xref: /linux/net/core/sock.c (revision ea8a163e02d6925773129e2dd86e419e491b791d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 
139 #include <net/tcp.h>
140 #include <net/busy_poll.h>
141 
142 #include <linux/ethtool.h>
143 
144 static DEFINE_MUTEX(proto_list_mutex);
145 static LIST_HEAD(proto_list);
146 
147 static void sock_inuse_add(struct net *net, int val);
148 
149 /**
150  * sk_ns_capable - General socket capability test
151  * @sk: Socket to use a capability on or through
152  * @user_ns: The user namespace of the capability to use
153  * @cap: The capability to use
154  *
155  * Test to see if the opener of the socket had when the socket was
156  * created and the current process has the capability @cap in the user
157  * namespace @user_ns.
158  */
159 bool sk_ns_capable(const struct sock *sk,
160 		   struct user_namespace *user_ns, int cap)
161 {
162 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 		ns_capable(user_ns, cap);
164 }
165 EXPORT_SYMBOL(sk_ns_capable);
166 
167 /**
168  * sk_capable - Socket global capability test
169  * @sk: Socket to use a capability on or through
170  * @cap: The global capability to use
171  *
172  * Test to see if the opener of the socket had when the socket was
173  * created and the current process has the capability @cap in all user
174  * namespaces.
175  */
176 bool sk_capable(const struct sock *sk, int cap)
177 {
178 	return sk_ns_capable(sk, &init_user_ns, cap);
179 }
180 EXPORT_SYMBOL(sk_capable);
181 
182 /**
183  * sk_net_capable - Network namespace socket capability test
184  * @sk: Socket to use a capability on or through
185  * @cap: The capability to use
186  *
187  * Test to see if the opener of the socket had when the socket was created
188  * and the current process has the capability @cap over the network namespace
189  * the socket is a member of.
190  */
191 bool sk_net_capable(const struct sock *sk, int cap)
192 {
193 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194 }
195 EXPORT_SYMBOL(sk_net_capable);
196 
197 /*
198  * Each address family might have different locking rules, so we have
199  * one slock key per address family and separate keys for internal and
200  * userspace sockets.
201  */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_keys[AF_MAX];
204 static struct lock_class_key af_family_slock_keys[AF_MAX];
205 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
206 
207 /*
208  * Make lock validator output more readable. (we pre-construct these
209  * strings build-time, so that runtime initialization of socket
210  * locks is fast):
211  */
212 
213 #define _sock_locks(x)						  \
214   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
215   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
216   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
217   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
218   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
219   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
220   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
221   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
222   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
223   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
224   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
225   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
226   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
227   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
228   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
229   x "AF_MCTP"  , \
230   x "AF_MAX"
231 
232 static const char *const af_family_key_strings[AF_MAX+1] = {
233 	_sock_locks("sk_lock-")
234 };
235 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
236 	_sock_locks("slock-")
237 };
238 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
239 	_sock_locks("clock-")
240 };
241 
242 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
243 	_sock_locks("k-sk_lock-")
244 };
245 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
246 	_sock_locks("k-slock-")
247 };
248 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
249 	_sock_locks("k-clock-")
250 };
251 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
252 	_sock_locks("rlock-")
253 };
254 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
255 	_sock_locks("wlock-")
256 };
257 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
258 	_sock_locks("elock-")
259 };
260 
261 /*
262  * sk_callback_lock and sk queues locking rules are per-address-family,
263  * so split the lock classes by using a per-AF key:
264  */
265 static struct lock_class_key af_callback_keys[AF_MAX];
266 static struct lock_class_key af_rlock_keys[AF_MAX];
267 static struct lock_class_key af_wlock_keys[AF_MAX];
268 static struct lock_class_key af_elock_keys[AF_MAX];
269 static struct lock_class_key af_kern_callback_keys[AF_MAX];
270 
271 /* Run time adjustable parameters. */
272 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
273 EXPORT_SYMBOL(sysctl_wmem_max);
274 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
275 EXPORT_SYMBOL(sysctl_rmem_max);
276 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
277 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
278 
279 /* Maximal space eaten by iovec or ancillary data plus some space */
280 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
281 EXPORT_SYMBOL(sysctl_optmem_max);
282 
283 int sysctl_tstamp_allow_data __read_mostly = 1;
284 
285 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
286 EXPORT_SYMBOL_GPL(memalloc_socks_key);
287 
288 /**
289  * sk_set_memalloc - sets %SOCK_MEMALLOC
290  * @sk: socket to set it on
291  *
292  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
293  * It's the responsibility of the admin to adjust min_free_kbytes
294  * to meet the requirements
295  */
296 void sk_set_memalloc(struct sock *sk)
297 {
298 	sock_set_flag(sk, SOCK_MEMALLOC);
299 	sk->sk_allocation |= __GFP_MEMALLOC;
300 	static_branch_inc(&memalloc_socks_key);
301 }
302 EXPORT_SYMBOL_GPL(sk_set_memalloc);
303 
304 void sk_clear_memalloc(struct sock *sk)
305 {
306 	sock_reset_flag(sk, SOCK_MEMALLOC);
307 	sk->sk_allocation &= ~__GFP_MEMALLOC;
308 	static_branch_dec(&memalloc_socks_key);
309 
310 	/*
311 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
312 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
313 	 * it has rmem allocations due to the last swapfile being deactivated
314 	 * but there is a risk that the socket is unusable due to exceeding
315 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
316 	 */
317 	sk_mem_reclaim(sk);
318 }
319 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
320 
321 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
322 {
323 	int ret;
324 	unsigned int noreclaim_flag;
325 
326 	/* these should have been dropped before queueing */
327 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
328 
329 	noreclaim_flag = memalloc_noreclaim_save();
330 	ret = sk->sk_backlog_rcv(sk, skb);
331 	memalloc_noreclaim_restore(noreclaim_flag);
332 
333 	return ret;
334 }
335 EXPORT_SYMBOL(__sk_backlog_rcv);
336 
337 void sk_error_report(struct sock *sk)
338 {
339 	sk->sk_error_report(sk);
340 
341 	switch (sk->sk_family) {
342 	case AF_INET:
343 		fallthrough;
344 	case AF_INET6:
345 		trace_inet_sk_error_report(sk);
346 		break;
347 	default:
348 		break;
349 	}
350 }
351 EXPORT_SYMBOL(sk_error_report);
352 
353 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
354 {
355 	struct __kernel_sock_timeval tv;
356 
357 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
358 		tv.tv_sec = 0;
359 		tv.tv_usec = 0;
360 	} else {
361 		tv.tv_sec = timeo / HZ;
362 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
363 	}
364 
365 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
366 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
367 		*(struct old_timeval32 *)optval = tv32;
368 		return sizeof(tv32);
369 	}
370 
371 	if (old_timeval) {
372 		struct __kernel_old_timeval old_tv;
373 		old_tv.tv_sec = tv.tv_sec;
374 		old_tv.tv_usec = tv.tv_usec;
375 		*(struct __kernel_old_timeval *)optval = old_tv;
376 		return sizeof(old_tv);
377 	}
378 
379 	*(struct __kernel_sock_timeval *)optval = tv;
380 	return sizeof(tv);
381 }
382 EXPORT_SYMBOL(sock_get_timeout);
383 
384 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
385 			   sockptr_t optval, int optlen, bool old_timeval)
386 {
387 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
388 		struct old_timeval32 tv32;
389 
390 		if (optlen < sizeof(tv32))
391 			return -EINVAL;
392 
393 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
394 			return -EFAULT;
395 		tv->tv_sec = tv32.tv_sec;
396 		tv->tv_usec = tv32.tv_usec;
397 	} else if (old_timeval) {
398 		struct __kernel_old_timeval old_tv;
399 
400 		if (optlen < sizeof(old_tv))
401 			return -EINVAL;
402 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
403 			return -EFAULT;
404 		tv->tv_sec = old_tv.tv_sec;
405 		tv->tv_usec = old_tv.tv_usec;
406 	} else {
407 		if (optlen < sizeof(*tv))
408 			return -EINVAL;
409 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
410 			return -EFAULT;
411 	}
412 
413 	return 0;
414 }
415 EXPORT_SYMBOL(sock_copy_user_timeval);
416 
417 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
418 			    bool old_timeval)
419 {
420 	struct __kernel_sock_timeval tv;
421 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
422 
423 	if (err)
424 		return err;
425 
426 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
427 		return -EDOM;
428 
429 	if (tv.tv_sec < 0) {
430 		static int warned __read_mostly;
431 
432 		*timeo_p = 0;
433 		if (warned < 10 && net_ratelimit()) {
434 			warned++;
435 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
436 				__func__, current->comm, task_pid_nr(current));
437 		}
438 		return 0;
439 	}
440 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
441 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
442 		return 0;
443 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
444 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
445 	return 0;
446 }
447 
448 static bool sock_needs_netstamp(const struct sock *sk)
449 {
450 	switch (sk->sk_family) {
451 	case AF_UNSPEC:
452 	case AF_UNIX:
453 		return false;
454 	default:
455 		return true;
456 	}
457 }
458 
459 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
460 {
461 	if (sk->sk_flags & flags) {
462 		sk->sk_flags &= ~flags;
463 		if (sock_needs_netstamp(sk) &&
464 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
465 			net_disable_timestamp();
466 	}
467 }
468 
469 
470 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
471 {
472 	unsigned long flags;
473 	struct sk_buff_head *list = &sk->sk_receive_queue;
474 
475 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
476 		atomic_inc(&sk->sk_drops);
477 		trace_sock_rcvqueue_full(sk, skb);
478 		return -ENOMEM;
479 	}
480 
481 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
482 		atomic_inc(&sk->sk_drops);
483 		return -ENOBUFS;
484 	}
485 
486 	skb->dev = NULL;
487 	skb_set_owner_r(skb, sk);
488 
489 	/* we escape from rcu protected region, make sure we dont leak
490 	 * a norefcounted dst
491 	 */
492 	skb_dst_force(skb);
493 
494 	spin_lock_irqsave(&list->lock, flags);
495 	sock_skb_set_dropcount(sk, skb);
496 	__skb_queue_tail(list, skb);
497 	spin_unlock_irqrestore(&list->lock, flags);
498 
499 	if (!sock_flag(sk, SOCK_DEAD))
500 		sk->sk_data_ready(sk);
501 	return 0;
502 }
503 EXPORT_SYMBOL(__sock_queue_rcv_skb);
504 
505 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
506 {
507 	int err;
508 
509 	err = sk_filter(sk, skb);
510 	if (err)
511 		return err;
512 
513 	return __sock_queue_rcv_skb(sk, skb);
514 }
515 EXPORT_SYMBOL(sock_queue_rcv_skb);
516 
517 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
518 		     const int nested, unsigned int trim_cap, bool refcounted)
519 {
520 	int rc = NET_RX_SUCCESS;
521 
522 	if (sk_filter_trim_cap(sk, skb, trim_cap))
523 		goto discard_and_relse;
524 
525 	skb->dev = NULL;
526 
527 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
528 		atomic_inc(&sk->sk_drops);
529 		goto discard_and_relse;
530 	}
531 	if (nested)
532 		bh_lock_sock_nested(sk);
533 	else
534 		bh_lock_sock(sk);
535 	if (!sock_owned_by_user(sk)) {
536 		/*
537 		 * trylock + unlock semantics:
538 		 */
539 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
540 
541 		rc = sk_backlog_rcv(sk, skb);
542 
543 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
544 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
545 		bh_unlock_sock(sk);
546 		atomic_inc(&sk->sk_drops);
547 		goto discard_and_relse;
548 	}
549 
550 	bh_unlock_sock(sk);
551 out:
552 	if (refcounted)
553 		sock_put(sk);
554 	return rc;
555 discard_and_relse:
556 	kfree_skb(skb);
557 	goto out;
558 }
559 EXPORT_SYMBOL(__sk_receive_skb);
560 
561 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
562 							  u32));
563 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
564 							   u32));
565 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
566 {
567 	struct dst_entry *dst = __sk_dst_get(sk);
568 
569 	if (dst && dst->obsolete &&
570 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
571 			       dst, cookie) == NULL) {
572 		sk_tx_queue_clear(sk);
573 		sk->sk_dst_pending_confirm = 0;
574 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
575 		dst_release(dst);
576 		return NULL;
577 	}
578 
579 	return dst;
580 }
581 EXPORT_SYMBOL(__sk_dst_check);
582 
583 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
584 {
585 	struct dst_entry *dst = sk_dst_get(sk);
586 
587 	if (dst && dst->obsolete &&
588 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
589 			       dst, cookie) == NULL) {
590 		sk_dst_reset(sk);
591 		dst_release(dst);
592 		return NULL;
593 	}
594 
595 	return dst;
596 }
597 EXPORT_SYMBOL(sk_dst_check);
598 
599 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
600 {
601 	int ret = -ENOPROTOOPT;
602 #ifdef CONFIG_NETDEVICES
603 	struct net *net = sock_net(sk);
604 
605 	/* Sorry... */
606 	ret = -EPERM;
607 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
608 		goto out;
609 
610 	ret = -EINVAL;
611 	if (ifindex < 0)
612 		goto out;
613 
614 	sk->sk_bound_dev_if = ifindex;
615 	if (sk->sk_prot->rehash)
616 		sk->sk_prot->rehash(sk);
617 	sk_dst_reset(sk);
618 
619 	ret = 0;
620 
621 out:
622 #endif
623 
624 	return ret;
625 }
626 
627 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
628 {
629 	int ret;
630 
631 	if (lock_sk)
632 		lock_sock(sk);
633 	ret = sock_bindtoindex_locked(sk, ifindex);
634 	if (lock_sk)
635 		release_sock(sk);
636 
637 	return ret;
638 }
639 EXPORT_SYMBOL(sock_bindtoindex);
640 
641 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
642 {
643 	int ret = -ENOPROTOOPT;
644 #ifdef CONFIG_NETDEVICES
645 	struct net *net = sock_net(sk);
646 	char devname[IFNAMSIZ];
647 	int index;
648 
649 	ret = -EINVAL;
650 	if (optlen < 0)
651 		goto out;
652 
653 	/* Bind this socket to a particular device like "eth0",
654 	 * as specified in the passed interface name. If the
655 	 * name is "" or the option length is zero the socket
656 	 * is not bound.
657 	 */
658 	if (optlen > IFNAMSIZ - 1)
659 		optlen = IFNAMSIZ - 1;
660 	memset(devname, 0, sizeof(devname));
661 
662 	ret = -EFAULT;
663 	if (copy_from_sockptr(devname, optval, optlen))
664 		goto out;
665 
666 	index = 0;
667 	if (devname[0] != '\0') {
668 		struct net_device *dev;
669 
670 		rcu_read_lock();
671 		dev = dev_get_by_name_rcu(net, devname);
672 		if (dev)
673 			index = dev->ifindex;
674 		rcu_read_unlock();
675 		ret = -ENODEV;
676 		if (!dev)
677 			goto out;
678 	}
679 
680 	return sock_bindtoindex(sk, index, true);
681 out:
682 #endif
683 
684 	return ret;
685 }
686 
687 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
688 				int __user *optlen, int len)
689 {
690 	int ret = -ENOPROTOOPT;
691 #ifdef CONFIG_NETDEVICES
692 	struct net *net = sock_net(sk);
693 	char devname[IFNAMSIZ];
694 
695 	if (sk->sk_bound_dev_if == 0) {
696 		len = 0;
697 		goto zero;
698 	}
699 
700 	ret = -EINVAL;
701 	if (len < IFNAMSIZ)
702 		goto out;
703 
704 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
705 	if (ret)
706 		goto out;
707 
708 	len = strlen(devname) + 1;
709 
710 	ret = -EFAULT;
711 	if (copy_to_user(optval, devname, len))
712 		goto out;
713 
714 zero:
715 	ret = -EFAULT;
716 	if (put_user(len, optlen))
717 		goto out;
718 
719 	ret = 0;
720 
721 out:
722 #endif
723 
724 	return ret;
725 }
726 
727 bool sk_mc_loop(struct sock *sk)
728 {
729 	if (dev_recursion_level())
730 		return false;
731 	if (!sk)
732 		return true;
733 	switch (sk->sk_family) {
734 	case AF_INET:
735 		return inet_sk(sk)->mc_loop;
736 #if IS_ENABLED(CONFIG_IPV6)
737 	case AF_INET6:
738 		return inet6_sk(sk)->mc_loop;
739 #endif
740 	}
741 	WARN_ON_ONCE(1);
742 	return true;
743 }
744 EXPORT_SYMBOL(sk_mc_loop);
745 
746 void sock_set_reuseaddr(struct sock *sk)
747 {
748 	lock_sock(sk);
749 	sk->sk_reuse = SK_CAN_REUSE;
750 	release_sock(sk);
751 }
752 EXPORT_SYMBOL(sock_set_reuseaddr);
753 
754 void sock_set_reuseport(struct sock *sk)
755 {
756 	lock_sock(sk);
757 	sk->sk_reuseport = true;
758 	release_sock(sk);
759 }
760 EXPORT_SYMBOL(sock_set_reuseport);
761 
762 void sock_no_linger(struct sock *sk)
763 {
764 	lock_sock(sk);
765 	sk->sk_lingertime = 0;
766 	sock_set_flag(sk, SOCK_LINGER);
767 	release_sock(sk);
768 }
769 EXPORT_SYMBOL(sock_no_linger);
770 
771 void sock_set_priority(struct sock *sk, u32 priority)
772 {
773 	lock_sock(sk);
774 	sk->sk_priority = priority;
775 	release_sock(sk);
776 }
777 EXPORT_SYMBOL(sock_set_priority);
778 
779 void sock_set_sndtimeo(struct sock *sk, s64 secs)
780 {
781 	lock_sock(sk);
782 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
783 		sk->sk_sndtimeo = secs * HZ;
784 	else
785 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
786 	release_sock(sk);
787 }
788 EXPORT_SYMBOL(sock_set_sndtimeo);
789 
790 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
791 {
792 	if (val)  {
793 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
794 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
795 		sock_set_flag(sk, SOCK_RCVTSTAMP);
796 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
797 	} else {
798 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
799 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
800 	}
801 }
802 
803 void sock_enable_timestamps(struct sock *sk)
804 {
805 	lock_sock(sk);
806 	__sock_set_timestamps(sk, true, false, true);
807 	release_sock(sk);
808 }
809 EXPORT_SYMBOL(sock_enable_timestamps);
810 
811 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
812 {
813 	switch (optname) {
814 	case SO_TIMESTAMP_OLD:
815 		__sock_set_timestamps(sk, valbool, false, false);
816 		break;
817 	case SO_TIMESTAMP_NEW:
818 		__sock_set_timestamps(sk, valbool, true, false);
819 		break;
820 	case SO_TIMESTAMPNS_OLD:
821 		__sock_set_timestamps(sk, valbool, false, true);
822 		break;
823 	case SO_TIMESTAMPNS_NEW:
824 		__sock_set_timestamps(sk, valbool, true, true);
825 		break;
826 	}
827 }
828 
829 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
830 {
831 	struct net *net = sock_net(sk);
832 	struct net_device *dev = NULL;
833 	bool match = false;
834 	int *vclock_index;
835 	int i, num;
836 
837 	if (sk->sk_bound_dev_if)
838 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
839 
840 	if (!dev) {
841 		pr_err("%s: sock not bind to device\n", __func__);
842 		return -EOPNOTSUPP;
843 	}
844 
845 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
846 	for (i = 0; i < num; i++) {
847 		if (*(vclock_index + i) == phc_index) {
848 			match = true;
849 			break;
850 		}
851 	}
852 
853 	if (num > 0)
854 		kfree(vclock_index);
855 
856 	if (!match)
857 		return -EINVAL;
858 
859 	sk->sk_bind_phc = phc_index;
860 
861 	return 0;
862 }
863 
864 int sock_set_timestamping(struct sock *sk, int optname,
865 			  struct so_timestamping timestamping)
866 {
867 	int val = timestamping.flags;
868 	int ret;
869 
870 	if (val & ~SOF_TIMESTAMPING_MASK)
871 		return -EINVAL;
872 
873 	if (val & SOF_TIMESTAMPING_OPT_ID &&
874 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
875 		if (sk->sk_protocol == IPPROTO_TCP &&
876 		    sk->sk_type == SOCK_STREAM) {
877 			if ((1 << sk->sk_state) &
878 			    (TCPF_CLOSE | TCPF_LISTEN))
879 				return -EINVAL;
880 			sk->sk_tskey = tcp_sk(sk)->snd_una;
881 		} else {
882 			sk->sk_tskey = 0;
883 		}
884 	}
885 
886 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
887 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
888 		return -EINVAL;
889 
890 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
891 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
892 		if (ret)
893 			return ret;
894 	}
895 
896 	sk->sk_tsflags = val;
897 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
898 
899 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
900 		sock_enable_timestamp(sk,
901 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
902 	else
903 		sock_disable_timestamp(sk,
904 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
905 	return 0;
906 }
907 
908 void sock_set_keepalive(struct sock *sk)
909 {
910 	lock_sock(sk);
911 	if (sk->sk_prot->keepalive)
912 		sk->sk_prot->keepalive(sk, true);
913 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
914 	release_sock(sk);
915 }
916 EXPORT_SYMBOL(sock_set_keepalive);
917 
918 static void __sock_set_rcvbuf(struct sock *sk, int val)
919 {
920 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
921 	 * as a negative value.
922 	 */
923 	val = min_t(int, val, INT_MAX / 2);
924 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
925 
926 	/* We double it on the way in to account for "struct sk_buff" etc.
927 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
928 	 * will allow that much actual data to be received on that socket.
929 	 *
930 	 * Applications are unaware that "struct sk_buff" and other overheads
931 	 * allocate from the receive buffer during socket buffer allocation.
932 	 *
933 	 * And after considering the possible alternatives, returning the value
934 	 * we actually used in getsockopt is the most desirable behavior.
935 	 */
936 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
937 }
938 
939 void sock_set_rcvbuf(struct sock *sk, int val)
940 {
941 	lock_sock(sk);
942 	__sock_set_rcvbuf(sk, val);
943 	release_sock(sk);
944 }
945 EXPORT_SYMBOL(sock_set_rcvbuf);
946 
947 static void __sock_set_mark(struct sock *sk, u32 val)
948 {
949 	if (val != sk->sk_mark) {
950 		sk->sk_mark = val;
951 		sk_dst_reset(sk);
952 	}
953 }
954 
955 void sock_set_mark(struct sock *sk, u32 val)
956 {
957 	lock_sock(sk);
958 	__sock_set_mark(sk, val);
959 	release_sock(sk);
960 }
961 EXPORT_SYMBOL(sock_set_mark);
962 
963 static void sock_release_reserved_memory(struct sock *sk, int bytes)
964 {
965 	/* Round down bytes to multiple of pages */
966 	bytes &= ~(SK_MEM_QUANTUM - 1);
967 
968 	WARN_ON(bytes > sk->sk_reserved_mem);
969 	sk->sk_reserved_mem -= bytes;
970 	sk_mem_reclaim(sk);
971 }
972 
973 static int sock_reserve_memory(struct sock *sk, int bytes)
974 {
975 	long allocated;
976 	bool charged;
977 	int pages;
978 
979 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
980 		return -EOPNOTSUPP;
981 
982 	if (!bytes)
983 		return 0;
984 
985 	pages = sk_mem_pages(bytes);
986 
987 	/* pre-charge to memcg */
988 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
989 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
990 	if (!charged)
991 		return -ENOMEM;
992 
993 	/* pre-charge to forward_alloc */
994 	allocated = sk_memory_allocated_add(sk, pages);
995 	/* If the system goes into memory pressure with this
996 	 * precharge, give up and return error.
997 	 */
998 	if (allocated > sk_prot_mem_limits(sk, 1)) {
999 		sk_memory_allocated_sub(sk, pages);
1000 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1001 		return -ENOMEM;
1002 	}
1003 	sk->sk_forward_alloc += pages << SK_MEM_QUANTUM_SHIFT;
1004 
1005 	sk->sk_reserved_mem += pages << SK_MEM_QUANTUM_SHIFT;
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  *	This is meant for all protocols to use and covers goings on
1012  *	at the socket level. Everything here is generic.
1013  */
1014 
1015 int sock_setsockopt(struct socket *sock, int level, int optname,
1016 		    sockptr_t optval, unsigned int optlen)
1017 {
1018 	struct so_timestamping timestamping;
1019 	struct sock_txtime sk_txtime;
1020 	struct sock *sk = sock->sk;
1021 	int val;
1022 	int valbool;
1023 	struct linger ling;
1024 	int ret = 0;
1025 
1026 	/*
1027 	 *	Options without arguments
1028 	 */
1029 
1030 	if (optname == SO_BINDTODEVICE)
1031 		return sock_setbindtodevice(sk, optval, optlen);
1032 
1033 	if (optlen < sizeof(int))
1034 		return -EINVAL;
1035 
1036 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1037 		return -EFAULT;
1038 
1039 	valbool = val ? 1 : 0;
1040 
1041 	lock_sock(sk);
1042 
1043 	switch (optname) {
1044 	case SO_DEBUG:
1045 		if (val && !capable(CAP_NET_ADMIN))
1046 			ret = -EACCES;
1047 		else
1048 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1049 		break;
1050 	case SO_REUSEADDR:
1051 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1052 		break;
1053 	case SO_REUSEPORT:
1054 		sk->sk_reuseport = valbool;
1055 		break;
1056 	case SO_TYPE:
1057 	case SO_PROTOCOL:
1058 	case SO_DOMAIN:
1059 	case SO_ERROR:
1060 		ret = -ENOPROTOOPT;
1061 		break;
1062 	case SO_DONTROUTE:
1063 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1064 		sk_dst_reset(sk);
1065 		break;
1066 	case SO_BROADCAST:
1067 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1068 		break;
1069 	case SO_SNDBUF:
1070 		/* Don't error on this BSD doesn't and if you think
1071 		 * about it this is right. Otherwise apps have to
1072 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1073 		 * are treated in BSD as hints
1074 		 */
1075 		val = min_t(u32, val, sysctl_wmem_max);
1076 set_sndbuf:
1077 		/* Ensure val * 2 fits into an int, to prevent max_t()
1078 		 * from treating it as a negative value.
1079 		 */
1080 		val = min_t(int, val, INT_MAX / 2);
1081 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1082 		WRITE_ONCE(sk->sk_sndbuf,
1083 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1084 		/* Wake up sending tasks if we upped the value. */
1085 		sk->sk_write_space(sk);
1086 		break;
1087 
1088 	case SO_SNDBUFFORCE:
1089 		if (!capable(CAP_NET_ADMIN)) {
1090 			ret = -EPERM;
1091 			break;
1092 		}
1093 
1094 		/* No negative values (to prevent underflow, as val will be
1095 		 * multiplied by 2).
1096 		 */
1097 		if (val < 0)
1098 			val = 0;
1099 		goto set_sndbuf;
1100 
1101 	case SO_RCVBUF:
1102 		/* Don't error on this BSD doesn't and if you think
1103 		 * about it this is right. Otherwise apps have to
1104 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1105 		 * are treated in BSD as hints
1106 		 */
1107 		__sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1108 		break;
1109 
1110 	case SO_RCVBUFFORCE:
1111 		if (!capable(CAP_NET_ADMIN)) {
1112 			ret = -EPERM;
1113 			break;
1114 		}
1115 
1116 		/* No negative values (to prevent underflow, as val will be
1117 		 * multiplied by 2).
1118 		 */
1119 		__sock_set_rcvbuf(sk, max(val, 0));
1120 		break;
1121 
1122 	case SO_KEEPALIVE:
1123 		if (sk->sk_prot->keepalive)
1124 			sk->sk_prot->keepalive(sk, valbool);
1125 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1126 		break;
1127 
1128 	case SO_OOBINLINE:
1129 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1130 		break;
1131 
1132 	case SO_NO_CHECK:
1133 		sk->sk_no_check_tx = valbool;
1134 		break;
1135 
1136 	case SO_PRIORITY:
1137 		if ((val >= 0 && val <= 6) ||
1138 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1139 			sk->sk_priority = val;
1140 		else
1141 			ret = -EPERM;
1142 		break;
1143 
1144 	case SO_LINGER:
1145 		if (optlen < sizeof(ling)) {
1146 			ret = -EINVAL;	/* 1003.1g */
1147 			break;
1148 		}
1149 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1150 			ret = -EFAULT;
1151 			break;
1152 		}
1153 		if (!ling.l_onoff)
1154 			sock_reset_flag(sk, SOCK_LINGER);
1155 		else {
1156 #if (BITS_PER_LONG == 32)
1157 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1158 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1159 			else
1160 #endif
1161 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1162 			sock_set_flag(sk, SOCK_LINGER);
1163 		}
1164 		break;
1165 
1166 	case SO_BSDCOMPAT:
1167 		break;
1168 
1169 	case SO_PASSCRED:
1170 		if (valbool)
1171 			set_bit(SOCK_PASSCRED, &sock->flags);
1172 		else
1173 			clear_bit(SOCK_PASSCRED, &sock->flags);
1174 		break;
1175 
1176 	case SO_TIMESTAMP_OLD:
1177 	case SO_TIMESTAMP_NEW:
1178 	case SO_TIMESTAMPNS_OLD:
1179 	case SO_TIMESTAMPNS_NEW:
1180 		sock_set_timestamp(sk, optname, valbool);
1181 		break;
1182 
1183 	case SO_TIMESTAMPING_NEW:
1184 	case SO_TIMESTAMPING_OLD:
1185 		if (optlen == sizeof(timestamping)) {
1186 			if (copy_from_sockptr(&timestamping, optval,
1187 					      sizeof(timestamping))) {
1188 				ret = -EFAULT;
1189 				break;
1190 			}
1191 		} else {
1192 			memset(&timestamping, 0, sizeof(timestamping));
1193 			timestamping.flags = val;
1194 		}
1195 		ret = sock_set_timestamping(sk, optname, timestamping);
1196 		break;
1197 
1198 	case SO_RCVLOWAT:
1199 		if (val < 0)
1200 			val = INT_MAX;
1201 		if (sock->ops->set_rcvlowat)
1202 			ret = sock->ops->set_rcvlowat(sk, val);
1203 		else
1204 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1205 		break;
1206 
1207 	case SO_RCVTIMEO_OLD:
1208 	case SO_RCVTIMEO_NEW:
1209 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1210 				       optlen, optname == SO_RCVTIMEO_OLD);
1211 		break;
1212 
1213 	case SO_SNDTIMEO_OLD:
1214 	case SO_SNDTIMEO_NEW:
1215 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1216 				       optlen, optname == SO_SNDTIMEO_OLD);
1217 		break;
1218 
1219 	case SO_ATTACH_FILTER: {
1220 		struct sock_fprog fprog;
1221 
1222 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1223 		if (!ret)
1224 			ret = sk_attach_filter(&fprog, sk);
1225 		break;
1226 	}
1227 	case SO_ATTACH_BPF:
1228 		ret = -EINVAL;
1229 		if (optlen == sizeof(u32)) {
1230 			u32 ufd;
1231 
1232 			ret = -EFAULT;
1233 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1234 				break;
1235 
1236 			ret = sk_attach_bpf(ufd, sk);
1237 		}
1238 		break;
1239 
1240 	case SO_ATTACH_REUSEPORT_CBPF: {
1241 		struct sock_fprog fprog;
1242 
1243 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1244 		if (!ret)
1245 			ret = sk_reuseport_attach_filter(&fprog, sk);
1246 		break;
1247 	}
1248 	case SO_ATTACH_REUSEPORT_EBPF:
1249 		ret = -EINVAL;
1250 		if (optlen == sizeof(u32)) {
1251 			u32 ufd;
1252 
1253 			ret = -EFAULT;
1254 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1255 				break;
1256 
1257 			ret = sk_reuseport_attach_bpf(ufd, sk);
1258 		}
1259 		break;
1260 
1261 	case SO_DETACH_REUSEPORT_BPF:
1262 		ret = reuseport_detach_prog(sk);
1263 		break;
1264 
1265 	case SO_DETACH_FILTER:
1266 		ret = sk_detach_filter(sk);
1267 		break;
1268 
1269 	case SO_LOCK_FILTER:
1270 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1271 			ret = -EPERM;
1272 		else
1273 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1274 		break;
1275 
1276 	case SO_PASSSEC:
1277 		if (valbool)
1278 			set_bit(SOCK_PASSSEC, &sock->flags);
1279 		else
1280 			clear_bit(SOCK_PASSSEC, &sock->flags);
1281 		break;
1282 	case SO_MARK:
1283 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1284 			ret = -EPERM;
1285 			break;
1286 		}
1287 
1288 		__sock_set_mark(sk, val);
1289 		break;
1290 
1291 	case SO_RXQ_OVFL:
1292 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1293 		break;
1294 
1295 	case SO_WIFI_STATUS:
1296 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1297 		break;
1298 
1299 	case SO_PEEK_OFF:
1300 		if (sock->ops->set_peek_off)
1301 			ret = sock->ops->set_peek_off(sk, val);
1302 		else
1303 			ret = -EOPNOTSUPP;
1304 		break;
1305 
1306 	case SO_NOFCS:
1307 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1308 		break;
1309 
1310 	case SO_SELECT_ERR_QUEUE:
1311 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1312 		break;
1313 
1314 #ifdef CONFIG_NET_RX_BUSY_POLL
1315 	case SO_BUSY_POLL:
1316 		/* allow unprivileged users to decrease the value */
1317 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1318 			ret = -EPERM;
1319 		else {
1320 			if (val < 0)
1321 				ret = -EINVAL;
1322 			else
1323 				WRITE_ONCE(sk->sk_ll_usec, val);
1324 		}
1325 		break;
1326 	case SO_PREFER_BUSY_POLL:
1327 		if (valbool && !capable(CAP_NET_ADMIN))
1328 			ret = -EPERM;
1329 		else
1330 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1331 		break;
1332 	case SO_BUSY_POLL_BUDGET:
1333 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1334 			ret = -EPERM;
1335 		} else {
1336 			if (val < 0 || val > U16_MAX)
1337 				ret = -EINVAL;
1338 			else
1339 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1340 		}
1341 		break;
1342 #endif
1343 
1344 	case SO_MAX_PACING_RATE:
1345 		{
1346 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1347 
1348 		if (sizeof(ulval) != sizeof(val) &&
1349 		    optlen >= sizeof(ulval) &&
1350 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1351 			ret = -EFAULT;
1352 			break;
1353 		}
1354 		if (ulval != ~0UL)
1355 			cmpxchg(&sk->sk_pacing_status,
1356 				SK_PACING_NONE,
1357 				SK_PACING_NEEDED);
1358 		sk->sk_max_pacing_rate = ulval;
1359 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1360 		break;
1361 		}
1362 	case SO_INCOMING_CPU:
1363 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1364 		break;
1365 
1366 	case SO_CNX_ADVICE:
1367 		if (val == 1)
1368 			dst_negative_advice(sk);
1369 		break;
1370 
1371 	case SO_ZEROCOPY:
1372 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1373 			if (!((sk->sk_type == SOCK_STREAM &&
1374 			       sk->sk_protocol == IPPROTO_TCP) ||
1375 			      (sk->sk_type == SOCK_DGRAM &&
1376 			       sk->sk_protocol == IPPROTO_UDP)))
1377 				ret = -ENOTSUPP;
1378 		} else if (sk->sk_family != PF_RDS) {
1379 			ret = -ENOTSUPP;
1380 		}
1381 		if (!ret) {
1382 			if (val < 0 || val > 1)
1383 				ret = -EINVAL;
1384 			else
1385 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1386 		}
1387 		break;
1388 
1389 	case SO_TXTIME:
1390 		if (optlen != sizeof(struct sock_txtime)) {
1391 			ret = -EINVAL;
1392 			break;
1393 		} else if (copy_from_sockptr(&sk_txtime, optval,
1394 			   sizeof(struct sock_txtime))) {
1395 			ret = -EFAULT;
1396 			break;
1397 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1398 			ret = -EINVAL;
1399 			break;
1400 		}
1401 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1402 		 * scheduler has enough safe guards.
1403 		 */
1404 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1405 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1406 			ret = -EPERM;
1407 			break;
1408 		}
1409 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1410 		sk->sk_clockid = sk_txtime.clockid;
1411 		sk->sk_txtime_deadline_mode =
1412 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1413 		sk->sk_txtime_report_errors =
1414 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1415 		break;
1416 
1417 	case SO_BINDTOIFINDEX:
1418 		ret = sock_bindtoindex_locked(sk, val);
1419 		break;
1420 
1421 	case SO_BUF_LOCK:
1422 		if (val & ~SOCK_BUF_LOCK_MASK) {
1423 			ret = -EINVAL;
1424 			break;
1425 		}
1426 		sk->sk_userlocks = val | (sk->sk_userlocks &
1427 					  ~SOCK_BUF_LOCK_MASK);
1428 		break;
1429 
1430 	case SO_RESERVE_MEM:
1431 	{
1432 		int delta;
1433 
1434 		if (val < 0) {
1435 			ret = -EINVAL;
1436 			break;
1437 		}
1438 
1439 		delta = val - sk->sk_reserved_mem;
1440 		if (delta < 0)
1441 			sock_release_reserved_memory(sk, -delta);
1442 		else
1443 			ret = sock_reserve_memory(sk, delta);
1444 		break;
1445 	}
1446 
1447 	default:
1448 		ret = -ENOPROTOOPT;
1449 		break;
1450 	}
1451 	release_sock(sk);
1452 	return ret;
1453 }
1454 EXPORT_SYMBOL(sock_setsockopt);
1455 
1456 static const struct cred *sk_get_peer_cred(struct sock *sk)
1457 {
1458 	const struct cred *cred;
1459 
1460 	spin_lock(&sk->sk_peer_lock);
1461 	cred = get_cred(sk->sk_peer_cred);
1462 	spin_unlock(&sk->sk_peer_lock);
1463 
1464 	return cred;
1465 }
1466 
1467 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1468 			  struct ucred *ucred)
1469 {
1470 	ucred->pid = pid_vnr(pid);
1471 	ucred->uid = ucred->gid = -1;
1472 	if (cred) {
1473 		struct user_namespace *current_ns = current_user_ns();
1474 
1475 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1476 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1477 	}
1478 }
1479 
1480 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1481 {
1482 	struct user_namespace *user_ns = current_user_ns();
1483 	int i;
1484 
1485 	for (i = 0; i < src->ngroups; i++)
1486 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1487 			return -EFAULT;
1488 
1489 	return 0;
1490 }
1491 
1492 int sock_getsockopt(struct socket *sock, int level, int optname,
1493 		    char __user *optval, int __user *optlen)
1494 {
1495 	struct sock *sk = sock->sk;
1496 
1497 	union {
1498 		int val;
1499 		u64 val64;
1500 		unsigned long ulval;
1501 		struct linger ling;
1502 		struct old_timeval32 tm32;
1503 		struct __kernel_old_timeval tm;
1504 		struct  __kernel_sock_timeval stm;
1505 		struct sock_txtime txtime;
1506 		struct so_timestamping timestamping;
1507 	} v;
1508 
1509 	int lv = sizeof(int);
1510 	int len;
1511 
1512 	if (get_user(len, optlen))
1513 		return -EFAULT;
1514 	if (len < 0)
1515 		return -EINVAL;
1516 
1517 	memset(&v, 0, sizeof(v));
1518 
1519 	switch (optname) {
1520 	case SO_DEBUG:
1521 		v.val = sock_flag(sk, SOCK_DBG);
1522 		break;
1523 
1524 	case SO_DONTROUTE:
1525 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1526 		break;
1527 
1528 	case SO_BROADCAST:
1529 		v.val = sock_flag(sk, SOCK_BROADCAST);
1530 		break;
1531 
1532 	case SO_SNDBUF:
1533 		v.val = sk->sk_sndbuf;
1534 		break;
1535 
1536 	case SO_RCVBUF:
1537 		v.val = sk->sk_rcvbuf;
1538 		break;
1539 
1540 	case SO_REUSEADDR:
1541 		v.val = sk->sk_reuse;
1542 		break;
1543 
1544 	case SO_REUSEPORT:
1545 		v.val = sk->sk_reuseport;
1546 		break;
1547 
1548 	case SO_KEEPALIVE:
1549 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1550 		break;
1551 
1552 	case SO_TYPE:
1553 		v.val = sk->sk_type;
1554 		break;
1555 
1556 	case SO_PROTOCOL:
1557 		v.val = sk->sk_protocol;
1558 		break;
1559 
1560 	case SO_DOMAIN:
1561 		v.val = sk->sk_family;
1562 		break;
1563 
1564 	case SO_ERROR:
1565 		v.val = -sock_error(sk);
1566 		if (v.val == 0)
1567 			v.val = xchg(&sk->sk_err_soft, 0);
1568 		break;
1569 
1570 	case SO_OOBINLINE:
1571 		v.val = sock_flag(sk, SOCK_URGINLINE);
1572 		break;
1573 
1574 	case SO_NO_CHECK:
1575 		v.val = sk->sk_no_check_tx;
1576 		break;
1577 
1578 	case SO_PRIORITY:
1579 		v.val = sk->sk_priority;
1580 		break;
1581 
1582 	case SO_LINGER:
1583 		lv		= sizeof(v.ling);
1584 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1585 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1586 		break;
1587 
1588 	case SO_BSDCOMPAT:
1589 		break;
1590 
1591 	case SO_TIMESTAMP_OLD:
1592 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1593 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1594 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1595 		break;
1596 
1597 	case SO_TIMESTAMPNS_OLD:
1598 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1599 		break;
1600 
1601 	case SO_TIMESTAMP_NEW:
1602 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1603 		break;
1604 
1605 	case SO_TIMESTAMPNS_NEW:
1606 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1607 		break;
1608 
1609 	case SO_TIMESTAMPING_OLD:
1610 		lv = sizeof(v.timestamping);
1611 		v.timestamping.flags = sk->sk_tsflags;
1612 		v.timestamping.bind_phc = sk->sk_bind_phc;
1613 		break;
1614 
1615 	case SO_RCVTIMEO_OLD:
1616 	case SO_RCVTIMEO_NEW:
1617 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1618 		break;
1619 
1620 	case SO_SNDTIMEO_OLD:
1621 	case SO_SNDTIMEO_NEW:
1622 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1623 		break;
1624 
1625 	case SO_RCVLOWAT:
1626 		v.val = sk->sk_rcvlowat;
1627 		break;
1628 
1629 	case SO_SNDLOWAT:
1630 		v.val = 1;
1631 		break;
1632 
1633 	case SO_PASSCRED:
1634 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1635 		break;
1636 
1637 	case SO_PEERCRED:
1638 	{
1639 		struct ucred peercred;
1640 		if (len > sizeof(peercred))
1641 			len = sizeof(peercred);
1642 
1643 		spin_lock(&sk->sk_peer_lock);
1644 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1645 		spin_unlock(&sk->sk_peer_lock);
1646 
1647 		if (copy_to_user(optval, &peercred, len))
1648 			return -EFAULT;
1649 		goto lenout;
1650 	}
1651 
1652 	case SO_PEERGROUPS:
1653 	{
1654 		const struct cred *cred;
1655 		int ret, n;
1656 
1657 		cred = sk_get_peer_cred(sk);
1658 		if (!cred)
1659 			return -ENODATA;
1660 
1661 		n = cred->group_info->ngroups;
1662 		if (len < n * sizeof(gid_t)) {
1663 			len = n * sizeof(gid_t);
1664 			put_cred(cred);
1665 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1666 		}
1667 		len = n * sizeof(gid_t);
1668 
1669 		ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1670 		put_cred(cred);
1671 		if (ret)
1672 			return ret;
1673 		goto lenout;
1674 	}
1675 
1676 	case SO_PEERNAME:
1677 	{
1678 		char address[128];
1679 
1680 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1681 		if (lv < 0)
1682 			return -ENOTCONN;
1683 		if (lv < len)
1684 			return -EINVAL;
1685 		if (copy_to_user(optval, address, len))
1686 			return -EFAULT;
1687 		goto lenout;
1688 	}
1689 
1690 	/* Dubious BSD thing... Probably nobody even uses it, but
1691 	 * the UNIX standard wants it for whatever reason... -DaveM
1692 	 */
1693 	case SO_ACCEPTCONN:
1694 		v.val = sk->sk_state == TCP_LISTEN;
1695 		break;
1696 
1697 	case SO_PASSSEC:
1698 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1699 		break;
1700 
1701 	case SO_PEERSEC:
1702 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1703 
1704 	case SO_MARK:
1705 		v.val = sk->sk_mark;
1706 		break;
1707 
1708 	case SO_RXQ_OVFL:
1709 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1710 		break;
1711 
1712 	case SO_WIFI_STATUS:
1713 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1714 		break;
1715 
1716 	case SO_PEEK_OFF:
1717 		if (!sock->ops->set_peek_off)
1718 			return -EOPNOTSUPP;
1719 
1720 		v.val = sk->sk_peek_off;
1721 		break;
1722 	case SO_NOFCS:
1723 		v.val = sock_flag(sk, SOCK_NOFCS);
1724 		break;
1725 
1726 	case SO_BINDTODEVICE:
1727 		return sock_getbindtodevice(sk, optval, optlen, len);
1728 
1729 	case SO_GET_FILTER:
1730 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1731 		if (len < 0)
1732 			return len;
1733 
1734 		goto lenout;
1735 
1736 	case SO_LOCK_FILTER:
1737 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1738 		break;
1739 
1740 	case SO_BPF_EXTENSIONS:
1741 		v.val = bpf_tell_extensions();
1742 		break;
1743 
1744 	case SO_SELECT_ERR_QUEUE:
1745 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1746 		break;
1747 
1748 #ifdef CONFIG_NET_RX_BUSY_POLL
1749 	case SO_BUSY_POLL:
1750 		v.val = sk->sk_ll_usec;
1751 		break;
1752 	case SO_PREFER_BUSY_POLL:
1753 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1754 		break;
1755 #endif
1756 
1757 	case SO_MAX_PACING_RATE:
1758 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1759 			lv = sizeof(v.ulval);
1760 			v.ulval = sk->sk_max_pacing_rate;
1761 		} else {
1762 			/* 32bit version */
1763 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1764 		}
1765 		break;
1766 
1767 	case SO_INCOMING_CPU:
1768 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1769 		break;
1770 
1771 	case SO_MEMINFO:
1772 	{
1773 		u32 meminfo[SK_MEMINFO_VARS];
1774 
1775 		sk_get_meminfo(sk, meminfo);
1776 
1777 		len = min_t(unsigned int, len, sizeof(meminfo));
1778 		if (copy_to_user(optval, &meminfo, len))
1779 			return -EFAULT;
1780 
1781 		goto lenout;
1782 	}
1783 
1784 #ifdef CONFIG_NET_RX_BUSY_POLL
1785 	case SO_INCOMING_NAPI_ID:
1786 		v.val = READ_ONCE(sk->sk_napi_id);
1787 
1788 		/* aggregate non-NAPI IDs down to 0 */
1789 		if (v.val < MIN_NAPI_ID)
1790 			v.val = 0;
1791 
1792 		break;
1793 #endif
1794 
1795 	case SO_COOKIE:
1796 		lv = sizeof(u64);
1797 		if (len < lv)
1798 			return -EINVAL;
1799 		v.val64 = sock_gen_cookie(sk);
1800 		break;
1801 
1802 	case SO_ZEROCOPY:
1803 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1804 		break;
1805 
1806 	case SO_TXTIME:
1807 		lv = sizeof(v.txtime);
1808 		v.txtime.clockid = sk->sk_clockid;
1809 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1810 				  SOF_TXTIME_DEADLINE_MODE : 0;
1811 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1812 				  SOF_TXTIME_REPORT_ERRORS : 0;
1813 		break;
1814 
1815 	case SO_BINDTOIFINDEX:
1816 		v.val = sk->sk_bound_dev_if;
1817 		break;
1818 
1819 	case SO_NETNS_COOKIE:
1820 		lv = sizeof(u64);
1821 		if (len != lv)
1822 			return -EINVAL;
1823 		v.val64 = sock_net(sk)->net_cookie;
1824 		break;
1825 
1826 	case SO_BUF_LOCK:
1827 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1828 		break;
1829 
1830 	case SO_RESERVE_MEM:
1831 		v.val = sk->sk_reserved_mem;
1832 		break;
1833 
1834 	default:
1835 		/* We implement the SO_SNDLOWAT etc to not be settable
1836 		 * (1003.1g 7).
1837 		 */
1838 		return -ENOPROTOOPT;
1839 	}
1840 
1841 	if (len > lv)
1842 		len = lv;
1843 	if (copy_to_user(optval, &v, len))
1844 		return -EFAULT;
1845 lenout:
1846 	if (put_user(len, optlen))
1847 		return -EFAULT;
1848 	return 0;
1849 }
1850 
1851 /*
1852  * Initialize an sk_lock.
1853  *
1854  * (We also register the sk_lock with the lock validator.)
1855  */
1856 static inline void sock_lock_init(struct sock *sk)
1857 {
1858 	if (sk->sk_kern_sock)
1859 		sock_lock_init_class_and_name(
1860 			sk,
1861 			af_family_kern_slock_key_strings[sk->sk_family],
1862 			af_family_kern_slock_keys + sk->sk_family,
1863 			af_family_kern_key_strings[sk->sk_family],
1864 			af_family_kern_keys + sk->sk_family);
1865 	else
1866 		sock_lock_init_class_and_name(
1867 			sk,
1868 			af_family_slock_key_strings[sk->sk_family],
1869 			af_family_slock_keys + sk->sk_family,
1870 			af_family_key_strings[sk->sk_family],
1871 			af_family_keys + sk->sk_family);
1872 }
1873 
1874 /*
1875  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1876  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1877  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1878  */
1879 static void sock_copy(struct sock *nsk, const struct sock *osk)
1880 {
1881 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1882 #ifdef CONFIG_SECURITY_NETWORK
1883 	void *sptr = nsk->sk_security;
1884 #endif
1885 
1886 	/* If we move sk_tx_queue_mapping out of the private section,
1887 	 * we must check if sk_tx_queue_clear() is called after
1888 	 * sock_copy() in sk_clone_lock().
1889 	 */
1890 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1891 		     offsetof(struct sock, sk_dontcopy_begin) ||
1892 		     offsetof(struct sock, sk_tx_queue_mapping) >=
1893 		     offsetof(struct sock, sk_dontcopy_end));
1894 
1895 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1896 
1897 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1898 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1899 
1900 #ifdef CONFIG_SECURITY_NETWORK
1901 	nsk->sk_security = sptr;
1902 	security_sk_clone(osk, nsk);
1903 #endif
1904 }
1905 
1906 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1907 		int family)
1908 {
1909 	struct sock *sk;
1910 	struct kmem_cache *slab;
1911 
1912 	slab = prot->slab;
1913 	if (slab != NULL) {
1914 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1915 		if (!sk)
1916 			return sk;
1917 		if (want_init_on_alloc(priority))
1918 			sk_prot_clear_nulls(sk, prot->obj_size);
1919 	} else
1920 		sk = kmalloc(prot->obj_size, priority);
1921 
1922 	if (sk != NULL) {
1923 		if (security_sk_alloc(sk, family, priority))
1924 			goto out_free;
1925 
1926 		if (!try_module_get(prot->owner))
1927 			goto out_free_sec;
1928 	}
1929 
1930 	return sk;
1931 
1932 out_free_sec:
1933 	security_sk_free(sk);
1934 out_free:
1935 	if (slab != NULL)
1936 		kmem_cache_free(slab, sk);
1937 	else
1938 		kfree(sk);
1939 	return NULL;
1940 }
1941 
1942 static void sk_prot_free(struct proto *prot, struct sock *sk)
1943 {
1944 	struct kmem_cache *slab;
1945 	struct module *owner;
1946 
1947 	owner = prot->owner;
1948 	slab = prot->slab;
1949 
1950 	cgroup_sk_free(&sk->sk_cgrp_data);
1951 	mem_cgroup_sk_free(sk);
1952 	security_sk_free(sk);
1953 	if (slab != NULL)
1954 		kmem_cache_free(slab, sk);
1955 	else
1956 		kfree(sk);
1957 	module_put(owner);
1958 }
1959 
1960 /**
1961  *	sk_alloc - All socket objects are allocated here
1962  *	@net: the applicable net namespace
1963  *	@family: protocol family
1964  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1965  *	@prot: struct proto associated with this new sock instance
1966  *	@kern: is this to be a kernel socket?
1967  */
1968 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1969 		      struct proto *prot, int kern)
1970 {
1971 	struct sock *sk;
1972 
1973 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1974 	if (sk) {
1975 		sk->sk_family = family;
1976 		/*
1977 		 * See comment in struct sock definition to understand
1978 		 * why we need sk_prot_creator -acme
1979 		 */
1980 		sk->sk_prot = sk->sk_prot_creator = prot;
1981 		sk->sk_kern_sock = kern;
1982 		sock_lock_init(sk);
1983 		sk->sk_net_refcnt = kern ? 0 : 1;
1984 		if (likely(sk->sk_net_refcnt)) {
1985 			get_net(net);
1986 			sock_inuse_add(net, 1);
1987 		}
1988 
1989 		sock_net_set(sk, net);
1990 		refcount_set(&sk->sk_wmem_alloc, 1);
1991 
1992 		mem_cgroup_sk_alloc(sk);
1993 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1994 		sock_update_classid(&sk->sk_cgrp_data);
1995 		sock_update_netprioidx(&sk->sk_cgrp_data);
1996 		sk_tx_queue_clear(sk);
1997 	}
1998 
1999 	return sk;
2000 }
2001 EXPORT_SYMBOL(sk_alloc);
2002 
2003 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2004  * grace period. This is the case for UDP sockets and TCP listeners.
2005  */
2006 static void __sk_destruct(struct rcu_head *head)
2007 {
2008 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2009 	struct sk_filter *filter;
2010 
2011 	if (sk->sk_destruct)
2012 		sk->sk_destruct(sk);
2013 
2014 	filter = rcu_dereference_check(sk->sk_filter,
2015 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2016 	if (filter) {
2017 		sk_filter_uncharge(sk, filter);
2018 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2019 	}
2020 
2021 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2022 
2023 #ifdef CONFIG_BPF_SYSCALL
2024 	bpf_sk_storage_free(sk);
2025 #endif
2026 
2027 	if (atomic_read(&sk->sk_omem_alloc))
2028 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2029 			 __func__, atomic_read(&sk->sk_omem_alloc));
2030 
2031 	if (sk->sk_frag.page) {
2032 		put_page(sk->sk_frag.page);
2033 		sk->sk_frag.page = NULL;
2034 	}
2035 
2036 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2037 	put_cred(sk->sk_peer_cred);
2038 	put_pid(sk->sk_peer_pid);
2039 
2040 	if (likely(sk->sk_net_refcnt))
2041 		put_net(sock_net(sk));
2042 	sk_prot_free(sk->sk_prot_creator, sk);
2043 }
2044 
2045 void sk_destruct(struct sock *sk)
2046 {
2047 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2048 
2049 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2050 		reuseport_detach_sock(sk);
2051 		use_call_rcu = true;
2052 	}
2053 
2054 	if (use_call_rcu)
2055 		call_rcu(&sk->sk_rcu, __sk_destruct);
2056 	else
2057 		__sk_destruct(&sk->sk_rcu);
2058 }
2059 
2060 static void __sk_free(struct sock *sk)
2061 {
2062 	if (likely(sk->sk_net_refcnt))
2063 		sock_inuse_add(sock_net(sk), -1);
2064 
2065 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2066 		sock_diag_broadcast_destroy(sk);
2067 	else
2068 		sk_destruct(sk);
2069 }
2070 
2071 void sk_free(struct sock *sk)
2072 {
2073 	/*
2074 	 * We subtract one from sk_wmem_alloc and can know if
2075 	 * some packets are still in some tx queue.
2076 	 * If not null, sock_wfree() will call __sk_free(sk) later
2077 	 */
2078 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2079 		__sk_free(sk);
2080 }
2081 EXPORT_SYMBOL(sk_free);
2082 
2083 static void sk_init_common(struct sock *sk)
2084 {
2085 	skb_queue_head_init(&sk->sk_receive_queue);
2086 	skb_queue_head_init(&sk->sk_write_queue);
2087 	skb_queue_head_init(&sk->sk_error_queue);
2088 
2089 	rwlock_init(&sk->sk_callback_lock);
2090 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2091 			af_rlock_keys + sk->sk_family,
2092 			af_family_rlock_key_strings[sk->sk_family]);
2093 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2094 			af_wlock_keys + sk->sk_family,
2095 			af_family_wlock_key_strings[sk->sk_family]);
2096 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2097 			af_elock_keys + sk->sk_family,
2098 			af_family_elock_key_strings[sk->sk_family]);
2099 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2100 			af_callback_keys + sk->sk_family,
2101 			af_family_clock_key_strings[sk->sk_family]);
2102 }
2103 
2104 /**
2105  *	sk_clone_lock - clone a socket, and lock its clone
2106  *	@sk: the socket to clone
2107  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2108  *
2109  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2110  */
2111 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2112 {
2113 	struct proto *prot = READ_ONCE(sk->sk_prot);
2114 	struct sk_filter *filter;
2115 	bool is_charged = true;
2116 	struct sock *newsk;
2117 
2118 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2119 	if (!newsk)
2120 		goto out;
2121 
2122 	sock_copy(newsk, sk);
2123 
2124 	newsk->sk_prot_creator = prot;
2125 
2126 	/* SANITY */
2127 	if (likely(newsk->sk_net_refcnt))
2128 		get_net(sock_net(newsk));
2129 	sk_node_init(&newsk->sk_node);
2130 	sock_lock_init(newsk);
2131 	bh_lock_sock(newsk);
2132 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2133 	newsk->sk_backlog.len = 0;
2134 
2135 	atomic_set(&newsk->sk_rmem_alloc, 0);
2136 
2137 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2138 	refcount_set(&newsk->sk_wmem_alloc, 1);
2139 
2140 	atomic_set(&newsk->sk_omem_alloc, 0);
2141 	sk_init_common(newsk);
2142 
2143 	newsk->sk_dst_cache	= NULL;
2144 	newsk->sk_dst_pending_confirm = 0;
2145 	newsk->sk_wmem_queued	= 0;
2146 	newsk->sk_forward_alloc = 0;
2147 	newsk->sk_reserved_mem  = 0;
2148 	atomic_set(&newsk->sk_drops, 0);
2149 	newsk->sk_send_head	= NULL;
2150 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2151 	atomic_set(&newsk->sk_zckey, 0);
2152 
2153 	sock_reset_flag(newsk, SOCK_DONE);
2154 
2155 	/* sk->sk_memcg will be populated at accept() time */
2156 	newsk->sk_memcg = NULL;
2157 
2158 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2159 
2160 	rcu_read_lock();
2161 	filter = rcu_dereference(sk->sk_filter);
2162 	if (filter != NULL)
2163 		/* though it's an empty new sock, the charging may fail
2164 		 * if sysctl_optmem_max was changed between creation of
2165 		 * original socket and cloning
2166 		 */
2167 		is_charged = sk_filter_charge(newsk, filter);
2168 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2169 	rcu_read_unlock();
2170 
2171 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2172 		/* We need to make sure that we don't uncharge the new
2173 		 * socket if we couldn't charge it in the first place
2174 		 * as otherwise we uncharge the parent's filter.
2175 		 */
2176 		if (!is_charged)
2177 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2178 		sk_free_unlock_clone(newsk);
2179 		newsk = NULL;
2180 		goto out;
2181 	}
2182 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2183 
2184 	if (bpf_sk_storage_clone(sk, newsk)) {
2185 		sk_free_unlock_clone(newsk);
2186 		newsk = NULL;
2187 		goto out;
2188 	}
2189 
2190 	/* Clear sk_user_data if parent had the pointer tagged
2191 	 * as not suitable for copying when cloning.
2192 	 */
2193 	if (sk_user_data_is_nocopy(newsk))
2194 		newsk->sk_user_data = NULL;
2195 
2196 	newsk->sk_err	   = 0;
2197 	newsk->sk_err_soft = 0;
2198 	newsk->sk_priority = 0;
2199 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2200 	if (likely(newsk->sk_net_refcnt))
2201 		sock_inuse_add(sock_net(newsk), 1);
2202 
2203 	/* Before updating sk_refcnt, we must commit prior changes to memory
2204 	 * (Documentation/RCU/rculist_nulls.rst for details)
2205 	 */
2206 	smp_wmb();
2207 	refcount_set(&newsk->sk_refcnt, 2);
2208 
2209 	/* Increment the counter in the same struct proto as the master
2210 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2211 	 * is the same as sk->sk_prot->socks, as this field was copied
2212 	 * with memcpy).
2213 	 *
2214 	 * This _changes_ the previous behaviour, where
2215 	 * tcp_create_openreq_child always was incrementing the
2216 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2217 	 * to be taken into account in all callers. -acme
2218 	 */
2219 	sk_refcnt_debug_inc(newsk);
2220 	sk_set_socket(newsk, NULL);
2221 	sk_tx_queue_clear(newsk);
2222 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2223 
2224 	if (newsk->sk_prot->sockets_allocated)
2225 		sk_sockets_allocated_inc(newsk);
2226 
2227 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2228 		net_enable_timestamp();
2229 out:
2230 	return newsk;
2231 }
2232 EXPORT_SYMBOL_GPL(sk_clone_lock);
2233 
2234 void sk_free_unlock_clone(struct sock *sk)
2235 {
2236 	/* It is still raw copy of parent, so invalidate
2237 	 * destructor and make plain sk_free() */
2238 	sk->sk_destruct = NULL;
2239 	bh_unlock_sock(sk);
2240 	sk_free(sk);
2241 }
2242 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2243 
2244 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2245 {
2246 	u32 max_segs = 1;
2247 
2248 	sk_dst_set(sk, dst);
2249 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2250 	if (sk->sk_route_caps & NETIF_F_GSO)
2251 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2252 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2253 	if (sk_can_gso(sk)) {
2254 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2255 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2256 		} else {
2257 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2258 			sk->sk_gso_max_size = dst->dev->gso_max_size;
2259 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2260 		}
2261 	}
2262 	sk->sk_gso_max_segs = max_segs;
2263 }
2264 EXPORT_SYMBOL_GPL(sk_setup_caps);
2265 
2266 /*
2267  *	Simple resource managers for sockets.
2268  */
2269 
2270 
2271 /*
2272  * Write buffer destructor automatically called from kfree_skb.
2273  */
2274 void sock_wfree(struct sk_buff *skb)
2275 {
2276 	struct sock *sk = skb->sk;
2277 	unsigned int len = skb->truesize;
2278 
2279 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2280 		/*
2281 		 * Keep a reference on sk_wmem_alloc, this will be released
2282 		 * after sk_write_space() call
2283 		 */
2284 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2285 		sk->sk_write_space(sk);
2286 		len = 1;
2287 	}
2288 	/*
2289 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2290 	 * could not do because of in-flight packets
2291 	 */
2292 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2293 		__sk_free(sk);
2294 }
2295 EXPORT_SYMBOL(sock_wfree);
2296 
2297 /* This variant of sock_wfree() is used by TCP,
2298  * since it sets SOCK_USE_WRITE_QUEUE.
2299  */
2300 void __sock_wfree(struct sk_buff *skb)
2301 {
2302 	struct sock *sk = skb->sk;
2303 
2304 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2305 		__sk_free(sk);
2306 }
2307 
2308 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2309 {
2310 	skb_orphan(skb);
2311 	skb->sk = sk;
2312 #ifdef CONFIG_INET
2313 	if (unlikely(!sk_fullsock(sk))) {
2314 		skb->destructor = sock_edemux;
2315 		sock_hold(sk);
2316 		return;
2317 	}
2318 #endif
2319 	skb->destructor = sock_wfree;
2320 	skb_set_hash_from_sk(skb, sk);
2321 	/*
2322 	 * We used to take a refcount on sk, but following operation
2323 	 * is enough to guarantee sk_free() wont free this sock until
2324 	 * all in-flight packets are completed
2325 	 */
2326 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2327 }
2328 EXPORT_SYMBOL(skb_set_owner_w);
2329 
2330 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2331 {
2332 #ifdef CONFIG_TLS_DEVICE
2333 	/* Drivers depend on in-order delivery for crypto offload,
2334 	 * partial orphan breaks out-of-order-OK logic.
2335 	 */
2336 	if (skb->decrypted)
2337 		return false;
2338 #endif
2339 	return (skb->destructor == sock_wfree ||
2340 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2341 }
2342 
2343 /* This helper is used by netem, as it can hold packets in its
2344  * delay queue. We want to allow the owner socket to send more
2345  * packets, as if they were already TX completed by a typical driver.
2346  * But we also want to keep skb->sk set because some packet schedulers
2347  * rely on it (sch_fq for example).
2348  */
2349 void skb_orphan_partial(struct sk_buff *skb)
2350 {
2351 	if (skb_is_tcp_pure_ack(skb))
2352 		return;
2353 
2354 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2355 		return;
2356 
2357 	skb_orphan(skb);
2358 }
2359 EXPORT_SYMBOL(skb_orphan_partial);
2360 
2361 /*
2362  * Read buffer destructor automatically called from kfree_skb.
2363  */
2364 void sock_rfree(struct sk_buff *skb)
2365 {
2366 	struct sock *sk = skb->sk;
2367 	unsigned int len = skb->truesize;
2368 
2369 	atomic_sub(len, &sk->sk_rmem_alloc);
2370 	sk_mem_uncharge(sk, len);
2371 }
2372 EXPORT_SYMBOL(sock_rfree);
2373 
2374 /*
2375  * Buffer destructor for skbs that are not used directly in read or write
2376  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2377  */
2378 void sock_efree(struct sk_buff *skb)
2379 {
2380 	sock_put(skb->sk);
2381 }
2382 EXPORT_SYMBOL(sock_efree);
2383 
2384 /* Buffer destructor for prefetch/receive path where reference count may
2385  * not be held, e.g. for listen sockets.
2386  */
2387 #ifdef CONFIG_INET
2388 void sock_pfree(struct sk_buff *skb)
2389 {
2390 	if (sk_is_refcounted(skb->sk))
2391 		sock_gen_put(skb->sk);
2392 }
2393 EXPORT_SYMBOL(sock_pfree);
2394 #endif /* CONFIG_INET */
2395 
2396 kuid_t sock_i_uid(struct sock *sk)
2397 {
2398 	kuid_t uid;
2399 
2400 	read_lock_bh(&sk->sk_callback_lock);
2401 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2402 	read_unlock_bh(&sk->sk_callback_lock);
2403 	return uid;
2404 }
2405 EXPORT_SYMBOL(sock_i_uid);
2406 
2407 unsigned long sock_i_ino(struct sock *sk)
2408 {
2409 	unsigned long ino;
2410 
2411 	read_lock_bh(&sk->sk_callback_lock);
2412 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2413 	read_unlock_bh(&sk->sk_callback_lock);
2414 	return ino;
2415 }
2416 EXPORT_SYMBOL(sock_i_ino);
2417 
2418 /*
2419  * Allocate a skb from the socket's send buffer.
2420  */
2421 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2422 			     gfp_t priority)
2423 {
2424 	if (force ||
2425 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2426 		struct sk_buff *skb = alloc_skb(size, priority);
2427 
2428 		if (skb) {
2429 			skb_set_owner_w(skb, sk);
2430 			return skb;
2431 		}
2432 	}
2433 	return NULL;
2434 }
2435 EXPORT_SYMBOL(sock_wmalloc);
2436 
2437 static void sock_ofree(struct sk_buff *skb)
2438 {
2439 	struct sock *sk = skb->sk;
2440 
2441 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2442 }
2443 
2444 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2445 			     gfp_t priority)
2446 {
2447 	struct sk_buff *skb;
2448 
2449 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2450 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2451 	    sysctl_optmem_max)
2452 		return NULL;
2453 
2454 	skb = alloc_skb(size, priority);
2455 	if (!skb)
2456 		return NULL;
2457 
2458 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2459 	skb->sk = sk;
2460 	skb->destructor = sock_ofree;
2461 	return skb;
2462 }
2463 
2464 /*
2465  * Allocate a memory block from the socket's option memory buffer.
2466  */
2467 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2468 {
2469 	if ((unsigned int)size <= sysctl_optmem_max &&
2470 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2471 		void *mem;
2472 		/* First do the add, to avoid the race if kmalloc
2473 		 * might sleep.
2474 		 */
2475 		atomic_add(size, &sk->sk_omem_alloc);
2476 		mem = kmalloc(size, priority);
2477 		if (mem)
2478 			return mem;
2479 		atomic_sub(size, &sk->sk_omem_alloc);
2480 	}
2481 	return NULL;
2482 }
2483 EXPORT_SYMBOL(sock_kmalloc);
2484 
2485 /* Free an option memory block. Note, we actually want the inline
2486  * here as this allows gcc to detect the nullify and fold away the
2487  * condition entirely.
2488  */
2489 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2490 				  const bool nullify)
2491 {
2492 	if (WARN_ON_ONCE(!mem))
2493 		return;
2494 	if (nullify)
2495 		kfree_sensitive(mem);
2496 	else
2497 		kfree(mem);
2498 	atomic_sub(size, &sk->sk_omem_alloc);
2499 }
2500 
2501 void sock_kfree_s(struct sock *sk, void *mem, int size)
2502 {
2503 	__sock_kfree_s(sk, mem, size, false);
2504 }
2505 EXPORT_SYMBOL(sock_kfree_s);
2506 
2507 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2508 {
2509 	__sock_kfree_s(sk, mem, size, true);
2510 }
2511 EXPORT_SYMBOL(sock_kzfree_s);
2512 
2513 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2514    I think, these locks should be removed for datagram sockets.
2515  */
2516 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2517 {
2518 	DEFINE_WAIT(wait);
2519 
2520 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2521 	for (;;) {
2522 		if (!timeo)
2523 			break;
2524 		if (signal_pending(current))
2525 			break;
2526 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2527 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2528 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2529 			break;
2530 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2531 			break;
2532 		if (sk->sk_err)
2533 			break;
2534 		timeo = schedule_timeout(timeo);
2535 	}
2536 	finish_wait(sk_sleep(sk), &wait);
2537 	return timeo;
2538 }
2539 
2540 
2541 /*
2542  *	Generic send/receive buffer handlers
2543  */
2544 
2545 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2546 				     unsigned long data_len, int noblock,
2547 				     int *errcode, int max_page_order)
2548 {
2549 	struct sk_buff *skb;
2550 	long timeo;
2551 	int err;
2552 
2553 	timeo = sock_sndtimeo(sk, noblock);
2554 	for (;;) {
2555 		err = sock_error(sk);
2556 		if (err != 0)
2557 			goto failure;
2558 
2559 		err = -EPIPE;
2560 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2561 			goto failure;
2562 
2563 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2564 			break;
2565 
2566 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2567 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2568 		err = -EAGAIN;
2569 		if (!timeo)
2570 			goto failure;
2571 		if (signal_pending(current))
2572 			goto interrupted;
2573 		timeo = sock_wait_for_wmem(sk, timeo);
2574 	}
2575 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2576 				   errcode, sk->sk_allocation);
2577 	if (skb)
2578 		skb_set_owner_w(skb, sk);
2579 	return skb;
2580 
2581 interrupted:
2582 	err = sock_intr_errno(timeo);
2583 failure:
2584 	*errcode = err;
2585 	return NULL;
2586 }
2587 EXPORT_SYMBOL(sock_alloc_send_pskb);
2588 
2589 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2590 				    int noblock, int *errcode)
2591 {
2592 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2593 }
2594 EXPORT_SYMBOL(sock_alloc_send_skb);
2595 
2596 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2597 		     struct sockcm_cookie *sockc)
2598 {
2599 	u32 tsflags;
2600 
2601 	switch (cmsg->cmsg_type) {
2602 	case SO_MARK:
2603 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2604 			return -EPERM;
2605 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2606 			return -EINVAL;
2607 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2608 		break;
2609 	case SO_TIMESTAMPING_OLD:
2610 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2611 			return -EINVAL;
2612 
2613 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2614 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2615 			return -EINVAL;
2616 
2617 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2618 		sockc->tsflags |= tsflags;
2619 		break;
2620 	case SCM_TXTIME:
2621 		if (!sock_flag(sk, SOCK_TXTIME))
2622 			return -EINVAL;
2623 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2624 			return -EINVAL;
2625 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2626 		break;
2627 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2628 	case SCM_RIGHTS:
2629 	case SCM_CREDENTIALS:
2630 		break;
2631 	default:
2632 		return -EINVAL;
2633 	}
2634 	return 0;
2635 }
2636 EXPORT_SYMBOL(__sock_cmsg_send);
2637 
2638 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2639 		   struct sockcm_cookie *sockc)
2640 {
2641 	struct cmsghdr *cmsg;
2642 	int ret;
2643 
2644 	for_each_cmsghdr(cmsg, msg) {
2645 		if (!CMSG_OK(msg, cmsg))
2646 			return -EINVAL;
2647 		if (cmsg->cmsg_level != SOL_SOCKET)
2648 			continue;
2649 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2650 		if (ret)
2651 			return ret;
2652 	}
2653 	return 0;
2654 }
2655 EXPORT_SYMBOL(sock_cmsg_send);
2656 
2657 static void sk_enter_memory_pressure(struct sock *sk)
2658 {
2659 	if (!sk->sk_prot->enter_memory_pressure)
2660 		return;
2661 
2662 	sk->sk_prot->enter_memory_pressure(sk);
2663 }
2664 
2665 static void sk_leave_memory_pressure(struct sock *sk)
2666 {
2667 	if (sk->sk_prot->leave_memory_pressure) {
2668 		sk->sk_prot->leave_memory_pressure(sk);
2669 	} else {
2670 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2671 
2672 		if (memory_pressure && READ_ONCE(*memory_pressure))
2673 			WRITE_ONCE(*memory_pressure, 0);
2674 	}
2675 }
2676 
2677 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2678 
2679 /**
2680  * skb_page_frag_refill - check that a page_frag contains enough room
2681  * @sz: minimum size of the fragment we want to get
2682  * @pfrag: pointer to page_frag
2683  * @gfp: priority for memory allocation
2684  *
2685  * Note: While this allocator tries to use high order pages, there is
2686  * no guarantee that allocations succeed. Therefore, @sz MUST be
2687  * less or equal than PAGE_SIZE.
2688  */
2689 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2690 {
2691 	if (pfrag->page) {
2692 		if (page_ref_count(pfrag->page) == 1) {
2693 			pfrag->offset = 0;
2694 			return true;
2695 		}
2696 		if (pfrag->offset + sz <= pfrag->size)
2697 			return true;
2698 		put_page(pfrag->page);
2699 	}
2700 
2701 	pfrag->offset = 0;
2702 	if (SKB_FRAG_PAGE_ORDER &&
2703 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2704 		/* Avoid direct reclaim but allow kswapd to wake */
2705 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2706 					  __GFP_COMP | __GFP_NOWARN |
2707 					  __GFP_NORETRY,
2708 					  SKB_FRAG_PAGE_ORDER);
2709 		if (likely(pfrag->page)) {
2710 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2711 			return true;
2712 		}
2713 	}
2714 	pfrag->page = alloc_page(gfp);
2715 	if (likely(pfrag->page)) {
2716 		pfrag->size = PAGE_SIZE;
2717 		return true;
2718 	}
2719 	return false;
2720 }
2721 EXPORT_SYMBOL(skb_page_frag_refill);
2722 
2723 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2724 {
2725 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2726 		return true;
2727 
2728 	sk_enter_memory_pressure(sk);
2729 	sk_stream_moderate_sndbuf(sk);
2730 	return false;
2731 }
2732 EXPORT_SYMBOL(sk_page_frag_refill);
2733 
2734 void __lock_sock(struct sock *sk)
2735 	__releases(&sk->sk_lock.slock)
2736 	__acquires(&sk->sk_lock.slock)
2737 {
2738 	DEFINE_WAIT(wait);
2739 
2740 	for (;;) {
2741 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2742 					TASK_UNINTERRUPTIBLE);
2743 		spin_unlock_bh(&sk->sk_lock.slock);
2744 		schedule();
2745 		spin_lock_bh(&sk->sk_lock.slock);
2746 		if (!sock_owned_by_user(sk))
2747 			break;
2748 	}
2749 	finish_wait(&sk->sk_lock.wq, &wait);
2750 }
2751 
2752 void __release_sock(struct sock *sk)
2753 	__releases(&sk->sk_lock.slock)
2754 	__acquires(&sk->sk_lock.slock)
2755 {
2756 	struct sk_buff *skb, *next;
2757 
2758 	while ((skb = sk->sk_backlog.head) != NULL) {
2759 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2760 
2761 		spin_unlock_bh(&sk->sk_lock.slock);
2762 
2763 		do {
2764 			next = skb->next;
2765 			prefetch(next);
2766 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2767 			skb_mark_not_on_list(skb);
2768 			sk_backlog_rcv(sk, skb);
2769 
2770 			cond_resched();
2771 
2772 			skb = next;
2773 		} while (skb != NULL);
2774 
2775 		spin_lock_bh(&sk->sk_lock.slock);
2776 	}
2777 
2778 	/*
2779 	 * Doing the zeroing here guarantee we can not loop forever
2780 	 * while a wild producer attempts to flood us.
2781 	 */
2782 	sk->sk_backlog.len = 0;
2783 }
2784 
2785 void __sk_flush_backlog(struct sock *sk)
2786 {
2787 	spin_lock_bh(&sk->sk_lock.slock);
2788 	__release_sock(sk);
2789 	spin_unlock_bh(&sk->sk_lock.slock);
2790 }
2791 
2792 /**
2793  * sk_wait_data - wait for data to arrive at sk_receive_queue
2794  * @sk:    sock to wait on
2795  * @timeo: for how long
2796  * @skb:   last skb seen on sk_receive_queue
2797  *
2798  * Now socket state including sk->sk_err is changed only under lock,
2799  * hence we may omit checks after joining wait queue.
2800  * We check receive queue before schedule() only as optimization;
2801  * it is very likely that release_sock() added new data.
2802  */
2803 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2804 {
2805 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2806 	int rc;
2807 
2808 	add_wait_queue(sk_sleep(sk), &wait);
2809 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2810 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2811 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2812 	remove_wait_queue(sk_sleep(sk), &wait);
2813 	return rc;
2814 }
2815 EXPORT_SYMBOL(sk_wait_data);
2816 
2817 /**
2818  *	__sk_mem_raise_allocated - increase memory_allocated
2819  *	@sk: socket
2820  *	@size: memory size to allocate
2821  *	@amt: pages to allocate
2822  *	@kind: allocation type
2823  *
2824  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2825  */
2826 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2827 {
2828 	struct proto *prot = sk->sk_prot;
2829 	long allocated = sk_memory_allocated_add(sk, amt);
2830 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2831 	bool charged = true;
2832 
2833 	if (memcg_charge &&
2834 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2835 						gfp_memcg_charge())))
2836 		goto suppress_allocation;
2837 
2838 	/* Under limit. */
2839 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2840 		sk_leave_memory_pressure(sk);
2841 		return 1;
2842 	}
2843 
2844 	/* Under pressure. */
2845 	if (allocated > sk_prot_mem_limits(sk, 1))
2846 		sk_enter_memory_pressure(sk);
2847 
2848 	/* Over hard limit. */
2849 	if (allocated > sk_prot_mem_limits(sk, 2))
2850 		goto suppress_allocation;
2851 
2852 	/* guarantee minimum buffer size under pressure */
2853 	if (kind == SK_MEM_RECV) {
2854 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2855 			return 1;
2856 
2857 	} else { /* SK_MEM_SEND */
2858 		int wmem0 = sk_get_wmem0(sk, prot);
2859 
2860 		if (sk->sk_type == SOCK_STREAM) {
2861 			if (sk->sk_wmem_queued < wmem0)
2862 				return 1;
2863 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2864 				return 1;
2865 		}
2866 	}
2867 
2868 	if (sk_has_memory_pressure(sk)) {
2869 		u64 alloc;
2870 
2871 		if (!sk_under_memory_pressure(sk))
2872 			return 1;
2873 		alloc = sk_sockets_allocated_read_positive(sk);
2874 		if (sk_prot_mem_limits(sk, 2) > alloc *
2875 		    sk_mem_pages(sk->sk_wmem_queued +
2876 				 atomic_read(&sk->sk_rmem_alloc) +
2877 				 sk->sk_forward_alloc))
2878 			return 1;
2879 	}
2880 
2881 suppress_allocation:
2882 
2883 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2884 		sk_stream_moderate_sndbuf(sk);
2885 
2886 		/* Fail only if socket is _under_ its sndbuf.
2887 		 * In this case we cannot block, so that we have to fail.
2888 		 */
2889 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
2890 			/* Force charge with __GFP_NOFAIL */
2891 			if (memcg_charge && !charged) {
2892 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2893 					gfp_memcg_charge() | __GFP_NOFAIL);
2894 			}
2895 			return 1;
2896 		}
2897 	}
2898 
2899 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2900 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2901 
2902 	sk_memory_allocated_sub(sk, amt);
2903 
2904 	if (memcg_charge && charged)
2905 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2906 
2907 	return 0;
2908 }
2909 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2910 
2911 /**
2912  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2913  *	@sk: socket
2914  *	@size: memory size to allocate
2915  *	@kind: allocation type
2916  *
2917  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2918  *	rmem allocation. This function assumes that protocols which have
2919  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2920  */
2921 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2922 {
2923 	int ret, amt = sk_mem_pages(size);
2924 
2925 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2926 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2927 	if (!ret)
2928 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2929 	return ret;
2930 }
2931 EXPORT_SYMBOL(__sk_mem_schedule);
2932 
2933 /**
2934  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2935  *	@sk: socket
2936  *	@amount: number of quanta
2937  *
2938  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2939  */
2940 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2941 {
2942 	sk_memory_allocated_sub(sk, amount);
2943 
2944 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2945 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2946 
2947 	if (sk_under_memory_pressure(sk) &&
2948 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2949 		sk_leave_memory_pressure(sk);
2950 }
2951 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2952 
2953 /**
2954  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2955  *	@sk: socket
2956  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2957  */
2958 void __sk_mem_reclaim(struct sock *sk, int amount)
2959 {
2960 	amount >>= SK_MEM_QUANTUM_SHIFT;
2961 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2962 	__sk_mem_reduce_allocated(sk, amount);
2963 }
2964 EXPORT_SYMBOL(__sk_mem_reclaim);
2965 
2966 int sk_set_peek_off(struct sock *sk, int val)
2967 {
2968 	sk->sk_peek_off = val;
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2972 
2973 /*
2974  * Set of default routines for initialising struct proto_ops when
2975  * the protocol does not support a particular function. In certain
2976  * cases where it makes no sense for a protocol to have a "do nothing"
2977  * function, some default processing is provided.
2978  */
2979 
2980 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2981 {
2982 	return -EOPNOTSUPP;
2983 }
2984 EXPORT_SYMBOL(sock_no_bind);
2985 
2986 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2987 		    int len, int flags)
2988 {
2989 	return -EOPNOTSUPP;
2990 }
2991 EXPORT_SYMBOL(sock_no_connect);
2992 
2993 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2994 {
2995 	return -EOPNOTSUPP;
2996 }
2997 EXPORT_SYMBOL(sock_no_socketpair);
2998 
2999 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3000 		   bool kern)
3001 {
3002 	return -EOPNOTSUPP;
3003 }
3004 EXPORT_SYMBOL(sock_no_accept);
3005 
3006 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3007 		    int peer)
3008 {
3009 	return -EOPNOTSUPP;
3010 }
3011 EXPORT_SYMBOL(sock_no_getname);
3012 
3013 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3014 {
3015 	return -EOPNOTSUPP;
3016 }
3017 EXPORT_SYMBOL(sock_no_ioctl);
3018 
3019 int sock_no_listen(struct socket *sock, int backlog)
3020 {
3021 	return -EOPNOTSUPP;
3022 }
3023 EXPORT_SYMBOL(sock_no_listen);
3024 
3025 int sock_no_shutdown(struct socket *sock, int how)
3026 {
3027 	return -EOPNOTSUPP;
3028 }
3029 EXPORT_SYMBOL(sock_no_shutdown);
3030 
3031 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3032 {
3033 	return -EOPNOTSUPP;
3034 }
3035 EXPORT_SYMBOL(sock_no_sendmsg);
3036 
3037 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3038 {
3039 	return -EOPNOTSUPP;
3040 }
3041 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3042 
3043 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3044 		    int flags)
3045 {
3046 	return -EOPNOTSUPP;
3047 }
3048 EXPORT_SYMBOL(sock_no_recvmsg);
3049 
3050 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3051 {
3052 	/* Mirror missing mmap method error code */
3053 	return -ENODEV;
3054 }
3055 EXPORT_SYMBOL(sock_no_mmap);
3056 
3057 /*
3058  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3059  * various sock-based usage counts.
3060  */
3061 void __receive_sock(struct file *file)
3062 {
3063 	struct socket *sock;
3064 
3065 	sock = sock_from_file(file);
3066 	if (sock) {
3067 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3068 		sock_update_classid(&sock->sk->sk_cgrp_data);
3069 	}
3070 }
3071 
3072 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
3073 {
3074 	ssize_t res;
3075 	struct msghdr msg = {.msg_flags = flags};
3076 	struct kvec iov;
3077 	char *kaddr = kmap(page);
3078 	iov.iov_base = kaddr + offset;
3079 	iov.iov_len = size;
3080 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3081 	kunmap(page);
3082 	return res;
3083 }
3084 EXPORT_SYMBOL(sock_no_sendpage);
3085 
3086 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3087 				int offset, size_t size, int flags)
3088 {
3089 	ssize_t res;
3090 	struct msghdr msg = {.msg_flags = flags};
3091 	struct kvec iov;
3092 	char *kaddr = kmap(page);
3093 
3094 	iov.iov_base = kaddr + offset;
3095 	iov.iov_len = size;
3096 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3097 	kunmap(page);
3098 	return res;
3099 }
3100 EXPORT_SYMBOL(sock_no_sendpage_locked);
3101 
3102 /*
3103  *	Default Socket Callbacks
3104  */
3105 
3106 static void sock_def_wakeup(struct sock *sk)
3107 {
3108 	struct socket_wq *wq;
3109 
3110 	rcu_read_lock();
3111 	wq = rcu_dereference(sk->sk_wq);
3112 	if (skwq_has_sleeper(wq))
3113 		wake_up_interruptible_all(&wq->wait);
3114 	rcu_read_unlock();
3115 }
3116 
3117 static void sock_def_error_report(struct sock *sk)
3118 {
3119 	struct socket_wq *wq;
3120 
3121 	rcu_read_lock();
3122 	wq = rcu_dereference(sk->sk_wq);
3123 	if (skwq_has_sleeper(wq))
3124 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3125 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3126 	rcu_read_unlock();
3127 }
3128 
3129 void sock_def_readable(struct sock *sk)
3130 {
3131 	struct socket_wq *wq;
3132 
3133 	rcu_read_lock();
3134 	wq = rcu_dereference(sk->sk_wq);
3135 	if (skwq_has_sleeper(wq))
3136 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3137 						EPOLLRDNORM | EPOLLRDBAND);
3138 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3139 	rcu_read_unlock();
3140 }
3141 
3142 static void sock_def_write_space(struct sock *sk)
3143 {
3144 	struct socket_wq *wq;
3145 
3146 	rcu_read_lock();
3147 
3148 	/* Do not wake up a writer until he can make "significant"
3149 	 * progress.  --DaveM
3150 	 */
3151 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3152 		wq = rcu_dereference(sk->sk_wq);
3153 		if (skwq_has_sleeper(wq))
3154 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3155 						EPOLLWRNORM | EPOLLWRBAND);
3156 
3157 		/* Should agree with poll, otherwise some programs break */
3158 		if (sock_writeable(sk))
3159 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3160 	}
3161 
3162 	rcu_read_unlock();
3163 }
3164 
3165 static void sock_def_destruct(struct sock *sk)
3166 {
3167 }
3168 
3169 void sk_send_sigurg(struct sock *sk)
3170 {
3171 	if (sk->sk_socket && sk->sk_socket->file)
3172 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3173 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3174 }
3175 EXPORT_SYMBOL(sk_send_sigurg);
3176 
3177 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3178 		    unsigned long expires)
3179 {
3180 	if (!mod_timer(timer, expires))
3181 		sock_hold(sk);
3182 }
3183 EXPORT_SYMBOL(sk_reset_timer);
3184 
3185 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3186 {
3187 	if (del_timer(timer))
3188 		__sock_put(sk);
3189 }
3190 EXPORT_SYMBOL(sk_stop_timer);
3191 
3192 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3193 {
3194 	if (del_timer_sync(timer))
3195 		__sock_put(sk);
3196 }
3197 EXPORT_SYMBOL(sk_stop_timer_sync);
3198 
3199 void sock_init_data(struct socket *sock, struct sock *sk)
3200 {
3201 	sk_init_common(sk);
3202 	sk->sk_send_head	=	NULL;
3203 
3204 	timer_setup(&sk->sk_timer, NULL, 0);
3205 
3206 	sk->sk_allocation	=	GFP_KERNEL;
3207 	sk->sk_rcvbuf		=	sysctl_rmem_default;
3208 	sk->sk_sndbuf		=	sysctl_wmem_default;
3209 	sk->sk_state		=	TCP_CLOSE;
3210 	sk_set_socket(sk, sock);
3211 
3212 	sock_set_flag(sk, SOCK_ZAPPED);
3213 
3214 	if (sock) {
3215 		sk->sk_type	=	sock->type;
3216 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3217 		sock->sk	=	sk;
3218 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3219 	} else {
3220 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3221 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3222 	}
3223 
3224 	rwlock_init(&sk->sk_callback_lock);
3225 	if (sk->sk_kern_sock)
3226 		lockdep_set_class_and_name(
3227 			&sk->sk_callback_lock,
3228 			af_kern_callback_keys + sk->sk_family,
3229 			af_family_kern_clock_key_strings[sk->sk_family]);
3230 	else
3231 		lockdep_set_class_and_name(
3232 			&sk->sk_callback_lock,
3233 			af_callback_keys + sk->sk_family,
3234 			af_family_clock_key_strings[sk->sk_family]);
3235 
3236 	sk->sk_state_change	=	sock_def_wakeup;
3237 	sk->sk_data_ready	=	sock_def_readable;
3238 	sk->sk_write_space	=	sock_def_write_space;
3239 	sk->sk_error_report	=	sock_def_error_report;
3240 	sk->sk_destruct		=	sock_def_destruct;
3241 
3242 	sk->sk_frag.page	=	NULL;
3243 	sk->sk_frag.offset	=	0;
3244 	sk->sk_peek_off		=	-1;
3245 
3246 	sk->sk_peer_pid 	=	NULL;
3247 	sk->sk_peer_cred	=	NULL;
3248 	spin_lock_init(&sk->sk_peer_lock);
3249 
3250 	sk->sk_write_pending	=	0;
3251 	sk->sk_rcvlowat		=	1;
3252 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3253 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3254 
3255 	sk->sk_stamp = SK_DEFAULT_STAMP;
3256 #if BITS_PER_LONG==32
3257 	seqlock_init(&sk->sk_stamp_seq);
3258 #endif
3259 	atomic_set(&sk->sk_zckey, 0);
3260 
3261 #ifdef CONFIG_NET_RX_BUSY_POLL
3262 	sk->sk_napi_id		=	0;
3263 	sk->sk_ll_usec		=	sysctl_net_busy_read;
3264 #endif
3265 
3266 	sk->sk_max_pacing_rate = ~0UL;
3267 	sk->sk_pacing_rate = ~0UL;
3268 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3269 	sk->sk_incoming_cpu = -1;
3270 
3271 	sk_rx_queue_clear(sk);
3272 	/*
3273 	 * Before updating sk_refcnt, we must commit prior changes to memory
3274 	 * (Documentation/RCU/rculist_nulls.rst for details)
3275 	 */
3276 	smp_wmb();
3277 	refcount_set(&sk->sk_refcnt, 1);
3278 	atomic_set(&sk->sk_drops, 0);
3279 }
3280 EXPORT_SYMBOL(sock_init_data);
3281 
3282 void lock_sock_nested(struct sock *sk, int subclass)
3283 {
3284 	/* The sk_lock has mutex_lock() semantics here. */
3285 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3286 
3287 	might_sleep();
3288 	spin_lock_bh(&sk->sk_lock.slock);
3289 	if (sk->sk_lock.owned)
3290 		__lock_sock(sk);
3291 	sk->sk_lock.owned = 1;
3292 	spin_unlock_bh(&sk->sk_lock.slock);
3293 }
3294 EXPORT_SYMBOL(lock_sock_nested);
3295 
3296 void release_sock(struct sock *sk)
3297 {
3298 	spin_lock_bh(&sk->sk_lock.slock);
3299 	if (sk->sk_backlog.tail)
3300 		__release_sock(sk);
3301 
3302 	/* Warning : release_cb() might need to release sk ownership,
3303 	 * ie call sock_release_ownership(sk) before us.
3304 	 */
3305 	if (sk->sk_prot->release_cb)
3306 		sk->sk_prot->release_cb(sk);
3307 
3308 	sock_release_ownership(sk);
3309 	if (waitqueue_active(&sk->sk_lock.wq))
3310 		wake_up(&sk->sk_lock.wq);
3311 	spin_unlock_bh(&sk->sk_lock.slock);
3312 }
3313 EXPORT_SYMBOL(release_sock);
3314 
3315 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3316 {
3317 	might_sleep();
3318 	spin_lock_bh(&sk->sk_lock.slock);
3319 
3320 	if (!sk->sk_lock.owned) {
3321 		/*
3322 		 * Fast path return with bottom halves disabled and
3323 		 * sock::sk_lock.slock held.
3324 		 *
3325 		 * The 'mutex' is not contended and holding
3326 		 * sock::sk_lock.slock prevents all other lockers to
3327 		 * proceed so the corresponding unlock_sock_fast() can
3328 		 * avoid the slow path of release_sock() completely and
3329 		 * just release slock.
3330 		 *
3331 		 * From a semantical POV this is equivalent to 'acquiring'
3332 		 * the 'mutex', hence the corresponding lockdep
3333 		 * mutex_release() has to happen in the fast path of
3334 		 * unlock_sock_fast().
3335 		 */
3336 		return false;
3337 	}
3338 
3339 	__lock_sock(sk);
3340 	sk->sk_lock.owned = 1;
3341 	__acquire(&sk->sk_lock.slock);
3342 	spin_unlock_bh(&sk->sk_lock.slock);
3343 	return true;
3344 }
3345 EXPORT_SYMBOL(__lock_sock_fast);
3346 
3347 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3348 		   bool timeval, bool time32)
3349 {
3350 	struct sock *sk = sock->sk;
3351 	struct timespec64 ts;
3352 
3353 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3354 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3355 	if (ts.tv_sec == -1)
3356 		return -ENOENT;
3357 	if (ts.tv_sec == 0) {
3358 		ktime_t kt = ktime_get_real();
3359 		sock_write_timestamp(sk, kt);
3360 		ts = ktime_to_timespec64(kt);
3361 	}
3362 
3363 	if (timeval)
3364 		ts.tv_nsec /= 1000;
3365 
3366 #ifdef CONFIG_COMPAT_32BIT_TIME
3367 	if (time32)
3368 		return put_old_timespec32(&ts, userstamp);
3369 #endif
3370 #ifdef CONFIG_SPARC64
3371 	/* beware of padding in sparc64 timeval */
3372 	if (timeval && !in_compat_syscall()) {
3373 		struct __kernel_old_timeval __user tv = {
3374 			.tv_sec = ts.tv_sec,
3375 			.tv_usec = ts.tv_nsec,
3376 		};
3377 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3378 			return -EFAULT;
3379 		return 0;
3380 	}
3381 #endif
3382 	return put_timespec64(&ts, userstamp);
3383 }
3384 EXPORT_SYMBOL(sock_gettstamp);
3385 
3386 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3387 {
3388 	if (!sock_flag(sk, flag)) {
3389 		unsigned long previous_flags = sk->sk_flags;
3390 
3391 		sock_set_flag(sk, flag);
3392 		/*
3393 		 * we just set one of the two flags which require net
3394 		 * time stamping, but time stamping might have been on
3395 		 * already because of the other one
3396 		 */
3397 		if (sock_needs_netstamp(sk) &&
3398 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3399 			net_enable_timestamp();
3400 	}
3401 }
3402 
3403 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3404 		       int level, int type)
3405 {
3406 	struct sock_exterr_skb *serr;
3407 	struct sk_buff *skb;
3408 	int copied, err;
3409 
3410 	err = -EAGAIN;
3411 	skb = sock_dequeue_err_skb(sk);
3412 	if (skb == NULL)
3413 		goto out;
3414 
3415 	copied = skb->len;
3416 	if (copied > len) {
3417 		msg->msg_flags |= MSG_TRUNC;
3418 		copied = len;
3419 	}
3420 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3421 	if (err)
3422 		goto out_free_skb;
3423 
3424 	sock_recv_timestamp(msg, sk, skb);
3425 
3426 	serr = SKB_EXT_ERR(skb);
3427 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3428 
3429 	msg->msg_flags |= MSG_ERRQUEUE;
3430 	err = copied;
3431 
3432 out_free_skb:
3433 	kfree_skb(skb);
3434 out:
3435 	return err;
3436 }
3437 EXPORT_SYMBOL(sock_recv_errqueue);
3438 
3439 /*
3440  *	Get a socket option on an socket.
3441  *
3442  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3443  *	asynchronous errors should be reported by getsockopt. We assume
3444  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3445  */
3446 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3447 			   char __user *optval, int __user *optlen)
3448 {
3449 	struct sock *sk = sock->sk;
3450 
3451 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3452 }
3453 EXPORT_SYMBOL(sock_common_getsockopt);
3454 
3455 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3456 			int flags)
3457 {
3458 	struct sock *sk = sock->sk;
3459 	int addr_len = 0;
3460 	int err;
3461 
3462 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3463 				   flags & ~MSG_DONTWAIT, &addr_len);
3464 	if (err >= 0)
3465 		msg->msg_namelen = addr_len;
3466 	return err;
3467 }
3468 EXPORT_SYMBOL(sock_common_recvmsg);
3469 
3470 /*
3471  *	Set socket options on an inet socket.
3472  */
3473 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3474 			   sockptr_t optval, unsigned int optlen)
3475 {
3476 	struct sock *sk = sock->sk;
3477 
3478 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3479 }
3480 EXPORT_SYMBOL(sock_common_setsockopt);
3481 
3482 void sk_common_release(struct sock *sk)
3483 {
3484 	if (sk->sk_prot->destroy)
3485 		sk->sk_prot->destroy(sk);
3486 
3487 	/*
3488 	 * Observation: when sk_common_release is called, processes have
3489 	 * no access to socket. But net still has.
3490 	 * Step one, detach it from networking:
3491 	 *
3492 	 * A. Remove from hash tables.
3493 	 */
3494 
3495 	sk->sk_prot->unhash(sk);
3496 
3497 	/*
3498 	 * In this point socket cannot receive new packets, but it is possible
3499 	 * that some packets are in flight because some CPU runs receiver and
3500 	 * did hash table lookup before we unhashed socket. They will achieve
3501 	 * receive queue and will be purged by socket destructor.
3502 	 *
3503 	 * Also we still have packets pending on receive queue and probably,
3504 	 * our own packets waiting in device queues. sock_destroy will drain
3505 	 * receive queue, but transmitted packets will delay socket destruction
3506 	 * until the last reference will be released.
3507 	 */
3508 
3509 	sock_orphan(sk);
3510 
3511 	xfrm_sk_free_policy(sk);
3512 
3513 	sk_refcnt_debug_release(sk);
3514 
3515 	sock_put(sk);
3516 }
3517 EXPORT_SYMBOL(sk_common_release);
3518 
3519 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3520 {
3521 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3522 
3523 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3524 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3525 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3526 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3527 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3528 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3529 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3530 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3531 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3532 }
3533 
3534 #ifdef CONFIG_PROC_FS
3535 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3536 struct prot_inuse {
3537 	int val[PROTO_INUSE_NR];
3538 };
3539 
3540 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3541 
3542 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3543 {
3544 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3545 }
3546 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3547 
3548 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3549 {
3550 	int cpu, idx = prot->inuse_idx;
3551 	int res = 0;
3552 
3553 	for_each_possible_cpu(cpu)
3554 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3555 
3556 	return res >= 0 ? res : 0;
3557 }
3558 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3559 
3560 static void sock_inuse_add(struct net *net, int val)
3561 {
3562 	this_cpu_add(*net->core.sock_inuse, val);
3563 }
3564 
3565 int sock_inuse_get(struct net *net)
3566 {
3567 	int cpu, res = 0;
3568 
3569 	for_each_possible_cpu(cpu)
3570 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3571 
3572 	return res;
3573 }
3574 
3575 EXPORT_SYMBOL_GPL(sock_inuse_get);
3576 
3577 static int __net_init sock_inuse_init_net(struct net *net)
3578 {
3579 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3580 	if (net->core.prot_inuse == NULL)
3581 		return -ENOMEM;
3582 
3583 	net->core.sock_inuse = alloc_percpu(int);
3584 	if (net->core.sock_inuse == NULL)
3585 		goto out;
3586 
3587 	return 0;
3588 
3589 out:
3590 	free_percpu(net->core.prot_inuse);
3591 	return -ENOMEM;
3592 }
3593 
3594 static void __net_exit sock_inuse_exit_net(struct net *net)
3595 {
3596 	free_percpu(net->core.prot_inuse);
3597 	free_percpu(net->core.sock_inuse);
3598 }
3599 
3600 static struct pernet_operations net_inuse_ops = {
3601 	.init = sock_inuse_init_net,
3602 	.exit = sock_inuse_exit_net,
3603 };
3604 
3605 static __init int net_inuse_init(void)
3606 {
3607 	if (register_pernet_subsys(&net_inuse_ops))
3608 		panic("Cannot initialize net inuse counters");
3609 
3610 	return 0;
3611 }
3612 
3613 core_initcall(net_inuse_init);
3614 
3615 static int assign_proto_idx(struct proto *prot)
3616 {
3617 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3618 
3619 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3620 		pr_err("PROTO_INUSE_NR exhausted\n");
3621 		return -ENOSPC;
3622 	}
3623 
3624 	set_bit(prot->inuse_idx, proto_inuse_idx);
3625 	return 0;
3626 }
3627 
3628 static void release_proto_idx(struct proto *prot)
3629 {
3630 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3631 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3632 }
3633 #else
3634 static inline int assign_proto_idx(struct proto *prot)
3635 {
3636 	return 0;
3637 }
3638 
3639 static inline void release_proto_idx(struct proto *prot)
3640 {
3641 }
3642 
3643 static void sock_inuse_add(struct net *net, int val)
3644 {
3645 }
3646 #endif
3647 
3648 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3649 {
3650 	if (!twsk_prot)
3651 		return;
3652 	kfree(twsk_prot->twsk_slab_name);
3653 	twsk_prot->twsk_slab_name = NULL;
3654 	kmem_cache_destroy(twsk_prot->twsk_slab);
3655 	twsk_prot->twsk_slab = NULL;
3656 }
3657 
3658 static int tw_prot_init(const struct proto *prot)
3659 {
3660 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3661 
3662 	if (!twsk_prot)
3663 		return 0;
3664 
3665 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3666 					      prot->name);
3667 	if (!twsk_prot->twsk_slab_name)
3668 		return -ENOMEM;
3669 
3670 	twsk_prot->twsk_slab =
3671 		kmem_cache_create(twsk_prot->twsk_slab_name,
3672 				  twsk_prot->twsk_obj_size, 0,
3673 				  SLAB_ACCOUNT | prot->slab_flags,
3674 				  NULL);
3675 	if (!twsk_prot->twsk_slab) {
3676 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3677 			prot->name);
3678 		return -ENOMEM;
3679 	}
3680 
3681 	return 0;
3682 }
3683 
3684 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3685 {
3686 	if (!rsk_prot)
3687 		return;
3688 	kfree(rsk_prot->slab_name);
3689 	rsk_prot->slab_name = NULL;
3690 	kmem_cache_destroy(rsk_prot->slab);
3691 	rsk_prot->slab = NULL;
3692 }
3693 
3694 static int req_prot_init(const struct proto *prot)
3695 {
3696 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3697 
3698 	if (!rsk_prot)
3699 		return 0;
3700 
3701 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3702 					prot->name);
3703 	if (!rsk_prot->slab_name)
3704 		return -ENOMEM;
3705 
3706 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3707 					   rsk_prot->obj_size, 0,
3708 					   SLAB_ACCOUNT | prot->slab_flags,
3709 					   NULL);
3710 
3711 	if (!rsk_prot->slab) {
3712 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3713 			prot->name);
3714 		return -ENOMEM;
3715 	}
3716 	return 0;
3717 }
3718 
3719 int proto_register(struct proto *prot, int alloc_slab)
3720 {
3721 	int ret = -ENOBUFS;
3722 
3723 	if (alloc_slab) {
3724 		prot->slab = kmem_cache_create_usercopy(prot->name,
3725 					prot->obj_size, 0,
3726 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3727 					prot->slab_flags,
3728 					prot->useroffset, prot->usersize,
3729 					NULL);
3730 
3731 		if (prot->slab == NULL) {
3732 			pr_crit("%s: Can't create sock SLAB cache!\n",
3733 				prot->name);
3734 			goto out;
3735 		}
3736 
3737 		if (req_prot_init(prot))
3738 			goto out_free_request_sock_slab;
3739 
3740 		if (tw_prot_init(prot))
3741 			goto out_free_timewait_sock_slab;
3742 	}
3743 
3744 	mutex_lock(&proto_list_mutex);
3745 	ret = assign_proto_idx(prot);
3746 	if (ret) {
3747 		mutex_unlock(&proto_list_mutex);
3748 		goto out_free_timewait_sock_slab;
3749 	}
3750 	list_add(&prot->node, &proto_list);
3751 	mutex_unlock(&proto_list_mutex);
3752 	return ret;
3753 
3754 out_free_timewait_sock_slab:
3755 	if (alloc_slab)
3756 		tw_prot_cleanup(prot->twsk_prot);
3757 out_free_request_sock_slab:
3758 	if (alloc_slab) {
3759 		req_prot_cleanup(prot->rsk_prot);
3760 
3761 		kmem_cache_destroy(prot->slab);
3762 		prot->slab = NULL;
3763 	}
3764 out:
3765 	return ret;
3766 }
3767 EXPORT_SYMBOL(proto_register);
3768 
3769 void proto_unregister(struct proto *prot)
3770 {
3771 	mutex_lock(&proto_list_mutex);
3772 	release_proto_idx(prot);
3773 	list_del(&prot->node);
3774 	mutex_unlock(&proto_list_mutex);
3775 
3776 	kmem_cache_destroy(prot->slab);
3777 	prot->slab = NULL;
3778 
3779 	req_prot_cleanup(prot->rsk_prot);
3780 	tw_prot_cleanup(prot->twsk_prot);
3781 }
3782 EXPORT_SYMBOL(proto_unregister);
3783 
3784 int sock_load_diag_module(int family, int protocol)
3785 {
3786 	if (!protocol) {
3787 		if (!sock_is_registered(family))
3788 			return -ENOENT;
3789 
3790 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3791 				      NETLINK_SOCK_DIAG, family);
3792 	}
3793 
3794 #ifdef CONFIG_INET
3795 	if (family == AF_INET &&
3796 	    protocol != IPPROTO_RAW &&
3797 	    protocol < MAX_INET_PROTOS &&
3798 	    !rcu_access_pointer(inet_protos[protocol]))
3799 		return -ENOENT;
3800 #endif
3801 
3802 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3803 			      NETLINK_SOCK_DIAG, family, protocol);
3804 }
3805 EXPORT_SYMBOL(sock_load_diag_module);
3806 
3807 #ifdef CONFIG_PROC_FS
3808 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3809 	__acquires(proto_list_mutex)
3810 {
3811 	mutex_lock(&proto_list_mutex);
3812 	return seq_list_start_head(&proto_list, *pos);
3813 }
3814 
3815 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3816 {
3817 	return seq_list_next(v, &proto_list, pos);
3818 }
3819 
3820 static void proto_seq_stop(struct seq_file *seq, void *v)
3821 	__releases(proto_list_mutex)
3822 {
3823 	mutex_unlock(&proto_list_mutex);
3824 }
3825 
3826 static char proto_method_implemented(const void *method)
3827 {
3828 	return method == NULL ? 'n' : 'y';
3829 }
3830 static long sock_prot_memory_allocated(struct proto *proto)
3831 {
3832 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3833 }
3834 
3835 static const char *sock_prot_memory_pressure(struct proto *proto)
3836 {
3837 	return proto->memory_pressure != NULL ?
3838 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3839 }
3840 
3841 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3842 {
3843 
3844 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3845 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3846 		   proto->name,
3847 		   proto->obj_size,
3848 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3849 		   sock_prot_memory_allocated(proto),
3850 		   sock_prot_memory_pressure(proto),
3851 		   proto->max_header,
3852 		   proto->slab == NULL ? "no" : "yes",
3853 		   module_name(proto->owner),
3854 		   proto_method_implemented(proto->close),
3855 		   proto_method_implemented(proto->connect),
3856 		   proto_method_implemented(proto->disconnect),
3857 		   proto_method_implemented(proto->accept),
3858 		   proto_method_implemented(proto->ioctl),
3859 		   proto_method_implemented(proto->init),
3860 		   proto_method_implemented(proto->destroy),
3861 		   proto_method_implemented(proto->shutdown),
3862 		   proto_method_implemented(proto->setsockopt),
3863 		   proto_method_implemented(proto->getsockopt),
3864 		   proto_method_implemented(proto->sendmsg),
3865 		   proto_method_implemented(proto->recvmsg),
3866 		   proto_method_implemented(proto->sendpage),
3867 		   proto_method_implemented(proto->bind),
3868 		   proto_method_implemented(proto->backlog_rcv),
3869 		   proto_method_implemented(proto->hash),
3870 		   proto_method_implemented(proto->unhash),
3871 		   proto_method_implemented(proto->get_port),
3872 		   proto_method_implemented(proto->enter_memory_pressure));
3873 }
3874 
3875 static int proto_seq_show(struct seq_file *seq, void *v)
3876 {
3877 	if (v == &proto_list)
3878 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3879 			   "protocol",
3880 			   "size",
3881 			   "sockets",
3882 			   "memory",
3883 			   "press",
3884 			   "maxhdr",
3885 			   "slab",
3886 			   "module",
3887 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3888 	else
3889 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3890 	return 0;
3891 }
3892 
3893 static const struct seq_operations proto_seq_ops = {
3894 	.start  = proto_seq_start,
3895 	.next   = proto_seq_next,
3896 	.stop   = proto_seq_stop,
3897 	.show   = proto_seq_show,
3898 };
3899 
3900 static __net_init int proto_init_net(struct net *net)
3901 {
3902 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3903 			sizeof(struct seq_net_private)))
3904 		return -ENOMEM;
3905 
3906 	return 0;
3907 }
3908 
3909 static __net_exit void proto_exit_net(struct net *net)
3910 {
3911 	remove_proc_entry("protocols", net->proc_net);
3912 }
3913 
3914 
3915 static __net_initdata struct pernet_operations proto_net_ops = {
3916 	.init = proto_init_net,
3917 	.exit = proto_exit_net,
3918 };
3919 
3920 static int __init proto_init(void)
3921 {
3922 	return register_pernet_subsys(&proto_net_ops);
3923 }
3924 
3925 subsys_initcall(proto_init);
3926 
3927 #endif /* PROC_FS */
3928 
3929 #ifdef CONFIG_NET_RX_BUSY_POLL
3930 bool sk_busy_loop_end(void *p, unsigned long start_time)
3931 {
3932 	struct sock *sk = p;
3933 
3934 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3935 	       sk_busy_loop_timeout(sk, start_time);
3936 }
3937 EXPORT_SYMBOL(sk_busy_loop_end);
3938 #endif /* CONFIG_NET_RX_BUSY_POLL */
3939 
3940 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3941 {
3942 	if (!sk->sk_prot->bind_add)
3943 		return -EOPNOTSUPP;
3944 	return sk->sk_prot->bind_add(sk, addr, addr_len);
3945 }
3946 EXPORT_SYMBOL(sock_bind_add);
3947