1 // SPDX-License-Identifier: GPL-2.0-only 2 /* net/core/xdp.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 #include <linux/filter.h> 10 #include <linux/types.h> 11 #include <linux/mm.h> 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/idr.h> 15 #include <linux/rhashtable.h> 16 #include <linux/bug.h> 17 #include <net/page_pool/helpers.h> 18 19 #include <net/hotdata.h> 20 #include <net/xdp.h> 21 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */ 22 #include <trace/events/xdp.h> 23 #include <net/xdp_sock_drv.h> 24 25 #define REG_STATE_NEW 0x0 26 #define REG_STATE_REGISTERED 0x1 27 #define REG_STATE_UNREGISTERED 0x2 28 #define REG_STATE_UNUSED 0x3 29 30 static DEFINE_IDA(mem_id_pool); 31 static DEFINE_MUTEX(mem_id_lock); 32 #define MEM_ID_MAX 0xFFFE 33 #define MEM_ID_MIN 1 34 static int mem_id_next = MEM_ID_MIN; 35 36 static bool mem_id_init; /* false */ 37 static struct rhashtable *mem_id_ht; 38 39 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed) 40 { 41 const u32 *k = data; 42 const u32 key = *k; 43 44 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id) 45 != sizeof(u32)); 46 47 /* Use cyclic increasing ID as direct hash key */ 48 return key; 49 } 50 51 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg, 52 const void *ptr) 53 { 54 const struct xdp_mem_allocator *xa = ptr; 55 u32 mem_id = *(u32 *)arg->key; 56 57 return xa->mem.id != mem_id; 58 } 59 60 static const struct rhashtable_params mem_id_rht_params = { 61 .nelem_hint = 64, 62 .head_offset = offsetof(struct xdp_mem_allocator, node), 63 .key_offset = offsetof(struct xdp_mem_allocator, mem.id), 64 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id), 65 .max_size = MEM_ID_MAX, 66 .min_size = 8, 67 .automatic_shrinking = true, 68 .hashfn = xdp_mem_id_hashfn, 69 .obj_cmpfn = xdp_mem_id_cmp, 70 }; 71 72 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu) 73 { 74 struct xdp_mem_allocator *xa; 75 76 xa = container_of(rcu, struct xdp_mem_allocator, rcu); 77 78 /* Allow this ID to be reused */ 79 ida_free(&mem_id_pool, xa->mem.id); 80 81 kfree(xa); 82 } 83 84 static void mem_xa_remove(struct xdp_mem_allocator *xa) 85 { 86 trace_mem_disconnect(xa); 87 88 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params)) 89 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free); 90 } 91 92 static void mem_allocator_disconnect(void *allocator) 93 { 94 struct xdp_mem_allocator *xa; 95 struct rhashtable_iter iter; 96 97 mutex_lock(&mem_id_lock); 98 99 rhashtable_walk_enter(mem_id_ht, &iter); 100 do { 101 rhashtable_walk_start(&iter); 102 103 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) { 104 if (xa->allocator == allocator) 105 mem_xa_remove(xa); 106 } 107 108 rhashtable_walk_stop(&iter); 109 110 } while (xa == ERR_PTR(-EAGAIN)); 111 rhashtable_walk_exit(&iter); 112 113 mutex_unlock(&mem_id_lock); 114 } 115 116 void xdp_unreg_mem_model(struct xdp_mem_info *mem) 117 { 118 struct xdp_mem_allocator *xa; 119 int type = mem->type; 120 int id = mem->id; 121 122 /* Reset mem info to defaults */ 123 mem->id = 0; 124 mem->type = 0; 125 126 if (id == 0) 127 return; 128 129 if (type == MEM_TYPE_PAGE_POOL) { 130 xa = rhashtable_lookup_fast(mem_id_ht, &id, mem_id_rht_params); 131 page_pool_destroy(xa->page_pool); 132 } 133 } 134 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model); 135 136 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq) 137 { 138 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 139 WARN(1, "Missing register, driver bug"); 140 return; 141 } 142 143 xdp_unreg_mem_model(&xdp_rxq->mem); 144 } 145 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model); 146 147 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq) 148 { 149 /* Simplify driver cleanup code paths, allow unreg "unused" */ 150 if (xdp_rxq->reg_state == REG_STATE_UNUSED) 151 return; 152 153 xdp_rxq_info_unreg_mem_model(xdp_rxq); 154 155 xdp_rxq->reg_state = REG_STATE_UNREGISTERED; 156 xdp_rxq->dev = NULL; 157 } 158 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg); 159 160 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq) 161 { 162 memset(xdp_rxq, 0, sizeof(*xdp_rxq)); 163 } 164 165 /* Returns 0 on success, negative on failure */ 166 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, 167 struct net_device *dev, u32 queue_index, 168 unsigned int napi_id, u32 frag_size) 169 { 170 if (!dev) { 171 WARN(1, "Missing net_device from driver"); 172 return -ENODEV; 173 } 174 175 if (xdp_rxq->reg_state == REG_STATE_UNUSED) { 176 WARN(1, "Driver promised not to register this"); 177 return -EINVAL; 178 } 179 180 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) { 181 WARN(1, "Missing unregister, handled but fix driver"); 182 xdp_rxq_info_unreg(xdp_rxq); 183 } 184 185 /* State either UNREGISTERED or NEW */ 186 xdp_rxq_info_init(xdp_rxq); 187 xdp_rxq->dev = dev; 188 xdp_rxq->queue_index = queue_index; 189 xdp_rxq->frag_size = frag_size; 190 191 xdp_rxq->reg_state = REG_STATE_REGISTERED; 192 return 0; 193 } 194 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg); 195 196 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq) 197 { 198 xdp_rxq->reg_state = REG_STATE_UNUSED; 199 } 200 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused); 201 202 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq) 203 { 204 return (xdp_rxq->reg_state == REG_STATE_REGISTERED); 205 } 206 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg); 207 208 static int __mem_id_init_hash_table(void) 209 { 210 struct rhashtable *rht; 211 int ret; 212 213 if (unlikely(mem_id_init)) 214 return 0; 215 216 rht = kzalloc(sizeof(*rht), GFP_KERNEL); 217 if (!rht) 218 return -ENOMEM; 219 220 ret = rhashtable_init(rht, &mem_id_rht_params); 221 if (ret < 0) { 222 kfree(rht); 223 return ret; 224 } 225 mem_id_ht = rht; 226 smp_mb(); /* mutex lock should provide enough pairing */ 227 mem_id_init = true; 228 229 return 0; 230 } 231 232 /* Allocate a cyclic ID that maps to allocator pointer. 233 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html 234 * 235 * Caller must lock mem_id_lock. 236 */ 237 static int __mem_id_cyclic_get(gfp_t gfp) 238 { 239 int retries = 1; 240 int id; 241 242 again: 243 id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp); 244 if (id < 0) { 245 if (id == -ENOSPC) { 246 /* Cyclic allocator, reset next id */ 247 if (retries--) { 248 mem_id_next = MEM_ID_MIN; 249 goto again; 250 } 251 } 252 return id; /* errno */ 253 } 254 mem_id_next = id + 1; 255 256 return id; 257 } 258 259 static bool __is_supported_mem_type(enum xdp_mem_type type) 260 { 261 if (type == MEM_TYPE_PAGE_POOL) 262 return is_page_pool_compiled_in(); 263 264 if (type >= MEM_TYPE_MAX) 265 return false; 266 267 return true; 268 } 269 270 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem, 271 enum xdp_mem_type type, 272 void *allocator) 273 { 274 struct xdp_mem_allocator *xdp_alloc; 275 gfp_t gfp = GFP_KERNEL; 276 int id, errno, ret; 277 void *ptr; 278 279 if (!__is_supported_mem_type(type)) 280 return ERR_PTR(-EOPNOTSUPP); 281 282 mem->type = type; 283 284 if (!allocator) { 285 if (type == MEM_TYPE_PAGE_POOL) 286 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */ 287 return NULL; 288 } 289 290 /* Delay init of rhashtable to save memory if feature isn't used */ 291 if (!mem_id_init) { 292 mutex_lock(&mem_id_lock); 293 ret = __mem_id_init_hash_table(); 294 mutex_unlock(&mem_id_lock); 295 if (ret < 0) 296 return ERR_PTR(ret); 297 } 298 299 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp); 300 if (!xdp_alloc) 301 return ERR_PTR(-ENOMEM); 302 303 mutex_lock(&mem_id_lock); 304 id = __mem_id_cyclic_get(gfp); 305 if (id < 0) { 306 errno = id; 307 goto err; 308 } 309 mem->id = id; 310 xdp_alloc->mem = *mem; 311 xdp_alloc->allocator = allocator; 312 313 /* Insert allocator into ID lookup table */ 314 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node); 315 if (IS_ERR(ptr)) { 316 ida_free(&mem_id_pool, mem->id); 317 mem->id = 0; 318 errno = PTR_ERR(ptr); 319 goto err; 320 } 321 322 if (type == MEM_TYPE_PAGE_POOL) 323 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem); 324 325 mutex_unlock(&mem_id_lock); 326 327 return xdp_alloc; 328 err: 329 mutex_unlock(&mem_id_lock); 330 kfree(xdp_alloc); 331 return ERR_PTR(errno); 332 } 333 334 int xdp_reg_mem_model(struct xdp_mem_info *mem, 335 enum xdp_mem_type type, void *allocator) 336 { 337 struct xdp_mem_allocator *xdp_alloc; 338 339 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator); 340 if (IS_ERR(xdp_alloc)) 341 return PTR_ERR(xdp_alloc); 342 return 0; 343 } 344 EXPORT_SYMBOL_GPL(xdp_reg_mem_model); 345 346 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq, 347 enum xdp_mem_type type, void *allocator) 348 { 349 struct xdp_mem_allocator *xdp_alloc; 350 351 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 352 WARN(1, "Missing register, driver bug"); 353 return -EFAULT; 354 } 355 356 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator); 357 if (IS_ERR(xdp_alloc)) 358 return PTR_ERR(xdp_alloc); 359 360 if (trace_mem_connect_enabled() && xdp_alloc) 361 trace_mem_connect(xdp_alloc, xdp_rxq); 362 return 0; 363 } 364 365 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model); 366 367 /* XDP RX runs under NAPI protection, and in different delivery error 368 * scenarios (e.g. queue full), it is possible to return the xdp_frame 369 * while still leveraging this protection. The @napi_direct boolean 370 * is used for those calls sites. Thus, allowing for faster recycling 371 * of xdp_frames/pages in those cases. 372 */ 373 void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct, 374 struct xdp_buff *xdp) 375 { 376 struct page *page; 377 378 switch (mem->type) { 379 case MEM_TYPE_PAGE_POOL: 380 page = virt_to_head_page(data); 381 if (napi_direct && xdp_return_frame_no_direct()) 382 napi_direct = false; 383 /* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) 384 * as mem->type knows this a page_pool page 385 */ 386 page_pool_put_full_page(page->pp, page, napi_direct); 387 break; 388 case MEM_TYPE_PAGE_SHARED: 389 page_frag_free(data); 390 break; 391 case MEM_TYPE_PAGE_ORDER0: 392 page = virt_to_page(data); /* Assumes order0 page*/ 393 put_page(page); 394 break; 395 case MEM_TYPE_XSK_BUFF_POOL: 396 /* NB! Only valid from an xdp_buff! */ 397 xsk_buff_free(xdp); 398 break; 399 default: 400 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */ 401 WARN(1, "Incorrect XDP memory type (%d) usage", mem->type); 402 break; 403 } 404 } 405 406 void xdp_return_frame(struct xdp_frame *xdpf) 407 { 408 struct skb_shared_info *sinfo; 409 int i; 410 411 if (likely(!xdp_frame_has_frags(xdpf))) 412 goto out; 413 414 sinfo = xdp_get_shared_info_from_frame(xdpf); 415 for (i = 0; i < sinfo->nr_frags; i++) { 416 struct page *page = skb_frag_page(&sinfo->frags[i]); 417 418 __xdp_return(page_address(page), &xdpf->mem, false, NULL); 419 } 420 out: 421 __xdp_return(xdpf->data, &xdpf->mem, false, NULL); 422 } 423 EXPORT_SYMBOL_GPL(xdp_return_frame); 424 425 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf) 426 { 427 struct skb_shared_info *sinfo; 428 int i; 429 430 if (likely(!xdp_frame_has_frags(xdpf))) 431 goto out; 432 433 sinfo = xdp_get_shared_info_from_frame(xdpf); 434 for (i = 0; i < sinfo->nr_frags; i++) { 435 struct page *page = skb_frag_page(&sinfo->frags[i]); 436 437 __xdp_return(page_address(page), &xdpf->mem, true, NULL); 438 } 439 out: 440 __xdp_return(xdpf->data, &xdpf->mem, true, NULL); 441 } 442 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi); 443 444 /* XDP bulk APIs introduce a defer/flush mechanism to return 445 * pages belonging to the same xdp_mem_allocator object 446 * (identified via the mem.id field) in bulk to optimize 447 * I-cache and D-cache. 448 * The bulk queue size is set to 16 to be aligned to how 449 * XDP_REDIRECT bulking works. The bulk is flushed when 450 * it is full or when mem.id changes. 451 * xdp_frame_bulk is usually stored/allocated on the function 452 * call-stack to avoid locking penalties. 453 */ 454 void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq) 455 { 456 struct xdp_mem_allocator *xa = bq->xa; 457 458 if (unlikely(!xa || !bq->count)) 459 return; 460 461 page_pool_put_page_bulk(xa->page_pool, bq->q, bq->count); 462 /* bq->xa is not cleared to save lookup, if mem.id same in next bulk */ 463 bq->count = 0; 464 } 465 EXPORT_SYMBOL_GPL(xdp_flush_frame_bulk); 466 467 /* Must be called with rcu_read_lock held */ 468 void xdp_return_frame_bulk(struct xdp_frame *xdpf, 469 struct xdp_frame_bulk *bq) 470 { 471 struct xdp_mem_info *mem = &xdpf->mem; 472 struct xdp_mem_allocator *xa; 473 474 if (mem->type != MEM_TYPE_PAGE_POOL) { 475 xdp_return_frame(xdpf); 476 return; 477 } 478 479 xa = bq->xa; 480 if (unlikely(!xa)) { 481 xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 482 bq->count = 0; 483 bq->xa = xa; 484 } 485 486 if (bq->count == XDP_BULK_QUEUE_SIZE) 487 xdp_flush_frame_bulk(bq); 488 489 if (unlikely(mem->id != xa->mem.id)) { 490 xdp_flush_frame_bulk(bq); 491 bq->xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 492 } 493 494 if (unlikely(xdp_frame_has_frags(xdpf))) { 495 struct skb_shared_info *sinfo; 496 int i; 497 498 sinfo = xdp_get_shared_info_from_frame(xdpf); 499 for (i = 0; i < sinfo->nr_frags; i++) { 500 skb_frag_t *frag = &sinfo->frags[i]; 501 502 bq->q[bq->count++] = skb_frag_address(frag); 503 if (bq->count == XDP_BULK_QUEUE_SIZE) 504 xdp_flush_frame_bulk(bq); 505 } 506 } 507 bq->q[bq->count++] = xdpf->data; 508 } 509 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk); 510 511 void xdp_return_buff(struct xdp_buff *xdp) 512 { 513 struct skb_shared_info *sinfo; 514 int i; 515 516 if (likely(!xdp_buff_has_frags(xdp))) 517 goto out; 518 519 sinfo = xdp_get_shared_info_from_buff(xdp); 520 for (i = 0; i < sinfo->nr_frags; i++) { 521 struct page *page = skb_frag_page(&sinfo->frags[i]); 522 523 __xdp_return(page_address(page), &xdp->rxq->mem, true, xdp); 524 } 525 out: 526 __xdp_return(xdp->data, &xdp->rxq->mem, true, xdp); 527 } 528 EXPORT_SYMBOL_GPL(xdp_return_buff); 529 530 void xdp_attachment_setup(struct xdp_attachment_info *info, 531 struct netdev_bpf *bpf) 532 { 533 if (info->prog) 534 bpf_prog_put(info->prog); 535 info->prog = bpf->prog; 536 info->flags = bpf->flags; 537 } 538 EXPORT_SYMBOL_GPL(xdp_attachment_setup); 539 540 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp) 541 { 542 unsigned int metasize, totsize; 543 void *addr, *data_to_copy; 544 struct xdp_frame *xdpf; 545 struct page *page; 546 547 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */ 548 metasize = xdp_data_meta_unsupported(xdp) ? 0 : 549 xdp->data - xdp->data_meta; 550 totsize = xdp->data_end - xdp->data + metasize; 551 552 if (sizeof(*xdpf) + totsize > PAGE_SIZE) 553 return NULL; 554 555 page = dev_alloc_page(); 556 if (!page) 557 return NULL; 558 559 addr = page_to_virt(page); 560 xdpf = addr; 561 memset(xdpf, 0, sizeof(*xdpf)); 562 563 addr += sizeof(*xdpf); 564 data_to_copy = metasize ? xdp->data_meta : xdp->data; 565 memcpy(addr, data_to_copy, totsize); 566 567 xdpf->data = addr + metasize; 568 xdpf->len = totsize - metasize; 569 xdpf->headroom = 0; 570 xdpf->metasize = metasize; 571 xdpf->frame_sz = PAGE_SIZE; 572 xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 573 574 xsk_buff_free(xdp); 575 return xdpf; 576 } 577 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame); 578 579 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */ 580 void xdp_warn(const char *msg, const char *func, const int line) 581 { 582 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg); 583 }; 584 EXPORT_SYMBOL_GPL(xdp_warn); 585 586 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp) 587 { 588 n_skb = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, gfp, n_skb, skbs); 589 if (unlikely(!n_skb)) 590 return -ENOMEM; 591 592 return 0; 593 } 594 EXPORT_SYMBOL_GPL(xdp_alloc_skb_bulk); 595 596 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf, 597 struct sk_buff *skb, 598 struct net_device *dev) 599 { 600 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 601 unsigned int headroom, frame_size; 602 void *hard_start; 603 u8 nr_frags; 604 605 /* xdp frags frame */ 606 if (unlikely(xdp_frame_has_frags(xdpf))) 607 nr_frags = sinfo->nr_frags; 608 609 /* Part of headroom was reserved to xdpf */ 610 headroom = sizeof(*xdpf) + xdpf->headroom; 611 612 /* Memory size backing xdp_frame data already have reserved 613 * room for build_skb to place skb_shared_info in tailroom. 614 */ 615 frame_size = xdpf->frame_sz; 616 617 hard_start = xdpf->data - headroom; 618 skb = build_skb_around(skb, hard_start, frame_size); 619 if (unlikely(!skb)) 620 return NULL; 621 622 skb_reserve(skb, headroom); 623 __skb_put(skb, xdpf->len); 624 if (xdpf->metasize) 625 skb_metadata_set(skb, xdpf->metasize); 626 627 if (unlikely(xdp_frame_has_frags(xdpf))) 628 xdp_update_skb_shared_info(skb, nr_frags, 629 sinfo->xdp_frags_size, 630 nr_frags * xdpf->frame_sz, 631 xdp_frame_is_frag_pfmemalloc(xdpf)); 632 633 /* Essential SKB info: protocol and skb->dev */ 634 skb->protocol = eth_type_trans(skb, dev); 635 636 /* Optional SKB info, currently missing: 637 * - HW checksum info (skb->ip_summed) 638 * - HW RX hash (skb_set_hash) 639 * - RX ring dev queue index (skb_record_rx_queue) 640 */ 641 642 if (xdpf->mem.type == MEM_TYPE_PAGE_POOL) 643 skb_mark_for_recycle(skb); 644 645 /* Allow SKB to reuse area used by xdp_frame */ 646 xdp_scrub_frame(xdpf); 647 648 return skb; 649 } 650 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame); 651 652 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf, 653 struct net_device *dev) 654 { 655 struct sk_buff *skb; 656 657 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 658 if (unlikely(!skb)) 659 return NULL; 660 661 memset(skb, 0, offsetof(struct sk_buff, tail)); 662 663 return __xdp_build_skb_from_frame(xdpf, skb, dev); 664 } 665 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame); 666 667 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf) 668 { 669 unsigned int headroom, totalsize; 670 struct xdp_frame *nxdpf; 671 struct page *page; 672 void *addr; 673 674 headroom = xdpf->headroom + sizeof(*xdpf); 675 totalsize = headroom + xdpf->len; 676 677 if (unlikely(totalsize > PAGE_SIZE)) 678 return NULL; 679 page = dev_alloc_page(); 680 if (!page) 681 return NULL; 682 addr = page_to_virt(page); 683 684 memcpy(addr, xdpf, totalsize); 685 686 nxdpf = addr; 687 nxdpf->data = addr + headroom; 688 nxdpf->frame_sz = PAGE_SIZE; 689 nxdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 690 nxdpf->mem.id = 0; 691 692 return nxdpf; 693 } 694 695 __bpf_kfunc_start_defs(); 696 697 /** 698 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp. 699 * @ctx: XDP context pointer. 700 * @timestamp: Return value pointer. 701 * 702 * Return: 703 * * Returns 0 on success or ``-errno`` on error. 704 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc 705 * * ``-ENODATA`` : means no RX-timestamp available for this frame 706 */ 707 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) 708 { 709 return -EOPNOTSUPP; 710 } 711 712 /** 713 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash. 714 * @ctx: XDP context pointer. 715 * @hash: Return value pointer. 716 * @rss_type: Return value pointer for RSS type. 717 * 718 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC 719 * hardware used when calculating RSS hash value. The RSS type can be decoded 720 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits 721 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types* 722 * ``XDP_RSS_TYPE_L*``. 723 * 724 * Return: 725 * * Returns 0 on success or ``-errno`` on error. 726 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc 727 * * ``-ENODATA`` : means no RX-hash available for this frame 728 */ 729 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash, 730 enum xdp_rss_hash_type *rss_type) 731 { 732 return -EOPNOTSUPP; 733 } 734 735 /** 736 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag 737 * @ctx: XDP context pointer. 738 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID). 739 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP) 740 * 741 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*, 742 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use 743 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)** 744 * and should be used as follows: 745 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();`` 746 * 747 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag. 748 * Driver is expected to provide those in **host byte order (usually LE)**, 749 * so the bpf program should not perform byte conversion. 750 * According to 802.1Q standard, *VLAN TCI (Tag control information)* 751 * is a bit field that contains: 752 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``, 753 * *Drop eligible indicator (DEI)* - 1 bit, 754 * *Priority code point (PCP)* - 3 bits. 755 * For detailed meaning of DEI and PCP, please refer to other sources. 756 * 757 * Return: 758 * * Returns 0 on success or ``-errno`` on error. 759 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc 760 * * ``-ENODATA`` : VLAN tag was not stripped or is not available 761 */ 762 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx, 763 __be16 *vlan_proto, u16 *vlan_tci) 764 { 765 return -EOPNOTSUPP; 766 } 767 768 __bpf_kfunc_end_defs(); 769 770 BTF_KFUNCS_START(xdp_metadata_kfunc_ids) 771 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS) 772 XDP_METADATA_KFUNC_xxx 773 #undef XDP_METADATA_KFUNC 774 BTF_KFUNCS_END(xdp_metadata_kfunc_ids) 775 776 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = { 777 .owner = THIS_MODULE, 778 .set = &xdp_metadata_kfunc_ids, 779 }; 780 781 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted) 782 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str) 783 XDP_METADATA_KFUNC_xxx 784 #undef XDP_METADATA_KFUNC 785 786 u32 bpf_xdp_metadata_kfunc_id(int id) 787 { 788 /* xdp_metadata_kfunc_ids is sorted and can't be used */ 789 return xdp_metadata_kfunc_ids_unsorted[id]; 790 } 791 792 bool bpf_dev_bound_kfunc_id(u32 btf_id) 793 { 794 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id); 795 } 796 797 static int __init xdp_metadata_init(void) 798 { 799 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set); 800 } 801 late_initcall(xdp_metadata_init); 802 803 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val) 804 { 805 val &= NETDEV_XDP_ACT_MASK; 806 if (dev->xdp_features == val) 807 return; 808 809 dev->xdp_features = val; 810 811 if (dev->reg_state == NETREG_REGISTERED) 812 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev); 813 } 814 EXPORT_SYMBOL_GPL(xdp_set_features_flag); 815 816 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg) 817 { 818 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT); 819 820 if (support_sg) 821 val |= NETDEV_XDP_ACT_NDO_XMIT_SG; 822 xdp_set_features_flag(dev, val); 823 } 824 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target); 825 826 void xdp_features_clear_redirect_target(struct net_device *dev) 827 { 828 xdp_features_t val = dev->xdp_features; 829 830 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG); 831 xdp_set_features_flag(dev, val); 832 } 833 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target); 834