xref: /linux/net/core/utils.c (revision 782b9d201112ae526a823ddba522c88c761585c7)
1  /*
2   *	Generic address resultion entity
3   *
4   *	Authors:
5   *	net_random Alan Cox
6   *	net_ratelimit Andi Kleen
7   *	in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
8   *
9   *	Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
10   *
11   *	This program is free software; you can redistribute it and/or
12   *      modify it under the terms of the GNU General Public License
13   *      as published by the Free Software Foundation; either version
14   *      2 of the License, or (at your option) any later version.
15   */
16  
17  #include <linux/module.h>
18  #include <linux/jiffies.h>
19  #include <linux/kernel.h>
20  #include <linux/ctype.h>
21  #include <linux/inet.h>
22  #include <linux/mm.h>
23  #include <linux/net.h>
24  #include <linux/string.h>
25  #include <linux/types.h>
26  #include <linux/percpu.h>
27  #include <linux/init.h>
28  #include <linux/ratelimit.h>
29  #include <linux/socket.h>
30  
31  #include <net/sock.h>
32  #include <net/net_ratelimit.h>
33  #include <net/ipv6.h>
34  
35  #include <asm/byteorder.h>
36  #include <linux/uaccess.h>
37  
38  DEFINE_RATELIMIT_STATE(net_ratelimit_state, 5 * HZ, 10);
39  /*
40   * All net warning printk()s should be guarded by this function.
41   */
42  int net_ratelimit(void)
43  {
44  	return __ratelimit(&net_ratelimit_state);
45  }
46  EXPORT_SYMBOL(net_ratelimit);
47  
48  /*
49   * Convert an ASCII string to binary IP.
50   * This is outside of net/ipv4/ because various code that uses IP addresses
51   * is otherwise not dependent on the TCP/IP stack.
52   */
53  
54  __be32 in_aton(const char *str)
55  {
56  	unsigned int l;
57  	unsigned int val;
58  	int i;
59  
60  	l = 0;
61  	for (i = 0; i < 4; i++)	{
62  		l <<= 8;
63  		if (*str != '\0') {
64  			val = 0;
65  			while (*str != '\0' && *str != '.' && *str != '\n') {
66  				val *= 10;
67  				val += *str - '0';
68  				str++;
69  			}
70  			l |= val;
71  			if (*str != '\0')
72  				str++;
73  		}
74  	}
75  	return htonl(l);
76  }
77  EXPORT_SYMBOL(in_aton);
78  
79  #define IN6PTON_XDIGIT		0x00010000
80  #define IN6PTON_DIGIT		0x00020000
81  #define IN6PTON_COLON_MASK	0x00700000
82  #define IN6PTON_COLON_1		0x00100000	/* single : requested */
83  #define IN6PTON_COLON_2		0x00200000	/* second : requested */
84  #define IN6PTON_COLON_1_2	0x00400000	/* :: requested */
85  #define IN6PTON_DOT		0x00800000	/* . */
86  #define IN6PTON_DELIM		0x10000000
87  #define IN6PTON_NULL		0x20000000	/* first/tail */
88  #define IN6PTON_UNKNOWN		0x40000000
89  
90  static inline int xdigit2bin(char c, int delim)
91  {
92  	int val;
93  
94  	if (c == delim || c == '\0')
95  		return IN6PTON_DELIM;
96  	if (c == ':')
97  		return IN6PTON_COLON_MASK;
98  	if (c == '.')
99  		return IN6PTON_DOT;
100  
101  	val = hex_to_bin(c);
102  	if (val >= 0)
103  		return val | IN6PTON_XDIGIT | (val < 10 ? IN6PTON_DIGIT : 0);
104  
105  	if (delim == -1)
106  		return IN6PTON_DELIM;
107  	return IN6PTON_UNKNOWN;
108  }
109  
110  /**
111   * in4_pton - convert an IPv4 address from literal to binary representation
112   * @src: the start of the IPv4 address string
113   * @srclen: the length of the string, -1 means strlen(src)
114   * @dst: the binary (u8[4] array) representation of the IPv4 address
115   * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
116   * @end: A pointer to the end of the parsed string will be placed here
117   *
118   * Return one on success, return zero when any error occurs
119   * and @end will point to the end of the parsed string.
120   *
121   */
122  int in4_pton(const char *src, int srclen,
123  	     u8 *dst,
124  	     int delim, const char **end)
125  {
126  	const char *s;
127  	u8 *d;
128  	u8 dbuf[4];
129  	int ret = 0;
130  	int i;
131  	int w = 0;
132  
133  	if (srclen < 0)
134  		srclen = strlen(src);
135  	s = src;
136  	d = dbuf;
137  	i = 0;
138  	while (1) {
139  		int c;
140  		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
141  		if (!(c & (IN6PTON_DIGIT | IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK))) {
142  			goto out;
143  		}
144  		if (c & (IN6PTON_DOT | IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
145  			if (w == 0)
146  				goto out;
147  			*d++ = w & 0xff;
148  			w = 0;
149  			i++;
150  			if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
151  				if (i != 4)
152  					goto out;
153  				break;
154  			}
155  			goto cont;
156  		}
157  		w = (w * 10) + c;
158  		if ((w & 0xffff) > 255) {
159  			goto out;
160  		}
161  cont:
162  		if (i >= 4)
163  			goto out;
164  		s++;
165  		srclen--;
166  	}
167  	ret = 1;
168  	memcpy(dst, dbuf, sizeof(dbuf));
169  out:
170  	if (end)
171  		*end = s;
172  	return ret;
173  }
174  EXPORT_SYMBOL(in4_pton);
175  
176  /**
177   * in6_pton - convert an IPv6 address from literal to binary representation
178   * @src: the start of the IPv6 address string
179   * @srclen: the length of the string, -1 means strlen(src)
180   * @dst: the binary (u8[16] array) representation of the IPv6 address
181   * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
182   * @end: A pointer to the end of the parsed string will be placed here
183   *
184   * Return one on success, return zero when any error occurs
185   * and @end will point to the end of the parsed string.
186   *
187   */
188  int in6_pton(const char *src, int srclen,
189  	     u8 *dst,
190  	     int delim, const char **end)
191  {
192  	const char *s, *tok = NULL;
193  	u8 *d, *dc = NULL;
194  	u8 dbuf[16];
195  	int ret = 0;
196  	int i;
197  	int state = IN6PTON_COLON_1_2 | IN6PTON_XDIGIT | IN6PTON_NULL;
198  	int w = 0;
199  
200  	memset(dbuf, 0, sizeof(dbuf));
201  
202  	s = src;
203  	d = dbuf;
204  	if (srclen < 0)
205  		srclen = strlen(src);
206  
207  	while (1) {
208  		int c;
209  
210  		c = xdigit2bin(srclen > 0 ? *s : '\0', delim);
211  		if (!(c & state))
212  			goto out;
213  		if (c & (IN6PTON_DELIM | IN6PTON_COLON_MASK)) {
214  			/* process one 16-bit word */
215  			if (!(state & IN6PTON_NULL)) {
216  				*d++ = (w >> 8) & 0xff;
217  				*d++ = w & 0xff;
218  			}
219  			w = 0;
220  			if (c & IN6PTON_DELIM) {
221  				/* We've processed last word */
222  				break;
223  			}
224  			/*
225  			 * COLON_1 => XDIGIT
226  			 * COLON_2 => XDIGIT|DELIM
227  			 * COLON_1_2 => COLON_2
228  			 */
229  			switch (state & IN6PTON_COLON_MASK) {
230  			case IN6PTON_COLON_2:
231  				dc = d;
232  				state = IN6PTON_XDIGIT | IN6PTON_DELIM;
233  				if (dc - dbuf >= sizeof(dbuf))
234  					state |= IN6PTON_NULL;
235  				break;
236  			case IN6PTON_COLON_1|IN6PTON_COLON_1_2:
237  				state = IN6PTON_XDIGIT | IN6PTON_COLON_2;
238  				break;
239  			case IN6PTON_COLON_1:
240  				state = IN6PTON_XDIGIT;
241  				break;
242  			case IN6PTON_COLON_1_2:
243  				state = IN6PTON_COLON_2;
244  				break;
245  			default:
246  				state = 0;
247  			}
248  			tok = s + 1;
249  			goto cont;
250  		}
251  
252  		if (c & IN6PTON_DOT) {
253  			ret = in4_pton(tok ? tok : s, srclen + (int)(s - tok), d, delim, &s);
254  			if (ret > 0) {
255  				d += 4;
256  				break;
257  			}
258  			goto out;
259  		}
260  
261  		w = (w << 4) | (0xff & c);
262  		state = IN6PTON_COLON_1 | IN6PTON_DELIM;
263  		if (!(w & 0xf000)) {
264  			state |= IN6PTON_XDIGIT;
265  		}
266  		if (!dc && d + 2 < dbuf + sizeof(dbuf)) {
267  			state |= IN6PTON_COLON_1_2;
268  			state &= ~IN6PTON_DELIM;
269  		}
270  		if (d + 2 >= dbuf + sizeof(dbuf)) {
271  			state &= ~(IN6PTON_COLON_1|IN6PTON_COLON_1_2);
272  		}
273  cont:
274  		if ((dc && d + 4 < dbuf + sizeof(dbuf)) ||
275  		    d + 4 == dbuf + sizeof(dbuf)) {
276  			state |= IN6PTON_DOT;
277  		}
278  		if (d >= dbuf + sizeof(dbuf)) {
279  			state &= ~(IN6PTON_XDIGIT|IN6PTON_COLON_MASK);
280  		}
281  		s++;
282  		srclen--;
283  	}
284  
285  	i = 15; d--;
286  
287  	if (dc) {
288  		while (d >= dc)
289  			dst[i--] = *d--;
290  		while (i >= dc - dbuf)
291  			dst[i--] = 0;
292  		while (i >= 0)
293  			dst[i--] = *d--;
294  	} else
295  		memcpy(dst, dbuf, sizeof(dbuf));
296  
297  	ret = 1;
298  out:
299  	if (end)
300  		*end = s;
301  	return ret;
302  }
303  EXPORT_SYMBOL(in6_pton);
304  
305  static int inet4_pton(const char *src, u16 port_num,
306  		struct sockaddr_storage *addr)
307  {
308  	struct sockaddr_in *addr4 = (struct sockaddr_in *)addr;
309  	int srclen = strlen(src);
310  
311  	if (srclen > INET_ADDRSTRLEN)
312  		return -EINVAL;
313  
314  	if (in4_pton(src, srclen, (u8 *)&addr4->sin_addr.s_addr,
315  		     '\n', NULL) == 0)
316  		return -EINVAL;
317  
318  	addr4->sin_family = AF_INET;
319  	addr4->sin_port = htons(port_num);
320  
321  	return 0;
322  }
323  
324  static int inet6_pton(struct net *net, const char *src, u16 port_num,
325  		struct sockaddr_storage *addr)
326  {
327  	struct sockaddr_in6 *addr6 = (struct sockaddr_in6 *)addr;
328  	const char *scope_delim;
329  	int srclen = strlen(src);
330  
331  	if (srclen > INET6_ADDRSTRLEN)
332  		return -EINVAL;
333  
334  	if (in6_pton(src, srclen, (u8 *)&addr6->sin6_addr.s6_addr,
335  		     '%', &scope_delim) == 0)
336  		return -EINVAL;
337  
338  	if (ipv6_addr_type(&addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL &&
339  	    src + srclen != scope_delim && *scope_delim == '%') {
340  		struct net_device *dev;
341  		char scope_id[16];
342  		size_t scope_len = min_t(size_t, sizeof(scope_id) - 1,
343  					 src + srclen - scope_delim - 1);
344  
345  		memcpy(scope_id, scope_delim + 1, scope_len);
346  		scope_id[scope_len] = '\0';
347  
348  		dev = dev_get_by_name(net, scope_id);
349  		if (dev) {
350  			addr6->sin6_scope_id = dev->ifindex;
351  			dev_put(dev);
352  		} else if (kstrtouint(scope_id, 0, &addr6->sin6_scope_id)) {
353  			return -EINVAL;
354  		}
355  	}
356  
357  	addr6->sin6_family = AF_INET6;
358  	addr6->sin6_port = htons(port_num);
359  
360  	return 0;
361  }
362  
363  /**
364   * inet_pton_with_scope - convert an IPv4/IPv6 and port to socket address
365   * @net: net namespace (used for scope handling)
366   * @af: address family, AF_INET, AF_INET6 or AF_UNSPEC for either
367   * @src: the start of the address string
368   * @port: the start of the port string (or NULL for none)
369   * @addr: output socket address
370   *
371   * Return zero on success, return errno when any error occurs.
372   */
373  int inet_pton_with_scope(struct net *net, __kernel_sa_family_t af,
374  		const char *src, const char *port, struct sockaddr_storage *addr)
375  {
376  	u16 port_num;
377  	int ret = -EINVAL;
378  
379  	if (port) {
380  		if (kstrtou16(port, 0, &port_num))
381  			return -EINVAL;
382  	} else {
383  		port_num = 0;
384  	}
385  
386  	switch (af) {
387  	case AF_INET:
388  		ret = inet4_pton(src, port_num, addr);
389  		break;
390  	case AF_INET6:
391  		ret = inet6_pton(net, src, port_num, addr);
392  		break;
393  	case AF_UNSPEC:
394  		ret = inet4_pton(src, port_num, addr);
395  		if (ret)
396  			ret = inet6_pton(net, src, port_num, addr);
397  		break;
398  	default:
399  		pr_err("unexpected address family %d\n", af);
400  	};
401  
402  	return ret;
403  }
404  EXPORT_SYMBOL(inet_pton_with_scope);
405  
406  bool inet_addr_is_any(struct sockaddr *addr)
407  {
408  	if (addr->sa_family == AF_INET6) {
409  		struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)addr;
410  		const struct sockaddr_in6 in6_any =
411  			{ .sin6_addr = IN6ADDR_ANY_INIT };
412  
413  		if (!memcmp(in6->sin6_addr.s6_addr,
414  			    in6_any.sin6_addr.s6_addr, 16))
415  			return true;
416  	} else if (addr->sa_family == AF_INET) {
417  		struct sockaddr_in *in = (struct sockaddr_in *)addr;
418  
419  		if (in->sin_addr.s_addr == htonl(INADDR_ANY))
420  			return true;
421  	} else {
422  		pr_warn("unexpected address family %u\n", addr->sa_family);
423  	}
424  
425  	return false;
426  }
427  EXPORT_SYMBOL(inet_addr_is_any);
428  
429  void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb,
430  			      __be32 from, __be32 to, bool pseudohdr)
431  {
432  	if (skb->ip_summed != CHECKSUM_PARTIAL) {
433  		csum_replace4(sum, from, to);
434  		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
435  			skb->csum = ~csum_add(csum_sub(~(skb->csum),
436  						       (__force __wsum)from),
437  					      (__force __wsum)to);
438  	} else if (pseudohdr)
439  		*sum = ~csum_fold(csum_add(csum_sub(csum_unfold(*sum),
440  						    (__force __wsum)from),
441  					   (__force __wsum)to));
442  }
443  EXPORT_SYMBOL(inet_proto_csum_replace4);
444  
445  void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb,
446  			       const __be32 *from, const __be32 *to,
447  			       bool pseudohdr)
448  {
449  	__be32 diff[] = {
450  		~from[0], ~from[1], ~from[2], ~from[3],
451  		to[0], to[1], to[2], to[3],
452  	};
453  	if (skb->ip_summed != CHECKSUM_PARTIAL) {
454  		*sum = csum_fold(csum_partial(diff, sizeof(diff),
455  				 ~csum_unfold(*sum)));
456  		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
457  			skb->csum = ~csum_partial(diff, sizeof(diff),
458  						  ~skb->csum);
459  	} else if (pseudohdr)
460  		*sum = ~csum_fold(csum_partial(diff, sizeof(diff),
461  				  csum_unfold(*sum)));
462  }
463  EXPORT_SYMBOL(inet_proto_csum_replace16);
464  
465  void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb,
466  				     __wsum diff, bool pseudohdr)
467  {
468  	if (skb->ip_summed != CHECKSUM_PARTIAL) {
469  		*sum = csum_fold(csum_add(diff, ~csum_unfold(*sum)));
470  		if (skb->ip_summed == CHECKSUM_COMPLETE && pseudohdr)
471  			skb->csum = ~csum_add(diff, ~skb->csum);
472  	} else if (pseudohdr) {
473  		*sum = ~csum_fold(csum_add(diff, csum_unfold(*sum)));
474  	}
475  }
476  EXPORT_SYMBOL(inet_proto_csum_replace_by_diff);
477