xref: /linux/net/core/sock.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119 
120 #include <asm/uaccess.h>
121 
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133 
134 #include <linux/filter.h>
135 
136 #include <trace/events/sock.h>
137 
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 	struct proto *proto;
149 	int ret = 0;
150 
151 	mutex_lock(&proto_list_mutex);
152 	list_for_each_entry(proto, &proto_list, node) {
153 		if (proto->init_cgroup) {
154 			ret = proto->init_cgroup(memcg, ss);
155 			if (ret)
156 				goto out;
157 		}
158 	}
159 
160 	mutex_unlock(&proto_list_mutex);
161 	return ret;
162 out:
163 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 		if (proto->destroy_cgroup)
165 			proto->destroy_cgroup(memcg);
166 	mutex_unlock(&proto_list_mutex);
167 	return ret;
168 }
169 
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 	struct proto *proto;
173 
174 	mutex_lock(&proto_list_mutex);
175 	list_for_each_entry_reverse(proto, &proto_list, node)
176 		if (proto->destroy_cgroup)
177 			proto->destroy_cgroup(memcg);
178 	mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181 
182 /*
183  * Each address family might have different locking rules, so we have
184  * one slock key per address family:
185  */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188 
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191 
192 /*
193  * Make lock validator output more readable. (we pre-construct these
194  * strings build-time, so that runtime initialization of socket
195  * locks is fast):
196  */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
199   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
200   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
201   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
202   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
203   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
204   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
205   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
206   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
207   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
208   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
209   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
210   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
211   "sk_lock-AF_NFC"   , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
215   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
216   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
217   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
218   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
219   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
220   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
221   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
222   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
223   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
224   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
225   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
226   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
227   "slock-AF_NFC"   , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
231   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
232   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
233   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
234   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
235   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
236   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
237   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
238   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
239   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
240   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
241   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
242   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
243   "clock-AF_NFC"   , "clock-AF_MAX"
244 };
245 
246 /*
247  * sk_callback_lock locking rules are per-address-family,
248  * so split the lock classes by using a per-AF key:
249  */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251 
252 /* Take into consideration the size of the struct sk_buff overhead in the
253  * determination of these values, since that is non-constant across
254  * platforms.  This makes socket queueing behavior and performance
255  * not depend upon such differences.
256  */
257 #define _SK_MEM_PACKETS		256
258 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261 
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269 
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273 
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
276 
277 /**
278  * sk_set_memalloc - sets %SOCK_MEMALLOC
279  * @sk: socket to set it on
280  *
281  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282  * It's the responsibility of the admin to adjust min_free_kbytes
283  * to meet the requirements
284  */
285 void sk_set_memalloc(struct sock *sk)
286 {
287 	sock_set_flag(sk, SOCK_MEMALLOC);
288 	sk->sk_allocation |= __GFP_MEMALLOC;
289 	static_key_slow_inc(&memalloc_socks);
290 }
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
292 
293 void sk_clear_memalloc(struct sock *sk)
294 {
295 	sock_reset_flag(sk, SOCK_MEMALLOC);
296 	sk->sk_allocation &= ~__GFP_MEMALLOC;
297 	static_key_slow_dec(&memalloc_socks);
298 
299 	/*
300 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 	 * it has rmem allocations there is a risk that the user of the
303 	 * socket cannot make forward progress due to exceeding the rmem
304 	 * limits. By rights, sk_clear_memalloc() should only be called
305 	 * on sockets being torn down but warn and reset the accounting if
306 	 * that assumption breaks.
307 	 */
308 	if (WARN_ON(sk->sk_forward_alloc))
309 		sk_mem_reclaim(sk);
310 }
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312 
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314 {
315 	int ret;
316 	unsigned long pflags = current->flags;
317 
318 	/* these should have been dropped before queueing */
319 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320 
321 	current->flags |= PF_MEMALLOC;
322 	ret = sk->sk_backlog_rcv(sk, skb);
323 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
324 
325 	return ret;
326 }
327 EXPORT_SYMBOL(__sk_backlog_rcv);
328 
329 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
330 {
331 	struct timeval tv;
332 
333 	if (optlen < sizeof(tv))
334 		return -EINVAL;
335 	if (copy_from_user(&tv, optval, sizeof(tv)))
336 		return -EFAULT;
337 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
338 		return -EDOM;
339 
340 	if (tv.tv_sec < 0) {
341 		static int warned __read_mostly;
342 
343 		*timeo_p = 0;
344 		if (warned < 10 && net_ratelimit()) {
345 			warned++;
346 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
347 				__func__, current->comm, task_pid_nr(current));
348 		}
349 		return 0;
350 	}
351 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
352 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
353 		return 0;
354 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
355 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
356 	return 0;
357 }
358 
359 static void sock_warn_obsolete_bsdism(const char *name)
360 {
361 	static int warned;
362 	static char warncomm[TASK_COMM_LEN];
363 	if (strcmp(warncomm, current->comm) && warned < 5) {
364 		strcpy(warncomm,  current->comm);
365 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
366 			warncomm, name);
367 		warned++;
368 	}
369 }
370 
371 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
372 
373 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
374 {
375 	if (sk->sk_flags & flags) {
376 		sk->sk_flags &= ~flags;
377 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
378 			net_disable_timestamp();
379 	}
380 }
381 
382 
383 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
384 {
385 	int err;
386 	int skb_len;
387 	unsigned long flags;
388 	struct sk_buff_head *list = &sk->sk_receive_queue;
389 
390 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
391 		atomic_inc(&sk->sk_drops);
392 		trace_sock_rcvqueue_full(sk, skb);
393 		return -ENOMEM;
394 	}
395 
396 	err = sk_filter(sk, skb);
397 	if (err)
398 		return err;
399 
400 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
401 		atomic_inc(&sk->sk_drops);
402 		return -ENOBUFS;
403 	}
404 
405 	skb->dev = NULL;
406 	skb_set_owner_r(skb, sk);
407 
408 	/* Cache the SKB length before we tack it onto the receive
409 	 * queue.  Once it is added it no longer belongs to us and
410 	 * may be freed by other threads of control pulling packets
411 	 * from the queue.
412 	 */
413 	skb_len = skb->len;
414 
415 	/* we escape from rcu protected region, make sure we dont leak
416 	 * a norefcounted dst
417 	 */
418 	skb_dst_force(skb);
419 
420 	spin_lock_irqsave(&list->lock, flags);
421 	skb->dropcount = atomic_read(&sk->sk_drops);
422 	__skb_queue_tail(list, skb);
423 	spin_unlock_irqrestore(&list->lock, flags);
424 
425 	if (!sock_flag(sk, SOCK_DEAD))
426 		sk->sk_data_ready(sk, skb_len);
427 	return 0;
428 }
429 EXPORT_SYMBOL(sock_queue_rcv_skb);
430 
431 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
432 {
433 	int rc = NET_RX_SUCCESS;
434 
435 	if (sk_filter(sk, skb))
436 		goto discard_and_relse;
437 
438 	skb->dev = NULL;
439 
440 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
441 		atomic_inc(&sk->sk_drops);
442 		goto discard_and_relse;
443 	}
444 	if (nested)
445 		bh_lock_sock_nested(sk);
446 	else
447 		bh_lock_sock(sk);
448 	if (!sock_owned_by_user(sk)) {
449 		/*
450 		 * trylock + unlock semantics:
451 		 */
452 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
453 
454 		rc = sk_backlog_rcv(sk, skb);
455 
456 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
457 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
458 		bh_unlock_sock(sk);
459 		atomic_inc(&sk->sk_drops);
460 		goto discard_and_relse;
461 	}
462 
463 	bh_unlock_sock(sk);
464 out:
465 	sock_put(sk);
466 	return rc;
467 discard_and_relse:
468 	kfree_skb(skb);
469 	goto out;
470 }
471 EXPORT_SYMBOL(sk_receive_skb);
472 
473 void sk_reset_txq(struct sock *sk)
474 {
475 	sk_tx_queue_clear(sk);
476 }
477 EXPORT_SYMBOL(sk_reset_txq);
478 
479 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
480 {
481 	struct dst_entry *dst = __sk_dst_get(sk);
482 
483 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
484 		sk_tx_queue_clear(sk);
485 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
486 		dst_release(dst);
487 		return NULL;
488 	}
489 
490 	return dst;
491 }
492 EXPORT_SYMBOL(__sk_dst_check);
493 
494 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
495 {
496 	struct dst_entry *dst = sk_dst_get(sk);
497 
498 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
499 		sk_dst_reset(sk);
500 		dst_release(dst);
501 		return NULL;
502 	}
503 
504 	return dst;
505 }
506 EXPORT_SYMBOL(sk_dst_check);
507 
508 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
509 				int optlen)
510 {
511 	int ret = -ENOPROTOOPT;
512 #ifdef CONFIG_NETDEVICES
513 	struct net *net = sock_net(sk);
514 	char devname[IFNAMSIZ];
515 	int index;
516 
517 	/* Sorry... */
518 	ret = -EPERM;
519 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
520 		goto out;
521 
522 	ret = -EINVAL;
523 	if (optlen < 0)
524 		goto out;
525 
526 	/* Bind this socket to a particular device like "eth0",
527 	 * as specified in the passed interface name. If the
528 	 * name is "" or the option length is zero the socket
529 	 * is not bound.
530 	 */
531 	if (optlen > IFNAMSIZ - 1)
532 		optlen = IFNAMSIZ - 1;
533 	memset(devname, 0, sizeof(devname));
534 
535 	ret = -EFAULT;
536 	if (copy_from_user(devname, optval, optlen))
537 		goto out;
538 
539 	index = 0;
540 	if (devname[0] != '\0') {
541 		struct net_device *dev;
542 
543 		rcu_read_lock();
544 		dev = dev_get_by_name_rcu(net, devname);
545 		if (dev)
546 			index = dev->ifindex;
547 		rcu_read_unlock();
548 		ret = -ENODEV;
549 		if (!dev)
550 			goto out;
551 	}
552 
553 	lock_sock(sk);
554 	sk->sk_bound_dev_if = index;
555 	sk_dst_reset(sk);
556 	release_sock(sk);
557 
558 	ret = 0;
559 
560 out:
561 #endif
562 
563 	return ret;
564 }
565 
566 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
567 				int __user *optlen, int len)
568 {
569 	int ret = -ENOPROTOOPT;
570 #ifdef CONFIG_NETDEVICES
571 	struct net *net = sock_net(sk);
572 	struct net_device *dev;
573 	char devname[IFNAMSIZ];
574 	unsigned seq;
575 
576 	if (sk->sk_bound_dev_if == 0) {
577 		len = 0;
578 		goto zero;
579 	}
580 
581 	ret = -EINVAL;
582 	if (len < IFNAMSIZ)
583 		goto out;
584 
585 retry:
586 	seq = read_seqcount_begin(&devnet_rename_seq);
587 	rcu_read_lock();
588 	dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
589 	ret = -ENODEV;
590 	if (!dev) {
591 		rcu_read_unlock();
592 		goto out;
593 	}
594 
595 	strcpy(devname, dev->name);
596 	rcu_read_unlock();
597 	if (read_seqcount_retry(&devnet_rename_seq, seq))
598 		goto retry;
599 
600 	len = strlen(devname) + 1;
601 
602 	ret = -EFAULT;
603 	if (copy_to_user(optval, devname, len))
604 		goto out;
605 
606 zero:
607 	ret = -EFAULT;
608 	if (put_user(len, optlen))
609 		goto out;
610 
611 	ret = 0;
612 
613 out:
614 #endif
615 
616 	return ret;
617 }
618 
619 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
620 {
621 	if (valbool)
622 		sock_set_flag(sk, bit);
623 	else
624 		sock_reset_flag(sk, bit);
625 }
626 
627 /*
628  *	This is meant for all protocols to use and covers goings on
629  *	at the socket level. Everything here is generic.
630  */
631 
632 int sock_setsockopt(struct socket *sock, int level, int optname,
633 		    char __user *optval, unsigned int optlen)
634 {
635 	struct sock *sk = sock->sk;
636 	int val;
637 	int valbool;
638 	struct linger ling;
639 	int ret = 0;
640 
641 	/*
642 	 *	Options without arguments
643 	 */
644 
645 	if (optname == SO_BINDTODEVICE)
646 		return sock_setbindtodevice(sk, optval, optlen);
647 
648 	if (optlen < sizeof(int))
649 		return -EINVAL;
650 
651 	if (get_user(val, (int __user *)optval))
652 		return -EFAULT;
653 
654 	valbool = val ? 1 : 0;
655 
656 	lock_sock(sk);
657 
658 	switch (optname) {
659 	case SO_DEBUG:
660 		if (val && !capable(CAP_NET_ADMIN))
661 			ret = -EACCES;
662 		else
663 			sock_valbool_flag(sk, SOCK_DBG, valbool);
664 		break;
665 	case SO_REUSEADDR:
666 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
667 		break;
668 	case SO_REUSEPORT:
669 		sk->sk_reuseport = valbool;
670 		break;
671 	case SO_TYPE:
672 	case SO_PROTOCOL:
673 	case SO_DOMAIN:
674 	case SO_ERROR:
675 		ret = -ENOPROTOOPT;
676 		break;
677 	case SO_DONTROUTE:
678 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
679 		break;
680 	case SO_BROADCAST:
681 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
682 		break;
683 	case SO_SNDBUF:
684 		/* Don't error on this BSD doesn't and if you think
685 		 * about it this is right. Otherwise apps have to
686 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
687 		 * are treated in BSD as hints
688 		 */
689 		val = min_t(u32, val, sysctl_wmem_max);
690 set_sndbuf:
691 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
692 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
693 		/* Wake up sending tasks if we upped the value. */
694 		sk->sk_write_space(sk);
695 		break;
696 
697 	case SO_SNDBUFFORCE:
698 		if (!capable(CAP_NET_ADMIN)) {
699 			ret = -EPERM;
700 			break;
701 		}
702 		goto set_sndbuf;
703 
704 	case SO_RCVBUF:
705 		/* Don't error on this BSD doesn't and if you think
706 		 * about it this is right. Otherwise apps have to
707 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
708 		 * are treated in BSD as hints
709 		 */
710 		val = min_t(u32, val, sysctl_rmem_max);
711 set_rcvbuf:
712 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
713 		/*
714 		 * We double it on the way in to account for
715 		 * "struct sk_buff" etc. overhead.   Applications
716 		 * assume that the SO_RCVBUF setting they make will
717 		 * allow that much actual data to be received on that
718 		 * socket.
719 		 *
720 		 * Applications are unaware that "struct sk_buff" and
721 		 * other overheads allocate from the receive buffer
722 		 * during socket buffer allocation.
723 		 *
724 		 * And after considering the possible alternatives,
725 		 * returning the value we actually used in getsockopt
726 		 * is the most desirable behavior.
727 		 */
728 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
729 		break;
730 
731 	case SO_RCVBUFFORCE:
732 		if (!capable(CAP_NET_ADMIN)) {
733 			ret = -EPERM;
734 			break;
735 		}
736 		goto set_rcvbuf;
737 
738 	case SO_KEEPALIVE:
739 #ifdef CONFIG_INET
740 		if (sk->sk_protocol == IPPROTO_TCP &&
741 		    sk->sk_type == SOCK_STREAM)
742 			tcp_set_keepalive(sk, valbool);
743 #endif
744 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
745 		break;
746 
747 	case SO_OOBINLINE:
748 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
749 		break;
750 
751 	case SO_NO_CHECK:
752 		sk->sk_no_check = valbool;
753 		break;
754 
755 	case SO_PRIORITY:
756 		if ((val >= 0 && val <= 6) ||
757 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
758 			sk->sk_priority = val;
759 		else
760 			ret = -EPERM;
761 		break;
762 
763 	case SO_LINGER:
764 		if (optlen < sizeof(ling)) {
765 			ret = -EINVAL;	/* 1003.1g */
766 			break;
767 		}
768 		if (copy_from_user(&ling, optval, sizeof(ling))) {
769 			ret = -EFAULT;
770 			break;
771 		}
772 		if (!ling.l_onoff)
773 			sock_reset_flag(sk, SOCK_LINGER);
774 		else {
775 #if (BITS_PER_LONG == 32)
776 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
777 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
778 			else
779 #endif
780 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
781 			sock_set_flag(sk, SOCK_LINGER);
782 		}
783 		break;
784 
785 	case SO_BSDCOMPAT:
786 		sock_warn_obsolete_bsdism("setsockopt");
787 		break;
788 
789 	case SO_PASSCRED:
790 		if (valbool)
791 			set_bit(SOCK_PASSCRED, &sock->flags);
792 		else
793 			clear_bit(SOCK_PASSCRED, &sock->flags);
794 		break;
795 
796 	case SO_TIMESTAMP:
797 	case SO_TIMESTAMPNS:
798 		if (valbool)  {
799 			if (optname == SO_TIMESTAMP)
800 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
801 			else
802 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
803 			sock_set_flag(sk, SOCK_RCVTSTAMP);
804 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
805 		} else {
806 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
807 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
808 		}
809 		break;
810 
811 	case SO_TIMESTAMPING:
812 		if (val & ~SOF_TIMESTAMPING_MASK) {
813 			ret = -EINVAL;
814 			break;
815 		}
816 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
817 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
818 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
819 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
820 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
821 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
822 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
823 			sock_enable_timestamp(sk,
824 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
825 		else
826 			sock_disable_timestamp(sk,
827 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
828 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
829 				  val & SOF_TIMESTAMPING_SOFTWARE);
830 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
831 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
832 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
833 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
834 		break;
835 
836 	case SO_RCVLOWAT:
837 		if (val < 0)
838 			val = INT_MAX;
839 		sk->sk_rcvlowat = val ? : 1;
840 		break;
841 
842 	case SO_RCVTIMEO:
843 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
844 		break;
845 
846 	case SO_SNDTIMEO:
847 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
848 		break;
849 
850 	case SO_ATTACH_FILTER:
851 		ret = -EINVAL;
852 		if (optlen == sizeof(struct sock_fprog)) {
853 			struct sock_fprog fprog;
854 
855 			ret = -EFAULT;
856 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
857 				break;
858 
859 			ret = sk_attach_filter(&fprog, sk);
860 		}
861 		break;
862 
863 	case SO_DETACH_FILTER:
864 		ret = sk_detach_filter(sk);
865 		break;
866 
867 	case SO_LOCK_FILTER:
868 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
869 			ret = -EPERM;
870 		else
871 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
872 		break;
873 
874 	case SO_PASSSEC:
875 		if (valbool)
876 			set_bit(SOCK_PASSSEC, &sock->flags);
877 		else
878 			clear_bit(SOCK_PASSSEC, &sock->flags);
879 		break;
880 	case SO_MARK:
881 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
882 			ret = -EPERM;
883 		else
884 			sk->sk_mark = val;
885 		break;
886 
887 		/* We implement the SO_SNDLOWAT etc to
888 		   not be settable (1003.1g 5.3) */
889 	case SO_RXQ_OVFL:
890 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
891 		break;
892 
893 	case SO_WIFI_STATUS:
894 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
895 		break;
896 
897 	case SO_PEEK_OFF:
898 		if (sock->ops->set_peek_off)
899 			sock->ops->set_peek_off(sk, val);
900 		else
901 			ret = -EOPNOTSUPP;
902 		break;
903 
904 	case SO_NOFCS:
905 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
906 		break;
907 
908 	default:
909 		ret = -ENOPROTOOPT;
910 		break;
911 	}
912 	release_sock(sk);
913 	return ret;
914 }
915 EXPORT_SYMBOL(sock_setsockopt);
916 
917 
918 void cred_to_ucred(struct pid *pid, const struct cred *cred,
919 		   struct ucred *ucred)
920 {
921 	ucred->pid = pid_vnr(pid);
922 	ucred->uid = ucred->gid = -1;
923 	if (cred) {
924 		struct user_namespace *current_ns = current_user_ns();
925 
926 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
927 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
928 	}
929 }
930 EXPORT_SYMBOL_GPL(cred_to_ucred);
931 
932 int sock_getsockopt(struct socket *sock, int level, int optname,
933 		    char __user *optval, int __user *optlen)
934 {
935 	struct sock *sk = sock->sk;
936 
937 	union {
938 		int val;
939 		struct linger ling;
940 		struct timeval tm;
941 	} v;
942 
943 	int lv = sizeof(int);
944 	int len;
945 
946 	if (get_user(len, optlen))
947 		return -EFAULT;
948 	if (len < 0)
949 		return -EINVAL;
950 
951 	memset(&v, 0, sizeof(v));
952 
953 	switch (optname) {
954 	case SO_DEBUG:
955 		v.val = sock_flag(sk, SOCK_DBG);
956 		break;
957 
958 	case SO_DONTROUTE:
959 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
960 		break;
961 
962 	case SO_BROADCAST:
963 		v.val = sock_flag(sk, SOCK_BROADCAST);
964 		break;
965 
966 	case SO_SNDBUF:
967 		v.val = sk->sk_sndbuf;
968 		break;
969 
970 	case SO_RCVBUF:
971 		v.val = sk->sk_rcvbuf;
972 		break;
973 
974 	case SO_REUSEADDR:
975 		v.val = sk->sk_reuse;
976 		break;
977 
978 	case SO_REUSEPORT:
979 		v.val = sk->sk_reuseport;
980 		break;
981 
982 	case SO_KEEPALIVE:
983 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
984 		break;
985 
986 	case SO_TYPE:
987 		v.val = sk->sk_type;
988 		break;
989 
990 	case SO_PROTOCOL:
991 		v.val = sk->sk_protocol;
992 		break;
993 
994 	case SO_DOMAIN:
995 		v.val = sk->sk_family;
996 		break;
997 
998 	case SO_ERROR:
999 		v.val = -sock_error(sk);
1000 		if (v.val == 0)
1001 			v.val = xchg(&sk->sk_err_soft, 0);
1002 		break;
1003 
1004 	case SO_OOBINLINE:
1005 		v.val = sock_flag(sk, SOCK_URGINLINE);
1006 		break;
1007 
1008 	case SO_NO_CHECK:
1009 		v.val = sk->sk_no_check;
1010 		break;
1011 
1012 	case SO_PRIORITY:
1013 		v.val = sk->sk_priority;
1014 		break;
1015 
1016 	case SO_LINGER:
1017 		lv		= sizeof(v.ling);
1018 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1019 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1020 		break;
1021 
1022 	case SO_BSDCOMPAT:
1023 		sock_warn_obsolete_bsdism("getsockopt");
1024 		break;
1025 
1026 	case SO_TIMESTAMP:
1027 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1028 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1029 		break;
1030 
1031 	case SO_TIMESTAMPNS:
1032 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1033 		break;
1034 
1035 	case SO_TIMESTAMPING:
1036 		v.val = 0;
1037 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1038 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1039 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1040 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1041 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1042 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1043 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1044 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1045 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1046 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1047 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1048 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1049 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1050 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1051 		break;
1052 
1053 	case SO_RCVTIMEO:
1054 		lv = sizeof(struct timeval);
1055 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1056 			v.tm.tv_sec = 0;
1057 			v.tm.tv_usec = 0;
1058 		} else {
1059 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1060 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1061 		}
1062 		break;
1063 
1064 	case SO_SNDTIMEO:
1065 		lv = sizeof(struct timeval);
1066 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1067 			v.tm.tv_sec = 0;
1068 			v.tm.tv_usec = 0;
1069 		} else {
1070 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1071 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1072 		}
1073 		break;
1074 
1075 	case SO_RCVLOWAT:
1076 		v.val = sk->sk_rcvlowat;
1077 		break;
1078 
1079 	case SO_SNDLOWAT:
1080 		v.val = 1;
1081 		break;
1082 
1083 	case SO_PASSCRED:
1084 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1085 		break;
1086 
1087 	case SO_PEERCRED:
1088 	{
1089 		struct ucred peercred;
1090 		if (len > sizeof(peercred))
1091 			len = sizeof(peercred);
1092 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1093 		if (copy_to_user(optval, &peercred, len))
1094 			return -EFAULT;
1095 		goto lenout;
1096 	}
1097 
1098 	case SO_PEERNAME:
1099 	{
1100 		char address[128];
1101 
1102 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1103 			return -ENOTCONN;
1104 		if (lv < len)
1105 			return -EINVAL;
1106 		if (copy_to_user(optval, address, len))
1107 			return -EFAULT;
1108 		goto lenout;
1109 	}
1110 
1111 	/* Dubious BSD thing... Probably nobody even uses it, but
1112 	 * the UNIX standard wants it for whatever reason... -DaveM
1113 	 */
1114 	case SO_ACCEPTCONN:
1115 		v.val = sk->sk_state == TCP_LISTEN;
1116 		break;
1117 
1118 	case SO_PASSSEC:
1119 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1120 		break;
1121 
1122 	case SO_PEERSEC:
1123 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1124 
1125 	case SO_MARK:
1126 		v.val = sk->sk_mark;
1127 		break;
1128 
1129 	case SO_RXQ_OVFL:
1130 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1131 		break;
1132 
1133 	case SO_WIFI_STATUS:
1134 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1135 		break;
1136 
1137 	case SO_PEEK_OFF:
1138 		if (!sock->ops->set_peek_off)
1139 			return -EOPNOTSUPP;
1140 
1141 		v.val = sk->sk_peek_off;
1142 		break;
1143 	case SO_NOFCS:
1144 		v.val = sock_flag(sk, SOCK_NOFCS);
1145 		break;
1146 
1147 	case SO_BINDTODEVICE:
1148 		return sock_getbindtodevice(sk, optval, optlen, len);
1149 
1150 	case SO_GET_FILTER:
1151 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1152 		if (len < 0)
1153 			return len;
1154 
1155 		goto lenout;
1156 
1157 	case SO_LOCK_FILTER:
1158 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1159 		break;
1160 
1161 	default:
1162 		return -ENOPROTOOPT;
1163 	}
1164 
1165 	if (len > lv)
1166 		len = lv;
1167 	if (copy_to_user(optval, &v, len))
1168 		return -EFAULT;
1169 lenout:
1170 	if (put_user(len, optlen))
1171 		return -EFAULT;
1172 	return 0;
1173 }
1174 
1175 /*
1176  * Initialize an sk_lock.
1177  *
1178  * (We also register the sk_lock with the lock validator.)
1179  */
1180 static inline void sock_lock_init(struct sock *sk)
1181 {
1182 	sock_lock_init_class_and_name(sk,
1183 			af_family_slock_key_strings[sk->sk_family],
1184 			af_family_slock_keys + sk->sk_family,
1185 			af_family_key_strings[sk->sk_family],
1186 			af_family_keys + sk->sk_family);
1187 }
1188 
1189 /*
1190  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1191  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1192  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1193  */
1194 static void sock_copy(struct sock *nsk, const struct sock *osk)
1195 {
1196 #ifdef CONFIG_SECURITY_NETWORK
1197 	void *sptr = nsk->sk_security;
1198 #endif
1199 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1200 
1201 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1202 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1203 
1204 #ifdef CONFIG_SECURITY_NETWORK
1205 	nsk->sk_security = sptr;
1206 	security_sk_clone(osk, nsk);
1207 #endif
1208 }
1209 
1210 /*
1211  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1212  * un-modified. Special care is taken when initializing object to zero.
1213  */
1214 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1215 {
1216 	if (offsetof(struct sock, sk_node.next) != 0)
1217 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1218 	memset(&sk->sk_node.pprev, 0,
1219 	       size - offsetof(struct sock, sk_node.pprev));
1220 }
1221 
1222 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1223 {
1224 	unsigned long nulls1, nulls2;
1225 
1226 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1227 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1228 	if (nulls1 > nulls2)
1229 		swap(nulls1, nulls2);
1230 
1231 	if (nulls1 != 0)
1232 		memset((char *)sk, 0, nulls1);
1233 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1234 	       nulls2 - nulls1 - sizeof(void *));
1235 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1236 	       size - nulls2 - sizeof(void *));
1237 }
1238 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1239 
1240 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1241 		int family)
1242 {
1243 	struct sock *sk;
1244 	struct kmem_cache *slab;
1245 
1246 	slab = prot->slab;
1247 	if (slab != NULL) {
1248 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1249 		if (!sk)
1250 			return sk;
1251 		if (priority & __GFP_ZERO) {
1252 			if (prot->clear_sk)
1253 				prot->clear_sk(sk, prot->obj_size);
1254 			else
1255 				sk_prot_clear_nulls(sk, prot->obj_size);
1256 		}
1257 	} else
1258 		sk = kmalloc(prot->obj_size, priority);
1259 
1260 	if (sk != NULL) {
1261 		kmemcheck_annotate_bitfield(sk, flags);
1262 
1263 		if (security_sk_alloc(sk, family, priority))
1264 			goto out_free;
1265 
1266 		if (!try_module_get(prot->owner))
1267 			goto out_free_sec;
1268 		sk_tx_queue_clear(sk);
1269 	}
1270 
1271 	return sk;
1272 
1273 out_free_sec:
1274 	security_sk_free(sk);
1275 out_free:
1276 	if (slab != NULL)
1277 		kmem_cache_free(slab, sk);
1278 	else
1279 		kfree(sk);
1280 	return NULL;
1281 }
1282 
1283 static void sk_prot_free(struct proto *prot, struct sock *sk)
1284 {
1285 	struct kmem_cache *slab;
1286 	struct module *owner;
1287 
1288 	owner = prot->owner;
1289 	slab = prot->slab;
1290 
1291 	security_sk_free(sk);
1292 	if (slab != NULL)
1293 		kmem_cache_free(slab, sk);
1294 	else
1295 		kfree(sk);
1296 	module_put(owner);
1297 }
1298 
1299 #ifdef CONFIG_CGROUPS
1300 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1301 void sock_update_classid(struct sock *sk, struct task_struct *task)
1302 {
1303 	u32 classid;
1304 
1305 	classid = task_cls_classid(task);
1306 	if (classid != sk->sk_classid)
1307 		sk->sk_classid = classid;
1308 }
1309 EXPORT_SYMBOL(sock_update_classid);
1310 #endif
1311 
1312 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1313 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1314 {
1315 	if (in_interrupt())
1316 		return;
1317 
1318 	sk->sk_cgrp_prioidx = task_netprioidx(task);
1319 }
1320 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1321 #endif
1322 #endif
1323 
1324 /**
1325  *	sk_alloc - All socket objects are allocated here
1326  *	@net: the applicable net namespace
1327  *	@family: protocol family
1328  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1329  *	@prot: struct proto associated with this new sock instance
1330  */
1331 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1332 		      struct proto *prot)
1333 {
1334 	struct sock *sk;
1335 
1336 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1337 	if (sk) {
1338 		sk->sk_family = family;
1339 		/*
1340 		 * See comment in struct sock definition to understand
1341 		 * why we need sk_prot_creator -acme
1342 		 */
1343 		sk->sk_prot = sk->sk_prot_creator = prot;
1344 		sock_lock_init(sk);
1345 		sock_net_set(sk, get_net(net));
1346 		atomic_set(&sk->sk_wmem_alloc, 1);
1347 
1348 		sock_update_classid(sk, current);
1349 		sock_update_netprioidx(sk, current);
1350 	}
1351 
1352 	return sk;
1353 }
1354 EXPORT_SYMBOL(sk_alloc);
1355 
1356 static void __sk_free(struct sock *sk)
1357 {
1358 	struct sk_filter *filter;
1359 
1360 	if (sk->sk_destruct)
1361 		sk->sk_destruct(sk);
1362 
1363 	filter = rcu_dereference_check(sk->sk_filter,
1364 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1365 	if (filter) {
1366 		sk_filter_uncharge(sk, filter);
1367 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1368 	}
1369 
1370 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1371 
1372 	if (atomic_read(&sk->sk_omem_alloc))
1373 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1374 			 __func__, atomic_read(&sk->sk_omem_alloc));
1375 
1376 	if (sk->sk_peer_cred)
1377 		put_cred(sk->sk_peer_cred);
1378 	put_pid(sk->sk_peer_pid);
1379 	put_net(sock_net(sk));
1380 	sk_prot_free(sk->sk_prot_creator, sk);
1381 }
1382 
1383 void sk_free(struct sock *sk)
1384 {
1385 	/*
1386 	 * We subtract one from sk_wmem_alloc and can know if
1387 	 * some packets are still in some tx queue.
1388 	 * If not null, sock_wfree() will call __sk_free(sk) later
1389 	 */
1390 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1391 		__sk_free(sk);
1392 }
1393 EXPORT_SYMBOL(sk_free);
1394 
1395 /*
1396  * Last sock_put should drop reference to sk->sk_net. It has already
1397  * been dropped in sk_change_net. Taking reference to stopping namespace
1398  * is not an option.
1399  * Take reference to a socket to remove it from hash _alive_ and after that
1400  * destroy it in the context of init_net.
1401  */
1402 void sk_release_kernel(struct sock *sk)
1403 {
1404 	if (sk == NULL || sk->sk_socket == NULL)
1405 		return;
1406 
1407 	sock_hold(sk);
1408 	sock_release(sk->sk_socket);
1409 	release_net(sock_net(sk));
1410 	sock_net_set(sk, get_net(&init_net));
1411 	sock_put(sk);
1412 }
1413 EXPORT_SYMBOL(sk_release_kernel);
1414 
1415 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1416 {
1417 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1418 		sock_update_memcg(newsk);
1419 }
1420 
1421 /**
1422  *	sk_clone_lock - clone a socket, and lock its clone
1423  *	@sk: the socket to clone
1424  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1425  *
1426  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1427  */
1428 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1429 {
1430 	struct sock *newsk;
1431 
1432 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1433 	if (newsk != NULL) {
1434 		struct sk_filter *filter;
1435 
1436 		sock_copy(newsk, sk);
1437 
1438 		/* SANITY */
1439 		get_net(sock_net(newsk));
1440 		sk_node_init(&newsk->sk_node);
1441 		sock_lock_init(newsk);
1442 		bh_lock_sock(newsk);
1443 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1444 		newsk->sk_backlog.len = 0;
1445 
1446 		atomic_set(&newsk->sk_rmem_alloc, 0);
1447 		/*
1448 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1449 		 */
1450 		atomic_set(&newsk->sk_wmem_alloc, 1);
1451 		atomic_set(&newsk->sk_omem_alloc, 0);
1452 		skb_queue_head_init(&newsk->sk_receive_queue);
1453 		skb_queue_head_init(&newsk->sk_write_queue);
1454 #ifdef CONFIG_NET_DMA
1455 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1456 #endif
1457 
1458 		spin_lock_init(&newsk->sk_dst_lock);
1459 		rwlock_init(&newsk->sk_callback_lock);
1460 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1461 				af_callback_keys + newsk->sk_family,
1462 				af_family_clock_key_strings[newsk->sk_family]);
1463 
1464 		newsk->sk_dst_cache	= NULL;
1465 		newsk->sk_wmem_queued	= 0;
1466 		newsk->sk_forward_alloc = 0;
1467 		newsk->sk_send_head	= NULL;
1468 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1469 
1470 		sock_reset_flag(newsk, SOCK_DONE);
1471 		skb_queue_head_init(&newsk->sk_error_queue);
1472 
1473 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1474 		if (filter != NULL)
1475 			sk_filter_charge(newsk, filter);
1476 
1477 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1478 			/* It is still raw copy of parent, so invalidate
1479 			 * destructor and make plain sk_free() */
1480 			newsk->sk_destruct = NULL;
1481 			bh_unlock_sock(newsk);
1482 			sk_free(newsk);
1483 			newsk = NULL;
1484 			goto out;
1485 		}
1486 
1487 		newsk->sk_err	   = 0;
1488 		newsk->sk_priority = 0;
1489 		/*
1490 		 * Before updating sk_refcnt, we must commit prior changes to memory
1491 		 * (Documentation/RCU/rculist_nulls.txt for details)
1492 		 */
1493 		smp_wmb();
1494 		atomic_set(&newsk->sk_refcnt, 2);
1495 
1496 		/*
1497 		 * Increment the counter in the same struct proto as the master
1498 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1499 		 * is the same as sk->sk_prot->socks, as this field was copied
1500 		 * with memcpy).
1501 		 *
1502 		 * This _changes_ the previous behaviour, where
1503 		 * tcp_create_openreq_child always was incrementing the
1504 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1505 		 * to be taken into account in all callers. -acme
1506 		 */
1507 		sk_refcnt_debug_inc(newsk);
1508 		sk_set_socket(newsk, NULL);
1509 		newsk->sk_wq = NULL;
1510 
1511 		sk_update_clone(sk, newsk);
1512 
1513 		if (newsk->sk_prot->sockets_allocated)
1514 			sk_sockets_allocated_inc(newsk);
1515 
1516 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1517 			net_enable_timestamp();
1518 	}
1519 out:
1520 	return newsk;
1521 }
1522 EXPORT_SYMBOL_GPL(sk_clone_lock);
1523 
1524 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1525 {
1526 	__sk_dst_set(sk, dst);
1527 	sk->sk_route_caps = dst->dev->features;
1528 	if (sk->sk_route_caps & NETIF_F_GSO)
1529 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1530 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1531 	if (sk_can_gso(sk)) {
1532 		if (dst->header_len) {
1533 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1534 		} else {
1535 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1536 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1537 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1538 		}
1539 	}
1540 }
1541 EXPORT_SYMBOL_GPL(sk_setup_caps);
1542 
1543 /*
1544  *	Simple resource managers for sockets.
1545  */
1546 
1547 
1548 /*
1549  * Write buffer destructor automatically called from kfree_skb.
1550  */
1551 void sock_wfree(struct sk_buff *skb)
1552 {
1553 	struct sock *sk = skb->sk;
1554 	unsigned int len = skb->truesize;
1555 
1556 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1557 		/*
1558 		 * Keep a reference on sk_wmem_alloc, this will be released
1559 		 * after sk_write_space() call
1560 		 */
1561 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1562 		sk->sk_write_space(sk);
1563 		len = 1;
1564 	}
1565 	/*
1566 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1567 	 * could not do because of in-flight packets
1568 	 */
1569 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1570 		__sk_free(sk);
1571 }
1572 EXPORT_SYMBOL(sock_wfree);
1573 
1574 /*
1575  * Read buffer destructor automatically called from kfree_skb.
1576  */
1577 void sock_rfree(struct sk_buff *skb)
1578 {
1579 	struct sock *sk = skb->sk;
1580 	unsigned int len = skb->truesize;
1581 
1582 	atomic_sub(len, &sk->sk_rmem_alloc);
1583 	sk_mem_uncharge(sk, len);
1584 }
1585 EXPORT_SYMBOL(sock_rfree);
1586 
1587 void sock_edemux(struct sk_buff *skb)
1588 {
1589 	struct sock *sk = skb->sk;
1590 
1591 #ifdef CONFIG_INET
1592 	if (sk->sk_state == TCP_TIME_WAIT)
1593 		inet_twsk_put(inet_twsk(sk));
1594 	else
1595 #endif
1596 		sock_put(sk);
1597 }
1598 EXPORT_SYMBOL(sock_edemux);
1599 
1600 kuid_t sock_i_uid(struct sock *sk)
1601 {
1602 	kuid_t uid;
1603 
1604 	read_lock_bh(&sk->sk_callback_lock);
1605 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1606 	read_unlock_bh(&sk->sk_callback_lock);
1607 	return uid;
1608 }
1609 EXPORT_SYMBOL(sock_i_uid);
1610 
1611 unsigned long sock_i_ino(struct sock *sk)
1612 {
1613 	unsigned long ino;
1614 
1615 	read_lock_bh(&sk->sk_callback_lock);
1616 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1617 	read_unlock_bh(&sk->sk_callback_lock);
1618 	return ino;
1619 }
1620 EXPORT_SYMBOL(sock_i_ino);
1621 
1622 /*
1623  * Allocate a skb from the socket's send buffer.
1624  */
1625 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1626 			     gfp_t priority)
1627 {
1628 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1629 		struct sk_buff *skb = alloc_skb(size, priority);
1630 		if (skb) {
1631 			skb_set_owner_w(skb, sk);
1632 			return skb;
1633 		}
1634 	}
1635 	return NULL;
1636 }
1637 EXPORT_SYMBOL(sock_wmalloc);
1638 
1639 /*
1640  * Allocate a skb from the socket's receive buffer.
1641  */
1642 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1643 			     gfp_t priority)
1644 {
1645 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1646 		struct sk_buff *skb = alloc_skb(size, priority);
1647 		if (skb) {
1648 			skb_set_owner_r(skb, sk);
1649 			return skb;
1650 		}
1651 	}
1652 	return NULL;
1653 }
1654 
1655 /*
1656  * Allocate a memory block from the socket's option memory buffer.
1657  */
1658 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1659 {
1660 	if ((unsigned int)size <= sysctl_optmem_max &&
1661 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1662 		void *mem;
1663 		/* First do the add, to avoid the race if kmalloc
1664 		 * might sleep.
1665 		 */
1666 		atomic_add(size, &sk->sk_omem_alloc);
1667 		mem = kmalloc(size, priority);
1668 		if (mem)
1669 			return mem;
1670 		atomic_sub(size, &sk->sk_omem_alloc);
1671 	}
1672 	return NULL;
1673 }
1674 EXPORT_SYMBOL(sock_kmalloc);
1675 
1676 /*
1677  * Free an option memory block.
1678  */
1679 void sock_kfree_s(struct sock *sk, void *mem, int size)
1680 {
1681 	kfree(mem);
1682 	atomic_sub(size, &sk->sk_omem_alloc);
1683 }
1684 EXPORT_SYMBOL(sock_kfree_s);
1685 
1686 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1687    I think, these locks should be removed for datagram sockets.
1688  */
1689 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1690 {
1691 	DEFINE_WAIT(wait);
1692 
1693 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1694 	for (;;) {
1695 		if (!timeo)
1696 			break;
1697 		if (signal_pending(current))
1698 			break;
1699 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1700 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1701 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1702 			break;
1703 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1704 			break;
1705 		if (sk->sk_err)
1706 			break;
1707 		timeo = schedule_timeout(timeo);
1708 	}
1709 	finish_wait(sk_sleep(sk), &wait);
1710 	return timeo;
1711 }
1712 
1713 
1714 /*
1715  *	Generic send/receive buffer handlers
1716  */
1717 
1718 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1719 				     unsigned long data_len, int noblock,
1720 				     int *errcode)
1721 {
1722 	struct sk_buff *skb;
1723 	gfp_t gfp_mask;
1724 	long timeo;
1725 	int err;
1726 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1727 
1728 	err = -EMSGSIZE;
1729 	if (npages > MAX_SKB_FRAGS)
1730 		goto failure;
1731 
1732 	gfp_mask = sk->sk_allocation;
1733 	if (gfp_mask & __GFP_WAIT)
1734 		gfp_mask |= __GFP_REPEAT;
1735 
1736 	timeo = sock_sndtimeo(sk, noblock);
1737 	while (1) {
1738 		err = sock_error(sk);
1739 		if (err != 0)
1740 			goto failure;
1741 
1742 		err = -EPIPE;
1743 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1744 			goto failure;
1745 
1746 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1747 			skb = alloc_skb(header_len, gfp_mask);
1748 			if (skb) {
1749 				int i;
1750 
1751 				/* No pages, we're done... */
1752 				if (!data_len)
1753 					break;
1754 
1755 				skb->truesize += data_len;
1756 				skb_shinfo(skb)->nr_frags = npages;
1757 				for (i = 0; i < npages; i++) {
1758 					struct page *page;
1759 
1760 					page = alloc_pages(sk->sk_allocation, 0);
1761 					if (!page) {
1762 						err = -ENOBUFS;
1763 						skb_shinfo(skb)->nr_frags = i;
1764 						kfree_skb(skb);
1765 						goto failure;
1766 					}
1767 
1768 					__skb_fill_page_desc(skb, i,
1769 							page, 0,
1770 							(data_len >= PAGE_SIZE ?
1771 							 PAGE_SIZE :
1772 							 data_len));
1773 					data_len -= PAGE_SIZE;
1774 				}
1775 
1776 				/* Full success... */
1777 				break;
1778 			}
1779 			err = -ENOBUFS;
1780 			goto failure;
1781 		}
1782 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1783 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1784 		err = -EAGAIN;
1785 		if (!timeo)
1786 			goto failure;
1787 		if (signal_pending(current))
1788 			goto interrupted;
1789 		timeo = sock_wait_for_wmem(sk, timeo);
1790 	}
1791 
1792 	skb_set_owner_w(skb, sk);
1793 	return skb;
1794 
1795 interrupted:
1796 	err = sock_intr_errno(timeo);
1797 failure:
1798 	*errcode = err;
1799 	return NULL;
1800 }
1801 EXPORT_SYMBOL(sock_alloc_send_pskb);
1802 
1803 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1804 				    int noblock, int *errcode)
1805 {
1806 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1807 }
1808 EXPORT_SYMBOL(sock_alloc_send_skb);
1809 
1810 /* On 32bit arches, an skb frag is limited to 2^15 */
1811 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1812 
1813 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1814 {
1815 	int order;
1816 
1817 	if (pfrag->page) {
1818 		if (atomic_read(&pfrag->page->_count) == 1) {
1819 			pfrag->offset = 0;
1820 			return true;
1821 		}
1822 		if (pfrag->offset < pfrag->size)
1823 			return true;
1824 		put_page(pfrag->page);
1825 	}
1826 
1827 	/* We restrict high order allocations to users that can afford to wait */
1828 	order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1829 
1830 	do {
1831 		gfp_t gfp = sk->sk_allocation;
1832 
1833 		if (order)
1834 			gfp |= __GFP_COMP | __GFP_NOWARN;
1835 		pfrag->page = alloc_pages(gfp, order);
1836 		if (likely(pfrag->page)) {
1837 			pfrag->offset = 0;
1838 			pfrag->size = PAGE_SIZE << order;
1839 			return true;
1840 		}
1841 	} while (--order >= 0);
1842 
1843 	sk_enter_memory_pressure(sk);
1844 	sk_stream_moderate_sndbuf(sk);
1845 	return false;
1846 }
1847 EXPORT_SYMBOL(sk_page_frag_refill);
1848 
1849 static void __lock_sock(struct sock *sk)
1850 	__releases(&sk->sk_lock.slock)
1851 	__acquires(&sk->sk_lock.slock)
1852 {
1853 	DEFINE_WAIT(wait);
1854 
1855 	for (;;) {
1856 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1857 					TASK_UNINTERRUPTIBLE);
1858 		spin_unlock_bh(&sk->sk_lock.slock);
1859 		schedule();
1860 		spin_lock_bh(&sk->sk_lock.slock);
1861 		if (!sock_owned_by_user(sk))
1862 			break;
1863 	}
1864 	finish_wait(&sk->sk_lock.wq, &wait);
1865 }
1866 
1867 static void __release_sock(struct sock *sk)
1868 	__releases(&sk->sk_lock.slock)
1869 	__acquires(&sk->sk_lock.slock)
1870 {
1871 	struct sk_buff *skb = sk->sk_backlog.head;
1872 
1873 	do {
1874 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1875 		bh_unlock_sock(sk);
1876 
1877 		do {
1878 			struct sk_buff *next = skb->next;
1879 
1880 			prefetch(next);
1881 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1882 			skb->next = NULL;
1883 			sk_backlog_rcv(sk, skb);
1884 
1885 			/*
1886 			 * We are in process context here with softirqs
1887 			 * disabled, use cond_resched_softirq() to preempt.
1888 			 * This is safe to do because we've taken the backlog
1889 			 * queue private:
1890 			 */
1891 			cond_resched_softirq();
1892 
1893 			skb = next;
1894 		} while (skb != NULL);
1895 
1896 		bh_lock_sock(sk);
1897 	} while ((skb = sk->sk_backlog.head) != NULL);
1898 
1899 	/*
1900 	 * Doing the zeroing here guarantee we can not loop forever
1901 	 * while a wild producer attempts to flood us.
1902 	 */
1903 	sk->sk_backlog.len = 0;
1904 }
1905 
1906 /**
1907  * sk_wait_data - wait for data to arrive at sk_receive_queue
1908  * @sk:    sock to wait on
1909  * @timeo: for how long
1910  *
1911  * Now socket state including sk->sk_err is changed only under lock,
1912  * hence we may omit checks after joining wait queue.
1913  * We check receive queue before schedule() only as optimization;
1914  * it is very likely that release_sock() added new data.
1915  */
1916 int sk_wait_data(struct sock *sk, long *timeo)
1917 {
1918 	int rc;
1919 	DEFINE_WAIT(wait);
1920 
1921 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1922 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1923 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1924 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1925 	finish_wait(sk_sleep(sk), &wait);
1926 	return rc;
1927 }
1928 EXPORT_SYMBOL(sk_wait_data);
1929 
1930 /**
1931  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1932  *	@sk: socket
1933  *	@size: memory size to allocate
1934  *	@kind: allocation type
1935  *
1936  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1937  *	rmem allocation. This function assumes that protocols which have
1938  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1939  */
1940 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1941 {
1942 	struct proto *prot = sk->sk_prot;
1943 	int amt = sk_mem_pages(size);
1944 	long allocated;
1945 	int parent_status = UNDER_LIMIT;
1946 
1947 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1948 
1949 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1950 
1951 	/* Under limit. */
1952 	if (parent_status == UNDER_LIMIT &&
1953 			allocated <= sk_prot_mem_limits(sk, 0)) {
1954 		sk_leave_memory_pressure(sk);
1955 		return 1;
1956 	}
1957 
1958 	/* Under pressure. (we or our parents) */
1959 	if ((parent_status > SOFT_LIMIT) ||
1960 			allocated > sk_prot_mem_limits(sk, 1))
1961 		sk_enter_memory_pressure(sk);
1962 
1963 	/* Over hard limit (we or our parents) */
1964 	if ((parent_status == OVER_LIMIT) ||
1965 			(allocated > sk_prot_mem_limits(sk, 2)))
1966 		goto suppress_allocation;
1967 
1968 	/* guarantee minimum buffer size under pressure */
1969 	if (kind == SK_MEM_RECV) {
1970 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1971 			return 1;
1972 
1973 	} else { /* SK_MEM_SEND */
1974 		if (sk->sk_type == SOCK_STREAM) {
1975 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1976 				return 1;
1977 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1978 			   prot->sysctl_wmem[0])
1979 				return 1;
1980 	}
1981 
1982 	if (sk_has_memory_pressure(sk)) {
1983 		int alloc;
1984 
1985 		if (!sk_under_memory_pressure(sk))
1986 			return 1;
1987 		alloc = sk_sockets_allocated_read_positive(sk);
1988 		if (sk_prot_mem_limits(sk, 2) > alloc *
1989 		    sk_mem_pages(sk->sk_wmem_queued +
1990 				 atomic_read(&sk->sk_rmem_alloc) +
1991 				 sk->sk_forward_alloc))
1992 			return 1;
1993 	}
1994 
1995 suppress_allocation:
1996 
1997 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1998 		sk_stream_moderate_sndbuf(sk);
1999 
2000 		/* Fail only if socket is _under_ its sndbuf.
2001 		 * In this case we cannot block, so that we have to fail.
2002 		 */
2003 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2004 			return 1;
2005 	}
2006 
2007 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2008 
2009 	/* Alas. Undo changes. */
2010 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2011 
2012 	sk_memory_allocated_sub(sk, amt);
2013 
2014 	return 0;
2015 }
2016 EXPORT_SYMBOL(__sk_mem_schedule);
2017 
2018 /**
2019  *	__sk_reclaim - reclaim memory_allocated
2020  *	@sk: socket
2021  */
2022 void __sk_mem_reclaim(struct sock *sk)
2023 {
2024 	sk_memory_allocated_sub(sk,
2025 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2026 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2027 
2028 	if (sk_under_memory_pressure(sk) &&
2029 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2030 		sk_leave_memory_pressure(sk);
2031 }
2032 EXPORT_SYMBOL(__sk_mem_reclaim);
2033 
2034 
2035 /*
2036  * Set of default routines for initialising struct proto_ops when
2037  * the protocol does not support a particular function. In certain
2038  * cases where it makes no sense for a protocol to have a "do nothing"
2039  * function, some default processing is provided.
2040  */
2041 
2042 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2043 {
2044 	return -EOPNOTSUPP;
2045 }
2046 EXPORT_SYMBOL(sock_no_bind);
2047 
2048 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2049 		    int len, int flags)
2050 {
2051 	return -EOPNOTSUPP;
2052 }
2053 EXPORT_SYMBOL(sock_no_connect);
2054 
2055 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2056 {
2057 	return -EOPNOTSUPP;
2058 }
2059 EXPORT_SYMBOL(sock_no_socketpair);
2060 
2061 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2062 {
2063 	return -EOPNOTSUPP;
2064 }
2065 EXPORT_SYMBOL(sock_no_accept);
2066 
2067 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2068 		    int *len, int peer)
2069 {
2070 	return -EOPNOTSUPP;
2071 }
2072 EXPORT_SYMBOL(sock_no_getname);
2073 
2074 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2075 {
2076 	return 0;
2077 }
2078 EXPORT_SYMBOL(sock_no_poll);
2079 
2080 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2081 {
2082 	return -EOPNOTSUPP;
2083 }
2084 EXPORT_SYMBOL(sock_no_ioctl);
2085 
2086 int sock_no_listen(struct socket *sock, int backlog)
2087 {
2088 	return -EOPNOTSUPP;
2089 }
2090 EXPORT_SYMBOL(sock_no_listen);
2091 
2092 int sock_no_shutdown(struct socket *sock, int how)
2093 {
2094 	return -EOPNOTSUPP;
2095 }
2096 EXPORT_SYMBOL(sock_no_shutdown);
2097 
2098 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2099 		    char __user *optval, unsigned int optlen)
2100 {
2101 	return -EOPNOTSUPP;
2102 }
2103 EXPORT_SYMBOL(sock_no_setsockopt);
2104 
2105 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2106 		    char __user *optval, int __user *optlen)
2107 {
2108 	return -EOPNOTSUPP;
2109 }
2110 EXPORT_SYMBOL(sock_no_getsockopt);
2111 
2112 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2113 		    size_t len)
2114 {
2115 	return -EOPNOTSUPP;
2116 }
2117 EXPORT_SYMBOL(sock_no_sendmsg);
2118 
2119 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2120 		    size_t len, int flags)
2121 {
2122 	return -EOPNOTSUPP;
2123 }
2124 EXPORT_SYMBOL(sock_no_recvmsg);
2125 
2126 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2127 {
2128 	/* Mirror missing mmap method error code */
2129 	return -ENODEV;
2130 }
2131 EXPORT_SYMBOL(sock_no_mmap);
2132 
2133 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2134 {
2135 	ssize_t res;
2136 	struct msghdr msg = {.msg_flags = flags};
2137 	struct kvec iov;
2138 	char *kaddr = kmap(page);
2139 	iov.iov_base = kaddr + offset;
2140 	iov.iov_len = size;
2141 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2142 	kunmap(page);
2143 	return res;
2144 }
2145 EXPORT_SYMBOL(sock_no_sendpage);
2146 
2147 /*
2148  *	Default Socket Callbacks
2149  */
2150 
2151 static void sock_def_wakeup(struct sock *sk)
2152 {
2153 	struct socket_wq *wq;
2154 
2155 	rcu_read_lock();
2156 	wq = rcu_dereference(sk->sk_wq);
2157 	if (wq_has_sleeper(wq))
2158 		wake_up_interruptible_all(&wq->wait);
2159 	rcu_read_unlock();
2160 }
2161 
2162 static void sock_def_error_report(struct sock *sk)
2163 {
2164 	struct socket_wq *wq;
2165 
2166 	rcu_read_lock();
2167 	wq = rcu_dereference(sk->sk_wq);
2168 	if (wq_has_sleeper(wq))
2169 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2170 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2171 	rcu_read_unlock();
2172 }
2173 
2174 static void sock_def_readable(struct sock *sk, int len)
2175 {
2176 	struct socket_wq *wq;
2177 
2178 	rcu_read_lock();
2179 	wq = rcu_dereference(sk->sk_wq);
2180 	if (wq_has_sleeper(wq))
2181 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2182 						POLLRDNORM | POLLRDBAND);
2183 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2184 	rcu_read_unlock();
2185 }
2186 
2187 static void sock_def_write_space(struct sock *sk)
2188 {
2189 	struct socket_wq *wq;
2190 
2191 	rcu_read_lock();
2192 
2193 	/* Do not wake up a writer until he can make "significant"
2194 	 * progress.  --DaveM
2195 	 */
2196 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2197 		wq = rcu_dereference(sk->sk_wq);
2198 		if (wq_has_sleeper(wq))
2199 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2200 						POLLWRNORM | POLLWRBAND);
2201 
2202 		/* Should agree with poll, otherwise some programs break */
2203 		if (sock_writeable(sk))
2204 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2205 	}
2206 
2207 	rcu_read_unlock();
2208 }
2209 
2210 static void sock_def_destruct(struct sock *sk)
2211 {
2212 	kfree(sk->sk_protinfo);
2213 }
2214 
2215 void sk_send_sigurg(struct sock *sk)
2216 {
2217 	if (sk->sk_socket && sk->sk_socket->file)
2218 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2219 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2220 }
2221 EXPORT_SYMBOL(sk_send_sigurg);
2222 
2223 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2224 		    unsigned long expires)
2225 {
2226 	if (!mod_timer(timer, expires))
2227 		sock_hold(sk);
2228 }
2229 EXPORT_SYMBOL(sk_reset_timer);
2230 
2231 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2232 {
2233 	if (del_timer(timer))
2234 		__sock_put(sk);
2235 }
2236 EXPORT_SYMBOL(sk_stop_timer);
2237 
2238 void sock_init_data(struct socket *sock, struct sock *sk)
2239 {
2240 	skb_queue_head_init(&sk->sk_receive_queue);
2241 	skb_queue_head_init(&sk->sk_write_queue);
2242 	skb_queue_head_init(&sk->sk_error_queue);
2243 #ifdef CONFIG_NET_DMA
2244 	skb_queue_head_init(&sk->sk_async_wait_queue);
2245 #endif
2246 
2247 	sk->sk_send_head	=	NULL;
2248 
2249 	init_timer(&sk->sk_timer);
2250 
2251 	sk->sk_allocation	=	GFP_KERNEL;
2252 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2253 	sk->sk_sndbuf		=	sysctl_wmem_default;
2254 	sk->sk_state		=	TCP_CLOSE;
2255 	sk_set_socket(sk, sock);
2256 
2257 	sock_set_flag(sk, SOCK_ZAPPED);
2258 
2259 	if (sock) {
2260 		sk->sk_type	=	sock->type;
2261 		sk->sk_wq	=	sock->wq;
2262 		sock->sk	=	sk;
2263 	} else
2264 		sk->sk_wq	=	NULL;
2265 
2266 	spin_lock_init(&sk->sk_dst_lock);
2267 	rwlock_init(&sk->sk_callback_lock);
2268 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2269 			af_callback_keys + sk->sk_family,
2270 			af_family_clock_key_strings[sk->sk_family]);
2271 
2272 	sk->sk_state_change	=	sock_def_wakeup;
2273 	sk->sk_data_ready	=	sock_def_readable;
2274 	sk->sk_write_space	=	sock_def_write_space;
2275 	sk->sk_error_report	=	sock_def_error_report;
2276 	sk->sk_destruct		=	sock_def_destruct;
2277 
2278 	sk->sk_frag.page	=	NULL;
2279 	sk->sk_frag.offset	=	0;
2280 	sk->sk_peek_off		=	-1;
2281 
2282 	sk->sk_peer_pid 	=	NULL;
2283 	sk->sk_peer_cred	=	NULL;
2284 	sk->sk_write_pending	=	0;
2285 	sk->sk_rcvlowat		=	1;
2286 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2287 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2288 
2289 	sk->sk_stamp = ktime_set(-1L, 0);
2290 
2291 	/*
2292 	 * Before updating sk_refcnt, we must commit prior changes to memory
2293 	 * (Documentation/RCU/rculist_nulls.txt for details)
2294 	 */
2295 	smp_wmb();
2296 	atomic_set(&sk->sk_refcnt, 1);
2297 	atomic_set(&sk->sk_drops, 0);
2298 }
2299 EXPORT_SYMBOL(sock_init_data);
2300 
2301 void lock_sock_nested(struct sock *sk, int subclass)
2302 {
2303 	might_sleep();
2304 	spin_lock_bh(&sk->sk_lock.slock);
2305 	if (sk->sk_lock.owned)
2306 		__lock_sock(sk);
2307 	sk->sk_lock.owned = 1;
2308 	spin_unlock(&sk->sk_lock.slock);
2309 	/*
2310 	 * The sk_lock has mutex_lock() semantics here:
2311 	 */
2312 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2313 	local_bh_enable();
2314 }
2315 EXPORT_SYMBOL(lock_sock_nested);
2316 
2317 void release_sock(struct sock *sk)
2318 {
2319 	/*
2320 	 * The sk_lock has mutex_unlock() semantics:
2321 	 */
2322 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2323 
2324 	spin_lock_bh(&sk->sk_lock.slock);
2325 	if (sk->sk_backlog.tail)
2326 		__release_sock(sk);
2327 
2328 	if (sk->sk_prot->release_cb)
2329 		sk->sk_prot->release_cb(sk);
2330 
2331 	sk->sk_lock.owned = 0;
2332 	if (waitqueue_active(&sk->sk_lock.wq))
2333 		wake_up(&sk->sk_lock.wq);
2334 	spin_unlock_bh(&sk->sk_lock.slock);
2335 }
2336 EXPORT_SYMBOL(release_sock);
2337 
2338 /**
2339  * lock_sock_fast - fast version of lock_sock
2340  * @sk: socket
2341  *
2342  * This version should be used for very small section, where process wont block
2343  * return false if fast path is taken
2344  *   sk_lock.slock locked, owned = 0, BH disabled
2345  * return true if slow path is taken
2346  *   sk_lock.slock unlocked, owned = 1, BH enabled
2347  */
2348 bool lock_sock_fast(struct sock *sk)
2349 {
2350 	might_sleep();
2351 	spin_lock_bh(&sk->sk_lock.slock);
2352 
2353 	if (!sk->sk_lock.owned)
2354 		/*
2355 		 * Note : We must disable BH
2356 		 */
2357 		return false;
2358 
2359 	__lock_sock(sk);
2360 	sk->sk_lock.owned = 1;
2361 	spin_unlock(&sk->sk_lock.slock);
2362 	/*
2363 	 * The sk_lock has mutex_lock() semantics here:
2364 	 */
2365 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2366 	local_bh_enable();
2367 	return true;
2368 }
2369 EXPORT_SYMBOL(lock_sock_fast);
2370 
2371 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2372 {
2373 	struct timeval tv;
2374 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2375 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2376 	tv = ktime_to_timeval(sk->sk_stamp);
2377 	if (tv.tv_sec == -1)
2378 		return -ENOENT;
2379 	if (tv.tv_sec == 0) {
2380 		sk->sk_stamp = ktime_get_real();
2381 		tv = ktime_to_timeval(sk->sk_stamp);
2382 	}
2383 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2384 }
2385 EXPORT_SYMBOL(sock_get_timestamp);
2386 
2387 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2388 {
2389 	struct timespec ts;
2390 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2391 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2392 	ts = ktime_to_timespec(sk->sk_stamp);
2393 	if (ts.tv_sec == -1)
2394 		return -ENOENT;
2395 	if (ts.tv_sec == 0) {
2396 		sk->sk_stamp = ktime_get_real();
2397 		ts = ktime_to_timespec(sk->sk_stamp);
2398 	}
2399 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2400 }
2401 EXPORT_SYMBOL(sock_get_timestampns);
2402 
2403 void sock_enable_timestamp(struct sock *sk, int flag)
2404 {
2405 	if (!sock_flag(sk, flag)) {
2406 		unsigned long previous_flags = sk->sk_flags;
2407 
2408 		sock_set_flag(sk, flag);
2409 		/*
2410 		 * we just set one of the two flags which require net
2411 		 * time stamping, but time stamping might have been on
2412 		 * already because of the other one
2413 		 */
2414 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2415 			net_enable_timestamp();
2416 	}
2417 }
2418 
2419 /*
2420  *	Get a socket option on an socket.
2421  *
2422  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2423  *	asynchronous errors should be reported by getsockopt. We assume
2424  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2425  */
2426 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2427 			   char __user *optval, int __user *optlen)
2428 {
2429 	struct sock *sk = sock->sk;
2430 
2431 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2432 }
2433 EXPORT_SYMBOL(sock_common_getsockopt);
2434 
2435 #ifdef CONFIG_COMPAT
2436 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2437 				  char __user *optval, int __user *optlen)
2438 {
2439 	struct sock *sk = sock->sk;
2440 
2441 	if (sk->sk_prot->compat_getsockopt != NULL)
2442 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2443 						      optval, optlen);
2444 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2445 }
2446 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2447 #endif
2448 
2449 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2450 			struct msghdr *msg, size_t size, int flags)
2451 {
2452 	struct sock *sk = sock->sk;
2453 	int addr_len = 0;
2454 	int err;
2455 
2456 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2457 				   flags & ~MSG_DONTWAIT, &addr_len);
2458 	if (err >= 0)
2459 		msg->msg_namelen = addr_len;
2460 	return err;
2461 }
2462 EXPORT_SYMBOL(sock_common_recvmsg);
2463 
2464 /*
2465  *	Set socket options on an inet socket.
2466  */
2467 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2468 			   char __user *optval, unsigned int optlen)
2469 {
2470 	struct sock *sk = sock->sk;
2471 
2472 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2473 }
2474 EXPORT_SYMBOL(sock_common_setsockopt);
2475 
2476 #ifdef CONFIG_COMPAT
2477 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2478 				  char __user *optval, unsigned int optlen)
2479 {
2480 	struct sock *sk = sock->sk;
2481 
2482 	if (sk->sk_prot->compat_setsockopt != NULL)
2483 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2484 						      optval, optlen);
2485 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2486 }
2487 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2488 #endif
2489 
2490 void sk_common_release(struct sock *sk)
2491 {
2492 	if (sk->sk_prot->destroy)
2493 		sk->sk_prot->destroy(sk);
2494 
2495 	/*
2496 	 * Observation: when sock_common_release is called, processes have
2497 	 * no access to socket. But net still has.
2498 	 * Step one, detach it from networking:
2499 	 *
2500 	 * A. Remove from hash tables.
2501 	 */
2502 
2503 	sk->sk_prot->unhash(sk);
2504 
2505 	/*
2506 	 * In this point socket cannot receive new packets, but it is possible
2507 	 * that some packets are in flight because some CPU runs receiver and
2508 	 * did hash table lookup before we unhashed socket. They will achieve
2509 	 * receive queue and will be purged by socket destructor.
2510 	 *
2511 	 * Also we still have packets pending on receive queue and probably,
2512 	 * our own packets waiting in device queues. sock_destroy will drain
2513 	 * receive queue, but transmitted packets will delay socket destruction
2514 	 * until the last reference will be released.
2515 	 */
2516 
2517 	sock_orphan(sk);
2518 
2519 	xfrm_sk_free_policy(sk);
2520 
2521 	sk_refcnt_debug_release(sk);
2522 
2523 	if (sk->sk_frag.page) {
2524 		put_page(sk->sk_frag.page);
2525 		sk->sk_frag.page = NULL;
2526 	}
2527 
2528 	sock_put(sk);
2529 }
2530 EXPORT_SYMBOL(sk_common_release);
2531 
2532 #ifdef CONFIG_PROC_FS
2533 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2534 struct prot_inuse {
2535 	int val[PROTO_INUSE_NR];
2536 };
2537 
2538 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2539 
2540 #ifdef CONFIG_NET_NS
2541 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2542 {
2543 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2544 }
2545 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2546 
2547 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2548 {
2549 	int cpu, idx = prot->inuse_idx;
2550 	int res = 0;
2551 
2552 	for_each_possible_cpu(cpu)
2553 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2554 
2555 	return res >= 0 ? res : 0;
2556 }
2557 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2558 
2559 static int __net_init sock_inuse_init_net(struct net *net)
2560 {
2561 	net->core.inuse = alloc_percpu(struct prot_inuse);
2562 	return net->core.inuse ? 0 : -ENOMEM;
2563 }
2564 
2565 static void __net_exit sock_inuse_exit_net(struct net *net)
2566 {
2567 	free_percpu(net->core.inuse);
2568 }
2569 
2570 static struct pernet_operations net_inuse_ops = {
2571 	.init = sock_inuse_init_net,
2572 	.exit = sock_inuse_exit_net,
2573 };
2574 
2575 static __init int net_inuse_init(void)
2576 {
2577 	if (register_pernet_subsys(&net_inuse_ops))
2578 		panic("Cannot initialize net inuse counters");
2579 
2580 	return 0;
2581 }
2582 
2583 core_initcall(net_inuse_init);
2584 #else
2585 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2586 
2587 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2588 {
2589 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2590 }
2591 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2592 
2593 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2594 {
2595 	int cpu, idx = prot->inuse_idx;
2596 	int res = 0;
2597 
2598 	for_each_possible_cpu(cpu)
2599 		res += per_cpu(prot_inuse, cpu).val[idx];
2600 
2601 	return res >= 0 ? res : 0;
2602 }
2603 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2604 #endif
2605 
2606 static void assign_proto_idx(struct proto *prot)
2607 {
2608 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2609 
2610 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2611 		pr_err("PROTO_INUSE_NR exhausted\n");
2612 		return;
2613 	}
2614 
2615 	set_bit(prot->inuse_idx, proto_inuse_idx);
2616 }
2617 
2618 static void release_proto_idx(struct proto *prot)
2619 {
2620 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2621 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2622 }
2623 #else
2624 static inline void assign_proto_idx(struct proto *prot)
2625 {
2626 }
2627 
2628 static inline void release_proto_idx(struct proto *prot)
2629 {
2630 }
2631 #endif
2632 
2633 int proto_register(struct proto *prot, int alloc_slab)
2634 {
2635 	if (alloc_slab) {
2636 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2637 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2638 					NULL);
2639 
2640 		if (prot->slab == NULL) {
2641 			pr_crit("%s: Can't create sock SLAB cache!\n",
2642 				prot->name);
2643 			goto out;
2644 		}
2645 
2646 		if (prot->rsk_prot != NULL) {
2647 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2648 			if (prot->rsk_prot->slab_name == NULL)
2649 				goto out_free_sock_slab;
2650 
2651 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2652 								 prot->rsk_prot->obj_size, 0,
2653 								 SLAB_HWCACHE_ALIGN, NULL);
2654 
2655 			if (prot->rsk_prot->slab == NULL) {
2656 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2657 					prot->name);
2658 				goto out_free_request_sock_slab_name;
2659 			}
2660 		}
2661 
2662 		if (prot->twsk_prot != NULL) {
2663 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2664 
2665 			if (prot->twsk_prot->twsk_slab_name == NULL)
2666 				goto out_free_request_sock_slab;
2667 
2668 			prot->twsk_prot->twsk_slab =
2669 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2670 						  prot->twsk_prot->twsk_obj_size,
2671 						  0,
2672 						  SLAB_HWCACHE_ALIGN |
2673 							prot->slab_flags,
2674 						  NULL);
2675 			if (prot->twsk_prot->twsk_slab == NULL)
2676 				goto out_free_timewait_sock_slab_name;
2677 		}
2678 	}
2679 
2680 	mutex_lock(&proto_list_mutex);
2681 	list_add(&prot->node, &proto_list);
2682 	assign_proto_idx(prot);
2683 	mutex_unlock(&proto_list_mutex);
2684 	return 0;
2685 
2686 out_free_timewait_sock_slab_name:
2687 	kfree(prot->twsk_prot->twsk_slab_name);
2688 out_free_request_sock_slab:
2689 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2690 		kmem_cache_destroy(prot->rsk_prot->slab);
2691 		prot->rsk_prot->slab = NULL;
2692 	}
2693 out_free_request_sock_slab_name:
2694 	if (prot->rsk_prot)
2695 		kfree(prot->rsk_prot->slab_name);
2696 out_free_sock_slab:
2697 	kmem_cache_destroy(prot->slab);
2698 	prot->slab = NULL;
2699 out:
2700 	return -ENOBUFS;
2701 }
2702 EXPORT_SYMBOL(proto_register);
2703 
2704 void proto_unregister(struct proto *prot)
2705 {
2706 	mutex_lock(&proto_list_mutex);
2707 	release_proto_idx(prot);
2708 	list_del(&prot->node);
2709 	mutex_unlock(&proto_list_mutex);
2710 
2711 	if (prot->slab != NULL) {
2712 		kmem_cache_destroy(prot->slab);
2713 		prot->slab = NULL;
2714 	}
2715 
2716 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2717 		kmem_cache_destroy(prot->rsk_prot->slab);
2718 		kfree(prot->rsk_prot->slab_name);
2719 		prot->rsk_prot->slab = NULL;
2720 	}
2721 
2722 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2723 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2724 		kfree(prot->twsk_prot->twsk_slab_name);
2725 		prot->twsk_prot->twsk_slab = NULL;
2726 	}
2727 }
2728 EXPORT_SYMBOL(proto_unregister);
2729 
2730 #ifdef CONFIG_PROC_FS
2731 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2732 	__acquires(proto_list_mutex)
2733 {
2734 	mutex_lock(&proto_list_mutex);
2735 	return seq_list_start_head(&proto_list, *pos);
2736 }
2737 
2738 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2739 {
2740 	return seq_list_next(v, &proto_list, pos);
2741 }
2742 
2743 static void proto_seq_stop(struct seq_file *seq, void *v)
2744 	__releases(proto_list_mutex)
2745 {
2746 	mutex_unlock(&proto_list_mutex);
2747 }
2748 
2749 static char proto_method_implemented(const void *method)
2750 {
2751 	return method == NULL ? 'n' : 'y';
2752 }
2753 static long sock_prot_memory_allocated(struct proto *proto)
2754 {
2755 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2756 }
2757 
2758 static char *sock_prot_memory_pressure(struct proto *proto)
2759 {
2760 	return proto->memory_pressure != NULL ?
2761 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2762 }
2763 
2764 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2765 {
2766 
2767 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2768 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2769 		   proto->name,
2770 		   proto->obj_size,
2771 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2772 		   sock_prot_memory_allocated(proto),
2773 		   sock_prot_memory_pressure(proto),
2774 		   proto->max_header,
2775 		   proto->slab == NULL ? "no" : "yes",
2776 		   module_name(proto->owner),
2777 		   proto_method_implemented(proto->close),
2778 		   proto_method_implemented(proto->connect),
2779 		   proto_method_implemented(proto->disconnect),
2780 		   proto_method_implemented(proto->accept),
2781 		   proto_method_implemented(proto->ioctl),
2782 		   proto_method_implemented(proto->init),
2783 		   proto_method_implemented(proto->destroy),
2784 		   proto_method_implemented(proto->shutdown),
2785 		   proto_method_implemented(proto->setsockopt),
2786 		   proto_method_implemented(proto->getsockopt),
2787 		   proto_method_implemented(proto->sendmsg),
2788 		   proto_method_implemented(proto->recvmsg),
2789 		   proto_method_implemented(proto->sendpage),
2790 		   proto_method_implemented(proto->bind),
2791 		   proto_method_implemented(proto->backlog_rcv),
2792 		   proto_method_implemented(proto->hash),
2793 		   proto_method_implemented(proto->unhash),
2794 		   proto_method_implemented(proto->get_port),
2795 		   proto_method_implemented(proto->enter_memory_pressure));
2796 }
2797 
2798 static int proto_seq_show(struct seq_file *seq, void *v)
2799 {
2800 	if (v == &proto_list)
2801 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2802 			   "protocol",
2803 			   "size",
2804 			   "sockets",
2805 			   "memory",
2806 			   "press",
2807 			   "maxhdr",
2808 			   "slab",
2809 			   "module",
2810 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2811 	else
2812 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2813 	return 0;
2814 }
2815 
2816 static const struct seq_operations proto_seq_ops = {
2817 	.start  = proto_seq_start,
2818 	.next   = proto_seq_next,
2819 	.stop   = proto_seq_stop,
2820 	.show   = proto_seq_show,
2821 };
2822 
2823 static int proto_seq_open(struct inode *inode, struct file *file)
2824 {
2825 	return seq_open_net(inode, file, &proto_seq_ops,
2826 			    sizeof(struct seq_net_private));
2827 }
2828 
2829 static const struct file_operations proto_seq_fops = {
2830 	.owner		= THIS_MODULE,
2831 	.open		= proto_seq_open,
2832 	.read		= seq_read,
2833 	.llseek		= seq_lseek,
2834 	.release	= seq_release_net,
2835 };
2836 
2837 static __net_init int proto_init_net(struct net *net)
2838 {
2839 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2840 		return -ENOMEM;
2841 
2842 	return 0;
2843 }
2844 
2845 static __net_exit void proto_exit_net(struct net *net)
2846 {
2847 	remove_proc_entry("protocols", net->proc_net);
2848 }
2849 
2850 
2851 static __net_initdata struct pernet_operations proto_net_ops = {
2852 	.init = proto_init_net,
2853 	.exit = proto_exit_net,
2854 };
2855 
2856 static int __init proto_init(void)
2857 {
2858 	return register_pernet_subsys(&proto_net_ops);
2859 }
2860 
2861 subsys_initcall(proto_init);
2862 
2863 #endif /* PROC_FS */
2864