1 // SPDX-License-Identifier: GPL-2.0-only 2 /* net/core/xdp.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 #include <linux/filter.h> 10 #include <linux/types.h> 11 #include <linux/mm.h> 12 #include <linux/netdevice.h> 13 #include <linux/slab.h> 14 #include <linux/idr.h> 15 #include <linux/rhashtable.h> 16 #include <linux/bug.h> 17 #include <net/page_pool/helpers.h> 18 19 #include <net/hotdata.h> 20 #include <net/xdp.h> 21 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */ 22 #include <trace/events/xdp.h> 23 #include <net/xdp_sock_drv.h> 24 25 #define REG_STATE_NEW 0x0 26 #define REG_STATE_REGISTERED 0x1 27 #define REG_STATE_UNREGISTERED 0x2 28 #define REG_STATE_UNUSED 0x3 29 30 static DEFINE_IDA(mem_id_pool); 31 static DEFINE_MUTEX(mem_id_lock); 32 #define MEM_ID_MAX 0xFFFE 33 #define MEM_ID_MIN 1 34 static int mem_id_next = MEM_ID_MIN; 35 36 static bool mem_id_init; /* false */ 37 static struct rhashtable *mem_id_ht; 38 39 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed) 40 { 41 const u32 *k = data; 42 const u32 key = *k; 43 44 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id) 45 != sizeof(u32)); 46 47 /* Use cyclic increasing ID as direct hash key */ 48 return key; 49 } 50 51 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg, 52 const void *ptr) 53 { 54 const struct xdp_mem_allocator *xa = ptr; 55 u32 mem_id = *(u32 *)arg->key; 56 57 return xa->mem.id != mem_id; 58 } 59 60 static const struct rhashtable_params mem_id_rht_params = { 61 .nelem_hint = 64, 62 .head_offset = offsetof(struct xdp_mem_allocator, node), 63 .key_offset = offsetof(struct xdp_mem_allocator, mem.id), 64 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id), 65 .max_size = MEM_ID_MAX, 66 .min_size = 8, 67 .automatic_shrinking = true, 68 .hashfn = xdp_mem_id_hashfn, 69 .obj_cmpfn = xdp_mem_id_cmp, 70 }; 71 72 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu) 73 { 74 struct xdp_mem_allocator *xa; 75 76 xa = container_of(rcu, struct xdp_mem_allocator, rcu); 77 78 /* Allow this ID to be reused */ 79 ida_free(&mem_id_pool, xa->mem.id); 80 81 kfree(xa); 82 } 83 84 static void mem_xa_remove(struct xdp_mem_allocator *xa) 85 { 86 trace_mem_disconnect(xa); 87 88 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params)) 89 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free); 90 } 91 92 static void mem_allocator_disconnect(void *allocator) 93 { 94 struct xdp_mem_allocator *xa; 95 struct rhashtable_iter iter; 96 97 mutex_lock(&mem_id_lock); 98 99 rhashtable_walk_enter(mem_id_ht, &iter); 100 do { 101 rhashtable_walk_start(&iter); 102 103 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) { 104 if (xa->allocator == allocator) 105 mem_xa_remove(xa); 106 } 107 108 rhashtable_walk_stop(&iter); 109 110 } while (xa == ERR_PTR(-EAGAIN)); 111 rhashtable_walk_exit(&iter); 112 113 mutex_unlock(&mem_id_lock); 114 } 115 116 void xdp_unreg_mem_model(struct xdp_mem_info *mem) 117 { 118 struct xdp_mem_allocator *xa; 119 int type = mem->type; 120 int id = mem->id; 121 122 /* Reset mem info to defaults */ 123 mem->id = 0; 124 mem->type = 0; 125 126 if (id == 0) 127 return; 128 129 if (type == MEM_TYPE_PAGE_POOL) { 130 xa = rhashtable_lookup_fast(mem_id_ht, &id, mem_id_rht_params); 131 page_pool_destroy(xa->page_pool); 132 } 133 } 134 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model); 135 136 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq) 137 { 138 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 139 WARN(1, "Missing register, driver bug"); 140 return; 141 } 142 143 xdp_unreg_mem_model(&xdp_rxq->mem); 144 } 145 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model); 146 147 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq) 148 { 149 /* Simplify driver cleanup code paths, allow unreg "unused" */ 150 if (xdp_rxq->reg_state == REG_STATE_UNUSED) 151 return; 152 153 xdp_rxq_info_unreg_mem_model(xdp_rxq); 154 155 xdp_rxq->reg_state = REG_STATE_UNREGISTERED; 156 xdp_rxq->dev = NULL; 157 } 158 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg); 159 160 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq) 161 { 162 memset(xdp_rxq, 0, sizeof(*xdp_rxq)); 163 } 164 165 /* Returns 0 on success, negative on failure */ 166 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, 167 struct net_device *dev, u32 queue_index, 168 unsigned int napi_id, u32 frag_size) 169 { 170 if (!dev) { 171 WARN(1, "Missing net_device from driver"); 172 return -ENODEV; 173 } 174 175 if (xdp_rxq->reg_state == REG_STATE_UNUSED) { 176 WARN(1, "Driver promised not to register this"); 177 return -EINVAL; 178 } 179 180 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) { 181 WARN(1, "Missing unregister, handled but fix driver"); 182 xdp_rxq_info_unreg(xdp_rxq); 183 } 184 185 /* State either UNREGISTERED or NEW */ 186 xdp_rxq_info_init(xdp_rxq); 187 xdp_rxq->dev = dev; 188 xdp_rxq->queue_index = queue_index; 189 xdp_rxq->napi_id = napi_id; 190 xdp_rxq->frag_size = frag_size; 191 192 xdp_rxq->reg_state = REG_STATE_REGISTERED; 193 return 0; 194 } 195 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg); 196 197 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq) 198 { 199 xdp_rxq->reg_state = REG_STATE_UNUSED; 200 } 201 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused); 202 203 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq) 204 { 205 return (xdp_rxq->reg_state == REG_STATE_REGISTERED); 206 } 207 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg); 208 209 static int __mem_id_init_hash_table(void) 210 { 211 struct rhashtable *rht; 212 int ret; 213 214 if (unlikely(mem_id_init)) 215 return 0; 216 217 rht = kzalloc(sizeof(*rht), GFP_KERNEL); 218 if (!rht) 219 return -ENOMEM; 220 221 ret = rhashtable_init(rht, &mem_id_rht_params); 222 if (ret < 0) { 223 kfree(rht); 224 return ret; 225 } 226 mem_id_ht = rht; 227 smp_mb(); /* mutex lock should provide enough pairing */ 228 mem_id_init = true; 229 230 return 0; 231 } 232 233 /* Allocate a cyclic ID that maps to allocator pointer. 234 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html 235 * 236 * Caller must lock mem_id_lock. 237 */ 238 static int __mem_id_cyclic_get(gfp_t gfp) 239 { 240 int retries = 1; 241 int id; 242 243 again: 244 id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp); 245 if (id < 0) { 246 if (id == -ENOSPC) { 247 /* Cyclic allocator, reset next id */ 248 if (retries--) { 249 mem_id_next = MEM_ID_MIN; 250 goto again; 251 } 252 } 253 return id; /* errno */ 254 } 255 mem_id_next = id + 1; 256 257 return id; 258 } 259 260 static bool __is_supported_mem_type(enum xdp_mem_type type) 261 { 262 if (type == MEM_TYPE_PAGE_POOL) 263 return is_page_pool_compiled_in(); 264 265 if (type >= MEM_TYPE_MAX) 266 return false; 267 268 return true; 269 } 270 271 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem, 272 enum xdp_mem_type type, 273 void *allocator) 274 { 275 struct xdp_mem_allocator *xdp_alloc; 276 gfp_t gfp = GFP_KERNEL; 277 int id, errno, ret; 278 void *ptr; 279 280 if (!__is_supported_mem_type(type)) 281 return ERR_PTR(-EOPNOTSUPP); 282 283 mem->type = type; 284 285 if (!allocator) { 286 if (type == MEM_TYPE_PAGE_POOL) 287 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */ 288 return NULL; 289 } 290 291 /* Delay init of rhashtable to save memory if feature isn't used */ 292 if (!mem_id_init) { 293 mutex_lock(&mem_id_lock); 294 ret = __mem_id_init_hash_table(); 295 mutex_unlock(&mem_id_lock); 296 if (ret < 0) 297 return ERR_PTR(ret); 298 } 299 300 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp); 301 if (!xdp_alloc) 302 return ERR_PTR(-ENOMEM); 303 304 mutex_lock(&mem_id_lock); 305 id = __mem_id_cyclic_get(gfp); 306 if (id < 0) { 307 errno = id; 308 goto err; 309 } 310 mem->id = id; 311 xdp_alloc->mem = *mem; 312 xdp_alloc->allocator = allocator; 313 314 /* Insert allocator into ID lookup table */ 315 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node); 316 if (IS_ERR(ptr)) { 317 ida_free(&mem_id_pool, mem->id); 318 mem->id = 0; 319 errno = PTR_ERR(ptr); 320 goto err; 321 } 322 323 if (type == MEM_TYPE_PAGE_POOL) 324 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem); 325 326 mutex_unlock(&mem_id_lock); 327 328 return xdp_alloc; 329 err: 330 mutex_unlock(&mem_id_lock); 331 kfree(xdp_alloc); 332 return ERR_PTR(errno); 333 } 334 335 int xdp_reg_mem_model(struct xdp_mem_info *mem, 336 enum xdp_mem_type type, void *allocator) 337 { 338 struct xdp_mem_allocator *xdp_alloc; 339 340 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator); 341 if (IS_ERR(xdp_alloc)) 342 return PTR_ERR(xdp_alloc); 343 return 0; 344 } 345 EXPORT_SYMBOL_GPL(xdp_reg_mem_model); 346 347 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq, 348 enum xdp_mem_type type, void *allocator) 349 { 350 struct xdp_mem_allocator *xdp_alloc; 351 352 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) { 353 WARN(1, "Missing register, driver bug"); 354 return -EFAULT; 355 } 356 357 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator); 358 if (IS_ERR(xdp_alloc)) 359 return PTR_ERR(xdp_alloc); 360 361 if (type == MEM_TYPE_XSK_BUFF_POOL && allocator) 362 xsk_pool_set_rxq_info(allocator, xdp_rxq); 363 364 if (trace_mem_connect_enabled() && xdp_alloc) 365 trace_mem_connect(xdp_alloc, xdp_rxq); 366 return 0; 367 } 368 369 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model); 370 371 /** 372 * xdp_reg_page_pool - register &page_pool as a memory provider for XDP 373 * @pool: &page_pool to register 374 * 375 * Can be used to register pools manually without connecting to any XDP RxQ 376 * info, so that the XDP layer will be aware of them. Then, they can be 377 * attached to an RxQ info manually via xdp_rxq_info_attach_page_pool(). 378 * 379 * Return: %0 on success, -errno on error. 380 */ 381 int xdp_reg_page_pool(struct page_pool *pool) 382 { 383 struct xdp_mem_info mem; 384 385 return xdp_reg_mem_model(&mem, MEM_TYPE_PAGE_POOL, pool); 386 } 387 EXPORT_SYMBOL_GPL(xdp_reg_page_pool); 388 389 /** 390 * xdp_unreg_page_pool - unregister &page_pool from the memory providers list 391 * @pool: &page_pool to unregister 392 * 393 * A shorthand for manual unregistering page pools. If the pool was previously 394 * attached to an RxQ info, it must be detached first. 395 */ 396 void xdp_unreg_page_pool(const struct page_pool *pool) 397 { 398 struct xdp_mem_info mem = { 399 .type = MEM_TYPE_PAGE_POOL, 400 .id = pool->xdp_mem_id, 401 }; 402 403 xdp_unreg_mem_model(&mem); 404 } 405 EXPORT_SYMBOL_GPL(xdp_unreg_page_pool); 406 407 /** 408 * xdp_rxq_info_attach_page_pool - attach registered pool to RxQ info 409 * @xdp_rxq: XDP RxQ info to attach the pool to 410 * @pool: pool to attach 411 * 412 * If the pool was registered manually, this function must be called instead 413 * of xdp_rxq_info_reg_mem_model() to connect it to the RxQ info. 414 */ 415 void xdp_rxq_info_attach_page_pool(struct xdp_rxq_info *xdp_rxq, 416 const struct page_pool *pool) 417 { 418 struct xdp_mem_info mem = { 419 .type = MEM_TYPE_PAGE_POOL, 420 .id = pool->xdp_mem_id, 421 }; 422 423 xdp_rxq_info_attach_mem_model(xdp_rxq, &mem); 424 } 425 EXPORT_SYMBOL_GPL(xdp_rxq_info_attach_page_pool); 426 427 /* XDP RX runs under NAPI protection, and in different delivery error 428 * scenarios (e.g. queue full), it is possible to return the xdp_frame 429 * while still leveraging this protection. The @napi_direct boolean 430 * is used for those calls sites. Thus, allowing for faster recycling 431 * of xdp_frames/pages in those cases. 432 */ 433 void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct, 434 struct xdp_buff *xdp) 435 { 436 struct page *page; 437 438 switch (mem->type) { 439 case MEM_TYPE_PAGE_POOL: 440 page = virt_to_head_page(data); 441 if (napi_direct && xdp_return_frame_no_direct()) 442 napi_direct = false; 443 /* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) 444 * as mem->type knows this a page_pool page 445 */ 446 page_pool_put_full_page(page->pp, page, napi_direct); 447 break; 448 case MEM_TYPE_PAGE_SHARED: 449 page_frag_free(data); 450 break; 451 case MEM_TYPE_PAGE_ORDER0: 452 page = virt_to_page(data); /* Assumes order0 page*/ 453 put_page(page); 454 break; 455 case MEM_TYPE_XSK_BUFF_POOL: 456 /* NB! Only valid from an xdp_buff! */ 457 xsk_buff_free(xdp); 458 break; 459 default: 460 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */ 461 WARN(1, "Incorrect XDP memory type (%d) usage", mem->type); 462 break; 463 } 464 } 465 466 void xdp_return_frame(struct xdp_frame *xdpf) 467 { 468 struct skb_shared_info *sinfo; 469 int i; 470 471 if (likely(!xdp_frame_has_frags(xdpf))) 472 goto out; 473 474 sinfo = xdp_get_shared_info_from_frame(xdpf); 475 for (i = 0; i < sinfo->nr_frags; i++) { 476 struct page *page = skb_frag_page(&sinfo->frags[i]); 477 478 __xdp_return(page_address(page), &xdpf->mem, false, NULL); 479 } 480 out: 481 __xdp_return(xdpf->data, &xdpf->mem, false, NULL); 482 } 483 EXPORT_SYMBOL_GPL(xdp_return_frame); 484 485 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf) 486 { 487 struct skb_shared_info *sinfo; 488 int i; 489 490 if (likely(!xdp_frame_has_frags(xdpf))) 491 goto out; 492 493 sinfo = xdp_get_shared_info_from_frame(xdpf); 494 for (i = 0; i < sinfo->nr_frags; i++) { 495 struct page *page = skb_frag_page(&sinfo->frags[i]); 496 497 __xdp_return(page_address(page), &xdpf->mem, true, NULL); 498 } 499 out: 500 __xdp_return(xdpf->data, &xdpf->mem, true, NULL); 501 } 502 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi); 503 504 /* XDP bulk APIs introduce a defer/flush mechanism to return 505 * pages belonging to the same xdp_mem_allocator object 506 * (identified via the mem.id field) in bulk to optimize 507 * I-cache and D-cache. 508 * The bulk queue size is set to 16 to be aligned to how 509 * XDP_REDIRECT bulking works. The bulk is flushed when 510 * it is full or when mem.id changes. 511 * xdp_frame_bulk is usually stored/allocated on the function 512 * call-stack to avoid locking penalties. 513 */ 514 void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq) 515 { 516 struct xdp_mem_allocator *xa = bq->xa; 517 518 if (unlikely(!xa || !bq->count)) 519 return; 520 521 page_pool_put_netmem_bulk(xa->page_pool, bq->q, bq->count); 522 /* bq->xa is not cleared to save lookup, if mem.id same in next bulk */ 523 bq->count = 0; 524 } 525 EXPORT_SYMBOL_GPL(xdp_flush_frame_bulk); 526 527 /* Must be called with rcu_read_lock held */ 528 void xdp_return_frame_bulk(struct xdp_frame *xdpf, 529 struct xdp_frame_bulk *bq) 530 { 531 struct xdp_mem_info *mem = &xdpf->mem; 532 struct xdp_mem_allocator *xa; 533 534 if (mem->type != MEM_TYPE_PAGE_POOL) { 535 xdp_return_frame(xdpf); 536 return; 537 } 538 539 xa = bq->xa; 540 if (unlikely(!xa)) { 541 xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 542 bq->count = 0; 543 bq->xa = xa; 544 } 545 546 if (bq->count == XDP_BULK_QUEUE_SIZE) 547 xdp_flush_frame_bulk(bq); 548 549 if (unlikely(mem->id != xa->mem.id)) { 550 xdp_flush_frame_bulk(bq); 551 bq->xa = rhashtable_lookup(mem_id_ht, &mem->id, mem_id_rht_params); 552 } 553 554 if (unlikely(xdp_frame_has_frags(xdpf))) { 555 struct skb_shared_info *sinfo; 556 int i; 557 558 sinfo = xdp_get_shared_info_from_frame(xdpf); 559 for (i = 0; i < sinfo->nr_frags; i++) { 560 skb_frag_t *frag = &sinfo->frags[i]; 561 562 bq->q[bq->count++] = skb_frag_netmem(frag); 563 if (bq->count == XDP_BULK_QUEUE_SIZE) 564 xdp_flush_frame_bulk(bq); 565 } 566 } 567 bq->q[bq->count++] = virt_to_netmem(xdpf->data); 568 } 569 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk); 570 571 void xdp_return_buff(struct xdp_buff *xdp) 572 { 573 struct skb_shared_info *sinfo; 574 int i; 575 576 if (likely(!xdp_buff_has_frags(xdp))) 577 goto out; 578 579 sinfo = xdp_get_shared_info_from_buff(xdp); 580 for (i = 0; i < sinfo->nr_frags; i++) { 581 struct page *page = skb_frag_page(&sinfo->frags[i]); 582 583 __xdp_return(page_address(page), &xdp->rxq->mem, true, xdp); 584 } 585 out: 586 __xdp_return(xdp->data, &xdp->rxq->mem, true, xdp); 587 } 588 EXPORT_SYMBOL_GPL(xdp_return_buff); 589 590 void xdp_attachment_setup(struct xdp_attachment_info *info, 591 struct netdev_bpf *bpf) 592 { 593 if (info->prog) 594 bpf_prog_put(info->prog); 595 info->prog = bpf->prog; 596 info->flags = bpf->flags; 597 } 598 EXPORT_SYMBOL_GPL(xdp_attachment_setup); 599 600 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp) 601 { 602 unsigned int metasize, totsize; 603 void *addr, *data_to_copy; 604 struct xdp_frame *xdpf; 605 struct page *page; 606 607 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */ 608 metasize = xdp_data_meta_unsupported(xdp) ? 0 : 609 xdp->data - xdp->data_meta; 610 totsize = xdp->data_end - xdp->data + metasize; 611 612 if (sizeof(*xdpf) + totsize > PAGE_SIZE) 613 return NULL; 614 615 page = dev_alloc_page(); 616 if (!page) 617 return NULL; 618 619 addr = page_to_virt(page); 620 xdpf = addr; 621 memset(xdpf, 0, sizeof(*xdpf)); 622 623 addr += sizeof(*xdpf); 624 data_to_copy = metasize ? xdp->data_meta : xdp->data; 625 memcpy(addr, data_to_copy, totsize); 626 627 xdpf->data = addr + metasize; 628 xdpf->len = totsize - metasize; 629 xdpf->headroom = 0; 630 xdpf->metasize = metasize; 631 xdpf->frame_sz = PAGE_SIZE; 632 xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 633 634 xsk_buff_free(xdp); 635 return xdpf; 636 } 637 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame); 638 639 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */ 640 void xdp_warn(const char *msg, const char *func, const int line) 641 { 642 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg); 643 }; 644 EXPORT_SYMBOL_GPL(xdp_warn); 645 646 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp) 647 { 648 n_skb = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, gfp, n_skb, skbs); 649 if (unlikely(!n_skb)) 650 return -ENOMEM; 651 652 return 0; 653 } 654 EXPORT_SYMBOL_GPL(xdp_alloc_skb_bulk); 655 656 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf, 657 struct sk_buff *skb, 658 struct net_device *dev) 659 { 660 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 661 unsigned int headroom, frame_size; 662 void *hard_start; 663 u8 nr_frags; 664 665 /* xdp frags frame */ 666 if (unlikely(xdp_frame_has_frags(xdpf))) 667 nr_frags = sinfo->nr_frags; 668 669 /* Part of headroom was reserved to xdpf */ 670 headroom = sizeof(*xdpf) + xdpf->headroom; 671 672 /* Memory size backing xdp_frame data already have reserved 673 * room for build_skb to place skb_shared_info in tailroom. 674 */ 675 frame_size = xdpf->frame_sz; 676 677 hard_start = xdpf->data - headroom; 678 skb = build_skb_around(skb, hard_start, frame_size); 679 if (unlikely(!skb)) 680 return NULL; 681 682 skb_reserve(skb, headroom); 683 __skb_put(skb, xdpf->len); 684 if (xdpf->metasize) 685 skb_metadata_set(skb, xdpf->metasize); 686 687 if (unlikely(xdp_frame_has_frags(xdpf))) 688 xdp_update_skb_shared_info(skb, nr_frags, 689 sinfo->xdp_frags_size, 690 nr_frags * xdpf->frame_sz, 691 xdp_frame_is_frag_pfmemalloc(xdpf)); 692 693 /* Essential SKB info: protocol and skb->dev */ 694 skb->protocol = eth_type_trans(skb, dev); 695 696 /* Optional SKB info, currently missing: 697 * - HW checksum info (skb->ip_summed) 698 * - HW RX hash (skb_set_hash) 699 * - RX ring dev queue index (skb_record_rx_queue) 700 */ 701 702 if (xdpf->mem.type == MEM_TYPE_PAGE_POOL) 703 skb_mark_for_recycle(skb); 704 705 /* Allow SKB to reuse area used by xdp_frame */ 706 xdp_scrub_frame(xdpf); 707 708 return skb; 709 } 710 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame); 711 712 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf, 713 struct net_device *dev) 714 { 715 struct sk_buff *skb; 716 717 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC); 718 if (unlikely(!skb)) 719 return NULL; 720 721 memset(skb, 0, offsetof(struct sk_buff, tail)); 722 723 return __xdp_build_skb_from_frame(xdpf, skb, dev); 724 } 725 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame); 726 727 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf) 728 { 729 unsigned int headroom, totalsize; 730 struct xdp_frame *nxdpf; 731 struct page *page; 732 void *addr; 733 734 headroom = xdpf->headroom + sizeof(*xdpf); 735 totalsize = headroom + xdpf->len; 736 737 if (unlikely(totalsize > PAGE_SIZE)) 738 return NULL; 739 page = dev_alloc_page(); 740 if (!page) 741 return NULL; 742 addr = page_to_virt(page); 743 744 memcpy(addr, xdpf, totalsize); 745 746 nxdpf = addr; 747 nxdpf->data = addr + headroom; 748 nxdpf->frame_sz = PAGE_SIZE; 749 nxdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 750 nxdpf->mem.id = 0; 751 752 return nxdpf; 753 } 754 755 __bpf_kfunc_start_defs(); 756 757 /** 758 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp. 759 * @ctx: XDP context pointer. 760 * @timestamp: Return value pointer. 761 * 762 * Return: 763 * * Returns 0 on success or ``-errno`` on error. 764 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc 765 * * ``-ENODATA`` : means no RX-timestamp available for this frame 766 */ 767 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp) 768 { 769 return -EOPNOTSUPP; 770 } 771 772 /** 773 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash. 774 * @ctx: XDP context pointer. 775 * @hash: Return value pointer. 776 * @rss_type: Return value pointer for RSS type. 777 * 778 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC 779 * hardware used when calculating RSS hash value. The RSS type can be decoded 780 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits 781 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types* 782 * ``XDP_RSS_TYPE_L*``. 783 * 784 * Return: 785 * * Returns 0 on success or ``-errno`` on error. 786 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc 787 * * ``-ENODATA`` : means no RX-hash available for this frame 788 */ 789 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash, 790 enum xdp_rss_hash_type *rss_type) 791 { 792 return -EOPNOTSUPP; 793 } 794 795 /** 796 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag 797 * @ctx: XDP context pointer. 798 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID). 799 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP) 800 * 801 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*, 802 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use 803 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)** 804 * and should be used as follows: 805 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();`` 806 * 807 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag. 808 * Driver is expected to provide those in **host byte order (usually LE)**, 809 * so the bpf program should not perform byte conversion. 810 * According to 802.1Q standard, *VLAN TCI (Tag control information)* 811 * is a bit field that contains: 812 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``, 813 * *Drop eligible indicator (DEI)* - 1 bit, 814 * *Priority code point (PCP)* - 3 bits. 815 * For detailed meaning of DEI and PCP, please refer to other sources. 816 * 817 * Return: 818 * * Returns 0 on success or ``-errno`` on error. 819 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc 820 * * ``-ENODATA`` : VLAN tag was not stripped or is not available 821 */ 822 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx, 823 __be16 *vlan_proto, u16 *vlan_tci) 824 { 825 return -EOPNOTSUPP; 826 } 827 828 __bpf_kfunc_end_defs(); 829 830 BTF_KFUNCS_START(xdp_metadata_kfunc_ids) 831 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS) 832 XDP_METADATA_KFUNC_xxx 833 #undef XDP_METADATA_KFUNC 834 BTF_KFUNCS_END(xdp_metadata_kfunc_ids) 835 836 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = { 837 .owner = THIS_MODULE, 838 .set = &xdp_metadata_kfunc_ids, 839 }; 840 841 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted) 842 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str) 843 XDP_METADATA_KFUNC_xxx 844 #undef XDP_METADATA_KFUNC 845 846 u32 bpf_xdp_metadata_kfunc_id(int id) 847 { 848 /* xdp_metadata_kfunc_ids is sorted and can't be used */ 849 return xdp_metadata_kfunc_ids_unsorted[id]; 850 } 851 852 bool bpf_dev_bound_kfunc_id(u32 btf_id) 853 { 854 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id); 855 } 856 857 static int __init xdp_metadata_init(void) 858 { 859 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set); 860 } 861 late_initcall(xdp_metadata_init); 862 863 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val) 864 { 865 val &= NETDEV_XDP_ACT_MASK; 866 if (dev->xdp_features == val) 867 return; 868 869 dev->xdp_features = val; 870 871 if (dev->reg_state == NETREG_REGISTERED) 872 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev); 873 } 874 EXPORT_SYMBOL_GPL(xdp_set_features_flag); 875 876 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg) 877 { 878 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT); 879 880 if (support_sg) 881 val |= NETDEV_XDP_ACT_NDO_XMIT_SG; 882 xdp_set_features_flag(dev, val); 883 } 884 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target); 885 886 void xdp_features_clear_redirect_target(struct net_device *dev) 887 { 888 xdp_features_t val = dev->xdp_features; 889 890 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG); 891 xdp_set_features_flag(dev, val); 892 } 893 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target); 894