1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Generic socket support routines. Memory allocators, socket lock/release 7 * handler for protocols to use and generic option handler. 8 * 9 * 10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $ 11 * 12 * Authors: Ross Biro 13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Alan Cox, <A.Cox@swansea.ac.uk> 16 * 17 * Fixes: 18 * Alan Cox : Numerous verify_area() problems 19 * Alan Cox : Connecting on a connecting socket 20 * now returns an error for tcp. 21 * Alan Cox : sock->protocol is set correctly. 22 * and is not sometimes left as 0. 23 * Alan Cox : connect handles icmp errors on a 24 * connect properly. Unfortunately there 25 * is a restart syscall nasty there. I 26 * can't match BSD without hacking the C 27 * library. Ideas urgently sought! 28 * Alan Cox : Disallow bind() to addresses that are 29 * not ours - especially broadcast ones!! 30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 32 * instead they leave that for the DESTROY timer. 33 * Alan Cox : Clean up error flag in accept 34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 35 * was buggy. Put a remove_sock() in the handler 36 * for memory when we hit 0. Also altered the timer 37 * code. The ACK stuff can wait and needs major 38 * TCP layer surgery. 39 * Alan Cox : Fixed TCP ack bug, removed remove sock 40 * and fixed timer/inet_bh race. 41 * Alan Cox : Added zapped flag for TCP 42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 47 * Rick Sladkey : Relaxed UDP rules for matching packets. 48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 49 * Pauline Middelink : identd support 50 * Alan Cox : Fixed connect() taking signals I think. 51 * Alan Cox : SO_LINGER supported 52 * Alan Cox : Error reporting fixes 53 * Anonymous : inet_create tidied up (sk->reuse setting) 54 * Alan Cox : inet sockets don't set sk->type! 55 * Alan Cox : Split socket option code 56 * Alan Cox : Callbacks 57 * Alan Cox : Nagle flag for Charles & Johannes stuff 58 * Alex : Removed restriction on inet fioctl 59 * Alan Cox : Splitting INET from NET core 60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 62 * Alan Cox : Split IP from generic code 63 * Alan Cox : New kfree_skbmem() 64 * Alan Cox : Make SO_DEBUG superuser only. 65 * Alan Cox : Allow anyone to clear SO_DEBUG 66 * (compatibility fix) 67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 68 * Alan Cox : Allocator for a socket is settable. 69 * Alan Cox : SO_ERROR includes soft errors. 70 * Alan Cox : Allow NULL arguments on some SO_ opts 71 * Alan Cox : Generic socket allocation to make hooks 72 * easier (suggested by Craig Metz). 73 * Michael Pall : SO_ERROR returns positive errno again 74 * Steve Whitehouse: Added default destructor to free 75 * protocol private data. 76 * Steve Whitehouse: Added various other default routines 77 * common to several socket families. 78 * Chris Evans : Call suser() check last on F_SETOWN 79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 81 * Andi Kleen : Fix write_space callback 82 * Chris Evans : Security fixes - signedness again 83 * Arnaldo C. Melo : cleanups, use skb_queue_purge 84 * 85 * To Fix: 86 * 87 * 88 * This program is free software; you can redistribute it and/or 89 * modify it under the terms of the GNU General Public License 90 * as published by the Free Software Foundation; either version 91 * 2 of the License, or (at your option) any later version. 92 */ 93 94 #include <linux/capability.h> 95 #include <linux/config.h> 96 #include <linux/errno.h> 97 #include <linux/types.h> 98 #include <linux/socket.h> 99 #include <linux/in.h> 100 #include <linux/kernel.h> 101 #include <linux/module.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <linux/sched.h> 105 #include <linux/timer.h> 106 #include <linux/string.h> 107 #include <linux/sockios.h> 108 #include <linux/net.h> 109 #include <linux/mm.h> 110 #include <linux/slab.h> 111 #include <linux/interrupt.h> 112 #include <linux/poll.h> 113 #include <linux/tcp.h> 114 #include <linux/init.h> 115 116 #include <asm/uaccess.h> 117 #include <asm/system.h> 118 119 #include <linux/netdevice.h> 120 #include <net/protocol.h> 121 #include <linux/skbuff.h> 122 #include <net/request_sock.h> 123 #include <net/sock.h> 124 #include <net/xfrm.h> 125 #include <linux/ipsec.h> 126 127 #include <linux/filter.h> 128 129 #ifdef CONFIG_INET 130 #include <net/tcp.h> 131 #endif 132 133 /* Take into consideration the size of the struct sk_buff overhead in the 134 * determination of these values, since that is non-constant across 135 * platforms. This makes socket queueing behavior and performance 136 * not depend upon such differences. 137 */ 138 #define _SK_MEM_PACKETS 256 139 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256) 140 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 141 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) 142 143 /* Run time adjustable parameters. */ 144 __u32 sysctl_wmem_max = SK_WMEM_MAX; 145 __u32 sysctl_rmem_max = SK_RMEM_MAX; 146 __u32 sysctl_wmem_default = SK_WMEM_MAX; 147 __u32 sysctl_rmem_default = SK_RMEM_MAX; 148 149 /* Maximal space eaten by iovec or ancilliary data plus some space */ 150 int sysctl_optmem_max = sizeof(unsigned long)*(2*UIO_MAXIOV + 512); 151 152 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen) 153 { 154 struct timeval tv; 155 156 if (optlen < sizeof(tv)) 157 return -EINVAL; 158 if (copy_from_user(&tv, optval, sizeof(tv))) 159 return -EFAULT; 160 161 *timeo_p = MAX_SCHEDULE_TIMEOUT; 162 if (tv.tv_sec == 0 && tv.tv_usec == 0) 163 return 0; 164 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1)) 165 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ); 166 return 0; 167 } 168 169 static void sock_warn_obsolete_bsdism(const char *name) 170 { 171 static int warned; 172 static char warncomm[TASK_COMM_LEN]; 173 if (strcmp(warncomm, current->comm) && warned < 5) { 174 strcpy(warncomm, current->comm); 175 printk(KERN_WARNING "process `%s' is using obsolete " 176 "%s SO_BSDCOMPAT\n", warncomm, name); 177 warned++; 178 } 179 } 180 181 static void sock_disable_timestamp(struct sock *sk) 182 { 183 if (sock_flag(sk, SOCK_TIMESTAMP)) { 184 sock_reset_flag(sk, SOCK_TIMESTAMP); 185 net_disable_timestamp(); 186 } 187 } 188 189 190 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 191 { 192 int err = 0; 193 int skb_len; 194 195 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces 196 number of warnings when compiling with -W --ANK 197 */ 198 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 199 (unsigned)sk->sk_rcvbuf) { 200 err = -ENOMEM; 201 goto out; 202 } 203 204 /* It would be deadlock, if sock_queue_rcv_skb is used 205 with socket lock! We assume that users of this 206 function are lock free. 207 */ 208 err = sk_filter(sk, skb, 1); 209 if (err) 210 goto out; 211 212 skb->dev = NULL; 213 skb_set_owner_r(skb, sk); 214 215 /* Cache the SKB length before we tack it onto the receive 216 * queue. Once it is added it no longer belongs to us and 217 * may be freed by other threads of control pulling packets 218 * from the queue. 219 */ 220 skb_len = skb->len; 221 222 skb_queue_tail(&sk->sk_receive_queue, skb); 223 224 if (!sock_flag(sk, SOCK_DEAD)) 225 sk->sk_data_ready(sk, skb_len); 226 out: 227 return err; 228 } 229 EXPORT_SYMBOL(sock_queue_rcv_skb); 230 231 int sk_receive_skb(struct sock *sk, struct sk_buff *skb) 232 { 233 int rc = NET_RX_SUCCESS; 234 235 if (sk_filter(sk, skb, 0)) 236 goto discard_and_relse; 237 238 skb->dev = NULL; 239 240 bh_lock_sock(sk); 241 if (!sock_owned_by_user(sk)) 242 rc = sk->sk_backlog_rcv(sk, skb); 243 else 244 sk_add_backlog(sk, skb); 245 bh_unlock_sock(sk); 246 out: 247 sock_put(sk); 248 return rc; 249 discard_and_relse: 250 kfree_skb(skb); 251 goto out; 252 } 253 EXPORT_SYMBOL(sk_receive_skb); 254 255 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 256 { 257 struct dst_entry *dst = sk->sk_dst_cache; 258 259 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 260 sk->sk_dst_cache = NULL; 261 dst_release(dst); 262 return NULL; 263 } 264 265 return dst; 266 } 267 EXPORT_SYMBOL(__sk_dst_check); 268 269 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 270 { 271 struct dst_entry *dst = sk_dst_get(sk); 272 273 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { 274 sk_dst_reset(sk); 275 dst_release(dst); 276 return NULL; 277 } 278 279 return dst; 280 } 281 EXPORT_SYMBOL(sk_dst_check); 282 283 /* 284 * This is meant for all protocols to use and covers goings on 285 * at the socket level. Everything here is generic. 286 */ 287 288 int sock_setsockopt(struct socket *sock, int level, int optname, 289 char __user *optval, int optlen) 290 { 291 struct sock *sk=sock->sk; 292 struct sk_filter *filter; 293 int val; 294 int valbool; 295 struct linger ling; 296 int ret = 0; 297 298 /* 299 * Options without arguments 300 */ 301 302 #ifdef SO_DONTLINGER /* Compatibility item... */ 303 if (optname == SO_DONTLINGER) { 304 lock_sock(sk); 305 sock_reset_flag(sk, SOCK_LINGER); 306 release_sock(sk); 307 return 0; 308 } 309 #endif 310 311 if(optlen<sizeof(int)) 312 return(-EINVAL); 313 314 if (get_user(val, (int __user *)optval)) 315 return -EFAULT; 316 317 valbool = val?1:0; 318 319 lock_sock(sk); 320 321 switch(optname) 322 { 323 case SO_DEBUG: 324 if(val && !capable(CAP_NET_ADMIN)) 325 { 326 ret = -EACCES; 327 } 328 else if (valbool) 329 sock_set_flag(sk, SOCK_DBG); 330 else 331 sock_reset_flag(sk, SOCK_DBG); 332 break; 333 case SO_REUSEADDR: 334 sk->sk_reuse = valbool; 335 break; 336 case SO_TYPE: 337 case SO_ERROR: 338 ret = -ENOPROTOOPT; 339 break; 340 case SO_DONTROUTE: 341 if (valbool) 342 sock_set_flag(sk, SOCK_LOCALROUTE); 343 else 344 sock_reset_flag(sk, SOCK_LOCALROUTE); 345 break; 346 case SO_BROADCAST: 347 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 348 break; 349 case SO_SNDBUF: 350 /* Don't error on this BSD doesn't and if you think 351 about it this is right. Otherwise apps have to 352 play 'guess the biggest size' games. RCVBUF/SNDBUF 353 are treated in BSD as hints */ 354 355 if (val > sysctl_wmem_max) 356 val = sysctl_wmem_max; 357 set_sndbuf: 358 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 359 if ((val * 2) < SOCK_MIN_SNDBUF) 360 sk->sk_sndbuf = SOCK_MIN_SNDBUF; 361 else 362 sk->sk_sndbuf = val * 2; 363 364 /* 365 * Wake up sending tasks if we 366 * upped the value. 367 */ 368 sk->sk_write_space(sk); 369 break; 370 371 case SO_SNDBUFFORCE: 372 if (!capable(CAP_NET_ADMIN)) { 373 ret = -EPERM; 374 break; 375 } 376 goto set_sndbuf; 377 378 case SO_RCVBUF: 379 /* Don't error on this BSD doesn't and if you think 380 about it this is right. Otherwise apps have to 381 play 'guess the biggest size' games. RCVBUF/SNDBUF 382 are treated in BSD as hints */ 383 384 if (val > sysctl_rmem_max) 385 val = sysctl_rmem_max; 386 set_rcvbuf: 387 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 388 /* 389 * We double it on the way in to account for 390 * "struct sk_buff" etc. overhead. Applications 391 * assume that the SO_RCVBUF setting they make will 392 * allow that much actual data to be received on that 393 * socket. 394 * 395 * Applications are unaware that "struct sk_buff" and 396 * other overheads allocate from the receive buffer 397 * during socket buffer allocation. 398 * 399 * And after considering the possible alternatives, 400 * returning the value we actually used in getsockopt 401 * is the most desirable behavior. 402 */ 403 if ((val * 2) < SOCK_MIN_RCVBUF) 404 sk->sk_rcvbuf = SOCK_MIN_RCVBUF; 405 else 406 sk->sk_rcvbuf = val * 2; 407 break; 408 409 case SO_RCVBUFFORCE: 410 if (!capable(CAP_NET_ADMIN)) { 411 ret = -EPERM; 412 break; 413 } 414 goto set_rcvbuf; 415 416 case SO_KEEPALIVE: 417 #ifdef CONFIG_INET 418 if (sk->sk_protocol == IPPROTO_TCP) 419 tcp_set_keepalive(sk, valbool); 420 #endif 421 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 422 break; 423 424 case SO_OOBINLINE: 425 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 426 break; 427 428 case SO_NO_CHECK: 429 sk->sk_no_check = valbool; 430 break; 431 432 case SO_PRIORITY: 433 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 434 sk->sk_priority = val; 435 else 436 ret = -EPERM; 437 break; 438 439 case SO_LINGER: 440 if(optlen<sizeof(ling)) { 441 ret = -EINVAL; /* 1003.1g */ 442 break; 443 } 444 if (copy_from_user(&ling,optval,sizeof(ling))) { 445 ret = -EFAULT; 446 break; 447 } 448 if (!ling.l_onoff) 449 sock_reset_flag(sk, SOCK_LINGER); 450 else { 451 #if (BITS_PER_LONG == 32) 452 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) 453 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; 454 else 455 #endif 456 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; 457 sock_set_flag(sk, SOCK_LINGER); 458 } 459 break; 460 461 case SO_BSDCOMPAT: 462 sock_warn_obsolete_bsdism("setsockopt"); 463 break; 464 465 case SO_PASSCRED: 466 if (valbool) 467 set_bit(SOCK_PASSCRED, &sock->flags); 468 else 469 clear_bit(SOCK_PASSCRED, &sock->flags); 470 break; 471 472 case SO_TIMESTAMP: 473 if (valbool) { 474 sock_set_flag(sk, SOCK_RCVTSTAMP); 475 sock_enable_timestamp(sk); 476 } else 477 sock_reset_flag(sk, SOCK_RCVTSTAMP); 478 break; 479 480 case SO_RCVLOWAT: 481 if (val < 0) 482 val = INT_MAX; 483 sk->sk_rcvlowat = val ? : 1; 484 break; 485 486 case SO_RCVTIMEO: 487 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); 488 break; 489 490 case SO_SNDTIMEO: 491 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); 492 break; 493 494 #ifdef CONFIG_NETDEVICES 495 case SO_BINDTODEVICE: 496 { 497 char devname[IFNAMSIZ]; 498 499 /* Sorry... */ 500 if (!capable(CAP_NET_RAW)) { 501 ret = -EPERM; 502 break; 503 } 504 505 /* Bind this socket to a particular device like "eth0", 506 * as specified in the passed interface name. If the 507 * name is "" or the option length is zero the socket 508 * is not bound. 509 */ 510 511 if (!valbool) { 512 sk->sk_bound_dev_if = 0; 513 } else { 514 if (optlen > IFNAMSIZ - 1) 515 optlen = IFNAMSIZ - 1; 516 memset(devname, 0, sizeof(devname)); 517 if (copy_from_user(devname, optval, optlen)) { 518 ret = -EFAULT; 519 break; 520 } 521 522 /* Remove any cached route for this socket. */ 523 sk_dst_reset(sk); 524 525 if (devname[0] == '\0') { 526 sk->sk_bound_dev_if = 0; 527 } else { 528 struct net_device *dev = dev_get_by_name(devname); 529 if (!dev) { 530 ret = -ENODEV; 531 break; 532 } 533 sk->sk_bound_dev_if = dev->ifindex; 534 dev_put(dev); 535 } 536 } 537 break; 538 } 539 #endif 540 541 542 case SO_ATTACH_FILTER: 543 ret = -EINVAL; 544 if (optlen == sizeof(struct sock_fprog)) { 545 struct sock_fprog fprog; 546 547 ret = -EFAULT; 548 if (copy_from_user(&fprog, optval, sizeof(fprog))) 549 break; 550 551 ret = sk_attach_filter(&fprog, sk); 552 } 553 break; 554 555 case SO_DETACH_FILTER: 556 spin_lock_bh(&sk->sk_lock.slock); 557 filter = sk->sk_filter; 558 if (filter) { 559 sk->sk_filter = NULL; 560 spin_unlock_bh(&sk->sk_lock.slock); 561 sk_filter_release(sk, filter); 562 break; 563 } 564 spin_unlock_bh(&sk->sk_lock.slock); 565 ret = -ENONET; 566 break; 567 568 /* We implement the SO_SNDLOWAT etc to 569 not be settable (1003.1g 5.3) */ 570 default: 571 ret = -ENOPROTOOPT; 572 break; 573 } 574 release_sock(sk); 575 return ret; 576 } 577 578 579 int sock_getsockopt(struct socket *sock, int level, int optname, 580 char __user *optval, int __user *optlen) 581 { 582 struct sock *sk = sock->sk; 583 584 union 585 { 586 int val; 587 struct linger ling; 588 struct timeval tm; 589 } v; 590 591 unsigned int lv = sizeof(int); 592 int len; 593 594 if(get_user(len,optlen)) 595 return -EFAULT; 596 if(len < 0) 597 return -EINVAL; 598 599 switch(optname) 600 { 601 case SO_DEBUG: 602 v.val = sock_flag(sk, SOCK_DBG); 603 break; 604 605 case SO_DONTROUTE: 606 v.val = sock_flag(sk, SOCK_LOCALROUTE); 607 break; 608 609 case SO_BROADCAST: 610 v.val = !!sock_flag(sk, SOCK_BROADCAST); 611 break; 612 613 case SO_SNDBUF: 614 v.val = sk->sk_sndbuf; 615 break; 616 617 case SO_RCVBUF: 618 v.val = sk->sk_rcvbuf; 619 break; 620 621 case SO_REUSEADDR: 622 v.val = sk->sk_reuse; 623 break; 624 625 case SO_KEEPALIVE: 626 v.val = !!sock_flag(sk, SOCK_KEEPOPEN); 627 break; 628 629 case SO_TYPE: 630 v.val = sk->sk_type; 631 break; 632 633 case SO_ERROR: 634 v.val = -sock_error(sk); 635 if(v.val==0) 636 v.val = xchg(&sk->sk_err_soft, 0); 637 break; 638 639 case SO_OOBINLINE: 640 v.val = !!sock_flag(sk, SOCK_URGINLINE); 641 break; 642 643 case SO_NO_CHECK: 644 v.val = sk->sk_no_check; 645 break; 646 647 case SO_PRIORITY: 648 v.val = sk->sk_priority; 649 break; 650 651 case SO_LINGER: 652 lv = sizeof(v.ling); 653 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER); 654 v.ling.l_linger = sk->sk_lingertime / HZ; 655 break; 656 657 case SO_BSDCOMPAT: 658 sock_warn_obsolete_bsdism("getsockopt"); 659 break; 660 661 case SO_TIMESTAMP: 662 v.val = sock_flag(sk, SOCK_RCVTSTAMP); 663 break; 664 665 case SO_RCVTIMEO: 666 lv=sizeof(struct timeval); 667 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) { 668 v.tm.tv_sec = 0; 669 v.tm.tv_usec = 0; 670 } else { 671 v.tm.tv_sec = sk->sk_rcvtimeo / HZ; 672 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ; 673 } 674 break; 675 676 case SO_SNDTIMEO: 677 lv=sizeof(struct timeval); 678 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) { 679 v.tm.tv_sec = 0; 680 v.tm.tv_usec = 0; 681 } else { 682 v.tm.tv_sec = sk->sk_sndtimeo / HZ; 683 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ; 684 } 685 break; 686 687 case SO_RCVLOWAT: 688 v.val = sk->sk_rcvlowat; 689 break; 690 691 case SO_SNDLOWAT: 692 v.val=1; 693 break; 694 695 case SO_PASSCRED: 696 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0; 697 break; 698 699 case SO_PEERCRED: 700 if (len > sizeof(sk->sk_peercred)) 701 len = sizeof(sk->sk_peercred); 702 if (copy_to_user(optval, &sk->sk_peercred, len)) 703 return -EFAULT; 704 goto lenout; 705 706 case SO_PEERNAME: 707 { 708 char address[128]; 709 710 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2)) 711 return -ENOTCONN; 712 if (lv < len) 713 return -EINVAL; 714 if (copy_to_user(optval, address, len)) 715 return -EFAULT; 716 goto lenout; 717 } 718 719 /* Dubious BSD thing... Probably nobody even uses it, but 720 * the UNIX standard wants it for whatever reason... -DaveM 721 */ 722 case SO_ACCEPTCONN: 723 v.val = sk->sk_state == TCP_LISTEN; 724 break; 725 726 case SO_PEERSEC: 727 return security_socket_getpeersec_stream(sock, optval, optlen, len); 728 729 default: 730 return(-ENOPROTOOPT); 731 } 732 if (len > lv) 733 len = lv; 734 if (copy_to_user(optval, &v, len)) 735 return -EFAULT; 736 lenout: 737 if (put_user(len, optlen)) 738 return -EFAULT; 739 return 0; 740 } 741 742 /** 743 * sk_alloc - All socket objects are allocated here 744 * @family: protocol family 745 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 746 * @prot: struct proto associated with this new sock instance 747 * @zero_it: if we should zero the newly allocated sock 748 */ 749 struct sock *sk_alloc(int family, gfp_t priority, 750 struct proto *prot, int zero_it) 751 { 752 struct sock *sk = NULL; 753 kmem_cache_t *slab = prot->slab; 754 755 if (slab != NULL) 756 sk = kmem_cache_alloc(slab, priority); 757 else 758 sk = kmalloc(prot->obj_size, priority); 759 760 if (sk) { 761 if (zero_it) { 762 memset(sk, 0, prot->obj_size); 763 sk->sk_family = family; 764 /* 765 * See comment in struct sock definition to understand 766 * why we need sk_prot_creator -acme 767 */ 768 sk->sk_prot = sk->sk_prot_creator = prot; 769 sock_lock_init(sk); 770 } 771 772 if (security_sk_alloc(sk, family, priority)) 773 goto out_free; 774 775 if (!try_module_get(prot->owner)) 776 goto out_free; 777 } 778 return sk; 779 780 out_free: 781 if (slab != NULL) 782 kmem_cache_free(slab, sk); 783 else 784 kfree(sk); 785 return NULL; 786 } 787 788 void sk_free(struct sock *sk) 789 { 790 struct sk_filter *filter; 791 struct module *owner = sk->sk_prot_creator->owner; 792 793 if (sk->sk_destruct) 794 sk->sk_destruct(sk); 795 796 filter = sk->sk_filter; 797 if (filter) { 798 sk_filter_release(sk, filter); 799 sk->sk_filter = NULL; 800 } 801 802 sock_disable_timestamp(sk); 803 804 if (atomic_read(&sk->sk_omem_alloc)) 805 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n", 806 __FUNCTION__, atomic_read(&sk->sk_omem_alloc)); 807 808 security_sk_free(sk); 809 if (sk->sk_prot_creator->slab != NULL) 810 kmem_cache_free(sk->sk_prot_creator->slab, sk); 811 else 812 kfree(sk); 813 module_put(owner); 814 } 815 816 struct sock *sk_clone(const struct sock *sk, const gfp_t priority) 817 { 818 struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0); 819 820 if (newsk != NULL) { 821 struct sk_filter *filter; 822 823 memcpy(newsk, sk, sk->sk_prot->obj_size); 824 825 /* SANITY */ 826 sk_node_init(&newsk->sk_node); 827 sock_lock_init(newsk); 828 bh_lock_sock(newsk); 829 830 atomic_set(&newsk->sk_rmem_alloc, 0); 831 atomic_set(&newsk->sk_wmem_alloc, 0); 832 atomic_set(&newsk->sk_omem_alloc, 0); 833 skb_queue_head_init(&newsk->sk_receive_queue); 834 skb_queue_head_init(&newsk->sk_write_queue); 835 #ifdef CONFIG_NET_DMA 836 skb_queue_head_init(&newsk->sk_async_wait_queue); 837 #endif 838 839 rwlock_init(&newsk->sk_dst_lock); 840 rwlock_init(&newsk->sk_callback_lock); 841 842 newsk->sk_dst_cache = NULL; 843 newsk->sk_wmem_queued = 0; 844 newsk->sk_forward_alloc = 0; 845 newsk->sk_send_head = NULL; 846 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 847 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 848 849 sock_reset_flag(newsk, SOCK_DONE); 850 skb_queue_head_init(&newsk->sk_error_queue); 851 852 filter = newsk->sk_filter; 853 if (filter != NULL) 854 sk_filter_charge(newsk, filter); 855 856 if (unlikely(xfrm_sk_clone_policy(newsk))) { 857 /* It is still raw copy of parent, so invalidate 858 * destructor and make plain sk_free() */ 859 newsk->sk_destruct = NULL; 860 sk_free(newsk); 861 newsk = NULL; 862 goto out; 863 } 864 865 newsk->sk_err = 0; 866 newsk->sk_priority = 0; 867 atomic_set(&newsk->sk_refcnt, 2); 868 869 /* 870 * Increment the counter in the same struct proto as the master 871 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that 872 * is the same as sk->sk_prot->socks, as this field was copied 873 * with memcpy). 874 * 875 * This _changes_ the previous behaviour, where 876 * tcp_create_openreq_child always was incrementing the 877 * equivalent to tcp_prot->socks (inet_sock_nr), so this have 878 * to be taken into account in all callers. -acme 879 */ 880 sk_refcnt_debug_inc(newsk); 881 newsk->sk_socket = NULL; 882 newsk->sk_sleep = NULL; 883 884 if (newsk->sk_prot->sockets_allocated) 885 atomic_inc(newsk->sk_prot->sockets_allocated); 886 } 887 out: 888 return newsk; 889 } 890 891 EXPORT_SYMBOL_GPL(sk_clone); 892 893 void __init sk_init(void) 894 { 895 if (num_physpages <= 4096) { 896 sysctl_wmem_max = 32767; 897 sysctl_rmem_max = 32767; 898 sysctl_wmem_default = 32767; 899 sysctl_rmem_default = 32767; 900 } else if (num_physpages >= 131072) { 901 sysctl_wmem_max = 131071; 902 sysctl_rmem_max = 131071; 903 } 904 } 905 906 /* 907 * Simple resource managers for sockets. 908 */ 909 910 911 /* 912 * Write buffer destructor automatically called from kfree_skb. 913 */ 914 void sock_wfree(struct sk_buff *skb) 915 { 916 struct sock *sk = skb->sk; 917 918 /* In case it might be waiting for more memory. */ 919 atomic_sub(skb->truesize, &sk->sk_wmem_alloc); 920 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) 921 sk->sk_write_space(sk); 922 sock_put(sk); 923 } 924 925 /* 926 * Read buffer destructor automatically called from kfree_skb. 927 */ 928 void sock_rfree(struct sk_buff *skb) 929 { 930 struct sock *sk = skb->sk; 931 932 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 933 } 934 935 936 int sock_i_uid(struct sock *sk) 937 { 938 int uid; 939 940 read_lock(&sk->sk_callback_lock); 941 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0; 942 read_unlock(&sk->sk_callback_lock); 943 return uid; 944 } 945 946 unsigned long sock_i_ino(struct sock *sk) 947 { 948 unsigned long ino; 949 950 read_lock(&sk->sk_callback_lock); 951 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 952 read_unlock(&sk->sk_callback_lock); 953 return ino; 954 } 955 956 /* 957 * Allocate a skb from the socket's send buffer. 958 */ 959 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 960 gfp_t priority) 961 { 962 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 963 struct sk_buff * skb = alloc_skb(size, priority); 964 if (skb) { 965 skb_set_owner_w(skb, sk); 966 return skb; 967 } 968 } 969 return NULL; 970 } 971 972 /* 973 * Allocate a skb from the socket's receive buffer. 974 */ 975 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force, 976 gfp_t priority) 977 { 978 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 979 struct sk_buff *skb = alloc_skb(size, priority); 980 if (skb) { 981 skb_set_owner_r(skb, sk); 982 return skb; 983 } 984 } 985 return NULL; 986 } 987 988 /* 989 * Allocate a memory block from the socket's option memory buffer. 990 */ 991 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 992 { 993 if ((unsigned)size <= sysctl_optmem_max && 994 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { 995 void *mem; 996 /* First do the add, to avoid the race if kmalloc 997 * might sleep. 998 */ 999 atomic_add(size, &sk->sk_omem_alloc); 1000 mem = kmalloc(size, priority); 1001 if (mem) 1002 return mem; 1003 atomic_sub(size, &sk->sk_omem_alloc); 1004 } 1005 return NULL; 1006 } 1007 1008 /* 1009 * Free an option memory block. 1010 */ 1011 void sock_kfree_s(struct sock *sk, void *mem, int size) 1012 { 1013 kfree(mem); 1014 atomic_sub(size, &sk->sk_omem_alloc); 1015 } 1016 1017 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 1018 I think, these locks should be removed for datagram sockets. 1019 */ 1020 static long sock_wait_for_wmem(struct sock * sk, long timeo) 1021 { 1022 DEFINE_WAIT(wait); 1023 1024 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1025 for (;;) { 1026 if (!timeo) 1027 break; 1028 if (signal_pending(current)) 1029 break; 1030 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1031 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1032 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) 1033 break; 1034 if (sk->sk_shutdown & SEND_SHUTDOWN) 1035 break; 1036 if (sk->sk_err) 1037 break; 1038 timeo = schedule_timeout(timeo); 1039 } 1040 finish_wait(sk->sk_sleep, &wait); 1041 return timeo; 1042 } 1043 1044 1045 /* 1046 * Generic send/receive buffer handlers 1047 */ 1048 1049 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 1050 unsigned long header_len, 1051 unsigned long data_len, 1052 int noblock, int *errcode) 1053 { 1054 struct sk_buff *skb; 1055 gfp_t gfp_mask; 1056 long timeo; 1057 int err; 1058 1059 gfp_mask = sk->sk_allocation; 1060 if (gfp_mask & __GFP_WAIT) 1061 gfp_mask |= __GFP_REPEAT; 1062 1063 timeo = sock_sndtimeo(sk, noblock); 1064 while (1) { 1065 err = sock_error(sk); 1066 if (err != 0) 1067 goto failure; 1068 1069 err = -EPIPE; 1070 if (sk->sk_shutdown & SEND_SHUTDOWN) 1071 goto failure; 1072 1073 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) { 1074 skb = alloc_skb(header_len, sk->sk_allocation); 1075 if (skb) { 1076 int npages; 1077 int i; 1078 1079 /* No pages, we're done... */ 1080 if (!data_len) 1081 break; 1082 1083 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 1084 skb->truesize += data_len; 1085 skb_shinfo(skb)->nr_frags = npages; 1086 for (i = 0; i < npages; i++) { 1087 struct page *page; 1088 skb_frag_t *frag; 1089 1090 page = alloc_pages(sk->sk_allocation, 0); 1091 if (!page) { 1092 err = -ENOBUFS; 1093 skb_shinfo(skb)->nr_frags = i; 1094 kfree_skb(skb); 1095 goto failure; 1096 } 1097 1098 frag = &skb_shinfo(skb)->frags[i]; 1099 frag->page = page; 1100 frag->page_offset = 0; 1101 frag->size = (data_len >= PAGE_SIZE ? 1102 PAGE_SIZE : 1103 data_len); 1104 data_len -= PAGE_SIZE; 1105 } 1106 1107 /* Full success... */ 1108 break; 1109 } 1110 err = -ENOBUFS; 1111 goto failure; 1112 } 1113 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1114 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1115 err = -EAGAIN; 1116 if (!timeo) 1117 goto failure; 1118 if (signal_pending(current)) 1119 goto interrupted; 1120 timeo = sock_wait_for_wmem(sk, timeo); 1121 } 1122 1123 skb_set_owner_w(skb, sk); 1124 return skb; 1125 1126 interrupted: 1127 err = sock_intr_errno(timeo); 1128 failure: 1129 *errcode = err; 1130 return NULL; 1131 } 1132 1133 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1134 int noblock, int *errcode) 1135 { 1136 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode); 1137 } 1138 1139 static void __lock_sock(struct sock *sk) 1140 { 1141 DEFINE_WAIT(wait); 1142 1143 for(;;) { 1144 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 1145 TASK_UNINTERRUPTIBLE); 1146 spin_unlock_bh(&sk->sk_lock.slock); 1147 schedule(); 1148 spin_lock_bh(&sk->sk_lock.slock); 1149 if(!sock_owned_by_user(sk)) 1150 break; 1151 } 1152 finish_wait(&sk->sk_lock.wq, &wait); 1153 } 1154 1155 static void __release_sock(struct sock *sk) 1156 { 1157 struct sk_buff *skb = sk->sk_backlog.head; 1158 1159 do { 1160 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 1161 bh_unlock_sock(sk); 1162 1163 do { 1164 struct sk_buff *next = skb->next; 1165 1166 skb->next = NULL; 1167 sk->sk_backlog_rcv(sk, skb); 1168 1169 /* 1170 * We are in process context here with softirqs 1171 * disabled, use cond_resched_softirq() to preempt. 1172 * This is safe to do because we've taken the backlog 1173 * queue private: 1174 */ 1175 cond_resched_softirq(); 1176 1177 skb = next; 1178 } while (skb != NULL); 1179 1180 bh_lock_sock(sk); 1181 } while((skb = sk->sk_backlog.head) != NULL); 1182 } 1183 1184 /** 1185 * sk_wait_data - wait for data to arrive at sk_receive_queue 1186 * @sk: sock to wait on 1187 * @timeo: for how long 1188 * 1189 * Now socket state including sk->sk_err is changed only under lock, 1190 * hence we may omit checks after joining wait queue. 1191 * We check receive queue before schedule() only as optimization; 1192 * it is very likely that release_sock() added new data. 1193 */ 1194 int sk_wait_data(struct sock *sk, long *timeo) 1195 { 1196 int rc; 1197 DEFINE_WAIT(wait); 1198 1199 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 1200 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1201 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue)); 1202 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); 1203 finish_wait(sk->sk_sleep, &wait); 1204 return rc; 1205 } 1206 1207 EXPORT_SYMBOL(sk_wait_data); 1208 1209 /* 1210 * Set of default routines for initialising struct proto_ops when 1211 * the protocol does not support a particular function. In certain 1212 * cases where it makes no sense for a protocol to have a "do nothing" 1213 * function, some default processing is provided. 1214 */ 1215 1216 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 1217 { 1218 return -EOPNOTSUPP; 1219 } 1220 1221 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 1222 int len, int flags) 1223 { 1224 return -EOPNOTSUPP; 1225 } 1226 1227 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 1228 { 1229 return -EOPNOTSUPP; 1230 } 1231 1232 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags) 1233 { 1234 return -EOPNOTSUPP; 1235 } 1236 1237 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 1238 int *len, int peer) 1239 { 1240 return -EOPNOTSUPP; 1241 } 1242 1243 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt) 1244 { 1245 return 0; 1246 } 1247 1248 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1249 { 1250 return -EOPNOTSUPP; 1251 } 1252 1253 int sock_no_listen(struct socket *sock, int backlog) 1254 { 1255 return -EOPNOTSUPP; 1256 } 1257 1258 int sock_no_shutdown(struct socket *sock, int how) 1259 { 1260 return -EOPNOTSUPP; 1261 } 1262 1263 int sock_no_setsockopt(struct socket *sock, int level, int optname, 1264 char __user *optval, int optlen) 1265 { 1266 return -EOPNOTSUPP; 1267 } 1268 1269 int sock_no_getsockopt(struct socket *sock, int level, int optname, 1270 char __user *optval, int __user *optlen) 1271 { 1272 return -EOPNOTSUPP; 1273 } 1274 1275 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1276 size_t len) 1277 { 1278 return -EOPNOTSUPP; 1279 } 1280 1281 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m, 1282 size_t len, int flags) 1283 { 1284 return -EOPNOTSUPP; 1285 } 1286 1287 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 1288 { 1289 /* Mirror missing mmap method error code */ 1290 return -ENODEV; 1291 } 1292 1293 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) 1294 { 1295 ssize_t res; 1296 struct msghdr msg = {.msg_flags = flags}; 1297 struct kvec iov; 1298 char *kaddr = kmap(page); 1299 iov.iov_base = kaddr + offset; 1300 iov.iov_len = size; 1301 res = kernel_sendmsg(sock, &msg, &iov, 1, size); 1302 kunmap(page); 1303 return res; 1304 } 1305 1306 /* 1307 * Default Socket Callbacks 1308 */ 1309 1310 static void sock_def_wakeup(struct sock *sk) 1311 { 1312 read_lock(&sk->sk_callback_lock); 1313 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1314 wake_up_interruptible_all(sk->sk_sleep); 1315 read_unlock(&sk->sk_callback_lock); 1316 } 1317 1318 static void sock_def_error_report(struct sock *sk) 1319 { 1320 read_lock(&sk->sk_callback_lock); 1321 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1322 wake_up_interruptible(sk->sk_sleep); 1323 sk_wake_async(sk,0,POLL_ERR); 1324 read_unlock(&sk->sk_callback_lock); 1325 } 1326 1327 static void sock_def_readable(struct sock *sk, int len) 1328 { 1329 read_lock(&sk->sk_callback_lock); 1330 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1331 wake_up_interruptible(sk->sk_sleep); 1332 sk_wake_async(sk,1,POLL_IN); 1333 read_unlock(&sk->sk_callback_lock); 1334 } 1335 1336 static void sock_def_write_space(struct sock *sk) 1337 { 1338 read_lock(&sk->sk_callback_lock); 1339 1340 /* Do not wake up a writer until he can make "significant" 1341 * progress. --DaveM 1342 */ 1343 if((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) { 1344 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1345 wake_up_interruptible(sk->sk_sleep); 1346 1347 /* Should agree with poll, otherwise some programs break */ 1348 if (sock_writeable(sk)) 1349 sk_wake_async(sk, 2, POLL_OUT); 1350 } 1351 1352 read_unlock(&sk->sk_callback_lock); 1353 } 1354 1355 static void sock_def_destruct(struct sock *sk) 1356 { 1357 kfree(sk->sk_protinfo); 1358 } 1359 1360 void sk_send_sigurg(struct sock *sk) 1361 { 1362 if (sk->sk_socket && sk->sk_socket->file) 1363 if (send_sigurg(&sk->sk_socket->file->f_owner)) 1364 sk_wake_async(sk, 3, POLL_PRI); 1365 } 1366 1367 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1368 unsigned long expires) 1369 { 1370 if (!mod_timer(timer, expires)) 1371 sock_hold(sk); 1372 } 1373 1374 EXPORT_SYMBOL(sk_reset_timer); 1375 1376 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 1377 { 1378 if (timer_pending(timer) && del_timer(timer)) 1379 __sock_put(sk); 1380 } 1381 1382 EXPORT_SYMBOL(sk_stop_timer); 1383 1384 void sock_init_data(struct socket *sock, struct sock *sk) 1385 { 1386 skb_queue_head_init(&sk->sk_receive_queue); 1387 skb_queue_head_init(&sk->sk_write_queue); 1388 skb_queue_head_init(&sk->sk_error_queue); 1389 #ifdef CONFIG_NET_DMA 1390 skb_queue_head_init(&sk->sk_async_wait_queue); 1391 #endif 1392 1393 sk->sk_send_head = NULL; 1394 1395 init_timer(&sk->sk_timer); 1396 1397 sk->sk_allocation = GFP_KERNEL; 1398 sk->sk_rcvbuf = sysctl_rmem_default; 1399 sk->sk_sndbuf = sysctl_wmem_default; 1400 sk->sk_state = TCP_CLOSE; 1401 sk->sk_socket = sock; 1402 1403 sock_set_flag(sk, SOCK_ZAPPED); 1404 1405 if(sock) 1406 { 1407 sk->sk_type = sock->type; 1408 sk->sk_sleep = &sock->wait; 1409 sock->sk = sk; 1410 } else 1411 sk->sk_sleep = NULL; 1412 1413 rwlock_init(&sk->sk_dst_lock); 1414 rwlock_init(&sk->sk_callback_lock); 1415 1416 sk->sk_state_change = sock_def_wakeup; 1417 sk->sk_data_ready = sock_def_readable; 1418 sk->sk_write_space = sock_def_write_space; 1419 sk->sk_error_report = sock_def_error_report; 1420 sk->sk_destruct = sock_def_destruct; 1421 1422 sk->sk_sndmsg_page = NULL; 1423 sk->sk_sndmsg_off = 0; 1424 1425 sk->sk_peercred.pid = 0; 1426 sk->sk_peercred.uid = -1; 1427 sk->sk_peercred.gid = -1; 1428 sk->sk_write_pending = 0; 1429 sk->sk_rcvlowat = 1; 1430 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 1431 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 1432 1433 sk->sk_stamp.tv_sec = -1L; 1434 sk->sk_stamp.tv_usec = -1L; 1435 1436 atomic_set(&sk->sk_refcnt, 1); 1437 } 1438 1439 void fastcall lock_sock(struct sock *sk) 1440 { 1441 might_sleep(); 1442 spin_lock_bh(&(sk->sk_lock.slock)); 1443 if (sk->sk_lock.owner) 1444 __lock_sock(sk); 1445 sk->sk_lock.owner = (void *)1; 1446 spin_unlock_bh(&(sk->sk_lock.slock)); 1447 } 1448 1449 EXPORT_SYMBOL(lock_sock); 1450 1451 void fastcall release_sock(struct sock *sk) 1452 { 1453 spin_lock_bh(&(sk->sk_lock.slock)); 1454 if (sk->sk_backlog.tail) 1455 __release_sock(sk); 1456 sk->sk_lock.owner = NULL; 1457 if (waitqueue_active(&(sk->sk_lock.wq))) 1458 wake_up(&(sk->sk_lock.wq)); 1459 spin_unlock_bh(&(sk->sk_lock.slock)); 1460 } 1461 EXPORT_SYMBOL(release_sock); 1462 1463 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp) 1464 { 1465 if (!sock_flag(sk, SOCK_TIMESTAMP)) 1466 sock_enable_timestamp(sk); 1467 if (sk->sk_stamp.tv_sec == -1) 1468 return -ENOENT; 1469 if (sk->sk_stamp.tv_sec == 0) 1470 do_gettimeofday(&sk->sk_stamp); 1471 return copy_to_user(userstamp, &sk->sk_stamp, sizeof(struct timeval)) ? 1472 -EFAULT : 0; 1473 } 1474 EXPORT_SYMBOL(sock_get_timestamp); 1475 1476 void sock_enable_timestamp(struct sock *sk) 1477 { 1478 if (!sock_flag(sk, SOCK_TIMESTAMP)) { 1479 sock_set_flag(sk, SOCK_TIMESTAMP); 1480 net_enable_timestamp(); 1481 } 1482 } 1483 EXPORT_SYMBOL(sock_enable_timestamp); 1484 1485 /* 1486 * Get a socket option on an socket. 1487 * 1488 * FIX: POSIX 1003.1g is very ambiguous here. It states that 1489 * asynchronous errors should be reported by getsockopt. We assume 1490 * this means if you specify SO_ERROR (otherwise whats the point of it). 1491 */ 1492 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1493 char __user *optval, int __user *optlen) 1494 { 1495 struct sock *sk = sock->sk; 1496 1497 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 1498 } 1499 1500 EXPORT_SYMBOL(sock_common_getsockopt); 1501 1502 #ifdef CONFIG_COMPAT 1503 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, 1504 char __user *optval, int __user *optlen) 1505 { 1506 struct sock *sk = sock->sk; 1507 1508 if (sk->sk_prot->compat_setsockopt != NULL) 1509 return sk->sk_prot->compat_getsockopt(sk, level, optname, 1510 optval, optlen); 1511 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); 1512 } 1513 EXPORT_SYMBOL(compat_sock_common_getsockopt); 1514 #endif 1515 1516 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1517 struct msghdr *msg, size_t size, int flags) 1518 { 1519 struct sock *sk = sock->sk; 1520 int addr_len = 0; 1521 int err; 1522 1523 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT, 1524 flags & ~MSG_DONTWAIT, &addr_len); 1525 if (err >= 0) 1526 msg->msg_namelen = addr_len; 1527 return err; 1528 } 1529 1530 EXPORT_SYMBOL(sock_common_recvmsg); 1531 1532 /* 1533 * Set socket options on an inet socket. 1534 */ 1535 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1536 char __user *optval, int optlen) 1537 { 1538 struct sock *sk = sock->sk; 1539 1540 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 1541 } 1542 1543 EXPORT_SYMBOL(sock_common_setsockopt); 1544 1545 #ifdef CONFIG_COMPAT 1546 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, 1547 char __user *optval, int optlen) 1548 { 1549 struct sock *sk = sock->sk; 1550 1551 if (sk->sk_prot->compat_setsockopt != NULL) 1552 return sk->sk_prot->compat_setsockopt(sk, level, optname, 1553 optval, optlen); 1554 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); 1555 } 1556 EXPORT_SYMBOL(compat_sock_common_setsockopt); 1557 #endif 1558 1559 void sk_common_release(struct sock *sk) 1560 { 1561 if (sk->sk_prot->destroy) 1562 sk->sk_prot->destroy(sk); 1563 1564 /* 1565 * Observation: when sock_common_release is called, processes have 1566 * no access to socket. But net still has. 1567 * Step one, detach it from networking: 1568 * 1569 * A. Remove from hash tables. 1570 */ 1571 1572 sk->sk_prot->unhash(sk); 1573 1574 /* 1575 * In this point socket cannot receive new packets, but it is possible 1576 * that some packets are in flight because some CPU runs receiver and 1577 * did hash table lookup before we unhashed socket. They will achieve 1578 * receive queue and will be purged by socket destructor. 1579 * 1580 * Also we still have packets pending on receive queue and probably, 1581 * our own packets waiting in device queues. sock_destroy will drain 1582 * receive queue, but transmitted packets will delay socket destruction 1583 * until the last reference will be released. 1584 */ 1585 1586 sock_orphan(sk); 1587 1588 xfrm_sk_free_policy(sk); 1589 1590 sk_refcnt_debug_release(sk); 1591 sock_put(sk); 1592 } 1593 1594 EXPORT_SYMBOL(sk_common_release); 1595 1596 static DEFINE_RWLOCK(proto_list_lock); 1597 static LIST_HEAD(proto_list); 1598 1599 int proto_register(struct proto *prot, int alloc_slab) 1600 { 1601 char *request_sock_slab_name = NULL; 1602 char *timewait_sock_slab_name; 1603 int rc = -ENOBUFS; 1604 1605 if (alloc_slab) { 1606 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0, 1607 SLAB_HWCACHE_ALIGN, NULL, NULL); 1608 1609 if (prot->slab == NULL) { 1610 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n", 1611 prot->name); 1612 goto out; 1613 } 1614 1615 if (prot->rsk_prot != NULL) { 1616 static const char mask[] = "request_sock_%s"; 1617 1618 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 1619 if (request_sock_slab_name == NULL) 1620 goto out_free_sock_slab; 1621 1622 sprintf(request_sock_slab_name, mask, prot->name); 1623 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name, 1624 prot->rsk_prot->obj_size, 0, 1625 SLAB_HWCACHE_ALIGN, NULL, NULL); 1626 1627 if (prot->rsk_prot->slab == NULL) { 1628 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n", 1629 prot->name); 1630 goto out_free_request_sock_slab_name; 1631 } 1632 } 1633 1634 if (prot->twsk_prot != NULL) { 1635 static const char mask[] = "tw_sock_%s"; 1636 1637 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL); 1638 1639 if (timewait_sock_slab_name == NULL) 1640 goto out_free_request_sock_slab; 1641 1642 sprintf(timewait_sock_slab_name, mask, prot->name); 1643 prot->twsk_prot->twsk_slab = 1644 kmem_cache_create(timewait_sock_slab_name, 1645 prot->twsk_prot->twsk_obj_size, 1646 0, SLAB_HWCACHE_ALIGN, 1647 NULL, NULL); 1648 if (prot->twsk_prot->twsk_slab == NULL) 1649 goto out_free_timewait_sock_slab_name; 1650 } 1651 } 1652 1653 write_lock(&proto_list_lock); 1654 list_add(&prot->node, &proto_list); 1655 write_unlock(&proto_list_lock); 1656 rc = 0; 1657 out: 1658 return rc; 1659 out_free_timewait_sock_slab_name: 1660 kfree(timewait_sock_slab_name); 1661 out_free_request_sock_slab: 1662 if (prot->rsk_prot && prot->rsk_prot->slab) { 1663 kmem_cache_destroy(prot->rsk_prot->slab); 1664 prot->rsk_prot->slab = NULL; 1665 } 1666 out_free_request_sock_slab_name: 1667 kfree(request_sock_slab_name); 1668 out_free_sock_slab: 1669 kmem_cache_destroy(prot->slab); 1670 prot->slab = NULL; 1671 goto out; 1672 } 1673 1674 EXPORT_SYMBOL(proto_register); 1675 1676 void proto_unregister(struct proto *prot) 1677 { 1678 write_lock(&proto_list_lock); 1679 list_del(&prot->node); 1680 write_unlock(&proto_list_lock); 1681 1682 if (prot->slab != NULL) { 1683 kmem_cache_destroy(prot->slab); 1684 prot->slab = NULL; 1685 } 1686 1687 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) { 1688 const char *name = kmem_cache_name(prot->rsk_prot->slab); 1689 1690 kmem_cache_destroy(prot->rsk_prot->slab); 1691 kfree(name); 1692 prot->rsk_prot->slab = NULL; 1693 } 1694 1695 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) { 1696 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab); 1697 1698 kmem_cache_destroy(prot->twsk_prot->twsk_slab); 1699 kfree(name); 1700 prot->twsk_prot->twsk_slab = NULL; 1701 } 1702 } 1703 1704 EXPORT_SYMBOL(proto_unregister); 1705 1706 #ifdef CONFIG_PROC_FS 1707 static inline struct proto *__proto_head(void) 1708 { 1709 return list_entry(proto_list.next, struct proto, node); 1710 } 1711 1712 static inline struct proto *proto_head(void) 1713 { 1714 return list_empty(&proto_list) ? NULL : __proto_head(); 1715 } 1716 1717 static inline struct proto *proto_next(struct proto *proto) 1718 { 1719 return proto->node.next == &proto_list ? NULL : 1720 list_entry(proto->node.next, struct proto, node); 1721 } 1722 1723 static inline struct proto *proto_get_idx(loff_t pos) 1724 { 1725 struct proto *proto; 1726 loff_t i = 0; 1727 1728 list_for_each_entry(proto, &proto_list, node) 1729 if (i++ == pos) 1730 goto out; 1731 1732 proto = NULL; 1733 out: 1734 return proto; 1735 } 1736 1737 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 1738 { 1739 read_lock(&proto_list_lock); 1740 return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN; 1741 } 1742 1743 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1744 { 1745 ++*pos; 1746 return v == SEQ_START_TOKEN ? proto_head() : proto_next(v); 1747 } 1748 1749 static void proto_seq_stop(struct seq_file *seq, void *v) 1750 { 1751 read_unlock(&proto_list_lock); 1752 } 1753 1754 static char proto_method_implemented(const void *method) 1755 { 1756 return method == NULL ? 'n' : 'y'; 1757 } 1758 1759 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 1760 { 1761 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s " 1762 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 1763 proto->name, 1764 proto->obj_size, 1765 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1, 1766 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1, 1767 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI", 1768 proto->max_header, 1769 proto->slab == NULL ? "no" : "yes", 1770 module_name(proto->owner), 1771 proto_method_implemented(proto->close), 1772 proto_method_implemented(proto->connect), 1773 proto_method_implemented(proto->disconnect), 1774 proto_method_implemented(proto->accept), 1775 proto_method_implemented(proto->ioctl), 1776 proto_method_implemented(proto->init), 1777 proto_method_implemented(proto->destroy), 1778 proto_method_implemented(proto->shutdown), 1779 proto_method_implemented(proto->setsockopt), 1780 proto_method_implemented(proto->getsockopt), 1781 proto_method_implemented(proto->sendmsg), 1782 proto_method_implemented(proto->recvmsg), 1783 proto_method_implemented(proto->sendpage), 1784 proto_method_implemented(proto->bind), 1785 proto_method_implemented(proto->backlog_rcv), 1786 proto_method_implemented(proto->hash), 1787 proto_method_implemented(proto->unhash), 1788 proto_method_implemented(proto->get_port), 1789 proto_method_implemented(proto->enter_memory_pressure)); 1790 } 1791 1792 static int proto_seq_show(struct seq_file *seq, void *v) 1793 { 1794 if (v == SEQ_START_TOKEN) 1795 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 1796 "protocol", 1797 "size", 1798 "sockets", 1799 "memory", 1800 "press", 1801 "maxhdr", 1802 "slab", 1803 "module", 1804 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); 1805 else 1806 proto_seq_printf(seq, v); 1807 return 0; 1808 } 1809 1810 static struct seq_operations proto_seq_ops = { 1811 .start = proto_seq_start, 1812 .next = proto_seq_next, 1813 .stop = proto_seq_stop, 1814 .show = proto_seq_show, 1815 }; 1816 1817 static int proto_seq_open(struct inode *inode, struct file *file) 1818 { 1819 return seq_open(file, &proto_seq_ops); 1820 } 1821 1822 static struct file_operations proto_seq_fops = { 1823 .owner = THIS_MODULE, 1824 .open = proto_seq_open, 1825 .read = seq_read, 1826 .llseek = seq_lseek, 1827 .release = seq_release, 1828 }; 1829 1830 static int __init proto_init(void) 1831 { 1832 /* register /proc/net/protocols */ 1833 return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0; 1834 } 1835 1836 subsys_initcall(proto_init); 1837 1838 #endif /* PROC_FS */ 1839 1840 EXPORT_SYMBOL(sk_alloc); 1841 EXPORT_SYMBOL(sk_free); 1842 EXPORT_SYMBOL(sk_send_sigurg); 1843 EXPORT_SYMBOL(sock_alloc_send_skb); 1844 EXPORT_SYMBOL(sock_init_data); 1845 EXPORT_SYMBOL(sock_kfree_s); 1846 EXPORT_SYMBOL(sock_kmalloc); 1847 EXPORT_SYMBOL(sock_no_accept); 1848 EXPORT_SYMBOL(sock_no_bind); 1849 EXPORT_SYMBOL(sock_no_connect); 1850 EXPORT_SYMBOL(sock_no_getname); 1851 EXPORT_SYMBOL(sock_no_getsockopt); 1852 EXPORT_SYMBOL(sock_no_ioctl); 1853 EXPORT_SYMBOL(sock_no_listen); 1854 EXPORT_SYMBOL(sock_no_mmap); 1855 EXPORT_SYMBOL(sock_no_poll); 1856 EXPORT_SYMBOL(sock_no_recvmsg); 1857 EXPORT_SYMBOL(sock_no_sendmsg); 1858 EXPORT_SYMBOL(sock_no_sendpage); 1859 EXPORT_SYMBOL(sock_no_setsockopt); 1860 EXPORT_SYMBOL(sock_no_shutdown); 1861 EXPORT_SYMBOL(sock_no_socketpair); 1862 EXPORT_SYMBOL(sock_rfree); 1863 EXPORT_SYMBOL(sock_setsockopt); 1864 EXPORT_SYMBOL(sock_wfree); 1865 EXPORT_SYMBOL(sock_wmalloc); 1866 EXPORT_SYMBOL(sock_i_uid); 1867 EXPORT_SYMBOL(sock_i_ino); 1868 EXPORT_SYMBOL(sysctl_optmem_max); 1869 #ifdef CONFIG_SYSCTL 1870 EXPORT_SYMBOL(sysctl_rmem_max); 1871 EXPORT_SYMBOL(sysctl_wmem_max); 1872 #endif 1873