1 // SPDX-License-Identifier: GPL-2.0-only 2 /* net/core/xdp.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 #include <linux/filter.h> 10 #include <linux/types.h> 11 #include <linux/mm.h> 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/idr.h> 15 #include <linux/rhashtable.h> 16 #include <linux/bug.h> 17 #include <net/page_pool/helpers.h> 18 19 #include <net/hotdata.h> 20 #include <net/xdp.h> 21 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */ 22 #include <trace/events/xdp.h> 23 #include <net/xdp_sock_drv.h> 24 25 #define REG_STATE_NEW 0x0 26 #define REG_STATE_REGISTERED 0x1 27 #define REG_STATE_UNREGISTERED 0x2 28 #define REG_STATE_UNUSED 0x3 29 30 static DEFINE_IDA(mem_id_pool); 31 static DEFINE_MUTEX(mem_id_lock); 32 #define MEM_ID_MAX 0xFFFE 33 #define MEM_ID_MIN 1 34 static int mem_id_next = MEM_ID_MIN; 35 36 static bool mem_id_init; /* false */ 37 static struct rhashtable *mem_id_ht; 38 39 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed) 40 { 41 const u32 *k = data; 42 const u32 key = *k; 43 44 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id) 45 != sizeof(u32)); 46 47 /* Use cyclic increasing ID as direct hash key */ 48 return key; 49 } 50 51 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg, 52 const void *ptr) 53 { 54 const struct xdp_mem_allocator *xa = ptr; 55 u32 mem_id = *(u32 *)arg->key; 56 57 return xa->mem.id != mem_id; 58 } 59 60 static const struct rhashtable_params mem_id_rht_params = { 61 .nelem_hint = 64, 62 .head_offset = offsetof(struct xdp_mem_allocator, node), 63 .key_offset = offsetof(struct xdp_mem_allocator, mem.id), 64 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id), 65 .max_size = MEM_ID_MAX, 66 .min_size = 8, 67 .automatic_shrinking = true, 68 .hashfn = xdp_mem_id_hashfn, 69 .obj_cmpfn = xdp_mem_id_cmp, 70 }; 71 72 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu) 73 { 74 struct xdp_mem_allocator *xa; 75 76 xa = container_of(rcu, struct xdp_mem_allocator, rcu); 77 78 /* Allow this ID to be reused */ 79 ida_free(&mem_id_pool, xa->mem.id); 80 81 kfree(xa); 82 } 83 84 static void mem_xa_remove(struct xdp_mem_allocator *xa) 85 { 86 trace_mem_disconnect(xa); 87 88 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params)) 89 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free); 90 } 91 92 static void mem_allocator_disconnect(void *allocator) 93 { 94 struct xdp_mem_allocator *xa; 95 struct rhashtable_iter iter; 96 97 mutex_lock(&mem_id_lock); 98 99 rhashtable_walk_enter(mem_id_ht, &iter); 100 do { 101 rhashtable_walk_start(&iter); 102 103 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) { 104 if (xa->allocator == allocator) 105 mem_xa_remove(xa); 106 } 107 108 rhashtable_walk_stop(&iter); 109 110 } while (xa == ERR_PTR(-EAGAIN)); 111 rhashtable_walk_exit(&iter); 112 113 mutex_unlock(&mem_id_lock); 114 } 115 116 void xdp_unreg_mem_model(struct xdp_mem_info *mem) 117 { 118 struct xdp_mem_allocator *xa; 119 int type = mem->type; 120 int id = mem->id; 121 122 /* Reset mem info to defaults */ 123 mem->id = 0; 124 mem->type = 0; 125 126 if (id == 0) 127 return; 128 129 if (type == MEM_TYPE_PAGE_POOL) { 130 xa = rhashtable_lookup_fast(mem_id_ht, &id, mem_id_rht_params); 131 page_pool_destroy(xa->page_pool); 132 } 133 } 134 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model); 135 136 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq) 137 { 138 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 139 WARN(1, "Missing register, driver bug"); 140 return; 141 } 142 143 xdp_unreg_mem_model(&xdp_rxq->mem); 144 } 145 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model); 146 147 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq) 148 { 149 /* Simplify driver cleanup code paths, allow unreg "unused" */ 150 if (xdp_rxq->reg_state == REG_STATE_UNUSED) 151 return; 152 153 xdp_rxq_info_unreg_mem_model(xdp_rxq); 154 155 xdp_rxq->reg_state = REG_STATE_UNREGISTERED; 156 xdp_rxq->dev = NULL; 157 } 158 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg); 159 160 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq) 161 { 162 memset(xdp_rxq, 0, sizeof(*xdp_rxq)); 163 } 164 165 /* Returns 0 on success, negative on failure */ 166 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, 167 struct net_device *dev, u32 queue_index, 168 unsigned int napi_id, u32 frag_size) 169 { 170 if (!dev) { 171 WARN(1, "Missing net_device from driver"); 172 return -ENODEV; 173 } 174 175 if (xdp_rxq->reg_state == REG_STATE_UNUSED) { 176 WARN(1, "Driver promised not to register this"); 177 return -EINVAL; 178 } 179 180 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) { 181 WARN(1, "Missing unregister, handled but fix driver"); 182 xdp_rxq_info_unreg(xdp_rxq); 183 } 184 185 /* State either UNREGISTERED or NEW */ 186 xdp_rxq_info_init(xdp_rxq); 187 xdp_rxq->dev = dev; 188 xdp_rxq->queue_index = queue_index; 189 xdp_rxq->napi_id = napi_id; 190 xdp_rxq->frag_size = frag_size; 191 192 xdp_rxq->reg_state = REG_STATE_REGISTERED; 193 return 0; 194 } 195 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg); 196 197 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq) 198 { 199 xdp_rxq->reg_state = REG_STATE_UNUSED; 200 } 201 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused); 202 203 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq) 204 { 205 return (xdp_rxq->reg_state == REG_STATE_REGISTERED); 206 } 207 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg); 208 209 static int __mem_id_init_hash_table(void) 210 { 211 struct rhashtable *rht; 212 int ret; 213 214 if (unlikely(mem_id_init)) 215 return 0; 216 217 rht = kzalloc(sizeof(*rht), GFP_KERNEL); 218 if (!rht) 219 return -ENOMEM; 220 221 ret = rhashtable_init(rht, &mem_id_rht_params); 222 if (ret < 0) { 223 kfree(rht); 224 return ret; 225 } 226 mem_id_ht = rht; 227 smp_mb(); /* mutex lock should provide enough pairing */ 228 mem_id_init = true; 229 230 return 0; 231 } 232 233 /* Allocate a cyclic ID that maps to allocator pointer. 234 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html 235 * 236 * Caller must lock mem_id_lock. 237 */ 238 static int __mem_id_cyclic_get(gfp_t gfp) 239 { 240 int retries = 1; 241 int id; 242 243 again: 244 id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp); 245 if (id < 0) { 246 if (id == -ENOSPC) { 247 /* Cyclic allocator, reset next id */ 248 if (retries--) { 249 mem_id_next = MEM_ID_MIN; 250 goto again; 251 } 252 } 253 return id; /* errno */ 254 } 255 mem_id_next = id + 1; 256 257 return id; 258 } 259 260 static bool __is_supported_mem_type(enum xdp_mem_type type) 261 { 262 if (type == MEM_TYPE_PAGE_POOL) 263 return is_page_pool_compiled_in(); 264 265 if (type >= MEM_TYPE_MAX) 266 return false; 267 268 return true; 269 } 270 271 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem, 272 enum xdp_mem_type type, 273 void *allocator) 274 { 275 struct xdp_mem_allocator *xdp_alloc; 276 gfp_t gfp = GFP_KERNEL; 277 int id, errno, ret; 278 void *ptr; 279 280 if (!__is_supported_mem_type(type)) 281 return ERR_PTR(-EOPNOTSUPP); 282 283 mem->type = type; 284 285 if (!allocator) { 286 if (type == MEM_TYPE_PAGE_POOL) 287 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */ 288 return NULL; 289 } 290 291 /* Delay init of rhashtable to save memory if feature isn't used */ 292 if (!mem_id_init) { 293 mutex_lock(&mem_id_lock); 294 ret = __mem_id_init_hash_table(); 295 mutex_unlock(&mem_id_lock); 296 if (ret < 0) 297 return ERR_PTR(ret); 298 } 299 300 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp); 301 if (!xdp_alloc) 302 return ERR_PTR(-ENOMEM); 303 304 mutex_lock(&mem_id_lock); 305 id = __mem_id_cyclic_get(gfp); 306 if (id < 0) { 307 errno = id; 308 goto err; 309 } 310 mem->id = id; 311 xdp_alloc->mem = *mem; 312 xdp_alloc->allocator = allocator; 313 314 /* Insert allocator into ID lookup table */ 315 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node); 316 if (IS_ERR(ptr)) { 317 ida_free(&mem_id_pool, mem->id); 318 mem->id = 0; 319 errno = PTR_ERR(ptr); 320 goto err; 321 } 322 323 if (type == MEM_TYPE_PAGE_POOL) 324 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem); 325 326 mutex_unlock(&mem_id_lock); 327 328 return xdp_alloc; 329 err: 330 mutex_unlock(&mem_id_lock); 331 kfree(xdp_alloc); 332 return ERR_PTR(errno); 333 } 334 335 int xdp_reg_mem_model(struct xdp_mem_info *mem, 336 enum xdp_mem_type type, void *allocator) 337 { 338 struct xdp_mem_allocator *xdp_alloc; 339 340 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator); 341 if (IS_ERR(xdp_alloc)) 342 return PTR_ERR(xdp_alloc); 343 return 0; 344 } 345 EXPORT_SYMBOL_GPL(xdp_reg_mem_model); 346 347 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq, 348 enum xdp_mem_type type, void *allocator) 349 { 350 struct xdp_mem_allocator *xdp_alloc; 351 352 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 353 WARN(1, "Missing register, driver bug"); 354 return -EFAULT; 355 } 356 357 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator); 358 if (IS_ERR(xdp_alloc)) 359 return PTR_ERR(xdp_alloc); 360 361 if (type == MEM_TYPE_XSK_BUFF_POOL && allocator) 362 xsk_pool_set_rxq_info(allocator, xdp_rxq); 363 364 if (trace_mem_connect_enabled() && xdp_alloc) 365 trace_mem_connect(xdp_alloc, xdp_rxq); 366 return 0; 367 } 368 369 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model); 370 371 /** 372 * xdp_reg_page_pool - register &page_pool as a memory provider for XDP 373 * @pool: &page_pool to register 374 * 375 * Can be used to register pools manually without connecting to any XDP RxQ 376 * info, so that the XDP layer will be aware of them. Then, they can be 377 * attached to an RxQ info manually via xdp_rxq_info_attach_page_pool(). 378 * 379 * Return: %0 on success, -errno on error. 380 */ 381 int xdp_reg_page_pool(struct page_pool *pool) 382 { 383 struct xdp_mem_info mem; 384 385 return xdp_reg_mem_model(&mem, MEM_TYPE_PAGE_POOL, pool); 386 } 387 EXPORT_SYMBOL_GPL(xdp_reg_page_pool); 388 389 /** 390 * xdp_unreg_page_pool - unregister &page_pool from the memory providers list 391 * @pool: &page_pool to unregister 392 * 393 * A shorthand for manual unregistering page pools. If the pool was previously 394 * attached to an RxQ info, it must be detached first. 395 */ 396 void xdp_unreg_page_pool(const struct page_pool *pool) 397 { 398 struct xdp_mem_info mem = { 399 .type = MEM_TYPE_PAGE_POOL, 400 .id = pool->xdp_mem_id, 401 }; 402 403 xdp_unreg_mem_model(&mem); 404 } 405 EXPORT_SYMBOL_GPL(xdp_unreg_page_pool); 406 407 /** 408 * xdp_rxq_info_attach_page_pool - attach registered pool to RxQ info 409 * @xdp_rxq: XDP RxQ info to attach the pool to 410 * @pool: pool to attach 411 * 412 * If the pool was registered manually, this function must be called instead 413 * of xdp_rxq_info_reg_mem_model() to connect it to the RxQ info. 414 */ 415 void xdp_rxq_info_attach_page_pool(struct xdp_rxq_info *xdp_rxq, 416 const struct page_pool *pool) 417 { 418 struct xdp_mem_info mem = { 419 .type = MEM_TYPE_PAGE_POOL, 420 .id = pool->xdp_mem_id, 421 }; 422 423 xdp_rxq_info_attach_mem_model(xdp_rxq, &mem); 424 } 425 EXPORT_SYMBOL_GPL(xdp_rxq_info_attach_page_pool); 426 427 /* XDP RX runs under NAPI protection, and in different delivery error 428 * scenarios (e.g. queue full), it is possible to return the xdp_frame 429 * while still leveraging this protection. The @napi_direct boolean 430 * is used for those calls sites. Thus, allowing for faster recycling 431 * of xdp_frames/pages in those cases. 432 */ 433 void __xdp_return(netmem_ref netmem, enum xdp_mem_type mem_type, 434 bool napi_direct, struct xdp_buff *xdp) 435 { 436 switch (mem_type) { 437 case MEM_TYPE_PAGE_POOL: 438 netmem = netmem_compound_head(netmem); 439 if (napi_direct && xdp_return_frame_no_direct()) 440 napi_direct = false; 441 /* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) 442 * as mem->type knows this a page_pool page 443 */ 444 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, 445 napi_direct); 446 break; 447 case MEM_TYPE_PAGE_SHARED: 448 page_frag_free(__netmem_address(netmem)); 449 break; 450 case MEM_TYPE_PAGE_ORDER0: 451 put_page(__netmem_to_page(netmem)); 452 break; 453 case MEM_TYPE_XSK_BUFF_POOL: 454 /* NB! Only valid from an xdp_buff! */ 455 xsk_buff_free(xdp); 456 break; 457 default: 458 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */ 459 WARN(1, "Incorrect XDP memory type (%d) usage", mem_type); 460 break; 461 } 462 } 463 464 void xdp_return_frame(struct xdp_frame *xdpf) 465 { 466 struct skb_shared_info *sinfo; 467 468 if (likely(!xdp_frame_has_frags(xdpf))) 469 goto out; 470 471 sinfo = xdp_get_shared_info_from_frame(xdpf); 472 for (u32 i = 0; i < sinfo->nr_frags; i++) 473 __xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type, 474 false, NULL); 475 476 out: 477 __xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, false, NULL); 478 } 479 EXPORT_SYMBOL_GPL(xdp_return_frame); 480 481 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf) 482 { 483 struct skb_shared_info *sinfo; 484 485 if (likely(!xdp_frame_has_frags(xdpf))) 486 goto out; 487 488 sinfo = xdp_get_shared_info_from_frame(xdpf); 489 for (u32 i = 0; i < sinfo->nr_frags; i++) 490 __xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type, 491 true, NULL); 492 493 out: 494 __xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, true, NULL); 495 } 496 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi); 497 498 /* XDP bulk APIs introduce a defer/flush mechanism to return 499 * pages belonging to the same xdp_mem_allocator object 500 * (identified via the mem.id field) in bulk to optimize 501 * I-cache and D-cache. 502 * The bulk queue size is set to 16 to be aligned to how 503 * XDP_REDIRECT bulking works. The bulk is flushed when 504 * it is full or when mem.id changes. 505 * xdp_frame_bulk is usually stored/allocated on the function 506 * call-stack to avoid locking penalties. 507 */ 508 509 /* Must be called with rcu_read_lock held */ 510 void xdp_return_frame_bulk(struct xdp_frame *xdpf, 511 struct xdp_frame_bulk *bq) 512 { 513 if (xdpf->mem_type != MEM_TYPE_PAGE_POOL) { 514 xdp_return_frame(xdpf); 515 return; 516 } 517 518 if (bq->count == XDP_BULK_QUEUE_SIZE) 519 xdp_flush_frame_bulk(bq); 520 521 if (unlikely(xdp_frame_has_frags(xdpf))) { 522 struct skb_shared_info *sinfo; 523 int i; 524 525 sinfo = xdp_get_shared_info_from_frame(xdpf); 526 for (i = 0; i < sinfo->nr_frags; i++) { 527 skb_frag_t *frag = &sinfo->frags[i]; 528 529 bq->q[bq->count++] = skb_frag_netmem(frag); 530 if (bq->count == XDP_BULK_QUEUE_SIZE) 531 xdp_flush_frame_bulk(bq); 532 } 533 } 534 bq->q[bq->count++] = virt_to_netmem(xdpf->data); 535 } 536 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk); 537 538 /** 539 * xdp_return_frag -- free one XDP frag or decrement its refcount 540 * @netmem: network memory reference to release 541 * @xdp: &xdp_buff to release the frag for 542 */ 543 void xdp_return_frag(netmem_ref netmem, const struct xdp_buff *xdp) 544 { 545 __xdp_return(netmem, xdp->rxq->mem.type, true, NULL); 546 } 547 EXPORT_SYMBOL_GPL(xdp_return_frag); 548 549 void xdp_return_buff(struct xdp_buff *xdp) 550 { 551 struct skb_shared_info *sinfo; 552 553 if (likely(!xdp_buff_has_frags(xdp))) 554 goto out; 555 556 sinfo = xdp_get_shared_info_from_buff(xdp); 557 for (u32 i = 0; i < sinfo->nr_frags; i++) 558 __xdp_return(skb_frag_netmem(&sinfo->frags[i]), 559 xdp->rxq->mem.type, true, xdp); 560 561 out: 562 __xdp_return(virt_to_netmem(xdp->data), xdp->rxq->mem.type, true, xdp); 563 } 564 EXPORT_SYMBOL_GPL(xdp_return_buff); 565 566 void xdp_attachment_setup(struct xdp_attachment_info *info, 567 struct netdev_bpf *bpf) 568 { 569 if (info->prog) 570 bpf_prog_put(info->prog); 571 info->prog = bpf->prog; 572 info->flags = bpf->flags; 573 } 574 EXPORT_SYMBOL_GPL(xdp_attachment_setup); 575 576 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp) 577 { 578 unsigned int metasize, totsize; 579 void *addr, *data_to_copy; 580 struct xdp_frame *xdpf; 581 struct page *page; 582 583 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */ 584 metasize = xdp_data_meta_unsupported(xdp) ? 0 : 585 xdp->data - xdp->data_meta; 586 totsize = xdp->data_end - xdp->data + metasize; 587 588 if (sizeof(*xdpf) + totsize > PAGE_SIZE) 589 return NULL; 590 591 page = dev_alloc_page(); 592 if (!page) 593 return NULL; 594 595 addr = page_to_virt(page); 596 xdpf = addr; 597 memset(xdpf, 0, sizeof(*xdpf)); 598 599 addr += sizeof(*xdpf); 600 data_to_copy = metasize ? xdp->data_meta : xdp->data; 601 memcpy(addr, data_to_copy, totsize); 602 603 xdpf->data = addr + metasize; 604 xdpf->len = totsize - metasize; 605 xdpf->headroom = 0; 606 xdpf->metasize = metasize; 607 xdpf->frame_sz = PAGE_SIZE; 608 xdpf->mem_type = MEM_TYPE_PAGE_ORDER0; 609 610 xsk_buff_free(xdp); 611 return xdpf; 612 } 613 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame); 614 615 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */ 616 void xdp_warn(const char *msg, const char *func, const int line) 617 { 618 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg); 619 }; 620 EXPORT_SYMBOL_GPL(xdp_warn); 621 622 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp) 623 { 624 n_skb = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, gfp, n_skb, skbs); 625 if (unlikely(!n_skb)) 626 return -ENOMEM; 627 628 return 0; 629 } 630 EXPORT_SYMBOL_GPL(xdp_alloc_skb_bulk); 631 632 /** 633 * xdp_build_skb_from_buff - create an skb from &xdp_buff 634 * @xdp: &xdp_buff to convert to an skb 635 * 636 * Perform common operations to create a new skb to pass up the stack from 637 * &xdp_buff: allocate an skb head from the NAPI percpu cache, initialize 638 * skb data pointers and offsets, set the recycle bit if the buff is 639 * PP-backed, Rx queue index, protocol and update frags info. 640 * 641 * Return: new &sk_buff on success, %NULL on error. 642 */ 643 struct sk_buff *xdp_build_skb_from_buff(const struct xdp_buff *xdp) 644 { 645 const struct xdp_rxq_info *rxq = xdp->rxq; 646 const struct skb_shared_info *sinfo; 647 struct sk_buff *skb; 648 u32 nr_frags = 0; 649 int metalen; 650 651 if (unlikely(xdp_buff_has_frags(xdp))) { 652 sinfo = xdp_get_shared_info_from_buff(xdp); 653 nr_frags = sinfo->nr_frags; 654 } 655 656 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); 657 if (unlikely(!skb)) 658 return NULL; 659 660 skb_reserve(skb, xdp->data - xdp->data_hard_start); 661 __skb_put(skb, xdp->data_end - xdp->data); 662 663 metalen = xdp->data - xdp->data_meta; 664 if (metalen > 0) 665 skb_metadata_set(skb, metalen); 666 667 if (rxq->mem.type == MEM_TYPE_PAGE_POOL) 668 skb_mark_for_recycle(skb); 669 670 skb_record_rx_queue(skb, rxq->queue_index); 671 672 if (unlikely(nr_frags)) { 673 u32 tsize; 674 675 tsize = sinfo->xdp_frags_truesize ? : nr_frags * xdp->frame_sz; 676 xdp_update_skb_shared_info(skb, nr_frags, 677 sinfo->xdp_frags_size, tsize, 678 xdp_buff_is_frag_pfmemalloc(xdp)); 679 } 680 681 skb->protocol = eth_type_trans(skb, rxq->dev); 682 683 return skb; 684 } 685 EXPORT_SYMBOL_GPL(xdp_build_skb_from_buff); 686 687 /** 688 * xdp_copy_frags_from_zc - copy frags from XSk buff to skb 689 * @skb: skb to copy frags to 690 * @xdp: XSk &xdp_buff from which the frags will be copied 691 * @pp: &page_pool backing page allocation, if available 692 * 693 * Copy all frags from XSk &xdp_buff to the skb to pass it up the stack. 694 * Allocate a new buffer for each frag, copy it and attach to the skb. 695 * 696 * Return: true on success, false on netmem allocation fail. 697 */ 698 static noinline bool xdp_copy_frags_from_zc(struct sk_buff *skb, 699 const struct xdp_buff *xdp, 700 struct page_pool *pp) 701 { 702 struct skb_shared_info *sinfo = skb_shinfo(skb); 703 const struct skb_shared_info *xinfo; 704 u32 nr_frags, tsize = 0; 705 bool pfmemalloc = false; 706 707 xinfo = xdp_get_shared_info_from_buff(xdp); 708 nr_frags = xinfo->nr_frags; 709 710 for (u32 i = 0; i < nr_frags; i++) { 711 u32 len = skb_frag_size(&xinfo->frags[i]); 712 u32 offset, truesize = len; 713 netmem_ref netmem; 714 715 netmem = page_pool_dev_alloc_netmem(pp, &offset, &truesize); 716 if (unlikely(!netmem)) { 717 sinfo->nr_frags = i; 718 return false; 719 } 720 721 memcpy(__netmem_address(netmem), 722 __netmem_address(xinfo->frags[i].netmem), 723 LARGEST_ALIGN(len)); 724 __skb_fill_netmem_desc_noacc(sinfo, i, netmem, offset, len); 725 726 tsize += truesize; 727 pfmemalloc |= netmem_is_pfmemalloc(netmem); 728 } 729 730 xdp_update_skb_shared_info(skb, nr_frags, xinfo->xdp_frags_size, 731 tsize, pfmemalloc); 732 733 return true; 734 } 735 736 /** 737 * xdp_build_skb_from_zc - create an skb from XSk &xdp_buff 738 * @xdp: source XSk buff 739 * 740 * Similar to xdp_build_skb_from_buff(), but for XSk frames. Allocate an skb 741 * head, new buffer for the head, copy the data and initialize the skb fields. 742 * If there are frags, allocate new buffers for them and copy. 743 * Buffers are allocated from the system percpu pools to try recycling them. 744 * If new skb was built successfully, @xdp is returned to XSk pool's freelist. 745 * On error, it remains untouched and the caller must take care of this. 746 * 747 * Return: new &sk_buff on success, %NULL on error. 748 */ 749 struct sk_buff *xdp_build_skb_from_zc(struct xdp_buff *xdp) 750 { 751 struct page_pool *pp = this_cpu_read(system_page_pool); 752 const struct xdp_rxq_info *rxq = xdp->rxq; 753 u32 len = xdp->data_end - xdp->data_meta; 754 u32 truesize = xdp->frame_sz; 755 struct sk_buff *skb; 756 int metalen; 757 void *data; 758 759 if (!IS_ENABLED(CONFIG_PAGE_POOL)) 760 return NULL; 761 762 data = page_pool_dev_alloc_va(pp, &truesize); 763 if (unlikely(!data)) 764 return NULL; 765 766 skb = napi_build_skb(data, truesize); 767 if (unlikely(!skb)) { 768 page_pool_free_va(pp, data, true); 769 return NULL; 770 } 771 772 skb_mark_for_recycle(skb); 773 skb_reserve(skb, xdp->data_meta - xdp->data_hard_start); 774 775 memcpy(__skb_put(skb, len), xdp->data_meta, LARGEST_ALIGN(len)); 776 777 metalen = xdp->data - xdp->data_meta; 778 if (metalen > 0) { 779 skb_metadata_set(skb, metalen); 780 __skb_pull(skb, metalen); 781 } 782 783 skb_record_rx_queue(skb, rxq->queue_index); 784 785 if (unlikely(xdp_buff_has_frags(xdp)) && 786 unlikely(!xdp_copy_frags_from_zc(skb, xdp, pp))) { 787 napi_consume_skb(skb, true); 788 return NULL; 789 } 790 791 xsk_buff_free(xdp); 792 793 skb->protocol = eth_type_trans(skb, rxq->dev); 794 795 return skb; 796 } 797 EXPORT_SYMBOL_GPL(xdp_build_skb_from_zc); 798 799 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf, 800 struct sk_buff *skb, 801 struct net_device *dev) 802 { 803 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 804 unsigned int headroom, frame_size; 805 void *hard_start; 806 u8 nr_frags; 807 808 /* xdp frags frame */ 809 if (unlikely(xdp_frame_has_frags(xdpf))) 810 nr_frags = sinfo->nr_frags; 811 812 /* Part of headroom was reserved to xdpf */ 813 headroom = sizeof(*xdpf) + xdpf->headroom; 814 815 /* Memory size backing xdp_frame data already have reserved 816 * room for build_skb to place skb_shared_info in tailroom. 817 */ 818 frame_size = xdpf->frame_sz; 819 820 hard_start = xdpf->data - headroom; 821 skb = build_skb_around(skb, hard_start, frame_size); 822 if (unlikely(!skb)) 823 return NULL; 824 825 skb_reserve(skb, headroom); 826 __skb_put(skb, xdpf->len); 827 if (xdpf->metasize) 828 skb_metadata_set(skb, xdpf->metasize); 829 830 if (unlikely(xdp_frame_has_frags(xdpf))) 831 xdp_update_skb_shared_info(skb, nr_frags, 832 sinfo->xdp_frags_size, 833 nr_frags * xdpf->frame_sz, 834 xdp_frame_is_frag_pfmemalloc(xdpf)); 835 836 /* Essential SKB info: protocol and skb->dev */ 837 skb->protocol = eth_type_trans(skb, dev); 838 839 /* Optional SKB info, currently missing: 840 * - HW checksum info (skb->ip_summed) 841 * - HW RX hash (skb_set_hash) 842 * - RX ring dev queue index (skb_record_rx_queue) 843 */ 844 845 if (xdpf->mem_type == MEM_TYPE_PAGE_POOL) 846 skb_mark_for_recycle(skb); 847 848 /* Allow SKB to reuse area used by xdp_frame */ 849 xdp_scrub_frame(xdpf); 850 851 return skb; 852 } 853 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame); 854 855 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf, 856 struct net_device *dev) 857 { 858 struct sk_buff *skb; 859 860 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 861 if (unlikely(!skb)) 862 return NULL; 863 864 memset(skb, 0, offsetof(struct sk_buff, tail)); 865 866 return __xdp_build_skb_from_frame(xdpf, skb, dev); 867 } 868 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame); 869 870 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf) 871 { 872 unsigned int headroom, totalsize; 873 struct xdp_frame *nxdpf; 874 struct page *page; 875 void *addr; 876 877 headroom = xdpf->headroom + sizeof(*xdpf); 878 totalsize = headroom + xdpf->len; 879 880 if (unlikely(totalsize > PAGE_SIZE)) 881 return NULL; 882 page = dev_alloc_page(); 883 if (!page) 884 return NULL; 885 addr = page_to_virt(page); 886 887 memcpy(addr, xdpf, totalsize); 888 889 nxdpf = addr; 890 nxdpf->data = addr + headroom; 891 nxdpf->frame_sz = PAGE_SIZE; 892 nxdpf->mem_type = MEM_TYPE_PAGE_ORDER0; 893 894 return nxdpf; 895 } 896 897 __bpf_kfunc_start_defs(); 898 899 /** 900 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp. 901 * @ctx: XDP context pointer. 902 * @timestamp: Return value pointer. 903 * 904 * Return: 905 * * Returns 0 on success or ``-errno`` on error. 906 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc 907 * * ``-ENODATA`` : means no RX-timestamp available for this frame 908 */ 909 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) 910 { 911 return -EOPNOTSUPP; 912 } 913 914 /** 915 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash. 916 * @ctx: XDP context pointer. 917 * @hash: Return value pointer. 918 * @rss_type: Return value pointer for RSS type. 919 * 920 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC 921 * hardware used when calculating RSS hash value. The RSS type can be decoded 922 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits 923 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types* 924 * ``XDP_RSS_TYPE_L*``. 925 * 926 * Return: 927 * * Returns 0 on success or ``-errno`` on error. 928 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc 929 * * ``-ENODATA`` : means no RX-hash available for this frame 930 */ 931 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash, 932 enum xdp_rss_hash_type *rss_type) 933 { 934 return -EOPNOTSUPP; 935 } 936 937 /** 938 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag 939 * @ctx: XDP context pointer. 940 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID). 941 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP) 942 * 943 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*, 944 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use 945 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)** 946 * and should be used as follows: 947 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();`` 948 * 949 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag. 950 * Driver is expected to provide those in **host byte order (usually LE)**, 951 * so the bpf program should not perform byte conversion. 952 * According to 802.1Q standard, *VLAN TCI (Tag control information)* 953 * is a bit field that contains: 954 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``, 955 * *Drop eligible indicator (DEI)* - 1 bit, 956 * *Priority code point (PCP)* - 3 bits. 957 * For detailed meaning of DEI and PCP, please refer to other sources. 958 * 959 * Return: 960 * * Returns 0 on success or ``-errno`` on error. 961 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc 962 * * ``-ENODATA`` : VLAN tag was not stripped or is not available 963 */ 964 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx, 965 __be16 *vlan_proto, u16 *vlan_tci) 966 { 967 return -EOPNOTSUPP; 968 } 969 970 __bpf_kfunc_end_defs(); 971 972 BTF_KFUNCS_START(xdp_metadata_kfunc_ids) 973 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS) 974 XDP_METADATA_KFUNC_xxx 975 #undef XDP_METADATA_KFUNC 976 BTF_KFUNCS_END(xdp_metadata_kfunc_ids) 977 978 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = { 979 .owner = THIS_MODULE, 980 .set = &xdp_metadata_kfunc_ids, 981 }; 982 983 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted) 984 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str) 985 XDP_METADATA_KFUNC_xxx 986 #undef XDP_METADATA_KFUNC 987 988 u32 bpf_xdp_metadata_kfunc_id(int id) 989 { 990 /* xdp_metadata_kfunc_ids is sorted and can't be used */ 991 return xdp_metadata_kfunc_ids_unsorted[id]; 992 } 993 994 bool bpf_dev_bound_kfunc_id(u32 btf_id) 995 { 996 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id); 997 } 998 999 static int __init xdp_metadata_init(void) 1000 { 1001 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set); 1002 } 1003 late_initcall(xdp_metadata_init); 1004 1005 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val) 1006 { 1007 val &= NETDEV_XDP_ACT_MASK; 1008 if (dev->xdp_features == val) 1009 return; 1010 1011 dev->xdp_features = val; 1012 1013 if (dev->reg_state == NETREG_REGISTERED) 1014 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev); 1015 } 1016 EXPORT_SYMBOL_GPL(xdp_set_features_flag); 1017 1018 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg) 1019 { 1020 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT); 1021 1022 if (support_sg) 1023 val |= NETDEV_XDP_ACT_NDO_XMIT_SG; 1024 xdp_set_features_flag(dev, val); 1025 } 1026 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target); 1027 1028 void xdp_features_clear_redirect_target(struct net_device *dev) 1029 { 1030 xdp_features_t val = dev->xdp_features; 1031 1032 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG); 1033 xdp_set_features_flag(dev, val); 1034 } 1035 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target); 1036