xref: /linux/net/core/sock.c (revision f858cc9eed5b05cbe38d7ffd2787c21e3718eb7d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <linux/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/udp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116 #include <linux/prefetch.h>
117 #include <linux/compat.h>
118 #include <linux/mroute.h>
119 #include <linux/mroute6.h>
120 #include <linux/icmpv6.h>
121 
122 #include <linux/uaccess.h>
123 
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <linux/skbuff_ref.h>
128 #include <net/net_namespace.h>
129 #include <net/request_sock.h>
130 #include <net/sock.h>
131 #include <net/proto_memory.h>
132 #include <linux/net_tstamp.h>
133 #include <net/xfrm.h>
134 #include <linux/ipsec.h>
135 #include <net/cls_cgroup.h>
136 #include <net/netprio_cgroup.h>
137 #include <linux/sock_diag.h>
138 
139 #include <linux/filter.h>
140 #include <net/sock_reuseport.h>
141 #include <net/bpf_sk_storage.h>
142 
143 #include <trace/events/sock.h>
144 
145 #include <net/tcp.h>
146 #include <net/busy_poll.h>
147 #include <net/phonet/phonet.h>
148 
149 #include <linux/ethtool.h>
150 
151 #include "dev.h"
152 
153 static DEFINE_MUTEX(proto_list_mutex);
154 static LIST_HEAD(proto_list);
155 
156 static void sock_def_write_space_wfree(struct sock *sk);
157 static void sock_def_write_space(struct sock *sk);
158 
159 /**
160  * sk_ns_capable - General socket capability test
161  * @sk: Socket to use a capability on or through
162  * @user_ns: The user namespace of the capability to use
163  * @cap: The capability to use
164  *
165  * Test to see if the opener of the socket had when the socket was
166  * created and the current process has the capability @cap in the user
167  * namespace @user_ns.
168  */
169 bool sk_ns_capable(const struct sock *sk,
170 		   struct user_namespace *user_ns, int cap)
171 {
172 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
173 		ns_capable(user_ns, cap);
174 }
175 EXPORT_SYMBOL(sk_ns_capable);
176 
177 /**
178  * sk_capable - Socket global capability test
179  * @sk: Socket to use a capability on or through
180  * @cap: The global capability to use
181  *
182  * Test to see if the opener of the socket had when the socket was
183  * created and the current process has the capability @cap in all user
184  * namespaces.
185  */
186 bool sk_capable(const struct sock *sk, int cap)
187 {
188 	return sk_ns_capable(sk, &init_user_ns, cap);
189 }
190 EXPORT_SYMBOL(sk_capable);
191 
192 /**
193  * sk_net_capable - Network namespace socket capability test
194  * @sk: Socket to use a capability on or through
195  * @cap: The capability to use
196  *
197  * Test to see if the opener of the socket had when the socket was created
198  * and the current process has the capability @cap over the network namespace
199  * the socket is a member of.
200  */
201 bool sk_net_capable(const struct sock *sk, int cap)
202 {
203 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
204 }
205 EXPORT_SYMBOL(sk_net_capable);
206 
207 /*
208  * Each address family might have different locking rules, so we have
209  * one slock key per address family and separate keys for internal and
210  * userspace sockets.
211  */
212 static struct lock_class_key af_family_keys[AF_MAX];
213 static struct lock_class_key af_family_kern_keys[AF_MAX];
214 static struct lock_class_key af_family_slock_keys[AF_MAX];
215 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
216 
217 /*
218  * Make lock validator output more readable. (we pre-construct these
219  * strings build-time, so that runtime initialization of socket
220  * locks is fast):
221  */
222 
223 #define _sock_locks(x)						  \
224   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
225   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
226   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
227   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
228   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
229   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
230   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
231   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
232   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
233   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
234   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
235   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
236   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
237   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
238   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
239   x "AF_MCTP"  , \
240   x "AF_MAX"
241 
242 static const char *const af_family_key_strings[AF_MAX+1] = {
243 	_sock_locks("sk_lock-")
244 };
245 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
246 	_sock_locks("slock-")
247 };
248 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
249 	_sock_locks("clock-")
250 };
251 
252 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
253 	_sock_locks("k-sk_lock-")
254 };
255 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
256 	_sock_locks("k-slock-")
257 };
258 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
259 	_sock_locks("k-clock-")
260 };
261 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
262 	_sock_locks("rlock-")
263 };
264 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
265 	_sock_locks("wlock-")
266 };
267 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
268 	_sock_locks("elock-")
269 };
270 
271 /*
272  * sk_callback_lock and sk queues locking rules are per-address-family,
273  * so split the lock classes by using a per-AF key:
274  */
275 static struct lock_class_key af_callback_keys[AF_MAX];
276 static struct lock_class_key af_rlock_keys[AF_MAX];
277 static struct lock_class_key af_wlock_keys[AF_MAX];
278 static struct lock_class_key af_elock_keys[AF_MAX];
279 static struct lock_class_key af_kern_callback_keys[AF_MAX];
280 
281 /* Run time adjustable parameters. */
282 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
283 EXPORT_SYMBOL(sysctl_wmem_max);
284 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
285 EXPORT_SYMBOL(sysctl_rmem_max);
286 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
287 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
288 
289 int sysctl_tstamp_allow_data __read_mostly = 1;
290 
291 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
292 EXPORT_SYMBOL_GPL(memalloc_socks_key);
293 
294 /**
295  * sk_set_memalloc - sets %SOCK_MEMALLOC
296  * @sk: socket to set it on
297  *
298  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
299  * It's the responsibility of the admin to adjust min_free_kbytes
300  * to meet the requirements
301  */
302 void sk_set_memalloc(struct sock *sk)
303 {
304 	sock_set_flag(sk, SOCK_MEMALLOC);
305 	sk->sk_allocation |= __GFP_MEMALLOC;
306 	static_branch_inc(&memalloc_socks_key);
307 }
308 EXPORT_SYMBOL_GPL(sk_set_memalloc);
309 
310 void sk_clear_memalloc(struct sock *sk)
311 {
312 	sock_reset_flag(sk, SOCK_MEMALLOC);
313 	sk->sk_allocation &= ~__GFP_MEMALLOC;
314 	static_branch_dec(&memalloc_socks_key);
315 
316 	/*
317 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
318 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
319 	 * it has rmem allocations due to the last swapfile being deactivated
320 	 * but there is a risk that the socket is unusable due to exceeding
321 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
322 	 */
323 	sk_mem_reclaim(sk);
324 }
325 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
326 
327 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
328 {
329 	int ret;
330 	unsigned int noreclaim_flag;
331 
332 	/* these should have been dropped before queueing */
333 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
334 
335 	noreclaim_flag = memalloc_noreclaim_save();
336 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
337 				 tcp_v6_do_rcv,
338 				 tcp_v4_do_rcv,
339 				 sk, skb);
340 	memalloc_noreclaim_restore(noreclaim_flag);
341 
342 	return ret;
343 }
344 EXPORT_SYMBOL(__sk_backlog_rcv);
345 
346 void sk_error_report(struct sock *sk)
347 {
348 	sk->sk_error_report(sk);
349 
350 	switch (sk->sk_family) {
351 	case AF_INET:
352 		fallthrough;
353 	case AF_INET6:
354 		trace_inet_sk_error_report(sk);
355 		break;
356 	default:
357 		break;
358 	}
359 }
360 EXPORT_SYMBOL(sk_error_report);
361 
362 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
363 {
364 	struct __kernel_sock_timeval tv;
365 
366 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
367 		tv.tv_sec = 0;
368 		tv.tv_usec = 0;
369 	} else {
370 		tv.tv_sec = timeo / HZ;
371 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
372 	}
373 
374 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
375 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
376 		*(struct old_timeval32 *)optval = tv32;
377 		return sizeof(tv32);
378 	}
379 
380 	if (old_timeval) {
381 		struct __kernel_old_timeval old_tv;
382 		old_tv.tv_sec = tv.tv_sec;
383 		old_tv.tv_usec = tv.tv_usec;
384 		*(struct __kernel_old_timeval *)optval = old_tv;
385 		return sizeof(old_tv);
386 	}
387 
388 	*(struct __kernel_sock_timeval *)optval = tv;
389 	return sizeof(tv);
390 }
391 EXPORT_SYMBOL(sock_get_timeout);
392 
393 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
394 			   sockptr_t optval, int optlen, bool old_timeval)
395 {
396 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
397 		struct old_timeval32 tv32;
398 
399 		if (optlen < sizeof(tv32))
400 			return -EINVAL;
401 
402 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
403 			return -EFAULT;
404 		tv->tv_sec = tv32.tv_sec;
405 		tv->tv_usec = tv32.tv_usec;
406 	} else if (old_timeval) {
407 		struct __kernel_old_timeval old_tv;
408 
409 		if (optlen < sizeof(old_tv))
410 			return -EINVAL;
411 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
412 			return -EFAULT;
413 		tv->tv_sec = old_tv.tv_sec;
414 		tv->tv_usec = old_tv.tv_usec;
415 	} else {
416 		if (optlen < sizeof(*tv))
417 			return -EINVAL;
418 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
419 			return -EFAULT;
420 	}
421 
422 	return 0;
423 }
424 EXPORT_SYMBOL(sock_copy_user_timeval);
425 
426 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
427 			    bool old_timeval)
428 {
429 	struct __kernel_sock_timeval tv;
430 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
431 	long val;
432 
433 	if (err)
434 		return err;
435 
436 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
437 		return -EDOM;
438 
439 	if (tv.tv_sec < 0) {
440 		static int warned __read_mostly;
441 
442 		WRITE_ONCE(*timeo_p, 0);
443 		if (warned < 10 && net_ratelimit()) {
444 			warned++;
445 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
446 				__func__, current->comm, task_pid_nr(current));
447 		}
448 		return 0;
449 	}
450 	val = MAX_SCHEDULE_TIMEOUT;
451 	if ((tv.tv_sec || tv.tv_usec) &&
452 	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
453 		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
454 						    USEC_PER_SEC / HZ);
455 	WRITE_ONCE(*timeo_p, val);
456 	return 0;
457 }
458 
459 static bool sock_needs_netstamp(const struct sock *sk)
460 {
461 	switch (sk->sk_family) {
462 	case AF_UNSPEC:
463 	case AF_UNIX:
464 		return false;
465 	default:
466 		return true;
467 	}
468 }
469 
470 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
471 {
472 	if (sk->sk_flags & flags) {
473 		sk->sk_flags &= ~flags;
474 		if (sock_needs_netstamp(sk) &&
475 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
476 			net_disable_timestamp();
477 	}
478 }
479 
480 
481 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
482 {
483 	unsigned long flags;
484 	struct sk_buff_head *list = &sk->sk_receive_queue;
485 
486 	if (atomic_read(&sk->sk_rmem_alloc) >= READ_ONCE(sk->sk_rcvbuf)) {
487 		atomic_inc(&sk->sk_drops);
488 		trace_sock_rcvqueue_full(sk, skb);
489 		return -ENOMEM;
490 	}
491 
492 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
493 		atomic_inc(&sk->sk_drops);
494 		return -ENOBUFS;
495 	}
496 
497 	skb->dev = NULL;
498 	skb_set_owner_r(skb, sk);
499 
500 	/* we escape from rcu protected region, make sure we dont leak
501 	 * a norefcounted dst
502 	 */
503 	skb_dst_force(skb);
504 
505 	spin_lock_irqsave(&list->lock, flags);
506 	sock_skb_set_dropcount(sk, skb);
507 	__skb_queue_tail(list, skb);
508 	spin_unlock_irqrestore(&list->lock, flags);
509 
510 	if (!sock_flag(sk, SOCK_DEAD))
511 		sk->sk_data_ready(sk);
512 	return 0;
513 }
514 EXPORT_SYMBOL(__sock_queue_rcv_skb);
515 
516 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
517 			      enum skb_drop_reason *reason)
518 {
519 	enum skb_drop_reason drop_reason;
520 	int err;
521 
522 	err = sk_filter(sk, skb);
523 	if (err) {
524 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
525 		goto out;
526 	}
527 	err = __sock_queue_rcv_skb(sk, skb);
528 	switch (err) {
529 	case -ENOMEM:
530 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
531 		break;
532 	case -ENOBUFS:
533 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
534 		break;
535 	default:
536 		drop_reason = SKB_NOT_DROPPED_YET;
537 		break;
538 	}
539 out:
540 	if (reason)
541 		*reason = drop_reason;
542 	return err;
543 }
544 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
545 
546 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
547 		     const int nested, unsigned int trim_cap, bool refcounted)
548 {
549 	int rc = NET_RX_SUCCESS;
550 
551 	if (sk_filter_trim_cap(sk, skb, trim_cap))
552 		goto discard_and_relse;
553 
554 	skb->dev = NULL;
555 
556 	if (sk_rcvqueues_full(sk, READ_ONCE(sk->sk_rcvbuf))) {
557 		atomic_inc(&sk->sk_drops);
558 		goto discard_and_relse;
559 	}
560 	if (nested)
561 		bh_lock_sock_nested(sk);
562 	else
563 		bh_lock_sock(sk);
564 	if (!sock_owned_by_user(sk)) {
565 		/*
566 		 * trylock + unlock semantics:
567 		 */
568 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
569 
570 		rc = sk_backlog_rcv(sk, skb);
571 
572 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
573 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
574 		bh_unlock_sock(sk);
575 		atomic_inc(&sk->sk_drops);
576 		goto discard_and_relse;
577 	}
578 
579 	bh_unlock_sock(sk);
580 out:
581 	if (refcounted)
582 		sock_put(sk);
583 	return rc;
584 discard_and_relse:
585 	kfree_skb(skb);
586 	goto out;
587 }
588 EXPORT_SYMBOL(__sk_receive_skb);
589 
590 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
591 							  u32));
592 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
593 							   u32));
594 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
595 {
596 	struct dst_entry *dst = __sk_dst_get(sk);
597 
598 	if (dst && dst->obsolete &&
599 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
600 			       dst, cookie) == NULL) {
601 		sk_tx_queue_clear(sk);
602 		WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
603 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
604 		dst_release(dst);
605 		return NULL;
606 	}
607 
608 	return dst;
609 }
610 EXPORT_SYMBOL(__sk_dst_check);
611 
612 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
613 {
614 	struct dst_entry *dst = sk_dst_get(sk);
615 
616 	if (dst && dst->obsolete &&
617 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
618 			       dst, cookie) == NULL) {
619 		sk_dst_reset(sk);
620 		dst_release(dst);
621 		return NULL;
622 	}
623 
624 	return dst;
625 }
626 EXPORT_SYMBOL(sk_dst_check);
627 
628 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
629 {
630 	int ret = -ENOPROTOOPT;
631 #ifdef CONFIG_NETDEVICES
632 	struct net *net = sock_net(sk);
633 
634 	/* Sorry... */
635 	ret = -EPERM;
636 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
637 		goto out;
638 
639 	ret = -EINVAL;
640 	if (ifindex < 0)
641 		goto out;
642 
643 	/* Paired with all READ_ONCE() done locklessly. */
644 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
645 
646 	if (sk->sk_prot->rehash)
647 		sk->sk_prot->rehash(sk);
648 	sk_dst_reset(sk);
649 
650 	ret = 0;
651 
652 out:
653 #endif
654 
655 	return ret;
656 }
657 
658 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
659 {
660 	int ret;
661 
662 	if (lock_sk)
663 		lock_sock(sk);
664 	ret = sock_bindtoindex_locked(sk, ifindex);
665 	if (lock_sk)
666 		release_sock(sk);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL(sock_bindtoindex);
671 
672 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
673 {
674 	int ret = -ENOPROTOOPT;
675 #ifdef CONFIG_NETDEVICES
676 	struct net *net = sock_net(sk);
677 	char devname[IFNAMSIZ];
678 	int index;
679 
680 	ret = -EINVAL;
681 	if (optlen < 0)
682 		goto out;
683 
684 	/* Bind this socket to a particular device like "eth0",
685 	 * as specified in the passed interface name. If the
686 	 * name is "" or the option length is zero the socket
687 	 * is not bound.
688 	 */
689 	if (optlen > IFNAMSIZ - 1)
690 		optlen = IFNAMSIZ - 1;
691 	memset(devname, 0, sizeof(devname));
692 
693 	ret = -EFAULT;
694 	if (copy_from_sockptr(devname, optval, optlen))
695 		goto out;
696 
697 	index = 0;
698 	if (devname[0] != '\0') {
699 		struct net_device *dev;
700 
701 		rcu_read_lock();
702 		dev = dev_get_by_name_rcu(net, devname);
703 		if (dev)
704 			index = dev->ifindex;
705 		rcu_read_unlock();
706 		ret = -ENODEV;
707 		if (!dev)
708 			goto out;
709 	}
710 
711 	sockopt_lock_sock(sk);
712 	ret = sock_bindtoindex_locked(sk, index);
713 	sockopt_release_sock(sk);
714 out:
715 #endif
716 
717 	return ret;
718 }
719 
720 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
721 				sockptr_t optlen, int len)
722 {
723 	int ret = -ENOPROTOOPT;
724 #ifdef CONFIG_NETDEVICES
725 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
726 	struct net *net = sock_net(sk);
727 	char devname[IFNAMSIZ];
728 
729 	if (bound_dev_if == 0) {
730 		len = 0;
731 		goto zero;
732 	}
733 
734 	ret = -EINVAL;
735 	if (len < IFNAMSIZ)
736 		goto out;
737 
738 	ret = netdev_get_name(net, devname, bound_dev_if);
739 	if (ret)
740 		goto out;
741 
742 	len = strlen(devname) + 1;
743 
744 	ret = -EFAULT;
745 	if (copy_to_sockptr(optval, devname, len))
746 		goto out;
747 
748 zero:
749 	ret = -EFAULT;
750 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
751 		goto out;
752 
753 	ret = 0;
754 
755 out:
756 #endif
757 
758 	return ret;
759 }
760 
761 bool sk_mc_loop(const struct sock *sk)
762 {
763 	if (dev_recursion_level())
764 		return false;
765 	if (!sk)
766 		return true;
767 	/* IPV6_ADDRFORM can change sk->sk_family under us. */
768 	switch (READ_ONCE(sk->sk_family)) {
769 	case AF_INET:
770 		return inet_test_bit(MC_LOOP, sk);
771 #if IS_ENABLED(CONFIG_IPV6)
772 	case AF_INET6:
773 		return inet6_test_bit(MC6_LOOP, sk);
774 #endif
775 	}
776 	WARN_ON_ONCE(1);
777 	return true;
778 }
779 EXPORT_SYMBOL(sk_mc_loop);
780 
781 void sock_set_reuseaddr(struct sock *sk)
782 {
783 	lock_sock(sk);
784 	sk->sk_reuse = SK_CAN_REUSE;
785 	release_sock(sk);
786 }
787 EXPORT_SYMBOL(sock_set_reuseaddr);
788 
789 void sock_set_reuseport(struct sock *sk)
790 {
791 	lock_sock(sk);
792 	sk->sk_reuseport = true;
793 	release_sock(sk);
794 }
795 EXPORT_SYMBOL(sock_set_reuseport);
796 
797 void sock_no_linger(struct sock *sk)
798 {
799 	lock_sock(sk);
800 	WRITE_ONCE(sk->sk_lingertime, 0);
801 	sock_set_flag(sk, SOCK_LINGER);
802 	release_sock(sk);
803 }
804 EXPORT_SYMBOL(sock_no_linger);
805 
806 void sock_set_priority(struct sock *sk, u32 priority)
807 {
808 	WRITE_ONCE(sk->sk_priority, priority);
809 }
810 EXPORT_SYMBOL(sock_set_priority);
811 
812 void sock_set_sndtimeo(struct sock *sk, s64 secs)
813 {
814 	lock_sock(sk);
815 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
816 		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
817 	else
818 		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
819 	release_sock(sk);
820 }
821 EXPORT_SYMBOL(sock_set_sndtimeo);
822 
823 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
824 {
825 	if (val)  {
826 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
827 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
828 		sock_set_flag(sk, SOCK_RCVTSTAMP);
829 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
830 	} else {
831 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
832 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
833 	}
834 }
835 
836 void sock_enable_timestamps(struct sock *sk)
837 {
838 	lock_sock(sk);
839 	__sock_set_timestamps(sk, true, false, true);
840 	release_sock(sk);
841 }
842 EXPORT_SYMBOL(sock_enable_timestamps);
843 
844 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
845 {
846 	switch (optname) {
847 	case SO_TIMESTAMP_OLD:
848 		__sock_set_timestamps(sk, valbool, false, false);
849 		break;
850 	case SO_TIMESTAMP_NEW:
851 		__sock_set_timestamps(sk, valbool, true, false);
852 		break;
853 	case SO_TIMESTAMPNS_OLD:
854 		__sock_set_timestamps(sk, valbool, false, true);
855 		break;
856 	case SO_TIMESTAMPNS_NEW:
857 		__sock_set_timestamps(sk, valbool, true, true);
858 		break;
859 	}
860 }
861 
862 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
863 {
864 	struct net *net = sock_net(sk);
865 	struct net_device *dev = NULL;
866 	bool match = false;
867 	int *vclock_index;
868 	int i, num;
869 
870 	if (sk->sk_bound_dev_if)
871 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
872 
873 	if (!dev) {
874 		pr_err("%s: sock not bind to device\n", __func__);
875 		return -EOPNOTSUPP;
876 	}
877 
878 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
879 	dev_put(dev);
880 
881 	for (i = 0; i < num; i++) {
882 		if (*(vclock_index + i) == phc_index) {
883 			match = true;
884 			break;
885 		}
886 	}
887 
888 	if (num > 0)
889 		kfree(vclock_index);
890 
891 	if (!match)
892 		return -EINVAL;
893 
894 	WRITE_ONCE(sk->sk_bind_phc, phc_index);
895 
896 	return 0;
897 }
898 
899 int sock_set_timestamping(struct sock *sk, int optname,
900 			  struct so_timestamping timestamping)
901 {
902 	int val = timestamping.flags;
903 	int ret;
904 
905 	if (val & ~SOF_TIMESTAMPING_MASK)
906 		return -EINVAL;
907 
908 	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
909 	    !(val & SOF_TIMESTAMPING_OPT_ID))
910 		return -EINVAL;
911 
912 	if (val & SOF_TIMESTAMPING_OPT_ID &&
913 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
914 		if (sk_is_tcp(sk)) {
915 			if ((1 << sk->sk_state) &
916 			    (TCPF_CLOSE | TCPF_LISTEN))
917 				return -EINVAL;
918 			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
919 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
920 			else
921 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
922 		} else {
923 			atomic_set(&sk->sk_tskey, 0);
924 		}
925 	}
926 
927 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
928 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
929 		return -EINVAL;
930 
931 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
932 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
933 		if (ret)
934 			return ret;
935 	}
936 
937 	WRITE_ONCE(sk->sk_tsflags, val);
938 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
939 
940 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
941 		sock_enable_timestamp(sk,
942 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
943 	else
944 		sock_disable_timestamp(sk,
945 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
946 	return 0;
947 }
948 
949 void sock_set_keepalive(struct sock *sk)
950 {
951 	lock_sock(sk);
952 	if (sk->sk_prot->keepalive)
953 		sk->sk_prot->keepalive(sk, true);
954 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
955 	release_sock(sk);
956 }
957 EXPORT_SYMBOL(sock_set_keepalive);
958 
959 static void __sock_set_rcvbuf(struct sock *sk, int val)
960 {
961 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
962 	 * as a negative value.
963 	 */
964 	val = min_t(int, val, INT_MAX / 2);
965 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
966 
967 	/* We double it on the way in to account for "struct sk_buff" etc.
968 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
969 	 * will allow that much actual data to be received on that socket.
970 	 *
971 	 * Applications are unaware that "struct sk_buff" and other overheads
972 	 * allocate from the receive buffer during socket buffer allocation.
973 	 *
974 	 * And after considering the possible alternatives, returning the value
975 	 * we actually used in getsockopt is the most desirable behavior.
976 	 */
977 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
978 }
979 
980 void sock_set_rcvbuf(struct sock *sk, int val)
981 {
982 	lock_sock(sk);
983 	__sock_set_rcvbuf(sk, val);
984 	release_sock(sk);
985 }
986 EXPORT_SYMBOL(sock_set_rcvbuf);
987 
988 static void __sock_set_mark(struct sock *sk, u32 val)
989 {
990 	if (val != sk->sk_mark) {
991 		WRITE_ONCE(sk->sk_mark, val);
992 		sk_dst_reset(sk);
993 	}
994 }
995 
996 void sock_set_mark(struct sock *sk, u32 val)
997 {
998 	lock_sock(sk);
999 	__sock_set_mark(sk, val);
1000 	release_sock(sk);
1001 }
1002 EXPORT_SYMBOL(sock_set_mark);
1003 
1004 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1005 {
1006 	/* Round down bytes to multiple of pages */
1007 	bytes = round_down(bytes, PAGE_SIZE);
1008 
1009 	WARN_ON(bytes > sk->sk_reserved_mem);
1010 	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1011 	sk_mem_reclaim(sk);
1012 }
1013 
1014 static int sock_reserve_memory(struct sock *sk, int bytes)
1015 {
1016 	long allocated;
1017 	bool charged;
1018 	int pages;
1019 
1020 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1021 		return -EOPNOTSUPP;
1022 
1023 	if (!bytes)
1024 		return 0;
1025 
1026 	pages = sk_mem_pages(bytes);
1027 
1028 	/* pre-charge to memcg */
1029 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1030 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1031 	if (!charged)
1032 		return -ENOMEM;
1033 
1034 	/* pre-charge to forward_alloc */
1035 	sk_memory_allocated_add(sk, pages);
1036 	allocated = sk_memory_allocated(sk);
1037 	/* If the system goes into memory pressure with this
1038 	 * precharge, give up and return error.
1039 	 */
1040 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1041 		sk_memory_allocated_sub(sk, pages);
1042 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1043 		return -ENOMEM;
1044 	}
1045 	sk_forward_alloc_add(sk, pages << PAGE_SHIFT);
1046 
1047 	WRITE_ONCE(sk->sk_reserved_mem,
1048 		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1049 
1050 	return 0;
1051 }
1052 
1053 #ifdef CONFIG_PAGE_POOL
1054 
1055 /* This is the number of tokens that the user can SO_DEVMEM_DONTNEED in
1056  * 1 syscall. The limit exists to limit the amount of memory the kernel
1057  * allocates to copy these tokens.
1058  */
1059 #define MAX_DONTNEED_TOKENS 128
1060 
1061 static noinline_for_stack int
1062 sock_devmem_dontneed(struct sock *sk, sockptr_t optval, unsigned int optlen)
1063 {
1064 	unsigned int num_tokens, i, j, k, netmem_num = 0;
1065 	struct dmabuf_token *tokens;
1066 	netmem_ref netmems[16];
1067 	int ret = 0;
1068 
1069 	if (!sk_is_tcp(sk))
1070 		return -EBADF;
1071 
1072 	if (optlen % sizeof(struct dmabuf_token) ||
1073 	    optlen > sizeof(*tokens) * MAX_DONTNEED_TOKENS)
1074 		return -EINVAL;
1075 
1076 	tokens = kvmalloc_array(optlen, sizeof(*tokens), GFP_KERNEL);
1077 	if (!tokens)
1078 		return -ENOMEM;
1079 
1080 	num_tokens = optlen / sizeof(struct dmabuf_token);
1081 	if (copy_from_sockptr(tokens, optval, optlen)) {
1082 		kvfree(tokens);
1083 		return -EFAULT;
1084 	}
1085 
1086 	xa_lock_bh(&sk->sk_user_frags);
1087 	for (i = 0; i < num_tokens; i++) {
1088 		for (j = 0; j < tokens[i].token_count; j++) {
1089 			netmem_ref netmem = (__force netmem_ref)__xa_erase(
1090 				&sk->sk_user_frags, tokens[i].token_start + j);
1091 
1092 			if (netmem &&
1093 			    !WARN_ON_ONCE(!netmem_is_net_iov(netmem))) {
1094 				netmems[netmem_num++] = netmem;
1095 				if (netmem_num == ARRAY_SIZE(netmems)) {
1096 					xa_unlock_bh(&sk->sk_user_frags);
1097 					for (k = 0; k < netmem_num; k++)
1098 						WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1099 					netmem_num = 0;
1100 					xa_lock_bh(&sk->sk_user_frags);
1101 				}
1102 				ret++;
1103 			}
1104 		}
1105 	}
1106 
1107 	xa_unlock_bh(&sk->sk_user_frags);
1108 	for (k = 0; k < netmem_num; k++)
1109 		WARN_ON_ONCE(!napi_pp_put_page(netmems[k]));
1110 
1111 	kvfree(tokens);
1112 	return ret;
1113 }
1114 #endif
1115 
1116 void sockopt_lock_sock(struct sock *sk)
1117 {
1118 	/* When current->bpf_ctx is set, the setsockopt is called from
1119 	 * a bpf prog.  bpf has ensured the sk lock has been
1120 	 * acquired before calling setsockopt().
1121 	 */
1122 	if (has_current_bpf_ctx())
1123 		return;
1124 
1125 	lock_sock(sk);
1126 }
1127 EXPORT_SYMBOL(sockopt_lock_sock);
1128 
1129 void sockopt_release_sock(struct sock *sk)
1130 {
1131 	if (has_current_bpf_ctx())
1132 		return;
1133 
1134 	release_sock(sk);
1135 }
1136 EXPORT_SYMBOL(sockopt_release_sock);
1137 
1138 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1139 {
1140 	return has_current_bpf_ctx() || ns_capable(ns, cap);
1141 }
1142 EXPORT_SYMBOL(sockopt_ns_capable);
1143 
1144 bool sockopt_capable(int cap)
1145 {
1146 	return has_current_bpf_ctx() || capable(cap);
1147 }
1148 EXPORT_SYMBOL(sockopt_capable);
1149 
1150 static int sockopt_validate_clockid(__kernel_clockid_t value)
1151 {
1152 	switch (value) {
1153 	case CLOCK_REALTIME:
1154 	case CLOCK_MONOTONIC:
1155 	case CLOCK_TAI:
1156 		return 0;
1157 	}
1158 	return -EINVAL;
1159 }
1160 
1161 /*
1162  *	This is meant for all protocols to use and covers goings on
1163  *	at the socket level. Everything here is generic.
1164  */
1165 
1166 int sk_setsockopt(struct sock *sk, int level, int optname,
1167 		  sockptr_t optval, unsigned int optlen)
1168 {
1169 	struct so_timestamping timestamping;
1170 	struct socket *sock = sk->sk_socket;
1171 	struct sock_txtime sk_txtime;
1172 	int val;
1173 	int valbool;
1174 	struct linger ling;
1175 	int ret = 0;
1176 
1177 	/*
1178 	 *	Options without arguments
1179 	 */
1180 
1181 	if (optname == SO_BINDTODEVICE)
1182 		return sock_setbindtodevice(sk, optval, optlen);
1183 
1184 	if (optlen < sizeof(int))
1185 		return -EINVAL;
1186 
1187 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1188 		return -EFAULT;
1189 
1190 	valbool = val ? 1 : 0;
1191 
1192 	/* handle options which do not require locking the socket. */
1193 	switch (optname) {
1194 	case SO_PRIORITY:
1195 		if ((val >= 0 && val <= 6) ||
1196 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1197 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1198 			sock_set_priority(sk, val);
1199 			return 0;
1200 		}
1201 		return -EPERM;
1202 	case SO_PASSSEC:
1203 		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1204 		return 0;
1205 	case SO_PASSCRED:
1206 		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1207 		return 0;
1208 	case SO_PASSPIDFD:
1209 		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1210 		return 0;
1211 	case SO_TYPE:
1212 	case SO_PROTOCOL:
1213 	case SO_DOMAIN:
1214 	case SO_ERROR:
1215 		return -ENOPROTOOPT;
1216 #ifdef CONFIG_NET_RX_BUSY_POLL
1217 	case SO_BUSY_POLL:
1218 		if (val < 0)
1219 			return -EINVAL;
1220 		WRITE_ONCE(sk->sk_ll_usec, val);
1221 		return 0;
1222 	case SO_PREFER_BUSY_POLL:
1223 		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1224 			return -EPERM;
1225 		WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1226 		return 0;
1227 	case SO_BUSY_POLL_BUDGET:
1228 		if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1229 		    !sockopt_capable(CAP_NET_ADMIN))
1230 			return -EPERM;
1231 		if (val < 0 || val > U16_MAX)
1232 			return -EINVAL;
1233 		WRITE_ONCE(sk->sk_busy_poll_budget, val);
1234 		return 0;
1235 #endif
1236 	case SO_MAX_PACING_RATE:
1237 		{
1238 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1239 		unsigned long pacing_rate;
1240 
1241 		if (sizeof(ulval) != sizeof(val) &&
1242 		    optlen >= sizeof(ulval) &&
1243 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1244 			return -EFAULT;
1245 		}
1246 		if (ulval != ~0UL)
1247 			cmpxchg(&sk->sk_pacing_status,
1248 				SK_PACING_NONE,
1249 				SK_PACING_NEEDED);
1250 		/* Pairs with READ_ONCE() from sk_getsockopt() */
1251 		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1252 		pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1253 		if (ulval < pacing_rate)
1254 			WRITE_ONCE(sk->sk_pacing_rate, ulval);
1255 		return 0;
1256 		}
1257 	case SO_TXREHASH:
1258 		if (val < -1 || val > 1)
1259 			return -EINVAL;
1260 		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1261 			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1262 		/* Paired with READ_ONCE() in tcp_rtx_synack()
1263 		 * and sk_getsockopt().
1264 		 */
1265 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1266 		return 0;
1267 	case SO_PEEK_OFF:
1268 		{
1269 		int (*set_peek_off)(struct sock *sk, int val);
1270 
1271 		set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1272 		if (set_peek_off)
1273 			ret = set_peek_off(sk, val);
1274 		else
1275 			ret = -EOPNOTSUPP;
1276 		return ret;
1277 		}
1278 #ifdef CONFIG_PAGE_POOL
1279 	case SO_DEVMEM_DONTNEED:
1280 		return sock_devmem_dontneed(sk, optval, optlen);
1281 #endif
1282 	}
1283 
1284 	sockopt_lock_sock(sk);
1285 
1286 	switch (optname) {
1287 	case SO_DEBUG:
1288 		if (val && !sockopt_capable(CAP_NET_ADMIN))
1289 			ret = -EACCES;
1290 		else
1291 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1292 		break;
1293 	case SO_REUSEADDR:
1294 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1295 		break;
1296 	case SO_REUSEPORT:
1297 		sk->sk_reuseport = valbool;
1298 		break;
1299 	case SO_DONTROUTE:
1300 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1301 		sk_dst_reset(sk);
1302 		break;
1303 	case SO_BROADCAST:
1304 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1305 		break;
1306 	case SO_SNDBUF:
1307 		/* Don't error on this BSD doesn't and if you think
1308 		 * about it this is right. Otherwise apps have to
1309 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1310 		 * are treated in BSD as hints
1311 		 */
1312 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1313 set_sndbuf:
1314 		/* Ensure val * 2 fits into an int, to prevent max_t()
1315 		 * from treating it as a negative value.
1316 		 */
1317 		val = min_t(int, val, INT_MAX / 2);
1318 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1319 		WRITE_ONCE(sk->sk_sndbuf,
1320 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1321 		/* Wake up sending tasks if we upped the value. */
1322 		sk->sk_write_space(sk);
1323 		break;
1324 
1325 	case SO_SNDBUFFORCE:
1326 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1327 			ret = -EPERM;
1328 			break;
1329 		}
1330 
1331 		/* No negative values (to prevent underflow, as val will be
1332 		 * multiplied by 2).
1333 		 */
1334 		if (val < 0)
1335 			val = 0;
1336 		goto set_sndbuf;
1337 
1338 	case SO_RCVBUF:
1339 		/* Don't error on this BSD doesn't and if you think
1340 		 * about it this is right. Otherwise apps have to
1341 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1342 		 * are treated in BSD as hints
1343 		 */
1344 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1345 		break;
1346 
1347 	case SO_RCVBUFFORCE:
1348 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1349 			ret = -EPERM;
1350 			break;
1351 		}
1352 
1353 		/* No negative values (to prevent underflow, as val will be
1354 		 * multiplied by 2).
1355 		 */
1356 		__sock_set_rcvbuf(sk, max(val, 0));
1357 		break;
1358 
1359 	case SO_KEEPALIVE:
1360 		if (sk->sk_prot->keepalive)
1361 			sk->sk_prot->keepalive(sk, valbool);
1362 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1363 		break;
1364 
1365 	case SO_OOBINLINE:
1366 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1367 		break;
1368 
1369 	case SO_NO_CHECK:
1370 		sk->sk_no_check_tx = valbool;
1371 		break;
1372 
1373 	case SO_LINGER:
1374 		if (optlen < sizeof(ling)) {
1375 			ret = -EINVAL;	/* 1003.1g */
1376 			break;
1377 		}
1378 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1379 			ret = -EFAULT;
1380 			break;
1381 		}
1382 		if (!ling.l_onoff) {
1383 			sock_reset_flag(sk, SOCK_LINGER);
1384 		} else {
1385 			unsigned long t_sec = ling.l_linger;
1386 
1387 			if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1388 				WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1389 			else
1390 				WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1391 			sock_set_flag(sk, SOCK_LINGER);
1392 		}
1393 		break;
1394 
1395 	case SO_BSDCOMPAT:
1396 		break;
1397 
1398 	case SO_TIMESTAMP_OLD:
1399 	case SO_TIMESTAMP_NEW:
1400 	case SO_TIMESTAMPNS_OLD:
1401 	case SO_TIMESTAMPNS_NEW:
1402 		sock_set_timestamp(sk, optname, valbool);
1403 		break;
1404 
1405 	case SO_TIMESTAMPING_NEW:
1406 	case SO_TIMESTAMPING_OLD:
1407 		if (optlen == sizeof(timestamping)) {
1408 			if (copy_from_sockptr(&timestamping, optval,
1409 					      sizeof(timestamping))) {
1410 				ret = -EFAULT;
1411 				break;
1412 			}
1413 		} else {
1414 			memset(&timestamping, 0, sizeof(timestamping));
1415 			timestamping.flags = val;
1416 		}
1417 		ret = sock_set_timestamping(sk, optname, timestamping);
1418 		break;
1419 
1420 	case SO_RCVLOWAT:
1421 		{
1422 		int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1423 
1424 		if (val < 0)
1425 			val = INT_MAX;
1426 		if (sock)
1427 			set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1428 		if (set_rcvlowat)
1429 			ret = set_rcvlowat(sk, val);
1430 		else
1431 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1432 		break;
1433 		}
1434 	case SO_RCVTIMEO_OLD:
1435 	case SO_RCVTIMEO_NEW:
1436 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1437 				       optlen, optname == SO_RCVTIMEO_OLD);
1438 		break;
1439 
1440 	case SO_SNDTIMEO_OLD:
1441 	case SO_SNDTIMEO_NEW:
1442 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1443 				       optlen, optname == SO_SNDTIMEO_OLD);
1444 		break;
1445 
1446 	case SO_ATTACH_FILTER: {
1447 		struct sock_fprog fprog;
1448 
1449 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1450 		if (!ret)
1451 			ret = sk_attach_filter(&fprog, sk);
1452 		break;
1453 	}
1454 	case SO_ATTACH_BPF:
1455 		ret = -EINVAL;
1456 		if (optlen == sizeof(u32)) {
1457 			u32 ufd;
1458 
1459 			ret = -EFAULT;
1460 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1461 				break;
1462 
1463 			ret = sk_attach_bpf(ufd, sk);
1464 		}
1465 		break;
1466 
1467 	case SO_ATTACH_REUSEPORT_CBPF: {
1468 		struct sock_fprog fprog;
1469 
1470 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1471 		if (!ret)
1472 			ret = sk_reuseport_attach_filter(&fprog, sk);
1473 		break;
1474 	}
1475 	case SO_ATTACH_REUSEPORT_EBPF:
1476 		ret = -EINVAL;
1477 		if (optlen == sizeof(u32)) {
1478 			u32 ufd;
1479 
1480 			ret = -EFAULT;
1481 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1482 				break;
1483 
1484 			ret = sk_reuseport_attach_bpf(ufd, sk);
1485 		}
1486 		break;
1487 
1488 	case SO_DETACH_REUSEPORT_BPF:
1489 		ret = reuseport_detach_prog(sk);
1490 		break;
1491 
1492 	case SO_DETACH_FILTER:
1493 		ret = sk_detach_filter(sk);
1494 		break;
1495 
1496 	case SO_LOCK_FILTER:
1497 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1498 			ret = -EPERM;
1499 		else
1500 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1501 		break;
1502 
1503 	case SO_MARK:
1504 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1505 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1506 			ret = -EPERM;
1507 			break;
1508 		}
1509 
1510 		__sock_set_mark(sk, val);
1511 		break;
1512 	case SO_RCVMARK:
1513 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1514 		break;
1515 
1516 	case SO_RXQ_OVFL:
1517 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1518 		break;
1519 
1520 	case SO_WIFI_STATUS:
1521 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1522 		break;
1523 
1524 	case SO_NOFCS:
1525 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1526 		break;
1527 
1528 	case SO_SELECT_ERR_QUEUE:
1529 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1530 		break;
1531 
1532 
1533 	case SO_INCOMING_CPU:
1534 		reuseport_update_incoming_cpu(sk, val);
1535 		break;
1536 
1537 	case SO_CNX_ADVICE:
1538 		if (val == 1)
1539 			dst_negative_advice(sk);
1540 		break;
1541 
1542 	case SO_ZEROCOPY:
1543 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1544 			if (!(sk_is_tcp(sk) ||
1545 			      (sk->sk_type == SOCK_DGRAM &&
1546 			       sk->sk_protocol == IPPROTO_UDP)))
1547 				ret = -EOPNOTSUPP;
1548 		} else if (sk->sk_family != PF_RDS) {
1549 			ret = -EOPNOTSUPP;
1550 		}
1551 		if (!ret) {
1552 			if (val < 0 || val > 1)
1553 				ret = -EINVAL;
1554 			else
1555 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1556 		}
1557 		break;
1558 
1559 	case SO_TXTIME:
1560 		if (optlen != sizeof(struct sock_txtime)) {
1561 			ret = -EINVAL;
1562 			break;
1563 		} else if (copy_from_sockptr(&sk_txtime, optval,
1564 			   sizeof(struct sock_txtime))) {
1565 			ret = -EFAULT;
1566 			break;
1567 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1568 			ret = -EINVAL;
1569 			break;
1570 		}
1571 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1572 		 * scheduler has enough safe guards.
1573 		 */
1574 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1575 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1576 			ret = -EPERM;
1577 			break;
1578 		}
1579 
1580 		ret = sockopt_validate_clockid(sk_txtime.clockid);
1581 		if (ret)
1582 			break;
1583 
1584 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1585 		sk->sk_clockid = sk_txtime.clockid;
1586 		sk->sk_txtime_deadline_mode =
1587 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1588 		sk->sk_txtime_report_errors =
1589 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1590 		break;
1591 
1592 	case SO_BINDTOIFINDEX:
1593 		ret = sock_bindtoindex_locked(sk, val);
1594 		break;
1595 
1596 	case SO_BUF_LOCK:
1597 		if (val & ~SOCK_BUF_LOCK_MASK) {
1598 			ret = -EINVAL;
1599 			break;
1600 		}
1601 		sk->sk_userlocks = val | (sk->sk_userlocks &
1602 					  ~SOCK_BUF_LOCK_MASK);
1603 		break;
1604 
1605 	case SO_RESERVE_MEM:
1606 	{
1607 		int delta;
1608 
1609 		if (val < 0) {
1610 			ret = -EINVAL;
1611 			break;
1612 		}
1613 
1614 		delta = val - sk->sk_reserved_mem;
1615 		if (delta < 0)
1616 			sock_release_reserved_memory(sk, -delta);
1617 		else
1618 			ret = sock_reserve_memory(sk, delta);
1619 		break;
1620 	}
1621 
1622 	default:
1623 		ret = -ENOPROTOOPT;
1624 		break;
1625 	}
1626 	sockopt_release_sock(sk);
1627 	return ret;
1628 }
1629 
1630 int sock_setsockopt(struct socket *sock, int level, int optname,
1631 		    sockptr_t optval, unsigned int optlen)
1632 {
1633 	return sk_setsockopt(sock->sk, level, optname,
1634 			     optval, optlen);
1635 }
1636 EXPORT_SYMBOL(sock_setsockopt);
1637 
1638 static const struct cred *sk_get_peer_cred(struct sock *sk)
1639 {
1640 	const struct cred *cred;
1641 
1642 	spin_lock(&sk->sk_peer_lock);
1643 	cred = get_cred(sk->sk_peer_cred);
1644 	spin_unlock(&sk->sk_peer_lock);
1645 
1646 	return cred;
1647 }
1648 
1649 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1650 			  struct ucred *ucred)
1651 {
1652 	ucred->pid = pid_vnr(pid);
1653 	ucred->uid = ucred->gid = -1;
1654 	if (cred) {
1655 		struct user_namespace *current_ns = current_user_ns();
1656 
1657 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1658 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1659 	}
1660 }
1661 
1662 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1663 {
1664 	struct user_namespace *user_ns = current_user_ns();
1665 	int i;
1666 
1667 	for (i = 0; i < src->ngroups; i++) {
1668 		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1669 
1670 		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1671 			return -EFAULT;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 int sk_getsockopt(struct sock *sk, int level, int optname,
1678 		  sockptr_t optval, sockptr_t optlen)
1679 {
1680 	struct socket *sock = sk->sk_socket;
1681 
1682 	union {
1683 		int val;
1684 		u64 val64;
1685 		unsigned long ulval;
1686 		struct linger ling;
1687 		struct old_timeval32 tm32;
1688 		struct __kernel_old_timeval tm;
1689 		struct  __kernel_sock_timeval stm;
1690 		struct sock_txtime txtime;
1691 		struct so_timestamping timestamping;
1692 	} v;
1693 
1694 	int lv = sizeof(int);
1695 	int len;
1696 
1697 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1698 		return -EFAULT;
1699 	if (len < 0)
1700 		return -EINVAL;
1701 
1702 	memset(&v, 0, sizeof(v));
1703 
1704 	switch (optname) {
1705 	case SO_DEBUG:
1706 		v.val = sock_flag(sk, SOCK_DBG);
1707 		break;
1708 
1709 	case SO_DONTROUTE:
1710 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1711 		break;
1712 
1713 	case SO_BROADCAST:
1714 		v.val = sock_flag(sk, SOCK_BROADCAST);
1715 		break;
1716 
1717 	case SO_SNDBUF:
1718 		v.val = READ_ONCE(sk->sk_sndbuf);
1719 		break;
1720 
1721 	case SO_RCVBUF:
1722 		v.val = READ_ONCE(sk->sk_rcvbuf);
1723 		break;
1724 
1725 	case SO_REUSEADDR:
1726 		v.val = sk->sk_reuse;
1727 		break;
1728 
1729 	case SO_REUSEPORT:
1730 		v.val = sk->sk_reuseport;
1731 		break;
1732 
1733 	case SO_KEEPALIVE:
1734 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1735 		break;
1736 
1737 	case SO_TYPE:
1738 		v.val = sk->sk_type;
1739 		break;
1740 
1741 	case SO_PROTOCOL:
1742 		v.val = sk->sk_protocol;
1743 		break;
1744 
1745 	case SO_DOMAIN:
1746 		v.val = sk->sk_family;
1747 		break;
1748 
1749 	case SO_ERROR:
1750 		v.val = -sock_error(sk);
1751 		if (v.val == 0)
1752 			v.val = xchg(&sk->sk_err_soft, 0);
1753 		break;
1754 
1755 	case SO_OOBINLINE:
1756 		v.val = sock_flag(sk, SOCK_URGINLINE);
1757 		break;
1758 
1759 	case SO_NO_CHECK:
1760 		v.val = sk->sk_no_check_tx;
1761 		break;
1762 
1763 	case SO_PRIORITY:
1764 		v.val = READ_ONCE(sk->sk_priority);
1765 		break;
1766 
1767 	case SO_LINGER:
1768 		lv		= sizeof(v.ling);
1769 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1770 		v.ling.l_linger	= READ_ONCE(sk->sk_lingertime) / HZ;
1771 		break;
1772 
1773 	case SO_BSDCOMPAT:
1774 		break;
1775 
1776 	case SO_TIMESTAMP_OLD:
1777 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1778 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1779 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1780 		break;
1781 
1782 	case SO_TIMESTAMPNS_OLD:
1783 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1784 		break;
1785 
1786 	case SO_TIMESTAMP_NEW:
1787 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1788 		break;
1789 
1790 	case SO_TIMESTAMPNS_NEW:
1791 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1792 		break;
1793 
1794 	case SO_TIMESTAMPING_OLD:
1795 	case SO_TIMESTAMPING_NEW:
1796 		lv = sizeof(v.timestamping);
1797 		/* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only
1798 		 * returning the flags when they were set through the same option.
1799 		 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD.
1800 		 */
1801 		if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) {
1802 			v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1803 			v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1804 		}
1805 		break;
1806 
1807 	case SO_RCVTIMEO_OLD:
1808 	case SO_RCVTIMEO_NEW:
1809 		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1810 				      SO_RCVTIMEO_OLD == optname);
1811 		break;
1812 
1813 	case SO_SNDTIMEO_OLD:
1814 	case SO_SNDTIMEO_NEW:
1815 		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1816 				      SO_SNDTIMEO_OLD == optname);
1817 		break;
1818 
1819 	case SO_RCVLOWAT:
1820 		v.val = READ_ONCE(sk->sk_rcvlowat);
1821 		break;
1822 
1823 	case SO_SNDLOWAT:
1824 		v.val = 1;
1825 		break;
1826 
1827 	case SO_PASSCRED:
1828 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1829 		break;
1830 
1831 	case SO_PASSPIDFD:
1832 		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1833 		break;
1834 
1835 	case SO_PEERCRED:
1836 	{
1837 		struct ucred peercred;
1838 		if (len > sizeof(peercred))
1839 			len = sizeof(peercred);
1840 
1841 		spin_lock(&sk->sk_peer_lock);
1842 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1843 		spin_unlock(&sk->sk_peer_lock);
1844 
1845 		if (copy_to_sockptr(optval, &peercred, len))
1846 			return -EFAULT;
1847 		goto lenout;
1848 	}
1849 
1850 	case SO_PEERPIDFD:
1851 	{
1852 		struct pid *peer_pid;
1853 		struct file *pidfd_file = NULL;
1854 		int pidfd;
1855 
1856 		if (len > sizeof(pidfd))
1857 			len = sizeof(pidfd);
1858 
1859 		spin_lock(&sk->sk_peer_lock);
1860 		peer_pid = get_pid(sk->sk_peer_pid);
1861 		spin_unlock(&sk->sk_peer_lock);
1862 
1863 		if (!peer_pid)
1864 			return -ENODATA;
1865 
1866 		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1867 		put_pid(peer_pid);
1868 		if (pidfd < 0)
1869 			return pidfd;
1870 
1871 		if (copy_to_sockptr(optval, &pidfd, len) ||
1872 		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1873 			put_unused_fd(pidfd);
1874 			fput(pidfd_file);
1875 
1876 			return -EFAULT;
1877 		}
1878 
1879 		fd_install(pidfd, pidfd_file);
1880 		return 0;
1881 	}
1882 
1883 	case SO_PEERGROUPS:
1884 	{
1885 		const struct cred *cred;
1886 		int ret, n;
1887 
1888 		cred = sk_get_peer_cred(sk);
1889 		if (!cred)
1890 			return -ENODATA;
1891 
1892 		n = cred->group_info->ngroups;
1893 		if (len < n * sizeof(gid_t)) {
1894 			len = n * sizeof(gid_t);
1895 			put_cred(cred);
1896 			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1897 		}
1898 		len = n * sizeof(gid_t);
1899 
1900 		ret = groups_to_user(optval, cred->group_info);
1901 		put_cred(cred);
1902 		if (ret)
1903 			return ret;
1904 		goto lenout;
1905 	}
1906 
1907 	case SO_PEERNAME:
1908 	{
1909 		struct sockaddr_storage address;
1910 
1911 		lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1912 		if (lv < 0)
1913 			return -ENOTCONN;
1914 		if (lv < len)
1915 			return -EINVAL;
1916 		if (copy_to_sockptr(optval, &address, len))
1917 			return -EFAULT;
1918 		goto lenout;
1919 	}
1920 
1921 	/* Dubious BSD thing... Probably nobody even uses it, but
1922 	 * the UNIX standard wants it for whatever reason... -DaveM
1923 	 */
1924 	case SO_ACCEPTCONN:
1925 		v.val = sk->sk_state == TCP_LISTEN;
1926 		break;
1927 
1928 	case SO_PASSSEC:
1929 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1930 		break;
1931 
1932 	case SO_PEERSEC:
1933 		return security_socket_getpeersec_stream(sock,
1934 							 optval, optlen, len);
1935 
1936 	case SO_MARK:
1937 		v.val = READ_ONCE(sk->sk_mark);
1938 		break;
1939 
1940 	case SO_RCVMARK:
1941 		v.val = sock_flag(sk, SOCK_RCVMARK);
1942 		break;
1943 
1944 	case SO_RXQ_OVFL:
1945 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1946 		break;
1947 
1948 	case SO_WIFI_STATUS:
1949 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1950 		break;
1951 
1952 	case SO_PEEK_OFF:
1953 		if (!READ_ONCE(sock->ops)->set_peek_off)
1954 			return -EOPNOTSUPP;
1955 
1956 		v.val = READ_ONCE(sk->sk_peek_off);
1957 		break;
1958 	case SO_NOFCS:
1959 		v.val = sock_flag(sk, SOCK_NOFCS);
1960 		break;
1961 
1962 	case SO_BINDTODEVICE:
1963 		return sock_getbindtodevice(sk, optval, optlen, len);
1964 
1965 	case SO_GET_FILTER:
1966 		len = sk_get_filter(sk, optval, len);
1967 		if (len < 0)
1968 			return len;
1969 
1970 		goto lenout;
1971 
1972 	case SO_LOCK_FILTER:
1973 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1974 		break;
1975 
1976 	case SO_BPF_EXTENSIONS:
1977 		v.val = bpf_tell_extensions();
1978 		break;
1979 
1980 	case SO_SELECT_ERR_QUEUE:
1981 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1982 		break;
1983 
1984 #ifdef CONFIG_NET_RX_BUSY_POLL
1985 	case SO_BUSY_POLL:
1986 		v.val = READ_ONCE(sk->sk_ll_usec);
1987 		break;
1988 	case SO_PREFER_BUSY_POLL:
1989 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1990 		break;
1991 #endif
1992 
1993 	case SO_MAX_PACING_RATE:
1994 		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1995 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1996 			lv = sizeof(v.ulval);
1997 			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1998 		} else {
1999 			/* 32bit version */
2000 			v.val = min_t(unsigned long, ~0U,
2001 				      READ_ONCE(sk->sk_max_pacing_rate));
2002 		}
2003 		break;
2004 
2005 	case SO_INCOMING_CPU:
2006 		v.val = READ_ONCE(sk->sk_incoming_cpu);
2007 		break;
2008 
2009 	case SO_MEMINFO:
2010 	{
2011 		u32 meminfo[SK_MEMINFO_VARS];
2012 
2013 		sk_get_meminfo(sk, meminfo);
2014 
2015 		len = min_t(unsigned int, len, sizeof(meminfo));
2016 		if (copy_to_sockptr(optval, &meminfo, len))
2017 			return -EFAULT;
2018 
2019 		goto lenout;
2020 	}
2021 
2022 #ifdef CONFIG_NET_RX_BUSY_POLL
2023 	case SO_INCOMING_NAPI_ID:
2024 		v.val = READ_ONCE(sk->sk_napi_id);
2025 
2026 		/* aggregate non-NAPI IDs down to 0 */
2027 		if (v.val < MIN_NAPI_ID)
2028 			v.val = 0;
2029 
2030 		break;
2031 #endif
2032 
2033 	case SO_COOKIE:
2034 		lv = sizeof(u64);
2035 		if (len < lv)
2036 			return -EINVAL;
2037 		v.val64 = sock_gen_cookie(sk);
2038 		break;
2039 
2040 	case SO_ZEROCOPY:
2041 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
2042 		break;
2043 
2044 	case SO_TXTIME:
2045 		lv = sizeof(v.txtime);
2046 		v.txtime.clockid = sk->sk_clockid;
2047 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
2048 				  SOF_TXTIME_DEADLINE_MODE : 0;
2049 		v.txtime.flags |= sk->sk_txtime_report_errors ?
2050 				  SOF_TXTIME_REPORT_ERRORS : 0;
2051 		break;
2052 
2053 	case SO_BINDTOIFINDEX:
2054 		v.val = READ_ONCE(sk->sk_bound_dev_if);
2055 		break;
2056 
2057 	case SO_NETNS_COOKIE:
2058 		lv = sizeof(u64);
2059 		if (len != lv)
2060 			return -EINVAL;
2061 		v.val64 = sock_net(sk)->net_cookie;
2062 		break;
2063 
2064 	case SO_BUF_LOCK:
2065 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
2066 		break;
2067 
2068 	case SO_RESERVE_MEM:
2069 		v.val = READ_ONCE(sk->sk_reserved_mem);
2070 		break;
2071 
2072 	case SO_TXREHASH:
2073 		/* Paired with WRITE_ONCE() in sk_setsockopt() */
2074 		v.val = READ_ONCE(sk->sk_txrehash);
2075 		break;
2076 
2077 	default:
2078 		/* We implement the SO_SNDLOWAT etc to not be settable
2079 		 * (1003.1g 7).
2080 		 */
2081 		return -ENOPROTOOPT;
2082 	}
2083 
2084 	if (len > lv)
2085 		len = lv;
2086 	if (copy_to_sockptr(optval, &v, len))
2087 		return -EFAULT;
2088 lenout:
2089 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
2090 		return -EFAULT;
2091 	return 0;
2092 }
2093 
2094 /*
2095  * Initialize an sk_lock.
2096  *
2097  * (We also register the sk_lock with the lock validator.)
2098  */
2099 static inline void sock_lock_init(struct sock *sk)
2100 {
2101 	if (sk->sk_kern_sock)
2102 		sock_lock_init_class_and_name(
2103 			sk,
2104 			af_family_kern_slock_key_strings[sk->sk_family],
2105 			af_family_kern_slock_keys + sk->sk_family,
2106 			af_family_kern_key_strings[sk->sk_family],
2107 			af_family_kern_keys + sk->sk_family);
2108 	else
2109 		sock_lock_init_class_and_name(
2110 			sk,
2111 			af_family_slock_key_strings[sk->sk_family],
2112 			af_family_slock_keys + sk->sk_family,
2113 			af_family_key_strings[sk->sk_family],
2114 			af_family_keys + sk->sk_family);
2115 }
2116 
2117 /*
2118  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2119  * even temporarily, because of RCU lookups. sk_node should also be left as is.
2120  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2121  */
2122 static void sock_copy(struct sock *nsk, const struct sock *osk)
2123 {
2124 	const struct proto *prot = READ_ONCE(osk->sk_prot);
2125 #ifdef CONFIG_SECURITY_NETWORK
2126 	void *sptr = nsk->sk_security;
2127 #endif
2128 
2129 	/* If we move sk_tx_queue_mapping out of the private section,
2130 	 * we must check if sk_tx_queue_clear() is called after
2131 	 * sock_copy() in sk_clone_lock().
2132 	 */
2133 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2134 		     offsetof(struct sock, sk_dontcopy_begin) ||
2135 		     offsetof(struct sock, sk_tx_queue_mapping) >=
2136 		     offsetof(struct sock, sk_dontcopy_end));
2137 
2138 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2139 
2140 	unsafe_memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2141 		      prot->obj_size - offsetof(struct sock, sk_dontcopy_end),
2142 		      /* alloc is larger than struct, see sk_prot_alloc() */);
2143 
2144 #ifdef CONFIG_SECURITY_NETWORK
2145 	nsk->sk_security = sptr;
2146 	security_sk_clone(osk, nsk);
2147 #endif
2148 }
2149 
2150 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2151 		int family)
2152 {
2153 	struct sock *sk;
2154 	struct kmem_cache *slab;
2155 
2156 	slab = prot->slab;
2157 	if (slab != NULL) {
2158 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2159 		if (!sk)
2160 			return sk;
2161 		if (want_init_on_alloc(priority))
2162 			sk_prot_clear_nulls(sk, prot->obj_size);
2163 	} else
2164 		sk = kmalloc(prot->obj_size, priority);
2165 
2166 	if (sk != NULL) {
2167 		if (security_sk_alloc(sk, family, priority))
2168 			goto out_free;
2169 
2170 		if (!try_module_get(prot->owner))
2171 			goto out_free_sec;
2172 	}
2173 
2174 	return sk;
2175 
2176 out_free_sec:
2177 	security_sk_free(sk);
2178 out_free:
2179 	if (slab != NULL)
2180 		kmem_cache_free(slab, sk);
2181 	else
2182 		kfree(sk);
2183 	return NULL;
2184 }
2185 
2186 static void sk_prot_free(struct proto *prot, struct sock *sk)
2187 {
2188 	struct kmem_cache *slab;
2189 	struct module *owner;
2190 
2191 	owner = prot->owner;
2192 	slab = prot->slab;
2193 
2194 	cgroup_sk_free(&sk->sk_cgrp_data);
2195 	mem_cgroup_sk_free(sk);
2196 	security_sk_free(sk);
2197 	if (slab != NULL)
2198 		kmem_cache_free(slab, sk);
2199 	else
2200 		kfree(sk);
2201 	module_put(owner);
2202 }
2203 
2204 /**
2205  *	sk_alloc - All socket objects are allocated here
2206  *	@net: the applicable net namespace
2207  *	@family: protocol family
2208  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2209  *	@prot: struct proto associated with this new sock instance
2210  *	@kern: is this to be a kernel socket?
2211  */
2212 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2213 		      struct proto *prot, int kern)
2214 {
2215 	struct sock *sk;
2216 
2217 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2218 	if (sk) {
2219 		sk->sk_family = family;
2220 		/*
2221 		 * See comment in struct sock definition to understand
2222 		 * why we need sk_prot_creator -acme
2223 		 */
2224 		sk->sk_prot = sk->sk_prot_creator = prot;
2225 		sk->sk_kern_sock = kern;
2226 		sock_lock_init(sk);
2227 		sk->sk_net_refcnt = kern ? 0 : 1;
2228 		if (likely(sk->sk_net_refcnt)) {
2229 			get_net_track(net, &sk->ns_tracker, priority);
2230 			sock_inuse_add(net, 1);
2231 		} else {
2232 			__netns_tracker_alloc(net, &sk->ns_tracker,
2233 					      false, priority);
2234 		}
2235 
2236 		sock_net_set(sk, net);
2237 		refcount_set(&sk->sk_wmem_alloc, 1);
2238 
2239 		mem_cgroup_sk_alloc(sk);
2240 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2241 		sock_update_classid(&sk->sk_cgrp_data);
2242 		sock_update_netprioidx(&sk->sk_cgrp_data);
2243 		sk_tx_queue_clear(sk);
2244 	}
2245 
2246 	return sk;
2247 }
2248 EXPORT_SYMBOL(sk_alloc);
2249 
2250 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2251  * grace period. This is the case for UDP sockets and TCP listeners.
2252  */
2253 static void __sk_destruct(struct rcu_head *head)
2254 {
2255 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2256 	struct sk_filter *filter;
2257 
2258 	if (sk->sk_destruct)
2259 		sk->sk_destruct(sk);
2260 
2261 	filter = rcu_dereference_check(sk->sk_filter,
2262 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2263 	if (filter) {
2264 		sk_filter_uncharge(sk, filter);
2265 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2266 	}
2267 
2268 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2269 
2270 #ifdef CONFIG_BPF_SYSCALL
2271 	bpf_sk_storage_free(sk);
2272 #endif
2273 
2274 	if (atomic_read(&sk->sk_omem_alloc))
2275 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2276 			 __func__, atomic_read(&sk->sk_omem_alloc));
2277 
2278 	if (sk->sk_frag.page) {
2279 		put_page(sk->sk_frag.page);
2280 		sk->sk_frag.page = NULL;
2281 	}
2282 
2283 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2284 	put_cred(sk->sk_peer_cred);
2285 	put_pid(sk->sk_peer_pid);
2286 
2287 	if (likely(sk->sk_net_refcnt))
2288 		put_net_track(sock_net(sk), &sk->ns_tracker);
2289 	else
2290 		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2291 
2292 	sk_prot_free(sk->sk_prot_creator, sk);
2293 }
2294 
2295 void sk_destruct(struct sock *sk)
2296 {
2297 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2298 
2299 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2300 		reuseport_detach_sock(sk);
2301 		use_call_rcu = true;
2302 	}
2303 
2304 	if (use_call_rcu)
2305 		call_rcu(&sk->sk_rcu, __sk_destruct);
2306 	else
2307 		__sk_destruct(&sk->sk_rcu);
2308 }
2309 
2310 static void __sk_free(struct sock *sk)
2311 {
2312 	if (likely(sk->sk_net_refcnt))
2313 		sock_inuse_add(sock_net(sk), -1);
2314 
2315 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2316 		sock_diag_broadcast_destroy(sk);
2317 	else
2318 		sk_destruct(sk);
2319 }
2320 
2321 void sk_free(struct sock *sk)
2322 {
2323 	/*
2324 	 * We subtract one from sk_wmem_alloc and can know if
2325 	 * some packets are still in some tx queue.
2326 	 * If not null, sock_wfree() will call __sk_free(sk) later
2327 	 */
2328 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2329 		__sk_free(sk);
2330 }
2331 EXPORT_SYMBOL(sk_free);
2332 
2333 static void sk_init_common(struct sock *sk)
2334 {
2335 	skb_queue_head_init(&sk->sk_receive_queue);
2336 	skb_queue_head_init(&sk->sk_write_queue);
2337 	skb_queue_head_init(&sk->sk_error_queue);
2338 
2339 	rwlock_init(&sk->sk_callback_lock);
2340 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2341 			af_rlock_keys + sk->sk_family,
2342 			af_family_rlock_key_strings[sk->sk_family]);
2343 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2344 			af_wlock_keys + sk->sk_family,
2345 			af_family_wlock_key_strings[sk->sk_family]);
2346 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2347 			af_elock_keys + sk->sk_family,
2348 			af_family_elock_key_strings[sk->sk_family]);
2349 	if (sk->sk_kern_sock)
2350 		lockdep_set_class_and_name(&sk->sk_callback_lock,
2351 			af_kern_callback_keys + sk->sk_family,
2352 			af_family_kern_clock_key_strings[sk->sk_family]);
2353 	else
2354 		lockdep_set_class_and_name(&sk->sk_callback_lock,
2355 			af_callback_keys + sk->sk_family,
2356 			af_family_clock_key_strings[sk->sk_family]);
2357 }
2358 
2359 /**
2360  *	sk_clone_lock - clone a socket, and lock its clone
2361  *	@sk: the socket to clone
2362  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2363  *
2364  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2365  */
2366 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2367 {
2368 	struct proto *prot = READ_ONCE(sk->sk_prot);
2369 	struct sk_filter *filter;
2370 	bool is_charged = true;
2371 	struct sock *newsk;
2372 
2373 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2374 	if (!newsk)
2375 		goto out;
2376 
2377 	sock_copy(newsk, sk);
2378 
2379 	newsk->sk_prot_creator = prot;
2380 
2381 	/* SANITY */
2382 	if (likely(newsk->sk_net_refcnt)) {
2383 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2384 		sock_inuse_add(sock_net(newsk), 1);
2385 	} else {
2386 		/* Kernel sockets are not elevating the struct net refcount.
2387 		 * Instead, use a tracker to more easily detect if a layer
2388 		 * is not properly dismantling its kernel sockets at netns
2389 		 * destroy time.
2390 		 */
2391 		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2392 				      false, priority);
2393 	}
2394 	sk_node_init(&newsk->sk_node);
2395 	sock_lock_init(newsk);
2396 	bh_lock_sock(newsk);
2397 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2398 	newsk->sk_backlog.len = 0;
2399 
2400 	atomic_set(&newsk->sk_rmem_alloc, 0);
2401 
2402 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2403 	refcount_set(&newsk->sk_wmem_alloc, 1);
2404 
2405 	atomic_set(&newsk->sk_omem_alloc, 0);
2406 	sk_init_common(newsk);
2407 
2408 	newsk->sk_dst_cache	= NULL;
2409 	newsk->sk_dst_pending_confirm = 0;
2410 	newsk->sk_wmem_queued	= 0;
2411 	newsk->sk_forward_alloc = 0;
2412 	newsk->sk_reserved_mem  = 0;
2413 	atomic_set(&newsk->sk_drops, 0);
2414 	newsk->sk_send_head	= NULL;
2415 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2416 	atomic_set(&newsk->sk_zckey, 0);
2417 
2418 	sock_reset_flag(newsk, SOCK_DONE);
2419 
2420 	/* sk->sk_memcg will be populated at accept() time */
2421 	newsk->sk_memcg = NULL;
2422 
2423 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2424 
2425 	rcu_read_lock();
2426 	filter = rcu_dereference(sk->sk_filter);
2427 	if (filter != NULL)
2428 		/* though it's an empty new sock, the charging may fail
2429 		 * if sysctl_optmem_max was changed between creation of
2430 		 * original socket and cloning
2431 		 */
2432 		is_charged = sk_filter_charge(newsk, filter);
2433 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2434 	rcu_read_unlock();
2435 
2436 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2437 		/* We need to make sure that we don't uncharge the new
2438 		 * socket if we couldn't charge it in the first place
2439 		 * as otherwise we uncharge the parent's filter.
2440 		 */
2441 		if (!is_charged)
2442 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2443 		sk_free_unlock_clone(newsk);
2444 		newsk = NULL;
2445 		goto out;
2446 	}
2447 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2448 
2449 	if (bpf_sk_storage_clone(sk, newsk)) {
2450 		sk_free_unlock_clone(newsk);
2451 		newsk = NULL;
2452 		goto out;
2453 	}
2454 
2455 	/* Clear sk_user_data if parent had the pointer tagged
2456 	 * as not suitable for copying when cloning.
2457 	 */
2458 	if (sk_user_data_is_nocopy(newsk))
2459 		newsk->sk_user_data = NULL;
2460 
2461 	newsk->sk_err	   = 0;
2462 	newsk->sk_err_soft = 0;
2463 	newsk->sk_priority = 0;
2464 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2465 
2466 	/* Before updating sk_refcnt, we must commit prior changes to memory
2467 	 * (Documentation/RCU/rculist_nulls.rst for details)
2468 	 */
2469 	smp_wmb();
2470 	refcount_set(&newsk->sk_refcnt, 2);
2471 
2472 	sk_set_socket(newsk, NULL);
2473 	sk_tx_queue_clear(newsk);
2474 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2475 
2476 	if (newsk->sk_prot->sockets_allocated)
2477 		sk_sockets_allocated_inc(newsk);
2478 
2479 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2480 		net_enable_timestamp();
2481 out:
2482 	return newsk;
2483 }
2484 EXPORT_SYMBOL_GPL(sk_clone_lock);
2485 
2486 void sk_free_unlock_clone(struct sock *sk)
2487 {
2488 	/* It is still raw copy of parent, so invalidate
2489 	 * destructor and make plain sk_free() */
2490 	sk->sk_destruct = NULL;
2491 	bh_unlock_sock(sk);
2492 	sk_free(sk);
2493 }
2494 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2495 
2496 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2497 {
2498 	bool is_ipv6 = false;
2499 	u32 max_size;
2500 
2501 #if IS_ENABLED(CONFIG_IPV6)
2502 	is_ipv6 = (sk->sk_family == AF_INET6 &&
2503 		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2504 #endif
2505 	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2506 	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2507 			READ_ONCE(dst->dev->gso_ipv4_max_size);
2508 	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2509 		max_size = GSO_LEGACY_MAX_SIZE;
2510 
2511 	return max_size - (MAX_TCP_HEADER + 1);
2512 }
2513 
2514 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2515 {
2516 	u32 max_segs = 1;
2517 
2518 	sk->sk_route_caps = dst->dev->features;
2519 	if (sk_is_tcp(sk))
2520 		sk->sk_route_caps |= NETIF_F_GSO;
2521 	if (sk->sk_route_caps & NETIF_F_GSO)
2522 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2523 	if (unlikely(sk->sk_gso_disabled))
2524 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2525 	if (sk_can_gso(sk)) {
2526 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2527 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2528 		} else {
2529 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2530 			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2531 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2532 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2533 		}
2534 	}
2535 	sk->sk_gso_max_segs = max_segs;
2536 	sk_dst_set(sk, dst);
2537 }
2538 EXPORT_SYMBOL_GPL(sk_setup_caps);
2539 
2540 /*
2541  *	Simple resource managers for sockets.
2542  */
2543 
2544 
2545 /*
2546  * Write buffer destructor automatically called from kfree_skb.
2547  */
2548 void sock_wfree(struct sk_buff *skb)
2549 {
2550 	struct sock *sk = skb->sk;
2551 	unsigned int len = skb->truesize;
2552 	bool free;
2553 
2554 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2555 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2556 		    sk->sk_write_space == sock_def_write_space) {
2557 			rcu_read_lock();
2558 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2559 			sock_def_write_space_wfree(sk);
2560 			rcu_read_unlock();
2561 			if (unlikely(free))
2562 				__sk_free(sk);
2563 			return;
2564 		}
2565 
2566 		/*
2567 		 * Keep a reference on sk_wmem_alloc, this will be released
2568 		 * after sk_write_space() call
2569 		 */
2570 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2571 		sk->sk_write_space(sk);
2572 		len = 1;
2573 	}
2574 	/*
2575 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2576 	 * could not do because of in-flight packets
2577 	 */
2578 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2579 		__sk_free(sk);
2580 }
2581 EXPORT_SYMBOL(sock_wfree);
2582 
2583 /* This variant of sock_wfree() is used by TCP,
2584  * since it sets SOCK_USE_WRITE_QUEUE.
2585  */
2586 void __sock_wfree(struct sk_buff *skb)
2587 {
2588 	struct sock *sk = skb->sk;
2589 
2590 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2591 		__sk_free(sk);
2592 }
2593 
2594 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2595 {
2596 	skb_orphan(skb);
2597 	skb->sk = sk;
2598 #ifdef CONFIG_INET
2599 	if (unlikely(!sk_fullsock(sk))) {
2600 		skb->destructor = sock_edemux;
2601 		sock_hold(sk);
2602 		return;
2603 	}
2604 #endif
2605 	skb->destructor = sock_wfree;
2606 	skb_set_hash_from_sk(skb, sk);
2607 	/*
2608 	 * We used to take a refcount on sk, but following operation
2609 	 * is enough to guarantee sk_free() won't free this sock until
2610 	 * all in-flight packets are completed
2611 	 */
2612 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2613 }
2614 EXPORT_SYMBOL(skb_set_owner_w);
2615 
2616 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2617 {
2618 	/* Drivers depend on in-order delivery for crypto offload,
2619 	 * partial orphan breaks out-of-order-OK logic.
2620 	 */
2621 	if (skb_is_decrypted(skb))
2622 		return false;
2623 
2624 	return (skb->destructor == sock_wfree ||
2625 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2626 }
2627 
2628 /* This helper is used by netem, as it can hold packets in its
2629  * delay queue. We want to allow the owner socket to send more
2630  * packets, as if they were already TX completed by a typical driver.
2631  * But we also want to keep skb->sk set because some packet schedulers
2632  * rely on it (sch_fq for example).
2633  */
2634 void skb_orphan_partial(struct sk_buff *skb)
2635 {
2636 	if (skb_is_tcp_pure_ack(skb))
2637 		return;
2638 
2639 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2640 		return;
2641 
2642 	skb_orphan(skb);
2643 }
2644 EXPORT_SYMBOL(skb_orphan_partial);
2645 
2646 /*
2647  * Read buffer destructor automatically called from kfree_skb.
2648  */
2649 void sock_rfree(struct sk_buff *skb)
2650 {
2651 	struct sock *sk = skb->sk;
2652 	unsigned int len = skb->truesize;
2653 
2654 	atomic_sub(len, &sk->sk_rmem_alloc);
2655 	sk_mem_uncharge(sk, len);
2656 }
2657 EXPORT_SYMBOL(sock_rfree);
2658 
2659 /*
2660  * Buffer destructor for skbs that are not used directly in read or write
2661  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2662  */
2663 void sock_efree(struct sk_buff *skb)
2664 {
2665 	sock_put(skb->sk);
2666 }
2667 EXPORT_SYMBOL(sock_efree);
2668 
2669 /* Buffer destructor for prefetch/receive path where reference count may
2670  * not be held, e.g. for listen sockets.
2671  */
2672 #ifdef CONFIG_INET
2673 void sock_pfree(struct sk_buff *skb)
2674 {
2675 	struct sock *sk = skb->sk;
2676 
2677 	if (!sk_is_refcounted(sk))
2678 		return;
2679 
2680 	if (sk->sk_state == TCP_NEW_SYN_RECV && inet_reqsk(sk)->syncookie) {
2681 		inet_reqsk(sk)->rsk_listener = NULL;
2682 		reqsk_free(inet_reqsk(sk));
2683 		return;
2684 	}
2685 
2686 	sock_gen_put(sk);
2687 }
2688 EXPORT_SYMBOL(sock_pfree);
2689 #endif /* CONFIG_INET */
2690 
2691 kuid_t sock_i_uid(struct sock *sk)
2692 {
2693 	kuid_t uid;
2694 
2695 	read_lock_bh(&sk->sk_callback_lock);
2696 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2697 	read_unlock_bh(&sk->sk_callback_lock);
2698 	return uid;
2699 }
2700 EXPORT_SYMBOL(sock_i_uid);
2701 
2702 unsigned long __sock_i_ino(struct sock *sk)
2703 {
2704 	unsigned long ino;
2705 
2706 	read_lock(&sk->sk_callback_lock);
2707 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2708 	read_unlock(&sk->sk_callback_lock);
2709 	return ino;
2710 }
2711 EXPORT_SYMBOL(__sock_i_ino);
2712 
2713 unsigned long sock_i_ino(struct sock *sk)
2714 {
2715 	unsigned long ino;
2716 
2717 	local_bh_disable();
2718 	ino = __sock_i_ino(sk);
2719 	local_bh_enable();
2720 	return ino;
2721 }
2722 EXPORT_SYMBOL(sock_i_ino);
2723 
2724 /*
2725  * Allocate a skb from the socket's send buffer.
2726  */
2727 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2728 			     gfp_t priority)
2729 {
2730 	if (force ||
2731 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2732 		struct sk_buff *skb = alloc_skb(size, priority);
2733 
2734 		if (skb) {
2735 			skb_set_owner_w(skb, sk);
2736 			return skb;
2737 		}
2738 	}
2739 	return NULL;
2740 }
2741 EXPORT_SYMBOL(sock_wmalloc);
2742 
2743 static void sock_ofree(struct sk_buff *skb)
2744 {
2745 	struct sock *sk = skb->sk;
2746 
2747 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2748 }
2749 
2750 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2751 			     gfp_t priority)
2752 {
2753 	struct sk_buff *skb;
2754 
2755 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2756 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2757 	    READ_ONCE(sock_net(sk)->core.sysctl_optmem_max))
2758 		return NULL;
2759 
2760 	skb = alloc_skb(size, priority);
2761 	if (!skb)
2762 		return NULL;
2763 
2764 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2765 	skb->sk = sk;
2766 	skb->destructor = sock_ofree;
2767 	return skb;
2768 }
2769 
2770 /*
2771  * Allocate a memory block from the socket's option memory buffer.
2772  */
2773 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2774 {
2775 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
2776 
2777 	if ((unsigned int)size <= optmem_max &&
2778 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2779 		void *mem;
2780 		/* First do the add, to avoid the race if kmalloc
2781 		 * might sleep.
2782 		 */
2783 		atomic_add(size, &sk->sk_omem_alloc);
2784 		mem = kmalloc(size, priority);
2785 		if (mem)
2786 			return mem;
2787 		atomic_sub(size, &sk->sk_omem_alloc);
2788 	}
2789 	return NULL;
2790 }
2791 EXPORT_SYMBOL(sock_kmalloc);
2792 
2793 /* Free an option memory block. Note, we actually want the inline
2794  * here as this allows gcc to detect the nullify and fold away the
2795  * condition entirely.
2796  */
2797 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2798 				  const bool nullify)
2799 {
2800 	if (WARN_ON_ONCE(!mem))
2801 		return;
2802 	if (nullify)
2803 		kfree_sensitive(mem);
2804 	else
2805 		kfree(mem);
2806 	atomic_sub(size, &sk->sk_omem_alloc);
2807 }
2808 
2809 void sock_kfree_s(struct sock *sk, void *mem, int size)
2810 {
2811 	__sock_kfree_s(sk, mem, size, false);
2812 }
2813 EXPORT_SYMBOL(sock_kfree_s);
2814 
2815 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2816 {
2817 	__sock_kfree_s(sk, mem, size, true);
2818 }
2819 EXPORT_SYMBOL(sock_kzfree_s);
2820 
2821 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2822    I think, these locks should be removed for datagram sockets.
2823  */
2824 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2825 {
2826 	DEFINE_WAIT(wait);
2827 
2828 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2829 	for (;;) {
2830 		if (!timeo)
2831 			break;
2832 		if (signal_pending(current))
2833 			break;
2834 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2835 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2836 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2837 			break;
2838 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2839 			break;
2840 		if (READ_ONCE(sk->sk_err))
2841 			break;
2842 		timeo = schedule_timeout(timeo);
2843 	}
2844 	finish_wait(sk_sleep(sk), &wait);
2845 	return timeo;
2846 }
2847 
2848 
2849 /*
2850  *	Generic send/receive buffer handlers
2851  */
2852 
2853 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2854 				     unsigned long data_len, int noblock,
2855 				     int *errcode, int max_page_order)
2856 {
2857 	struct sk_buff *skb;
2858 	long timeo;
2859 	int err;
2860 
2861 	timeo = sock_sndtimeo(sk, noblock);
2862 	for (;;) {
2863 		err = sock_error(sk);
2864 		if (err != 0)
2865 			goto failure;
2866 
2867 		err = -EPIPE;
2868 		if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2869 			goto failure;
2870 
2871 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2872 			break;
2873 
2874 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2875 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2876 		err = -EAGAIN;
2877 		if (!timeo)
2878 			goto failure;
2879 		if (signal_pending(current))
2880 			goto interrupted;
2881 		timeo = sock_wait_for_wmem(sk, timeo);
2882 	}
2883 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2884 				   errcode, sk->sk_allocation);
2885 	if (skb)
2886 		skb_set_owner_w(skb, sk);
2887 	return skb;
2888 
2889 interrupted:
2890 	err = sock_intr_errno(timeo);
2891 failure:
2892 	*errcode = err;
2893 	return NULL;
2894 }
2895 EXPORT_SYMBOL(sock_alloc_send_pskb);
2896 
2897 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2898 		     struct sockcm_cookie *sockc)
2899 {
2900 	u32 tsflags;
2901 
2902 	BUILD_BUG_ON(SOF_TIMESTAMPING_LAST == (1 << 31));
2903 
2904 	switch (cmsg->cmsg_type) {
2905 	case SO_MARK:
2906 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2907 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2908 			return -EPERM;
2909 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2910 			return -EINVAL;
2911 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2912 		break;
2913 	case SO_TIMESTAMPING_OLD:
2914 	case SO_TIMESTAMPING_NEW:
2915 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2916 			return -EINVAL;
2917 
2918 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2919 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2920 			return -EINVAL;
2921 
2922 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2923 		sockc->tsflags |= tsflags;
2924 		break;
2925 	case SCM_TXTIME:
2926 		if (!sock_flag(sk, SOCK_TXTIME))
2927 			return -EINVAL;
2928 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2929 			return -EINVAL;
2930 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2931 		break;
2932 	case SCM_TS_OPT_ID:
2933 		if (sk_is_tcp(sk))
2934 			return -EINVAL;
2935 		tsflags = READ_ONCE(sk->sk_tsflags);
2936 		if (!(tsflags & SOF_TIMESTAMPING_OPT_ID))
2937 			return -EINVAL;
2938 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2939 			return -EINVAL;
2940 		sockc->ts_opt_id = *(u32 *)CMSG_DATA(cmsg);
2941 		sockc->tsflags |= SOCKCM_FLAG_TS_OPT_ID;
2942 		break;
2943 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2944 	case SCM_RIGHTS:
2945 	case SCM_CREDENTIALS:
2946 		break;
2947 	default:
2948 		return -EINVAL;
2949 	}
2950 	return 0;
2951 }
2952 EXPORT_SYMBOL(__sock_cmsg_send);
2953 
2954 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2955 		   struct sockcm_cookie *sockc)
2956 {
2957 	struct cmsghdr *cmsg;
2958 	int ret;
2959 
2960 	for_each_cmsghdr(cmsg, msg) {
2961 		if (!CMSG_OK(msg, cmsg))
2962 			return -EINVAL;
2963 		if (cmsg->cmsg_level != SOL_SOCKET)
2964 			continue;
2965 		ret = __sock_cmsg_send(sk, cmsg, sockc);
2966 		if (ret)
2967 			return ret;
2968 	}
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(sock_cmsg_send);
2972 
2973 static void sk_enter_memory_pressure(struct sock *sk)
2974 {
2975 	if (!sk->sk_prot->enter_memory_pressure)
2976 		return;
2977 
2978 	sk->sk_prot->enter_memory_pressure(sk);
2979 }
2980 
2981 static void sk_leave_memory_pressure(struct sock *sk)
2982 {
2983 	if (sk->sk_prot->leave_memory_pressure) {
2984 		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2985 				     tcp_leave_memory_pressure, sk);
2986 	} else {
2987 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2988 
2989 		if (memory_pressure && READ_ONCE(*memory_pressure))
2990 			WRITE_ONCE(*memory_pressure, 0);
2991 	}
2992 }
2993 
2994 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2995 
2996 /**
2997  * skb_page_frag_refill - check that a page_frag contains enough room
2998  * @sz: minimum size of the fragment we want to get
2999  * @pfrag: pointer to page_frag
3000  * @gfp: priority for memory allocation
3001  *
3002  * Note: While this allocator tries to use high order pages, there is
3003  * no guarantee that allocations succeed. Therefore, @sz MUST be
3004  * less or equal than PAGE_SIZE.
3005  */
3006 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
3007 {
3008 	if (pfrag->page) {
3009 		if (page_ref_count(pfrag->page) == 1) {
3010 			pfrag->offset = 0;
3011 			return true;
3012 		}
3013 		if (pfrag->offset + sz <= pfrag->size)
3014 			return true;
3015 		put_page(pfrag->page);
3016 	}
3017 
3018 	pfrag->offset = 0;
3019 	if (SKB_FRAG_PAGE_ORDER &&
3020 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
3021 		/* Avoid direct reclaim but allow kswapd to wake */
3022 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
3023 					  __GFP_COMP | __GFP_NOWARN |
3024 					  __GFP_NORETRY,
3025 					  SKB_FRAG_PAGE_ORDER);
3026 		if (likely(pfrag->page)) {
3027 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
3028 			return true;
3029 		}
3030 	}
3031 	pfrag->page = alloc_page(gfp);
3032 	if (likely(pfrag->page)) {
3033 		pfrag->size = PAGE_SIZE;
3034 		return true;
3035 	}
3036 	return false;
3037 }
3038 EXPORT_SYMBOL(skb_page_frag_refill);
3039 
3040 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
3041 {
3042 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
3043 		return true;
3044 
3045 	sk_enter_memory_pressure(sk);
3046 	sk_stream_moderate_sndbuf(sk);
3047 	return false;
3048 }
3049 EXPORT_SYMBOL(sk_page_frag_refill);
3050 
3051 void __lock_sock(struct sock *sk)
3052 	__releases(&sk->sk_lock.slock)
3053 	__acquires(&sk->sk_lock.slock)
3054 {
3055 	DEFINE_WAIT(wait);
3056 
3057 	for (;;) {
3058 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
3059 					TASK_UNINTERRUPTIBLE);
3060 		spin_unlock_bh(&sk->sk_lock.slock);
3061 		schedule();
3062 		spin_lock_bh(&sk->sk_lock.slock);
3063 		if (!sock_owned_by_user(sk))
3064 			break;
3065 	}
3066 	finish_wait(&sk->sk_lock.wq, &wait);
3067 }
3068 
3069 void __release_sock(struct sock *sk)
3070 	__releases(&sk->sk_lock.slock)
3071 	__acquires(&sk->sk_lock.slock)
3072 {
3073 	struct sk_buff *skb, *next;
3074 
3075 	while ((skb = sk->sk_backlog.head) != NULL) {
3076 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
3077 
3078 		spin_unlock_bh(&sk->sk_lock.slock);
3079 
3080 		do {
3081 			next = skb->next;
3082 			prefetch(next);
3083 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
3084 			skb_mark_not_on_list(skb);
3085 			sk_backlog_rcv(sk, skb);
3086 
3087 			cond_resched();
3088 
3089 			skb = next;
3090 		} while (skb != NULL);
3091 
3092 		spin_lock_bh(&sk->sk_lock.slock);
3093 	}
3094 
3095 	/*
3096 	 * Doing the zeroing here guarantee we can not loop forever
3097 	 * while a wild producer attempts to flood us.
3098 	 */
3099 	sk->sk_backlog.len = 0;
3100 }
3101 
3102 void __sk_flush_backlog(struct sock *sk)
3103 {
3104 	spin_lock_bh(&sk->sk_lock.slock);
3105 	__release_sock(sk);
3106 
3107 	if (sk->sk_prot->release_cb)
3108 		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3109 				     tcp_release_cb, sk);
3110 
3111 	spin_unlock_bh(&sk->sk_lock.slock);
3112 }
3113 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
3114 
3115 /**
3116  * sk_wait_data - wait for data to arrive at sk_receive_queue
3117  * @sk:    sock to wait on
3118  * @timeo: for how long
3119  * @skb:   last skb seen on sk_receive_queue
3120  *
3121  * Now socket state including sk->sk_err is changed only under lock,
3122  * hence we may omit checks after joining wait queue.
3123  * We check receive queue before schedule() only as optimization;
3124  * it is very likely that release_sock() added new data.
3125  */
3126 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3127 {
3128 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3129 	int rc;
3130 
3131 	add_wait_queue(sk_sleep(sk), &wait);
3132 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3133 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3134 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3135 	remove_wait_queue(sk_sleep(sk), &wait);
3136 	return rc;
3137 }
3138 EXPORT_SYMBOL(sk_wait_data);
3139 
3140 /**
3141  *	__sk_mem_raise_allocated - increase memory_allocated
3142  *	@sk: socket
3143  *	@size: memory size to allocate
3144  *	@amt: pages to allocate
3145  *	@kind: allocation type
3146  *
3147  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3148  *
3149  *	Unlike the globally shared limits among the sockets under same protocol,
3150  *	consuming the budget of a memcg won't have direct effect on other ones.
3151  *	So be optimistic about memcg's tolerance, and leave the callers to decide
3152  *	whether or not to raise allocated through sk_under_memory_pressure() or
3153  *	its variants.
3154  */
3155 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3156 {
3157 	struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3158 	struct proto *prot = sk->sk_prot;
3159 	bool charged = false;
3160 	long allocated;
3161 
3162 	sk_memory_allocated_add(sk, amt);
3163 	allocated = sk_memory_allocated(sk);
3164 
3165 	if (memcg) {
3166 		if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge()))
3167 			goto suppress_allocation;
3168 		charged = true;
3169 	}
3170 
3171 	/* Under limit. */
3172 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3173 		sk_leave_memory_pressure(sk);
3174 		return 1;
3175 	}
3176 
3177 	/* Under pressure. */
3178 	if (allocated > sk_prot_mem_limits(sk, 1))
3179 		sk_enter_memory_pressure(sk);
3180 
3181 	/* Over hard limit. */
3182 	if (allocated > sk_prot_mem_limits(sk, 2))
3183 		goto suppress_allocation;
3184 
3185 	/* Guarantee minimum buffer size under pressure (either global
3186 	 * or memcg) to make sure features described in RFC 7323 (TCP
3187 	 * Extensions for High Performance) work properly.
3188 	 *
3189 	 * This rule does NOT stand when exceeds global or memcg's hard
3190 	 * limit, or else a DoS attack can be taken place by spawning
3191 	 * lots of sockets whose usage are under minimum buffer size.
3192 	 */
3193 	if (kind == SK_MEM_RECV) {
3194 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3195 			return 1;
3196 
3197 	} else { /* SK_MEM_SEND */
3198 		int wmem0 = sk_get_wmem0(sk, prot);
3199 
3200 		if (sk->sk_type == SOCK_STREAM) {
3201 			if (sk->sk_wmem_queued < wmem0)
3202 				return 1;
3203 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3204 				return 1;
3205 		}
3206 	}
3207 
3208 	if (sk_has_memory_pressure(sk)) {
3209 		u64 alloc;
3210 
3211 		/* The following 'average' heuristic is within the
3212 		 * scope of global accounting, so it only makes
3213 		 * sense for global memory pressure.
3214 		 */
3215 		if (!sk_under_global_memory_pressure(sk))
3216 			return 1;
3217 
3218 		/* Try to be fair among all the sockets under global
3219 		 * pressure by allowing the ones that below average
3220 		 * usage to raise.
3221 		 */
3222 		alloc = sk_sockets_allocated_read_positive(sk);
3223 		if (sk_prot_mem_limits(sk, 2) > alloc *
3224 		    sk_mem_pages(sk->sk_wmem_queued +
3225 				 atomic_read(&sk->sk_rmem_alloc) +
3226 				 sk->sk_forward_alloc))
3227 			return 1;
3228 	}
3229 
3230 suppress_allocation:
3231 
3232 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3233 		sk_stream_moderate_sndbuf(sk);
3234 
3235 		/* Fail only if socket is _under_ its sndbuf.
3236 		 * In this case we cannot block, so that we have to fail.
3237 		 */
3238 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3239 			/* Force charge with __GFP_NOFAIL */
3240 			if (memcg && !charged) {
3241 				mem_cgroup_charge_skmem(memcg, amt,
3242 					gfp_memcg_charge() | __GFP_NOFAIL);
3243 			}
3244 			return 1;
3245 		}
3246 	}
3247 
3248 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3249 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3250 
3251 	sk_memory_allocated_sub(sk, amt);
3252 
3253 	if (charged)
3254 		mem_cgroup_uncharge_skmem(memcg, amt);
3255 
3256 	return 0;
3257 }
3258 
3259 /**
3260  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3261  *	@sk: socket
3262  *	@size: memory size to allocate
3263  *	@kind: allocation type
3264  *
3265  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3266  *	rmem allocation. This function assumes that protocols which have
3267  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3268  */
3269 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3270 {
3271 	int ret, amt = sk_mem_pages(size);
3272 
3273 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3274 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3275 	if (!ret)
3276 		sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT));
3277 	return ret;
3278 }
3279 EXPORT_SYMBOL(__sk_mem_schedule);
3280 
3281 /**
3282  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3283  *	@sk: socket
3284  *	@amount: number of quanta
3285  *
3286  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3287  */
3288 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3289 {
3290 	sk_memory_allocated_sub(sk, amount);
3291 
3292 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3293 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3294 
3295 	if (sk_under_global_memory_pressure(sk) &&
3296 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3297 		sk_leave_memory_pressure(sk);
3298 }
3299 
3300 /**
3301  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3302  *	@sk: socket
3303  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3304  */
3305 void __sk_mem_reclaim(struct sock *sk, int amount)
3306 {
3307 	amount >>= PAGE_SHIFT;
3308 	sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT));
3309 	__sk_mem_reduce_allocated(sk, amount);
3310 }
3311 EXPORT_SYMBOL(__sk_mem_reclaim);
3312 
3313 int sk_set_peek_off(struct sock *sk, int val)
3314 {
3315 	WRITE_ONCE(sk->sk_peek_off, val);
3316 	return 0;
3317 }
3318 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3319 
3320 /*
3321  * Set of default routines for initialising struct proto_ops when
3322  * the protocol does not support a particular function. In certain
3323  * cases where it makes no sense for a protocol to have a "do nothing"
3324  * function, some default processing is provided.
3325  */
3326 
3327 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3328 {
3329 	return -EOPNOTSUPP;
3330 }
3331 EXPORT_SYMBOL(sock_no_bind);
3332 
3333 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3334 		    int len, int flags)
3335 {
3336 	return -EOPNOTSUPP;
3337 }
3338 EXPORT_SYMBOL(sock_no_connect);
3339 
3340 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3341 {
3342 	return -EOPNOTSUPP;
3343 }
3344 EXPORT_SYMBOL(sock_no_socketpair);
3345 
3346 int sock_no_accept(struct socket *sock, struct socket *newsock,
3347 		   struct proto_accept_arg *arg)
3348 {
3349 	return -EOPNOTSUPP;
3350 }
3351 EXPORT_SYMBOL(sock_no_accept);
3352 
3353 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3354 		    int peer)
3355 {
3356 	return -EOPNOTSUPP;
3357 }
3358 EXPORT_SYMBOL(sock_no_getname);
3359 
3360 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3361 {
3362 	return -EOPNOTSUPP;
3363 }
3364 EXPORT_SYMBOL(sock_no_ioctl);
3365 
3366 int sock_no_listen(struct socket *sock, int backlog)
3367 {
3368 	return -EOPNOTSUPP;
3369 }
3370 EXPORT_SYMBOL(sock_no_listen);
3371 
3372 int sock_no_shutdown(struct socket *sock, int how)
3373 {
3374 	return -EOPNOTSUPP;
3375 }
3376 EXPORT_SYMBOL(sock_no_shutdown);
3377 
3378 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3379 {
3380 	return -EOPNOTSUPP;
3381 }
3382 EXPORT_SYMBOL(sock_no_sendmsg);
3383 
3384 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3385 {
3386 	return -EOPNOTSUPP;
3387 }
3388 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3389 
3390 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3391 		    int flags)
3392 {
3393 	return -EOPNOTSUPP;
3394 }
3395 EXPORT_SYMBOL(sock_no_recvmsg);
3396 
3397 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3398 {
3399 	/* Mirror missing mmap method error code */
3400 	return -ENODEV;
3401 }
3402 EXPORT_SYMBOL(sock_no_mmap);
3403 
3404 /*
3405  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3406  * various sock-based usage counts.
3407  */
3408 void __receive_sock(struct file *file)
3409 {
3410 	struct socket *sock;
3411 
3412 	sock = sock_from_file(file);
3413 	if (sock) {
3414 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3415 		sock_update_classid(&sock->sk->sk_cgrp_data);
3416 	}
3417 }
3418 
3419 /*
3420  *	Default Socket Callbacks
3421  */
3422 
3423 static void sock_def_wakeup(struct sock *sk)
3424 {
3425 	struct socket_wq *wq;
3426 
3427 	rcu_read_lock();
3428 	wq = rcu_dereference(sk->sk_wq);
3429 	if (skwq_has_sleeper(wq))
3430 		wake_up_interruptible_all(&wq->wait);
3431 	rcu_read_unlock();
3432 }
3433 
3434 static void sock_def_error_report(struct sock *sk)
3435 {
3436 	struct socket_wq *wq;
3437 
3438 	rcu_read_lock();
3439 	wq = rcu_dereference(sk->sk_wq);
3440 	if (skwq_has_sleeper(wq))
3441 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3442 	sk_wake_async_rcu(sk, SOCK_WAKE_IO, POLL_ERR);
3443 	rcu_read_unlock();
3444 }
3445 
3446 void sock_def_readable(struct sock *sk)
3447 {
3448 	struct socket_wq *wq;
3449 
3450 	trace_sk_data_ready(sk);
3451 
3452 	rcu_read_lock();
3453 	wq = rcu_dereference(sk->sk_wq);
3454 	if (skwq_has_sleeper(wq))
3455 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3456 						EPOLLRDNORM | EPOLLRDBAND);
3457 	sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
3458 	rcu_read_unlock();
3459 }
3460 
3461 static void sock_def_write_space(struct sock *sk)
3462 {
3463 	struct socket_wq *wq;
3464 
3465 	rcu_read_lock();
3466 
3467 	/* Do not wake up a writer until he can make "significant"
3468 	 * progress.  --DaveM
3469 	 */
3470 	if (sock_writeable(sk)) {
3471 		wq = rcu_dereference(sk->sk_wq);
3472 		if (skwq_has_sleeper(wq))
3473 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3474 						EPOLLWRNORM | EPOLLWRBAND);
3475 
3476 		/* Should agree with poll, otherwise some programs break */
3477 		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3478 	}
3479 
3480 	rcu_read_unlock();
3481 }
3482 
3483 /* An optimised version of sock_def_write_space(), should only be called
3484  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3485  * ->sk_wmem_alloc.
3486  */
3487 static void sock_def_write_space_wfree(struct sock *sk)
3488 {
3489 	/* Do not wake up a writer until he can make "significant"
3490 	 * progress.  --DaveM
3491 	 */
3492 	if (sock_writeable(sk)) {
3493 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3494 
3495 		/* rely on refcount_sub from sock_wfree() */
3496 		smp_mb__after_atomic();
3497 		if (wq && waitqueue_active(&wq->wait))
3498 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3499 						EPOLLWRNORM | EPOLLWRBAND);
3500 
3501 		/* Should agree with poll, otherwise some programs break */
3502 		sk_wake_async_rcu(sk, SOCK_WAKE_SPACE, POLL_OUT);
3503 	}
3504 }
3505 
3506 static void sock_def_destruct(struct sock *sk)
3507 {
3508 }
3509 
3510 void sk_send_sigurg(struct sock *sk)
3511 {
3512 	if (sk->sk_socket && sk->sk_socket->file)
3513 		if (send_sigurg(sk->sk_socket->file))
3514 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3515 }
3516 EXPORT_SYMBOL(sk_send_sigurg);
3517 
3518 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3519 		    unsigned long expires)
3520 {
3521 	if (!mod_timer(timer, expires))
3522 		sock_hold(sk);
3523 }
3524 EXPORT_SYMBOL(sk_reset_timer);
3525 
3526 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3527 {
3528 	if (del_timer(timer))
3529 		__sock_put(sk);
3530 }
3531 EXPORT_SYMBOL(sk_stop_timer);
3532 
3533 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3534 {
3535 	if (del_timer_sync(timer))
3536 		__sock_put(sk);
3537 }
3538 EXPORT_SYMBOL(sk_stop_timer_sync);
3539 
3540 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3541 {
3542 	sk_init_common(sk);
3543 	sk->sk_send_head	=	NULL;
3544 
3545 	timer_setup(&sk->sk_timer, NULL, 0);
3546 
3547 	sk->sk_allocation	=	GFP_KERNEL;
3548 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3549 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3550 	sk->sk_state		=	TCP_CLOSE;
3551 	sk->sk_use_task_frag	=	true;
3552 	sk_set_socket(sk, sock);
3553 
3554 	sock_set_flag(sk, SOCK_ZAPPED);
3555 
3556 	if (sock) {
3557 		sk->sk_type	=	sock->type;
3558 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3559 		sock->sk	=	sk;
3560 	} else {
3561 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3562 	}
3563 	sk->sk_uid	=	uid;
3564 
3565 	sk->sk_state_change	=	sock_def_wakeup;
3566 	sk->sk_data_ready	=	sock_def_readable;
3567 	sk->sk_write_space	=	sock_def_write_space;
3568 	sk->sk_error_report	=	sock_def_error_report;
3569 	sk->sk_destruct		=	sock_def_destruct;
3570 
3571 	sk->sk_frag.page	=	NULL;
3572 	sk->sk_frag.offset	=	0;
3573 	sk->sk_peek_off		=	-1;
3574 
3575 	sk->sk_peer_pid 	=	NULL;
3576 	sk->sk_peer_cred	=	NULL;
3577 	spin_lock_init(&sk->sk_peer_lock);
3578 
3579 	sk->sk_write_pending	=	0;
3580 	sk->sk_rcvlowat		=	1;
3581 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3582 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3583 
3584 	sk->sk_stamp = SK_DEFAULT_STAMP;
3585 #if BITS_PER_LONG==32
3586 	seqlock_init(&sk->sk_stamp_seq);
3587 #endif
3588 	atomic_set(&sk->sk_zckey, 0);
3589 
3590 #ifdef CONFIG_NET_RX_BUSY_POLL
3591 	sk->sk_napi_id		=	0;
3592 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3593 #endif
3594 
3595 	sk->sk_max_pacing_rate = ~0UL;
3596 	sk->sk_pacing_rate = ~0UL;
3597 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3598 	sk->sk_incoming_cpu = -1;
3599 
3600 	sk_rx_queue_clear(sk);
3601 	/*
3602 	 * Before updating sk_refcnt, we must commit prior changes to memory
3603 	 * (Documentation/RCU/rculist_nulls.rst for details)
3604 	 */
3605 	smp_wmb();
3606 	refcount_set(&sk->sk_refcnt, 1);
3607 	atomic_set(&sk->sk_drops, 0);
3608 }
3609 EXPORT_SYMBOL(sock_init_data_uid);
3610 
3611 void sock_init_data(struct socket *sock, struct sock *sk)
3612 {
3613 	kuid_t uid = sock ?
3614 		SOCK_INODE(sock)->i_uid :
3615 		make_kuid(sock_net(sk)->user_ns, 0);
3616 
3617 	sock_init_data_uid(sock, sk, uid);
3618 }
3619 EXPORT_SYMBOL(sock_init_data);
3620 
3621 void lock_sock_nested(struct sock *sk, int subclass)
3622 {
3623 	/* The sk_lock has mutex_lock() semantics here. */
3624 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3625 
3626 	might_sleep();
3627 	spin_lock_bh(&sk->sk_lock.slock);
3628 	if (sock_owned_by_user_nocheck(sk))
3629 		__lock_sock(sk);
3630 	sk->sk_lock.owned = 1;
3631 	spin_unlock_bh(&sk->sk_lock.slock);
3632 }
3633 EXPORT_SYMBOL(lock_sock_nested);
3634 
3635 void release_sock(struct sock *sk)
3636 {
3637 	spin_lock_bh(&sk->sk_lock.slock);
3638 	if (sk->sk_backlog.tail)
3639 		__release_sock(sk);
3640 
3641 	if (sk->sk_prot->release_cb)
3642 		INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3643 				     tcp_release_cb, sk);
3644 
3645 	sock_release_ownership(sk);
3646 	if (waitqueue_active(&sk->sk_lock.wq))
3647 		wake_up(&sk->sk_lock.wq);
3648 	spin_unlock_bh(&sk->sk_lock.slock);
3649 }
3650 EXPORT_SYMBOL(release_sock);
3651 
3652 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3653 {
3654 	might_sleep();
3655 	spin_lock_bh(&sk->sk_lock.slock);
3656 
3657 	if (!sock_owned_by_user_nocheck(sk)) {
3658 		/*
3659 		 * Fast path return with bottom halves disabled and
3660 		 * sock::sk_lock.slock held.
3661 		 *
3662 		 * The 'mutex' is not contended and holding
3663 		 * sock::sk_lock.slock prevents all other lockers to
3664 		 * proceed so the corresponding unlock_sock_fast() can
3665 		 * avoid the slow path of release_sock() completely and
3666 		 * just release slock.
3667 		 *
3668 		 * From a semantical POV this is equivalent to 'acquiring'
3669 		 * the 'mutex', hence the corresponding lockdep
3670 		 * mutex_release() has to happen in the fast path of
3671 		 * unlock_sock_fast().
3672 		 */
3673 		return false;
3674 	}
3675 
3676 	__lock_sock(sk);
3677 	sk->sk_lock.owned = 1;
3678 	__acquire(&sk->sk_lock.slock);
3679 	spin_unlock_bh(&sk->sk_lock.slock);
3680 	return true;
3681 }
3682 EXPORT_SYMBOL(__lock_sock_fast);
3683 
3684 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3685 		   bool timeval, bool time32)
3686 {
3687 	struct sock *sk = sock->sk;
3688 	struct timespec64 ts;
3689 
3690 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3691 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3692 	if (ts.tv_sec == -1)
3693 		return -ENOENT;
3694 	if (ts.tv_sec == 0) {
3695 		ktime_t kt = ktime_get_real();
3696 		sock_write_timestamp(sk, kt);
3697 		ts = ktime_to_timespec64(kt);
3698 	}
3699 
3700 	if (timeval)
3701 		ts.tv_nsec /= 1000;
3702 
3703 #ifdef CONFIG_COMPAT_32BIT_TIME
3704 	if (time32)
3705 		return put_old_timespec32(&ts, userstamp);
3706 #endif
3707 #ifdef CONFIG_SPARC64
3708 	/* beware of padding in sparc64 timeval */
3709 	if (timeval && !in_compat_syscall()) {
3710 		struct __kernel_old_timeval __user tv = {
3711 			.tv_sec = ts.tv_sec,
3712 			.tv_usec = ts.tv_nsec,
3713 		};
3714 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3715 			return -EFAULT;
3716 		return 0;
3717 	}
3718 #endif
3719 	return put_timespec64(&ts, userstamp);
3720 }
3721 EXPORT_SYMBOL(sock_gettstamp);
3722 
3723 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3724 {
3725 	if (!sock_flag(sk, flag)) {
3726 		unsigned long previous_flags = sk->sk_flags;
3727 
3728 		sock_set_flag(sk, flag);
3729 		/*
3730 		 * we just set one of the two flags which require net
3731 		 * time stamping, but time stamping might have been on
3732 		 * already because of the other one
3733 		 */
3734 		if (sock_needs_netstamp(sk) &&
3735 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3736 			net_enable_timestamp();
3737 	}
3738 }
3739 
3740 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3741 		       int level, int type)
3742 {
3743 	struct sock_exterr_skb *serr;
3744 	struct sk_buff *skb;
3745 	int copied, err;
3746 
3747 	err = -EAGAIN;
3748 	skb = sock_dequeue_err_skb(sk);
3749 	if (skb == NULL)
3750 		goto out;
3751 
3752 	copied = skb->len;
3753 	if (copied > len) {
3754 		msg->msg_flags |= MSG_TRUNC;
3755 		copied = len;
3756 	}
3757 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3758 	if (err)
3759 		goto out_free_skb;
3760 
3761 	sock_recv_timestamp(msg, sk, skb);
3762 
3763 	serr = SKB_EXT_ERR(skb);
3764 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3765 
3766 	msg->msg_flags |= MSG_ERRQUEUE;
3767 	err = copied;
3768 
3769 out_free_skb:
3770 	kfree_skb(skb);
3771 out:
3772 	return err;
3773 }
3774 EXPORT_SYMBOL(sock_recv_errqueue);
3775 
3776 /*
3777  *	Get a socket option on an socket.
3778  *
3779  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3780  *	asynchronous errors should be reported by getsockopt. We assume
3781  *	this means if you specify SO_ERROR (otherwise what is the point of it).
3782  */
3783 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3784 			   char __user *optval, int __user *optlen)
3785 {
3786 	struct sock *sk = sock->sk;
3787 
3788 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3789 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3790 }
3791 EXPORT_SYMBOL(sock_common_getsockopt);
3792 
3793 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3794 			int flags)
3795 {
3796 	struct sock *sk = sock->sk;
3797 	int addr_len = 0;
3798 	int err;
3799 
3800 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3801 	if (err >= 0)
3802 		msg->msg_namelen = addr_len;
3803 	return err;
3804 }
3805 EXPORT_SYMBOL(sock_common_recvmsg);
3806 
3807 /*
3808  *	Set socket options on an inet socket.
3809  */
3810 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3811 			   sockptr_t optval, unsigned int optlen)
3812 {
3813 	struct sock *sk = sock->sk;
3814 
3815 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3816 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3817 }
3818 EXPORT_SYMBOL(sock_common_setsockopt);
3819 
3820 void sk_common_release(struct sock *sk)
3821 {
3822 	if (sk->sk_prot->destroy)
3823 		sk->sk_prot->destroy(sk);
3824 
3825 	/*
3826 	 * Observation: when sk_common_release is called, processes have
3827 	 * no access to socket. But net still has.
3828 	 * Step one, detach it from networking:
3829 	 *
3830 	 * A. Remove from hash tables.
3831 	 */
3832 
3833 	sk->sk_prot->unhash(sk);
3834 
3835 	if (sk->sk_socket)
3836 		sk->sk_socket->sk = NULL;
3837 
3838 	/*
3839 	 * In this point socket cannot receive new packets, but it is possible
3840 	 * that some packets are in flight because some CPU runs receiver and
3841 	 * did hash table lookup before we unhashed socket. They will achieve
3842 	 * receive queue and will be purged by socket destructor.
3843 	 *
3844 	 * Also we still have packets pending on receive queue and probably,
3845 	 * our own packets waiting in device queues. sock_destroy will drain
3846 	 * receive queue, but transmitted packets will delay socket destruction
3847 	 * until the last reference will be released.
3848 	 */
3849 
3850 	sock_orphan(sk);
3851 
3852 	xfrm_sk_free_policy(sk);
3853 
3854 	sock_put(sk);
3855 }
3856 EXPORT_SYMBOL(sk_common_release);
3857 
3858 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3859 {
3860 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3861 
3862 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3863 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3864 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3865 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3866 	mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3867 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3868 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3869 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3870 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3871 }
3872 
3873 #ifdef CONFIG_PROC_FS
3874 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3875 
3876 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3877 {
3878 	int cpu, idx = prot->inuse_idx;
3879 	int res = 0;
3880 
3881 	for_each_possible_cpu(cpu)
3882 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3883 
3884 	return res >= 0 ? res : 0;
3885 }
3886 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3887 
3888 int sock_inuse_get(struct net *net)
3889 {
3890 	int cpu, res = 0;
3891 
3892 	for_each_possible_cpu(cpu)
3893 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3894 
3895 	return res;
3896 }
3897 
3898 EXPORT_SYMBOL_GPL(sock_inuse_get);
3899 
3900 static int __net_init sock_inuse_init_net(struct net *net)
3901 {
3902 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3903 	if (net->core.prot_inuse == NULL)
3904 		return -ENOMEM;
3905 	return 0;
3906 }
3907 
3908 static void __net_exit sock_inuse_exit_net(struct net *net)
3909 {
3910 	free_percpu(net->core.prot_inuse);
3911 }
3912 
3913 static struct pernet_operations net_inuse_ops = {
3914 	.init = sock_inuse_init_net,
3915 	.exit = sock_inuse_exit_net,
3916 };
3917 
3918 static __init int net_inuse_init(void)
3919 {
3920 	if (register_pernet_subsys(&net_inuse_ops))
3921 		panic("Cannot initialize net inuse counters");
3922 
3923 	return 0;
3924 }
3925 
3926 core_initcall(net_inuse_init);
3927 
3928 static int assign_proto_idx(struct proto *prot)
3929 {
3930 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3931 
3932 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3933 		pr_err("PROTO_INUSE_NR exhausted\n");
3934 		return -ENOSPC;
3935 	}
3936 
3937 	set_bit(prot->inuse_idx, proto_inuse_idx);
3938 	return 0;
3939 }
3940 
3941 static void release_proto_idx(struct proto *prot)
3942 {
3943 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3944 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3945 }
3946 #else
3947 static inline int assign_proto_idx(struct proto *prot)
3948 {
3949 	return 0;
3950 }
3951 
3952 static inline void release_proto_idx(struct proto *prot)
3953 {
3954 }
3955 
3956 #endif
3957 
3958 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3959 {
3960 	if (!twsk_prot)
3961 		return;
3962 	kfree(twsk_prot->twsk_slab_name);
3963 	twsk_prot->twsk_slab_name = NULL;
3964 	kmem_cache_destroy(twsk_prot->twsk_slab);
3965 	twsk_prot->twsk_slab = NULL;
3966 }
3967 
3968 static int tw_prot_init(const struct proto *prot)
3969 {
3970 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3971 
3972 	if (!twsk_prot)
3973 		return 0;
3974 
3975 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3976 					      prot->name);
3977 	if (!twsk_prot->twsk_slab_name)
3978 		return -ENOMEM;
3979 
3980 	twsk_prot->twsk_slab =
3981 		kmem_cache_create(twsk_prot->twsk_slab_name,
3982 				  twsk_prot->twsk_obj_size, 0,
3983 				  SLAB_ACCOUNT | prot->slab_flags,
3984 				  NULL);
3985 	if (!twsk_prot->twsk_slab) {
3986 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3987 			prot->name);
3988 		return -ENOMEM;
3989 	}
3990 
3991 	return 0;
3992 }
3993 
3994 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3995 {
3996 	if (!rsk_prot)
3997 		return;
3998 	kfree(rsk_prot->slab_name);
3999 	rsk_prot->slab_name = NULL;
4000 	kmem_cache_destroy(rsk_prot->slab);
4001 	rsk_prot->slab = NULL;
4002 }
4003 
4004 static int req_prot_init(const struct proto *prot)
4005 {
4006 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
4007 
4008 	if (!rsk_prot)
4009 		return 0;
4010 
4011 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
4012 					prot->name);
4013 	if (!rsk_prot->slab_name)
4014 		return -ENOMEM;
4015 
4016 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
4017 					   rsk_prot->obj_size, 0,
4018 					   SLAB_ACCOUNT | prot->slab_flags,
4019 					   NULL);
4020 
4021 	if (!rsk_prot->slab) {
4022 		pr_crit("%s: Can't create request sock SLAB cache!\n",
4023 			prot->name);
4024 		return -ENOMEM;
4025 	}
4026 	return 0;
4027 }
4028 
4029 int proto_register(struct proto *prot, int alloc_slab)
4030 {
4031 	int ret = -ENOBUFS;
4032 
4033 	if (prot->memory_allocated && !prot->sysctl_mem) {
4034 		pr_err("%s: missing sysctl_mem\n", prot->name);
4035 		return -EINVAL;
4036 	}
4037 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
4038 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
4039 		return -EINVAL;
4040 	}
4041 	if (alloc_slab) {
4042 		prot->slab = kmem_cache_create_usercopy(prot->name,
4043 					prot->obj_size, 0,
4044 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
4045 					prot->slab_flags,
4046 					prot->useroffset, prot->usersize,
4047 					NULL);
4048 
4049 		if (prot->slab == NULL) {
4050 			pr_crit("%s: Can't create sock SLAB cache!\n",
4051 				prot->name);
4052 			goto out;
4053 		}
4054 
4055 		if (req_prot_init(prot))
4056 			goto out_free_request_sock_slab;
4057 
4058 		if (tw_prot_init(prot))
4059 			goto out_free_timewait_sock_slab;
4060 	}
4061 
4062 	mutex_lock(&proto_list_mutex);
4063 	ret = assign_proto_idx(prot);
4064 	if (ret) {
4065 		mutex_unlock(&proto_list_mutex);
4066 		goto out_free_timewait_sock_slab;
4067 	}
4068 	list_add(&prot->node, &proto_list);
4069 	mutex_unlock(&proto_list_mutex);
4070 	return ret;
4071 
4072 out_free_timewait_sock_slab:
4073 	if (alloc_slab)
4074 		tw_prot_cleanup(prot->twsk_prot);
4075 out_free_request_sock_slab:
4076 	if (alloc_slab) {
4077 		req_prot_cleanup(prot->rsk_prot);
4078 
4079 		kmem_cache_destroy(prot->slab);
4080 		prot->slab = NULL;
4081 	}
4082 out:
4083 	return ret;
4084 }
4085 EXPORT_SYMBOL(proto_register);
4086 
4087 void proto_unregister(struct proto *prot)
4088 {
4089 	mutex_lock(&proto_list_mutex);
4090 	release_proto_idx(prot);
4091 	list_del(&prot->node);
4092 	mutex_unlock(&proto_list_mutex);
4093 
4094 	kmem_cache_destroy(prot->slab);
4095 	prot->slab = NULL;
4096 
4097 	req_prot_cleanup(prot->rsk_prot);
4098 	tw_prot_cleanup(prot->twsk_prot);
4099 }
4100 EXPORT_SYMBOL(proto_unregister);
4101 
4102 int sock_load_diag_module(int family, int protocol)
4103 {
4104 	if (!protocol) {
4105 		if (!sock_is_registered(family))
4106 			return -ENOENT;
4107 
4108 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4109 				      NETLINK_SOCK_DIAG, family);
4110 	}
4111 
4112 #ifdef CONFIG_INET
4113 	if (family == AF_INET &&
4114 	    protocol != IPPROTO_RAW &&
4115 	    protocol < MAX_INET_PROTOS &&
4116 	    !rcu_access_pointer(inet_protos[protocol]))
4117 		return -ENOENT;
4118 #endif
4119 
4120 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4121 			      NETLINK_SOCK_DIAG, family, protocol);
4122 }
4123 EXPORT_SYMBOL(sock_load_diag_module);
4124 
4125 #ifdef CONFIG_PROC_FS
4126 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4127 	__acquires(proto_list_mutex)
4128 {
4129 	mutex_lock(&proto_list_mutex);
4130 	return seq_list_start_head(&proto_list, *pos);
4131 }
4132 
4133 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4134 {
4135 	return seq_list_next(v, &proto_list, pos);
4136 }
4137 
4138 static void proto_seq_stop(struct seq_file *seq, void *v)
4139 	__releases(proto_list_mutex)
4140 {
4141 	mutex_unlock(&proto_list_mutex);
4142 }
4143 
4144 static char proto_method_implemented(const void *method)
4145 {
4146 	return method == NULL ? 'n' : 'y';
4147 }
4148 static long sock_prot_memory_allocated(struct proto *proto)
4149 {
4150 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4151 }
4152 
4153 static const char *sock_prot_memory_pressure(struct proto *proto)
4154 {
4155 	return proto->memory_pressure != NULL ?
4156 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4157 }
4158 
4159 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4160 {
4161 
4162 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4163 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4164 		   proto->name,
4165 		   proto->obj_size,
4166 		   sock_prot_inuse_get(seq_file_net(seq), proto),
4167 		   sock_prot_memory_allocated(proto),
4168 		   sock_prot_memory_pressure(proto),
4169 		   proto->max_header,
4170 		   proto->slab == NULL ? "no" : "yes",
4171 		   module_name(proto->owner),
4172 		   proto_method_implemented(proto->close),
4173 		   proto_method_implemented(proto->connect),
4174 		   proto_method_implemented(proto->disconnect),
4175 		   proto_method_implemented(proto->accept),
4176 		   proto_method_implemented(proto->ioctl),
4177 		   proto_method_implemented(proto->init),
4178 		   proto_method_implemented(proto->destroy),
4179 		   proto_method_implemented(proto->shutdown),
4180 		   proto_method_implemented(proto->setsockopt),
4181 		   proto_method_implemented(proto->getsockopt),
4182 		   proto_method_implemented(proto->sendmsg),
4183 		   proto_method_implemented(proto->recvmsg),
4184 		   proto_method_implemented(proto->bind),
4185 		   proto_method_implemented(proto->backlog_rcv),
4186 		   proto_method_implemented(proto->hash),
4187 		   proto_method_implemented(proto->unhash),
4188 		   proto_method_implemented(proto->get_port),
4189 		   proto_method_implemented(proto->enter_memory_pressure));
4190 }
4191 
4192 static int proto_seq_show(struct seq_file *seq, void *v)
4193 {
4194 	if (v == &proto_list)
4195 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4196 			   "protocol",
4197 			   "size",
4198 			   "sockets",
4199 			   "memory",
4200 			   "press",
4201 			   "maxhdr",
4202 			   "slab",
4203 			   "module",
4204 			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4205 	else
4206 		proto_seq_printf(seq, list_entry(v, struct proto, node));
4207 	return 0;
4208 }
4209 
4210 static const struct seq_operations proto_seq_ops = {
4211 	.start  = proto_seq_start,
4212 	.next   = proto_seq_next,
4213 	.stop   = proto_seq_stop,
4214 	.show   = proto_seq_show,
4215 };
4216 
4217 static __net_init int proto_init_net(struct net *net)
4218 {
4219 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4220 			sizeof(struct seq_net_private)))
4221 		return -ENOMEM;
4222 
4223 	return 0;
4224 }
4225 
4226 static __net_exit void proto_exit_net(struct net *net)
4227 {
4228 	remove_proc_entry("protocols", net->proc_net);
4229 }
4230 
4231 
4232 static __net_initdata struct pernet_operations proto_net_ops = {
4233 	.init = proto_init_net,
4234 	.exit = proto_exit_net,
4235 };
4236 
4237 static int __init proto_init(void)
4238 {
4239 	return register_pernet_subsys(&proto_net_ops);
4240 }
4241 
4242 subsys_initcall(proto_init);
4243 
4244 #endif /* PROC_FS */
4245 
4246 #ifdef CONFIG_NET_RX_BUSY_POLL
4247 bool sk_busy_loop_end(void *p, unsigned long start_time)
4248 {
4249 	struct sock *sk = p;
4250 
4251 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
4252 		return true;
4253 
4254 	if (sk_is_udp(sk) &&
4255 	    !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
4256 		return true;
4257 
4258 	return sk_busy_loop_timeout(sk, start_time);
4259 }
4260 EXPORT_SYMBOL(sk_busy_loop_end);
4261 #endif /* CONFIG_NET_RX_BUSY_POLL */
4262 
4263 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4264 {
4265 	if (!sk->sk_prot->bind_add)
4266 		return -EOPNOTSUPP;
4267 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4268 }
4269 EXPORT_SYMBOL(sock_bind_add);
4270 
4271 /* Copy 'size' bytes from userspace and return `size` back to userspace */
4272 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4273 		     void __user *arg, void *karg, size_t size)
4274 {
4275 	int ret;
4276 
4277 	if (copy_from_user(karg, arg, size))
4278 		return -EFAULT;
4279 
4280 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4281 	if (ret)
4282 		return ret;
4283 
4284 	if (copy_to_user(arg, karg, size))
4285 		return -EFAULT;
4286 
4287 	return 0;
4288 }
4289 EXPORT_SYMBOL(sock_ioctl_inout);
4290 
4291 /* This is the most common ioctl prep function, where the result (4 bytes) is
4292  * copied back to userspace if the ioctl() returns successfully. No input is
4293  * copied from userspace as input argument.
4294  */
4295 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4296 {
4297 	int ret, karg = 0;
4298 
4299 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4300 	if (ret)
4301 		return ret;
4302 
4303 	return put_user(karg, (int __user *)arg);
4304 }
4305 
4306 /* A wrapper around sock ioctls, which copies the data from userspace
4307  * (depending on the protocol/ioctl), and copies back the result to userspace.
4308  * The main motivation for this function is to pass kernel memory to the
4309  * protocol ioctl callbacks, instead of userspace memory.
4310  */
4311 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4312 {
4313 	int rc = 1;
4314 
4315 	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4316 		rc = ipmr_sk_ioctl(sk, cmd, arg);
4317 	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4318 		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4319 	else if (sk_is_phonet(sk))
4320 		rc = phonet_sk_ioctl(sk, cmd, arg);
4321 
4322 	/* If ioctl was processed, returns its value */
4323 	if (rc <= 0)
4324 		return rc;
4325 
4326 	/* Otherwise call the default handler */
4327 	return sock_ioctl_out(sk, cmd, arg);
4328 }
4329 EXPORT_SYMBOL(sk_ioctl);
4330 
4331 static int __init sock_struct_check(void)
4332 {
4333 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_drops);
4334 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_peek_off);
4335 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_error_queue);
4336 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_receive_queue);
4337 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rx, sk_backlog);
4338 
4339 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst);
4340 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_ifindex);
4341 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rx_dst_cookie);
4342 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvbuf);
4343 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_filter);
4344 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_wq);
4345 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_data_ready);
4346 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvtimeo);
4347 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rx, sk_rcvlowat);
4348 
4349 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_err);
4350 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_socket);
4351 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_rxtx, sk_memcg);
4352 
4353 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_lock);
4354 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_reserved_mem);
4355 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_forward_alloc);
4356 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_rxtx, sk_tsflags);
4357 
4358 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4359 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_omem_alloc);
4360 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_sndbuf);
4361 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_queued);
4362 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_wmem_alloc);
4363 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tsq_flags);
4364 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_send_head);
4365 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_queue);
4366 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_write_pending);
4367 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_dst_pending_confirm);
4368 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_status);
4369 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_frag);
4370 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_timer);
4371 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_pacing_rate);
4372 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_zckey);
4373 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_write_tx, sk_tskey);
4374 
4375 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_max_pacing_rate);
4376 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_sndtimeo);
4377 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_priority);
4378 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_mark);
4379 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_dst_cache);
4380 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_route_caps);
4381 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_type);
4382 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_size);
4383 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_allocation);
4384 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_txhash);
4385 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_gso_max_segs);
4386 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_pacing_shift);
4387 	CACHELINE_ASSERT_GROUP_MEMBER(struct sock, sock_read_tx, sk_use_task_frag);
4388 	return 0;
4389 }
4390 
4391 core_initcall(sock_struct_check);
4392