1 // SPDX-License-Identifier: GPL-2.0-only 2 /* net/core/xdp.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 #include <linux/filter.h> 10 #include <linux/types.h> 11 #include <linux/mm.h> 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/idr.h> 15 #include <linux/rhashtable.h> 16 #include <linux/bug.h> 17 #include <net/page_pool/helpers.h> 18 19 #include <net/xdp.h> 20 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */ 21 #include <trace/events/xdp.h> 22 #include <net/xdp_sock_drv.h> 23 24 #define REG_STATE_NEW 0x0 25 #define REG_STATE_REGISTERED 0x1 26 #define REG_STATE_UNREGISTERED 0x2 27 #define REG_STATE_UNUSED 0x3 28 29 static DEFINE_IDA(mem_id_pool); 30 static DEFINE_MUTEX(mem_id_lock); 31 #define MEM_ID_MAX 0xFFFE 32 #define MEM_ID_MIN 1 33 static int mem_id_next = MEM_ID_MIN; 34 35 static bool mem_id_init; /* false */ 36 static struct rhashtable *mem_id_ht; 37 38 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed) 39 { 40 const u32 *k = data; 41 const u32 key = *k; 42 43 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id) 44 != sizeof(u32)); 45 46 /* Use cyclic increasing ID as direct hash key */ 47 return key; 48 } 49 50 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg, 51 const void *ptr) 52 { 53 const struct xdp_mem_allocator *xa = ptr; 54 u32 mem_id = *(u32 *)arg->key; 55 56 return xa->mem.id != mem_id; 57 } 58 59 static const struct rhashtable_params mem_id_rht_params = { 60 .nelem_hint = 64, 61 .head_offset = offsetof(struct xdp_mem_allocator, node), 62 .key_offset = offsetof(struct xdp_mem_allocator, mem.id), 63 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id), 64 .max_size = MEM_ID_MAX, 65 .min_size = 8, 66 .automatic_shrinking = true, 67 .hashfn = xdp_mem_id_hashfn, 68 .obj_cmpfn = xdp_mem_id_cmp, 69 }; 70 71 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu) 72 { 73 struct xdp_mem_allocator *xa; 74 75 xa = container_of(rcu, struct xdp_mem_allocator, rcu); 76 77 /* Allow this ID to be reused */ 78 ida_simple_remove(&mem_id_pool, xa->mem.id); 79 80 kfree(xa); 81 } 82 83 static void mem_xa_remove(struct xdp_mem_allocator *xa) 84 { 85 trace_mem_disconnect(xa); 86 87 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params)) 88 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free); 89 } 90 91 static void mem_allocator_disconnect(void *allocator) 92 { 93 struct xdp_mem_allocator *xa; 94 struct rhashtable_iter iter; 95 96 mutex_lock(&mem_id_lock); 97 98 rhashtable_walk_enter(mem_id_ht, &iter); 99 do { 100 rhashtable_walk_start(&iter); 101 102 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) { 103 if (xa->allocator == allocator) 104 mem_xa_remove(xa); 105 } 106 107 rhashtable_walk_stop(&iter); 108 109 } while (xa == ERR_PTR(-EAGAIN)); 110 rhashtable_walk_exit(&iter); 111 112 mutex_unlock(&mem_id_lock); 113 } 114 115 void xdp_unreg_mem_model(struct xdp_mem_info *mem) 116 { 117 struct xdp_mem_allocator *xa; 118 int type = mem->type; 119 int id = mem->id; 120 121 /* Reset mem info to defaults */ 122 mem->id = 0; 123 mem->type = 0; 124 125 if (id == 0) 126 return; 127 128 if (type == MEM_TYPE_PAGE_POOL) { 129 rcu_read_lock(); 130 xa = rhashtable_lookup(mem_id_ht, &id, mem_id_rht_params); 131 page_pool_destroy(xa->page_pool); 132 rcu_read_unlock(); 133 } 134 } 135 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model); 136 137 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq) 138 { 139 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 140 WARN(1, "Missing register, driver bug"); 141 return; 142 } 143 144 xdp_unreg_mem_model(&xdp_rxq->mem); 145 } 146 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model); 147 148 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq) 149 { 150 /* Simplify driver cleanup code paths, allow unreg "unused" */ 151 if (xdp_rxq->reg_state == REG_STATE_UNUSED) 152 return; 153 154 xdp_rxq_info_unreg_mem_model(xdp_rxq); 155 156 xdp_rxq->reg_state = REG_STATE_UNREGISTERED; 157 xdp_rxq->dev = NULL; 158 } 159 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg); 160 161 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq) 162 { 163 memset(xdp_rxq, 0, sizeof(*xdp_rxq)); 164 } 165 166 /* Returns 0 on success, negative on failure */ 167 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, 168 struct net_device *dev, u32 queue_index, 169 unsigned int napi_id, u32 frag_size) 170 { 171 if (!dev) { 172 WARN(1, "Missing net_device from driver"); 173 return -ENODEV; 174 } 175 176 if (xdp_rxq->reg_state == REG_STATE_UNUSED) { 177 WARN(1, "Driver promised not to register this"); 178 return -EINVAL; 179 } 180 181 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) { 182 WARN(1, "Missing unregister, handled but fix driver"); 183 xdp_rxq_info_unreg(xdp_rxq); 184 } 185 186 /* State either UNREGISTERED or NEW */ 187 xdp_rxq_info_init(xdp_rxq); 188 xdp_rxq->dev = dev; 189 xdp_rxq->queue_index = queue_index; 190 xdp_rxq->napi_id = napi_id; 191 xdp_rxq->frag_size = frag_size; 192 193 xdp_rxq->reg_state = REG_STATE_REGISTERED; 194 return 0; 195 } 196 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg); 197 198 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq) 199 { 200 xdp_rxq->reg_state = REG_STATE_UNUSED; 201 } 202 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused); 203 204 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq) 205 { 206 return (xdp_rxq->reg_state == REG_STATE_REGISTERED); 207 } 208 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg); 209 210 static int __mem_id_init_hash_table(void) 211 { 212 struct rhashtable *rht; 213 int ret; 214 215 if (unlikely(mem_id_init)) 216 return 0; 217 218 rht = kzalloc(sizeof(*rht), GFP_KERNEL); 219 if (!rht) 220 return -ENOMEM; 221 222 ret = rhashtable_init(rht, &mem_id_rht_params); 223 if (ret < 0) { 224 kfree(rht); 225 return ret; 226 } 227 mem_id_ht = rht; 228 smp_mb(); /* mutex lock should provide enough pairing */ 229 mem_id_init = true; 230 231 return 0; 232 } 233 234 /* Allocate a cyclic ID that maps to allocator pointer. 235 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html 236 * 237 * Caller must lock mem_id_lock. 238 */ 239 static int __mem_id_cyclic_get(gfp_t gfp) 240 { 241 int retries = 1; 242 int id; 243 244 again: 245 id = ida_simple_get(&mem_id_pool, mem_id_next, MEM_ID_MAX, gfp); 246 if (id < 0) { 247 if (id == -ENOSPC) { 248 /* Cyclic allocator, reset next id */ 249 if (retries--) { 250 mem_id_next = MEM_ID_MIN; 251 goto again; 252 } 253 } 254 return id; /* errno */ 255 } 256 mem_id_next = id + 1; 257 258 return id; 259 } 260 261 static bool __is_supported_mem_type(enum xdp_mem_type type) 262 { 263 if (type == MEM_TYPE_PAGE_POOL) 264 return is_page_pool_compiled_in(); 265 266 if (type >= MEM_TYPE_MAX) 267 return false; 268 269 return true; 270 } 271 272 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem, 273 enum xdp_mem_type type, 274 void *allocator) 275 { 276 struct xdp_mem_allocator *xdp_alloc; 277 gfp_t gfp = GFP_KERNEL; 278 int id, errno, ret; 279 void *ptr; 280 281 if (!__is_supported_mem_type(type)) 282 return ERR_PTR(-EOPNOTSUPP); 283 284 mem->type = type; 285 286 if (!allocator) { 287 if (type == MEM_TYPE_PAGE_POOL) 288 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */ 289 return NULL; 290 } 291 292 /* Delay init of rhashtable to save memory if feature isn't used */ 293 if (!mem_id_init) { 294 mutex_lock(&mem_id_lock); 295 ret = __mem_id_init_hash_table(); 296 mutex_unlock(&mem_id_lock); 297 if (ret < 0) { 298 WARN_ON(1); 299 return ERR_PTR(ret); 300 } 301 } 302 303 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp); 304 if (!xdp_alloc) 305 return ERR_PTR(-ENOMEM); 306 307 mutex_lock(&mem_id_lock); 308 id = __mem_id_cyclic_get(gfp); 309 if (id < 0) { 310 errno = id; 311 goto err; 312 } 313 mem->id = id; 314 xdp_alloc->mem = *mem; 315 xdp_alloc->allocator = allocator; 316 317 /* Insert allocator into ID lookup table */ 318 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node); 319 if (IS_ERR(ptr)) { 320 ida_simple_remove(&mem_id_pool, mem->id); 321 mem->id = 0; 322 errno = PTR_ERR(ptr); 323 goto err; 324 } 325 326 if (type == MEM_TYPE_PAGE_POOL) 327 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem); 328 329 mutex_unlock(&mem_id_lock); 330 331 return xdp_alloc; 332 err: 333 mutex_unlock(&mem_id_lock); 334 kfree(xdp_alloc); 335 return ERR_PTR(errno); 336 } 337 338 int xdp_reg_mem_model(struct xdp_mem_info *mem, 339 enum xdp_mem_type type, void *allocator) 340 { 341 struct xdp_mem_allocator *xdp_alloc; 342 343 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator); 344 if (IS_ERR(xdp_alloc)) 345 return PTR_ERR(xdp_alloc); 346 return 0; 347 } 348 EXPORT_SYMBOL_GPL(xdp_reg_mem_model); 349 350 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq, 351 enum xdp_mem_type type, void *allocator) 352 { 353 struct xdp_mem_allocator *xdp_alloc; 354 355 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 356 WARN(1, "Missing register, driver bug"); 357 return -EFAULT; 358 } 359 360 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator); 361 if (IS_ERR(xdp_alloc)) 362 return PTR_ERR(xdp_alloc); 363 364 if (trace_mem_connect_enabled() && xdp_alloc) 365 trace_mem_connect(xdp_alloc, xdp_rxq); 366 return 0; 367 } 368 369 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model); 370 371 /* XDP RX runs under NAPI protection, and in different delivery error 372 * scenarios (e.g. queue full), it is possible to return the xdp_frame 373 * while still leveraging this protection. The @napi_direct boolean 374 * is used for those calls sites. Thus, allowing for faster recycling 375 * of xdp_frames/pages in those cases. 376 */ 377 void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct, 378 struct xdp_buff *xdp) 379 { 380 struct page *page; 381 382 switch (mem->type) { 383 case MEM_TYPE_PAGE_POOL: 384 page = virt_to_head_page(data); 385 if (napi_direct && xdp_return_frame_no_direct()) 386 napi_direct = false; 387 /* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) 388 * as mem->type knows this a page_pool page 389 */ 390 page_pool_put_full_page(page->pp, page, napi_direct); 391 break; 392 case MEM_TYPE_PAGE_SHARED: 393 page_frag_free(data); 394 break; 395 case MEM_TYPE_PAGE_ORDER0: 396 page = virt_to_page(data); /* Assumes order0 page*/ 397 put_page(page); 398 break; 399 case MEM_TYPE_XSK_BUFF_POOL: 400 /* NB! Only valid from an xdp_buff! */ 401 xsk_buff_free(xdp); 402 break; 403 default: 404 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */ 405 WARN(1, "Incorrect XDP memory type (%d) usage", mem->type); 406 break; 407 } 408 } 409 410 void xdp_return_frame(struct xdp_frame *xdpf) 411 { 412 struct skb_shared_info *sinfo; 413 int i; 414 415 if (likely(!xdp_frame_has_frags(xdpf))) 416 goto out; 417 418 sinfo = xdp_get_shared_info_from_frame(xdpf); 419 for (i = 0; i < sinfo->nr_frags; i++) { 420 struct page *page = skb_frag_page(&sinfo->frags[i]); 421 422 __xdp_return(page_address(page), &xdpf->mem, false, NULL); 423 } 424 out: 425 __xdp_return(xdpf->data, &xdpf->mem, false, NULL); 426 } 427 EXPORT_SYMBOL_GPL(xdp_return_frame); 428 429 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf) 430 { 431 struct skb_shared_info *sinfo; 432 int i; 433 434 if (likely(!xdp_frame_has_frags(xdpf))) 435 goto out; 436 437 sinfo = xdp_get_shared_info_from_frame(xdpf); 438 for (i = 0; i < sinfo->nr_frags; i++) { 439 struct page *page = skb_frag_page(&sinfo->frags[i]); 440 441 __xdp_return(page_address(page), &xdpf->mem, true, NULL); 442 } 443 out: 444 __xdp_return(xdpf->data, &xdpf->mem, true, NULL); 445 } 446 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi); 447 448 /* XDP bulk APIs introduce a defer/flush mechanism to return 449 * pages belonging to the same xdp_mem_allocator object 450 * (identified via the mem.id field) in bulk to optimize 451 * I-cache and D-cache. 452 * The bulk queue size is set to 16 to be aligned to how 453 * XDP_REDIRECT bulking works. The bulk is flushed when 454 * it is full or when mem.id changes. 455 * xdp_frame_bulk is usually stored/allocated on the function 456 * call-stack to avoid locking penalties. 457 */ 458 void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq) 459 { 460 struct xdp_mem_allocator *xa = bq->xa; 461 462 if (unlikely(!xa || !bq->count)) 463 return; 464 465 page_pool_put_page_bulk(xa->page_pool, bq->q, bq->count); 466 /* bq->xa is not cleared to save lookup, if mem.id same in next bulk */ 467 bq->count = 0; 468 } 469 EXPORT_SYMBOL_GPL(xdp_flush_frame_bulk); 470 471 /* Must be called with rcu_read_lock held */ 472 void xdp_return_frame_bulk(struct xdp_frame *xdpf, 473 struct xdp_frame_bulk *bq) 474 { 475 struct xdp_mem_info *mem = &xdpf->mem; 476 struct xdp_mem_allocator *xa; 477 478 if (mem->type != MEM_TYPE_PAGE_POOL) { 479 xdp_return_frame(xdpf); 480 return; 481 } 482 483 xa = bq->xa; 484 if (unlikely(!xa)) { 485 xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 486 bq->count = 0; 487 bq->xa = xa; 488 } 489 490 if (bq->count == XDP_BULK_QUEUE_SIZE) 491 xdp_flush_frame_bulk(bq); 492 493 if (unlikely(mem->id != xa->mem.id)) { 494 xdp_flush_frame_bulk(bq); 495 bq->xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 496 } 497 498 if (unlikely(xdp_frame_has_frags(xdpf))) { 499 struct skb_shared_info *sinfo; 500 int i; 501 502 sinfo = xdp_get_shared_info_from_frame(xdpf); 503 for (i = 0; i < sinfo->nr_frags; i++) { 504 skb_frag_t *frag = &sinfo->frags[i]; 505 506 bq->q[bq->count++] = skb_frag_address(frag); 507 if (bq->count == XDP_BULK_QUEUE_SIZE) 508 xdp_flush_frame_bulk(bq); 509 } 510 } 511 bq->q[bq->count++] = xdpf->data; 512 } 513 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk); 514 515 void xdp_return_buff(struct xdp_buff *xdp) 516 { 517 struct skb_shared_info *sinfo; 518 int i; 519 520 if (likely(!xdp_buff_has_frags(xdp))) 521 goto out; 522 523 sinfo = xdp_get_shared_info_from_buff(xdp); 524 for (i = 0; i < sinfo->nr_frags; i++) { 525 struct page *page = skb_frag_page(&sinfo->frags[i]); 526 527 __xdp_return(page_address(page), &xdp->rxq->mem, true, xdp); 528 } 529 out: 530 __xdp_return(xdp->data, &xdp->rxq->mem, true, xdp); 531 } 532 EXPORT_SYMBOL_GPL(xdp_return_buff); 533 534 void xdp_attachment_setup(struct xdp_attachment_info *info, 535 struct netdev_bpf *bpf) 536 { 537 if (info->prog) 538 bpf_prog_put(info->prog); 539 info->prog = bpf->prog; 540 info->flags = bpf->flags; 541 } 542 EXPORT_SYMBOL_GPL(xdp_attachment_setup); 543 544 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp) 545 { 546 unsigned int metasize, totsize; 547 void *addr, *data_to_copy; 548 struct xdp_frame *xdpf; 549 struct page *page; 550 551 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */ 552 metasize = xdp_data_meta_unsupported(xdp) ? 0 : 553 xdp->data - xdp->data_meta; 554 totsize = xdp->data_end - xdp->data + metasize; 555 556 if (sizeof(*xdpf) + totsize > PAGE_SIZE) 557 return NULL; 558 559 page = dev_alloc_page(); 560 if (!page) 561 return NULL; 562 563 addr = page_to_virt(page); 564 xdpf = addr; 565 memset(xdpf, 0, sizeof(*xdpf)); 566 567 addr += sizeof(*xdpf); 568 data_to_copy = metasize ? xdp->data_meta : xdp->data; 569 memcpy(addr, data_to_copy, totsize); 570 571 xdpf->data = addr + metasize; 572 xdpf->len = totsize - metasize; 573 xdpf->headroom = 0; 574 xdpf->metasize = metasize; 575 xdpf->frame_sz = PAGE_SIZE; 576 xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 577 578 xsk_buff_free(xdp); 579 return xdpf; 580 } 581 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame); 582 583 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */ 584 void xdp_warn(const char *msg, const char *func, const int line) 585 { 586 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg); 587 }; 588 EXPORT_SYMBOL_GPL(xdp_warn); 589 590 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp) 591 { 592 n_skb = kmem_cache_alloc_bulk(skbuff_cache, gfp, n_skb, skbs); 593 if (unlikely(!n_skb)) 594 return -ENOMEM; 595 596 return 0; 597 } 598 EXPORT_SYMBOL_GPL(xdp_alloc_skb_bulk); 599 600 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf, 601 struct sk_buff *skb, 602 struct net_device *dev) 603 { 604 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 605 unsigned int headroom, frame_size; 606 void *hard_start; 607 u8 nr_frags; 608 609 /* xdp frags frame */ 610 if (unlikely(xdp_frame_has_frags(xdpf))) 611 nr_frags = sinfo->nr_frags; 612 613 /* Part of headroom was reserved to xdpf */ 614 headroom = sizeof(*xdpf) + xdpf->headroom; 615 616 /* Memory size backing xdp_frame data already have reserved 617 * room for build_skb to place skb_shared_info in tailroom. 618 */ 619 frame_size = xdpf->frame_sz; 620 621 hard_start = xdpf->data - headroom; 622 skb = build_skb_around(skb, hard_start, frame_size); 623 if (unlikely(!skb)) 624 return NULL; 625 626 skb_reserve(skb, headroom); 627 __skb_put(skb, xdpf->len); 628 if (xdpf->metasize) 629 skb_metadata_set(skb, xdpf->metasize); 630 631 if (unlikely(xdp_frame_has_frags(xdpf))) 632 xdp_update_skb_shared_info(skb, nr_frags, 633 sinfo->xdp_frags_size, 634 nr_frags * xdpf->frame_sz, 635 xdp_frame_is_frag_pfmemalloc(xdpf)); 636 637 /* Essential SKB info: protocol and skb->dev */ 638 skb->protocol = eth_type_trans(skb, dev); 639 640 /* Optional SKB info, currently missing: 641 * - HW checksum info (skb->ip_summed) 642 * - HW RX hash (skb_set_hash) 643 * - RX ring dev queue index (skb_record_rx_queue) 644 */ 645 646 if (xdpf->mem.type == MEM_TYPE_PAGE_POOL) 647 skb_mark_for_recycle(skb); 648 649 /* Allow SKB to reuse area used by xdp_frame */ 650 xdp_scrub_frame(xdpf); 651 652 return skb; 653 } 654 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame); 655 656 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf, 657 struct net_device *dev) 658 { 659 struct sk_buff *skb; 660 661 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 662 if (unlikely(!skb)) 663 return NULL; 664 665 memset(skb, 0, offsetof(struct sk_buff, tail)); 666 667 return __xdp_build_skb_from_frame(xdpf, skb, dev); 668 } 669 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame); 670 671 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf) 672 { 673 unsigned int headroom, totalsize; 674 struct xdp_frame *nxdpf; 675 struct page *page; 676 void *addr; 677 678 headroom = xdpf->headroom + sizeof(*xdpf); 679 totalsize = headroom + xdpf->len; 680 681 if (unlikely(totalsize > PAGE_SIZE)) 682 return NULL; 683 page = dev_alloc_page(); 684 if (!page) 685 return NULL; 686 addr = page_to_virt(page); 687 688 memcpy(addr, xdpf, totalsize); 689 690 nxdpf = addr; 691 nxdpf->data = addr + headroom; 692 nxdpf->frame_sz = PAGE_SIZE; 693 nxdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 694 nxdpf->mem.id = 0; 695 696 return nxdpf; 697 } 698 699 __bpf_kfunc_start_defs(); 700 701 /** 702 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp. 703 * @ctx: XDP context pointer. 704 * @timestamp: Return value pointer. 705 * 706 * Return: 707 * * Returns 0 on success or ``-errno`` on error. 708 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc 709 * * ``-ENODATA`` : means no RX-timestamp available for this frame 710 */ 711 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) 712 { 713 return -EOPNOTSUPP; 714 } 715 716 /** 717 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash. 718 * @ctx: XDP context pointer. 719 * @hash: Return value pointer. 720 * @rss_type: Return value pointer for RSS type. 721 * 722 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC 723 * hardware used when calculating RSS hash value. The RSS type can be decoded 724 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits 725 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types* 726 * ``XDP_RSS_TYPE_L*``. 727 * 728 * Return: 729 * * Returns 0 on success or ``-errno`` on error. 730 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc 731 * * ``-ENODATA`` : means no RX-hash available for this frame 732 */ 733 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash, 734 enum xdp_rss_hash_type *rss_type) 735 { 736 return -EOPNOTSUPP; 737 } 738 739 /** 740 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag 741 * @ctx: XDP context pointer. 742 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID). 743 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP) 744 * 745 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*, 746 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use 747 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)** 748 * and should be used as follows: 749 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();`` 750 * 751 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag. 752 * Driver is expected to provide those in **host byte order (usually LE)**, 753 * so the bpf program should not perform byte conversion. 754 * According to 802.1Q standard, *VLAN TCI (Tag control information)* 755 * is a bit field that contains: 756 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``, 757 * *Drop eligible indicator (DEI)* - 1 bit, 758 * *Priority code point (PCP)* - 3 bits. 759 * For detailed meaning of DEI and PCP, please refer to other sources. 760 * 761 * Return: 762 * * Returns 0 on success or ``-errno`` on error. 763 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc 764 * * ``-ENODATA`` : VLAN tag was not stripped or is not available 765 */ 766 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx, 767 __be16 *vlan_proto, u16 *vlan_tci) 768 { 769 return -EOPNOTSUPP; 770 } 771 772 __bpf_kfunc_end_defs(); 773 774 BTF_SET8_START(xdp_metadata_kfunc_ids) 775 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS) 776 XDP_METADATA_KFUNC_xxx 777 #undef XDP_METADATA_KFUNC 778 BTF_SET8_END(xdp_metadata_kfunc_ids) 779 780 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = { 781 .owner = THIS_MODULE, 782 .set = &xdp_metadata_kfunc_ids, 783 }; 784 785 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted) 786 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str) 787 XDP_METADATA_KFUNC_xxx 788 #undef XDP_METADATA_KFUNC 789 790 u32 bpf_xdp_metadata_kfunc_id(int id) 791 { 792 /* xdp_metadata_kfunc_ids is sorted and can't be used */ 793 return xdp_metadata_kfunc_ids_unsorted[id]; 794 } 795 796 bool bpf_dev_bound_kfunc_id(u32 btf_id) 797 { 798 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id); 799 } 800 801 static int __init xdp_metadata_init(void) 802 { 803 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set); 804 } 805 late_initcall(xdp_metadata_init); 806 807 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val) 808 { 809 val &= NETDEV_XDP_ACT_MASK; 810 if (dev->xdp_features == val) 811 return; 812 813 dev->xdp_features = val; 814 815 if (dev->reg_state == NETREG_REGISTERED) 816 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev); 817 } 818 EXPORT_SYMBOL_GPL(xdp_set_features_flag); 819 820 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg) 821 { 822 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT); 823 824 if (support_sg) 825 val |= NETDEV_XDP_ACT_NDO_XMIT_SG; 826 xdp_set_features_flag(dev, val); 827 } 828 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target); 829 830 void xdp_features_clear_redirect_target(struct net_device *dev) 831 { 832 xdp_features_t val = dev->xdp_features; 833 834 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG); 835 xdp_set_features_flag(dev, val); 836 } 837 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target); 838