)); 111 rhashtable_walk_exit(&iter); 112 113 mutex_unlock(&mem_id_lock); 114 } 115 116 void xdp_unreg_mem_model(struct xdp_mem_info *mem) 117 { 118 struct xdp_mem_allocator *xa; 119 int type = mem->type; 120 int id = mem->id; 121 122 /* Reset mem info to defaults */ 123 mem->id = 0; 124 mem->type = 0; 125 126 if (id == 0) 127 return; 128 129 if (type == MEM_TYPE_PAGE_POOL) { 130 rcu_read_lock(); 131 xa = rhashtable_lookup(mem_id_ht, &id, mem_id_rht_params); 132 page_pool_destroy(xa->page_pool); 133 rcu_read_unlock(); 134 } 135 } 136 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model); 137 138 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq) 139 { 140 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 141 WARN(1, "Missing register, driver bug"); 142 return; 143 } 144 145 xdp_unreg_mem_model(&xdp_rxq->mem); 146 } 147 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model); 148 149 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq) 150 { 151 /* Simplify driver cleanup code paths, allow unreg "unused" */ 152 if (xdp_rxq->reg_state == REG_STATE_UNUSED) 153 return; 154 155 xdp_rxq_info_unreg_mem_model(xdp_rxq); 156 157 xdp_rxq->reg_state = REG_STATE_UNREGISTERED; 158 xdp_rxq->dev = NULL; 159 } 160 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg); 161 162 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq) 163 { 164 memset(xdp_rxq, 0, sizeof(*xdp_rxq)); 165 } 166 167 /* Returns 0 on success, negative on failure */ 168 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, 169 struct net_device *dev, u32 queue_index, 170 unsigned int napi_id, u32 frag_size) 171 { 172 if (!dev) { 173 WARN(1, "Missing net_device from driver"); 174 return -ENODEV; 175 } 176 177 if (xdp_rxq->reg_state == REG_STATE_UNUSED) { 178 WARN(1, "Driver promised not to register this"); 179 return -EINVAL; 180 } 181 182 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) { 183 WARN(1, "Missing unregister, handled but fix driver"); 184 xdp_rxq_info_unreg(xdp_rxq); 185 } 186 187 /* State either UNREGISTERED or NEW */ 188 xdp_rxq_info_init(xdp_rxq); 189 xdp_rxq->dev = dev; 190 xdp_rxq->queue_index = queue_index; 191 xdp_rxq->napi_id = napi_id; 192 xdp_rxq->frag_size = frag_size; 193 194 xdp_rxq->reg_state = REG_STATE_REGISTERED; 195 return 0; 196 } 197 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg); 198 199 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq) 200 { 201 xdp_rxq->reg_state = REG_STATE_UNUSED; 202 } 203 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused); 204 205 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq) 206 { 207 return (xdp_rxq->reg_state == REG_STATE_REGISTERED); 208 } 209 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg); 210 211 static int __mem_id_init_hash_table(void) 212 { 213 struct rhashtable *rht; 214 int ret; 215 216 if (unlikely(mem_id_init)) 217 return 0; 218 219 rht = kzalloc(sizeof(*rht), GFP_KERNEL); 220 if (!rht) 221 return -ENOMEM; 222 223 ret = rhashtable_init(rht, &mem_id_rht_params); 224 if (ret < 0) { 225 kfree(rht); 226 return ret; 227 } 228 mem_id_ht = rht; 229 smp_mb(); /* mutex lock should provide enough pairing */ 230 mem_id_init = true; 231 232 return 0; 233 } 234 235 /* Allocate a cyclic ID that maps to allocator pointer. 236 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html 237 * 238 * Caller must lock mem_id_lock. 239 */ 240 static int __mem_id_cyclic_get(gfp_t gfp) 241 { 242 int retries = 1; 243 int id; 244 245 again: 246 id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp); 247 if (id < 0) { 248 if (id == -ENOSPC) { 249 /* Cyclic allocator, reset next id */ 250 if (retries--) { 251 mem_id_next = MEM_ID_MIN; 252 goto again; 253 } 254 } 255 return id; /* errno */ 256 } 257 mem_id_next = id + 1; 258 259 return id; 260 } 261 262 static bool __is_supported_mem_type(enum xdp_mem_type type) 263 { 264 if (type == MEM_TYPE_PAGE_POOL) 265 return is_page_pool_compiled_in(); 266 267 if (type >= MEM_TYPE_MAX) 268 return false; 269 270 return true; 271 } 272 273 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem, 274 enum xdp_mem_type type, 275 void *allocator) 276 { 277 struct xdp_mem_allocator *xdp_alloc; 278 gfp_t gfp = GFP_KERNEL; 279 int id, errno, ret; 280 void *ptr; 281 282 if (!__is_supported_mem_type(type)) 283 return ERR_PTR(-EOPNOTSUPP); 284 285 mem->type = type; 286 287 if (!allocator) { 288 if (type == MEM_TYPE_PAGE_POOL) 289 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */ 290 return NULL; 291 } 292 293 /* Delay init of rhashtable to save memory if feature isn't used */ 294 if (!mem_id_init) { 295 mutex_lock(&mem_id_lock); 296 ret = __mem_id_init_hash_table(); 297 mutex_unlock(&mem_id_lock); 298 if (ret < 0) { 299 WARN_ON(1); 300 return ERR_PTR(ret); 301 } 302 } 303 304 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp); 305 if (!xdp_alloc) 306 return ERR_PTR(-ENOMEM); 307 308 mutex_lock(&mem_id_lock); 309 id = __mem_id_cyclic_get(gfp); 310 if (id < 0) { 311 errno = id; 312 goto err; 313 } 314 mem->id = id; 315 xdp_alloc->mem = *mem; 316 xdp_alloc->allocator = allocator; 317 318 /* Insert allocator into ID lookup table */ 319 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node); 320 if (IS_ERR(ptr)) { 321 ida_free(&mem_id_pool, mem->id); 322 mem->id = 0; 323 errno = PTR_ERR(ptr); 324 goto err; 325 } 326 327 if (type == MEM_TYPE_PAGE_POOL) 328 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem); 329 330 mutex_unlock(&mem_id_lock); 331 332 return xdp_alloc; 333 err: 334 mutex_unlock(&mem_id_lock); 335 kfree(xdp_alloc); 336 return ERR_PTR(errno); 337 } 338 339 int xdp_reg_mem_model(struct xdp_mem_info *mem, 340 enum xdp_mem_type type, void *allocator) 341 { 342 struct xdp_mem_allocator *xdp_alloc; 343 344 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator); 345 if (IS_ERR(xdp_alloc)) 346 return PTR_ERR(xdp_alloc); 347 return 0; 348 } 349 EXPORT_SYMBOL_GPL(xdp_reg_mem_model); 350 351 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq, 352 enum xdp_mem_type type, void *allocator) 353 { 354 struct xdp_mem_allocator *xdp_alloc; 355 356 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 357 WARN(1, "Missing register, driver bug"); 358 return -EFAULT; 359 } 360 361 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator); 362 if (IS_ERR(xdp_alloc)) 363 return PTR_ERR(xdp_alloc); 364 365 if (trace_mem_connect_enabled() && xdp_alloc) 366 trace_mem_connect(xdp_alloc, xdp_rxq); 367 return 0; 368 } 369 370 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model); 371 372 /* XDP RX runs under NAPI protection, and in different delivery error 373 * scenarios (e.g. queue full), it is possible to return the xdp_frame 374 * while still leveraging this protection. The @napi_direct boolean 375 * is used for those calls sites. Thus, allowing for faster recycling 376 * of xdp_frames/pages in those cases. 377 */ 378 void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct, 379 struct xdp_buff *xdp) 380 { 381 struct page *page; 382 383 switch (mem->type) { 384 case MEM_TYPE_PAGE_POOL: 385 page = virt_to_head_page(data); 386 if (napi_direct && xdp_return_frame_no_direct()) 387 napi_direct = false; 388 /* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) 389 * as mem->type knows this a page_pool page 390 */ 391 page_pool_put_full_page(page->pp, page, napi_direct); 392 break; 393 case MEM_TYPE_PAGE_SHARED: 394 page_frag_free(data); 395 break; 396 case MEM_TYPE_PAGE_ORDER0: 397 page = virt_to_page(data); /* Assumes order0 page*/ 398 put_page(page); 399 break; 400 case MEM_TYPE_XSK_BUFF_POOL: 401 /* NB! Only valid from an xdp_buff! */ 402 xsk_buff_free(xdp); 403 break; 404 default: 405 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */ 406 WARN(1, "Incorrect XDP memory type (%d) usage", mem->type); 407 break; 408 } 409 } 410 411 void xdp_return_frame(struct xdp_frame *xdpf) 412 { 413 struct skb_shared_info *sinfo; 414 int i; 415 416 if (likely(!xdp_frame_has_frags(xdpf))) 417 goto out; 418 419 sinfo = xdp_get_shared_info_from_frame(xdpf); 420 for (i = 0; i < sinfo->nr_frags; i++) { 421 struct page *page = skb_frag_page(&sinfo->frags[i]); 422 423 __xdp_return(page_address(page), &xdpf->mem, false, NULL); 424 } 425 out: 426 __xdp_return(xdpf->data, &xdpf->mem, false, NULL); 427 } 428 EXPORT_SYMBOL_GPL(xdp_return_frame); 429 430 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf) 431 { 432 struct skb_shared_info *sinfo; 433 int i; 434 435 if (likely(!xdp_frame_has_frags(xdpf))) 436 goto out; 437 438 sinfo = xdp_get_shared_info_from_frame(xdpf); 439 for (i = 0; i < sinfo->nr_frags; i++) { 440 struct page *page = skb_frag_page(&sinfo->frags[i]); 441 442 __xdp_return(page_address(page), &xdpf->mem, true, NULL); 443 } 444 out: 445 __xdp_return(xdpf->data, &xdpf->mem, true, NULL); 446 } 447 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi); 448 449 /* XDP bulk APIs introduce a defer/flush mechanism to return 450 * pages belonging to the same xdp_mem_allocator object 451 * (identified via the mem.id field) in bulk to optimize 452 * I-cache and D-cache. 453 * The bulk queue size is set to 16 to be aligned to how 454 * XDP_REDIRECT bulking works. The bulk is flushed when 455 * it is full or when mem.id changes. 456 * xdp_frame_bulk is usually stored/allocated on the function 457 * call-stack to avoid locking penalties. 458 */ 459 void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq) 460 { 461 struct xdp_mem_allocator *xa = bq->xa; 462 463 if (unlikely(!xa || !bq->count)) 464 return; 465 466 page_pool_put_page_bulk(xa->page_pool, bq->q, bq->count); 467 /* bq->xa is not cleared to save lookup, if mem.id same in next bulk */ 468 bq->count = 0; 469 } 470 EXPORT_SYMBOL_GPL(xdp_flush_frame_bulk); 471 472 /* Must be called with rcu_read_lock held */ 473 void xdp_return_frame_bulk(struct xdp_frame *xdpf, 474 struct xdp_frame_bulk *bq) 475 { 476 struct xdp_mem_info *mem = &xdpf->mem; 477 struct xdp_mem_allocator *xa; 478 479 if (mem->type != MEM_TYPE_PAGE_POOL) { 480 xdp_return_frame(xdpf); 481 return; 482 } 483 484 xa = bq->xa; 485 if (unlikely(!xa)) { 486 xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 487 bq->count = 0; 488 bq->xa = xa; 489 } 490 491 if (bq->count == XDP_BULK_QUEUE_SIZE) 492 xdp_flush_frame_bulk(bq); 493 494 if (unlikely(mem->id != xa->mem.id)) { 495 xdp_flush_frame_bulk(bq); 496 bq->xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 497 } 498 499 if (unlikely(xdp_frame_has_frags(xdpf))) { 500 struct skb_shared_info *sinfo; 501 int i; 502 503 sinfo = xdp_get_shared_info_from_frame(xdpf); 504 for (i = 0; i < sinfo->nr_frags; i++) { 505 skb_frag_t *frag = &sinfo->frags[i]; 506 507 bq->q[bq->count++] = skb_frag_address(frag); 508 if (bq->count == XDP_BULK_QUEUE_SIZE) 509 xdp_flush_frame_bulk(bq); 510 } 511 } 512 bq->q[bq->count++] = xdpf->data; 513 } 514 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk); 515 516 void xdp_return_buff(struct xdp_buff *xdp) 517 { 518 struct skb_shared_info *sinfo; 519 int i; 520 521 if (likely(!xdp_buff_has_frags(xdp))) 522 goto out; 523 524 sinfo = xdp_get_shared_info_from_buff(xdp); 525 for (i = 0; i < sinfo->nr_frags; i++) { 526 struct page *page = skb_frag_page(&sinfo->frags[i]); 527 528 __xdp_return(page_address(page), &xdp->rxq->mem, true, xdp); 529 } 530 out: 531 __xdp_return(xdp->data, &xdp->rxq->mem, true, xdp); 532 } 533 EXPORT_SYMBOL_GPL(xdp_return_buff); 534 535 void xdp_attachment_setup(struct xdp_attachment_info *info, 536 struct netdev_bpf *bpf) 537 { 538 if (info->prog) 539 bpf_prog_put(info->prog); 540 info->prog = bpf->prog; 541 info->flags = bpf->flags; 542 } 543 EXPORT_SYMBOL_GPL(xdp_attachment_setup); 544 545 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp) 546 { 547 unsigned int metasize, totsize; 548 void *addr, *data_to_copy; 549 struct xdp_frame *xdpf; 550 struct page *page; 551 552 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */ 553 metasize = xdp_data_meta_unsupported(xdp) ? 0 : 554 xdp->data - xdp->data_meta; 555 totsize = xdp->data_end - xdp->data + metasize; 556 557 if (sizeof(*xdpf) + totsize > PAGE_SIZE) 558 return NULL; 559 560 page = dev_alloc_page(); 561 if (!page) 562 return NULL; 563 564 addr = page_to_virt(page); 565 xdpf = addr; 566 memset(xdpf, 0, sizeof(*xdpf)); 567 568 addr += sizeof(*xdpf); 569 data_to_copy = metasize ? xdp->data_meta : xdp->data; 570 memcpy(addr, data_to_copy, totsize); 571 572 xdpf->data = addr + metasize; 573 xdpf->len = totsize - metasize; 574 xdpf->headroom = 0; 575 xdpf->metasize = metasize; 576 xdpf->frame_sz = PAGE_SIZE; 577 xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 578 579 xsk_buff_free(xdp); 580 return xdpf; 581 } 582 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame); 583 584 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */ 585 void xdp_warn(const char *msg, const char *func, const int line) 586 { 587 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg); 588 }; 589 EXPORT_SYMBOL_GPL(xdp_warn); 590 591 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp) 592 { 593 n_skb = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, gfp, n_skb, skbs); 594 if (unlikely(!n_skb)) 595 return -ENOMEM; 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(xdp_alloc_skb_bulk); 600 601 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf, 602 struct sk_buff *skb, 603 struct net_device *dev) 604 { 605 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 606 unsigned int headroom, frame_size; 607 void *hard_start; 608 u8 nr_frags; 609 610 /* xdp frags frame */ 611 if (unlikely(xdp_frame_has_frags(xdpf))) 612 nr_frags = sinfo->nr_frags; 613 614 /* Part of headroom was reserved to xdpf */ 615 headroom = sizeof(*xdpf) + xdpf->headroom; 616 617 /* Memory size backing xdp_frame data already have reserved 618 * room for build_skb to place skb_shared_info in tailroom. 619 */ 620 frame_size = xdpf->frame_sz; 621 622 hard_start = xdpf->data - headroom; 623 skb = build_skb_around(skb, hard_start, frame_size); 624 if (unlikely(!skb)) 625 return NULL; 626 627 skb_reserve(skb, headroom); 628 __skb_put(skb, xdpf->len); 629 if (xdpf->metasize) 630 skb_metadata_set(skb, xdpf->metasize); 631 632 if (unlikely(xdp_frame_has_frags(xdpf))) 633 xdp_update_skb_shared_info(skb, nr_frags, 634 sinfo->xdp_frags_size, 635 nr_frags * xdpf->frame_sz, 636 xdp_frame_is_frag_pfmemalloc(xdpf)); 637 638 /* Essential SKB info: protocol and skb->dev */ 639 skb->protocol = eth_type_trans(skb, dev); 640 641 /* Optional SKB info, currently missing: 642 * - HW checksum info (skb->ip_summed) 643 * - HW RX hash (skb_set_hash) 644 * - RX ring dev queue index (skb_record_rx_queue) 645 */ 646 647 if (xdpf->mem.type == MEM_TYPE_PAGE_POOL) 648 skb_mark_for_recycle(skb); 649 650 /* Allow SKB to reuse area used by xdp_frame */ 651 xdp_scrub_frame(xdpf); 652 653 return skb; 654 } 655 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame); 656 657 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf, 658 struct net_device *dev) 659 { 660 struct sk_buff *skb; 661 662 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 663 if (unlikely(!skb)) 664 return NULL; 665 666 memset(skb, 0, offsetof(struct sk_buff, tail)); 667 668 return __xdp_build_skb_from_frame(xdpf, skb, dev); 669 } 670 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame); 671 672 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf) 673 { 674 unsigned int headroom, totalsize; 675 struct xdp_frame *nxdpf; 676 struct page *page; 677 void *addr; 678 679 headroom = xdpf->headroom + sizeof(*xdpf); 680 totalsize = headroom + xdpf->len; 681 682 if (unlikely(totalsize > PAGE_SIZE)) 683 return NULL; 684 page = dev_alloc_page(); 685 if (!page) 686 return NULL; 687 addr = page_to_virt(page); 688 689 memcpy(addr, xdpf, totalsize); 690 691 nxdpf = addr; 692 nxdpf->data = addr + headroom; 693 nxdpf->frame_sz = PAGE_SIZE; 694 nxdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 695 nxdpf->mem.id = 0; 696 697 return nxdpf; 698 } 699 700 __bpf_kfunc_start_defs(); 701 702 /** 703 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp. 704 * @ctx: XDP context pointer. 705 * @timestamp: Return value pointer. 706 * 707 * Return: 708 * * Returns 0 on success or ``-errno`` on error. 709 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc 710 * * ``-ENODATA`` : means no RX-timestamp available for this frame 711 */ 712 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) 713 { 714 return -EOPNOTSUPP; 715 } 716 717 /** 718 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash. 719 * @ctx: XDP context pointer. 720 * @hash: Return value pointer. 721 * @rss_type: Return value pointer for RSS type. 722 * 723 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC 724 * hardware used when calculating RSS hash value. The RSS type can be decoded 725 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits 726 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types* 727 * ``XDP_RSS_TYPE_L*``. 728 * 729 * Return: 730 * * Returns 0 on success or ``-errno`` on error. 731 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc 732 * * ``-ENODATA`` : means no RX-hash available for this frame 733 */ 734 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash, 735 enum xdp_rss_hash_type *rss_type) 736 { 737 return -EOPNOTSUPP; 738 } 739 740 /** 741 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag 742 * @ctx: XDP context pointer. 743 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID). 744 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP) 745 * 746 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*, 747 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use 748 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)** 749 * and should be used as follows: 750 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();`` 751 * 752 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag. 753 * Driver is expected to provide those in **host byte order (usually LE)**, 754 * so the bpf program should not perform byte conversion. 755 * According to 802.1Q standard, *VLAN TCI (Tag control information)* 756 * is a bit field that contains: 757 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``, 758 * *Drop eligible indicator (DEI)* - 1 bit, 759 * *Priority code point (PCP)* - 3 bits. 760 * For detailed meaning of DEI and PCP, please refer to other sources. 761 * 762 * Return: 763 * * Returns 0 on success or ``-errno`` on error. 764 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc 765 * * ``-ENODATA`` : VLAN tag was not stripped or is not available 766 */ 767 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx, 768 __be16 *vlan_proto, u16 *vlan_tci) 769 { 770 return -EOPNOTSUPP; 771 } 772 773 __bpf_kfunc_end_defs(); 774 775 BTF_KFUNCS_START(xdp_metadata_kfunc_ids) 776 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS) 777 XDP_METADATA_KFUNC_xxx 778 #undef XDP_METADATA_KFUNC 779 BTF_KFUNCS_END(xdp_metadata_kfunc_ids) 780 781 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = { 782 .owner = THIS_MODULE, 783 .set = &xdp_metadata_kfunc_ids, 784 }; 785 786 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted) 787 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str) 788 XDP_METADATA_KFUNC_xxx 789 #undef XDP_METADATA_KFUNC 790 791 u32 bpf_xdp_metadata_kfunc_id(int id) 792 { 793 /* xdp_metadata_kfunc_ids is sorted and can't be used */ 794 return xdp_metadata_kfunc_ids_unsorted[id]; 795 } 796 797 bool bpf_dev_bound_kfunc_id(u32 btf_id) 798 { 799 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id); 800 } 801 802 static int __init xdp_metadata_init(void) 803 { 804 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set); 805 } 806 late_initcall(xdp_metadata_init); 807 808 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val) 809 { 810 val &= NETDEV_XDP_ACT_MASK; 811 if (dev->xdp_features == val) 812 return; 813 814 dev->xdp_features = val; 815 816 if (dev->reg_state == NETREG_REGISTERED) 817 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev); 818 } 819 EXPORT_SYMBOL_GPL(xdp_set_features_flag); 820 821 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg) 822 { 823 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT); 824 825 if (support_sg) 826 val |= NETDEV_XDP_ACT_NDO_XMIT_SG; 827 xdp_set_features_flag(dev, val); 828 } 829 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target); 830 831 void xdp_features_clear_redirect_target(struct net_device *dev) 832 { 833 xdp_features_t val = dev->xdp_features; 834 835 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG); 836 xdp_set_features_flag(dev, val); 837 } 838 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target); 839