1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Generic socket support routines. Memory allocators, socket lock/release 8 * handler for protocols to use and generic option handler. 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Alan Cox, <A.Cox@swansea.ac.uk> 14 * 15 * Fixes: 16 * Alan Cox : Numerous verify_area() problems 17 * Alan Cox : Connecting on a connecting socket 18 * now returns an error for tcp. 19 * Alan Cox : sock->protocol is set correctly. 20 * and is not sometimes left as 0. 21 * Alan Cox : connect handles icmp errors on a 22 * connect properly. Unfortunately there 23 * is a restart syscall nasty there. I 24 * can't match BSD without hacking the C 25 * library. Ideas urgently sought! 26 * Alan Cox : Disallow bind() to addresses that are 27 * not ours - especially broadcast ones!! 28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) 29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, 30 * instead they leave that for the DESTROY timer. 31 * Alan Cox : Clean up error flag in accept 32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer 33 * was buggy. Put a remove_sock() in the handler 34 * for memory when we hit 0. Also altered the timer 35 * code. The ACK stuff can wait and needs major 36 * TCP layer surgery. 37 * Alan Cox : Fixed TCP ack bug, removed remove sock 38 * and fixed timer/inet_bh race. 39 * Alan Cox : Added zapped flag for TCP 40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code 41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb 42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources 43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. 44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... 45 * Rick Sladkey : Relaxed UDP rules for matching packets. 46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support 47 * Pauline Middelink : identd support 48 * Alan Cox : Fixed connect() taking signals I think. 49 * Alan Cox : SO_LINGER supported 50 * Alan Cox : Error reporting fixes 51 * Anonymous : inet_create tidied up (sk->reuse setting) 52 * Alan Cox : inet sockets don't set sk->type! 53 * Alan Cox : Split socket option code 54 * Alan Cox : Callbacks 55 * Alan Cox : Nagle flag for Charles & Johannes stuff 56 * Alex : Removed restriction on inet fioctl 57 * Alan Cox : Splitting INET from NET core 58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() 59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code 60 * Alan Cox : Split IP from generic code 61 * Alan Cox : New kfree_skbmem() 62 * Alan Cox : Make SO_DEBUG superuser only. 63 * Alan Cox : Allow anyone to clear SO_DEBUG 64 * (compatibility fix) 65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. 66 * Alan Cox : Allocator for a socket is settable. 67 * Alan Cox : SO_ERROR includes soft errors. 68 * Alan Cox : Allow NULL arguments on some SO_ opts 69 * Alan Cox : Generic socket allocation to make hooks 70 * easier (suggested by Craig Metz). 71 * Michael Pall : SO_ERROR returns positive errno again 72 * Steve Whitehouse: Added default destructor to free 73 * protocol private data. 74 * Steve Whitehouse: Added various other default routines 75 * common to several socket families. 76 * Chris Evans : Call suser() check last on F_SETOWN 77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. 78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() 79 * Andi Kleen : Fix write_space callback 80 * Chris Evans : Security fixes - signedness again 81 * Arnaldo C. Melo : cleanups, use skb_queue_purge 82 * 83 * To Fix: 84 */ 85 86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 87 88 #include <asm/unaligned.h> 89 #include <linux/capability.h> 90 #include <linux/errno.h> 91 #include <linux/errqueue.h> 92 #include <linux/types.h> 93 #include <linux/socket.h> 94 #include <linux/in.h> 95 #include <linux/kernel.h> 96 #include <linux/module.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/sched.h> 100 #include <linux/sched/mm.h> 101 #include <linux/timer.h> 102 #include <linux/string.h> 103 #include <linux/sockios.h> 104 #include <linux/net.h> 105 #include <linux/mm.h> 106 #include <linux/slab.h> 107 #include <linux/interrupt.h> 108 #include <linux/poll.h> 109 #include <linux/tcp.h> 110 #include <linux/udp.h> 111 #include <linux/init.h> 112 #include <linux/highmem.h> 113 #include <linux/user_namespace.h> 114 #include <linux/static_key.h> 115 #include <linux/memcontrol.h> 116 #include <linux/prefetch.h> 117 #include <linux/compat.h> 118 #include <linux/mroute.h> 119 #include <linux/mroute6.h> 120 #include <linux/icmpv6.h> 121 122 #include <linux/uaccess.h> 123 124 #include <linux/netdevice.h> 125 #include <net/protocol.h> 126 #include <linux/skbuff.h> 127 #include <net/net_namespace.h> 128 #include <net/request_sock.h> 129 #include <net/sock.h> 130 #include <linux/net_tstamp.h> 131 #include <net/xfrm.h> 132 #include <linux/ipsec.h> 133 #include <net/cls_cgroup.h> 134 #include <net/netprio_cgroup.h> 135 #include <linux/sock_diag.h> 136 137 #include <linux/filter.h> 138 #include <net/sock_reuseport.h> 139 #include <net/bpf_sk_storage.h> 140 141 #include <trace/events/sock.h> 142 143 #include <net/tcp.h> 144 #include <net/busy_poll.h> 145 #include <net/phonet/phonet.h> 146 147 #include <linux/ethtool.h> 148 149 #include "dev.h" 150 151 static DEFINE_MUTEX(proto_list_mutex); 152 static LIST_HEAD(proto_list); 153 154 static void sock_def_write_space_wfree(struct sock *sk); 155 static void sock_def_write_space(struct sock *sk); 156 157 /** 158 * sk_ns_capable - General socket capability test 159 * @sk: Socket to use a capability on or through 160 * @user_ns: The user namespace of the capability to use 161 * @cap: The capability to use 162 * 163 * Test to see if the opener of the socket had when the socket was 164 * created and the current process has the capability @cap in the user 165 * namespace @user_ns. 166 */ 167 bool sk_ns_capable(const struct sock *sk, 168 struct user_namespace *user_ns, int cap) 169 { 170 return file_ns_capable(sk->sk_socket->file, user_ns, cap) && 171 ns_capable(user_ns, cap); 172 } 173 EXPORT_SYMBOL(sk_ns_capable); 174 175 /** 176 * sk_capable - Socket global capability test 177 * @sk: Socket to use a capability on or through 178 * @cap: The global capability to use 179 * 180 * Test to see if the opener of the socket had when the socket was 181 * created and the current process has the capability @cap in all user 182 * namespaces. 183 */ 184 bool sk_capable(const struct sock *sk, int cap) 185 { 186 return sk_ns_capable(sk, &init_user_ns, cap); 187 } 188 EXPORT_SYMBOL(sk_capable); 189 190 /** 191 * sk_net_capable - Network namespace socket capability test 192 * @sk: Socket to use a capability on or through 193 * @cap: The capability to use 194 * 195 * Test to see if the opener of the socket had when the socket was created 196 * and the current process has the capability @cap over the network namespace 197 * the socket is a member of. 198 */ 199 bool sk_net_capable(const struct sock *sk, int cap) 200 { 201 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); 202 } 203 EXPORT_SYMBOL(sk_net_capable); 204 205 /* 206 * Each address family might have different locking rules, so we have 207 * one slock key per address family and separate keys for internal and 208 * userspace sockets. 209 */ 210 static struct lock_class_key af_family_keys[AF_MAX]; 211 static struct lock_class_key af_family_kern_keys[AF_MAX]; 212 static struct lock_class_key af_family_slock_keys[AF_MAX]; 213 static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; 214 215 /* 216 * Make lock validator output more readable. (we pre-construct these 217 * strings build-time, so that runtime initialization of socket 218 * locks is fast): 219 */ 220 221 #define _sock_locks(x) \ 222 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ 223 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ 224 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ 225 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ 226 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ 227 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ 228 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ 229 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ 230 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ 231 x "27" , x "28" , x "AF_CAN" , \ 232 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ 233 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ 234 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ 235 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ 236 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ 237 x "AF_MCTP" , \ 238 x "AF_MAX" 239 240 static const char *const af_family_key_strings[AF_MAX+1] = { 241 _sock_locks("sk_lock-") 242 }; 243 static const char *const af_family_slock_key_strings[AF_MAX+1] = { 244 _sock_locks("slock-") 245 }; 246 static const char *const af_family_clock_key_strings[AF_MAX+1] = { 247 _sock_locks("clock-") 248 }; 249 250 static const char *const af_family_kern_key_strings[AF_MAX+1] = { 251 _sock_locks("k-sk_lock-") 252 }; 253 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { 254 _sock_locks("k-slock-") 255 }; 256 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { 257 _sock_locks("k-clock-") 258 }; 259 static const char *const af_family_rlock_key_strings[AF_MAX+1] = { 260 _sock_locks("rlock-") 261 }; 262 static const char *const af_family_wlock_key_strings[AF_MAX+1] = { 263 _sock_locks("wlock-") 264 }; 265 static const char *const af_family_elock_key_strings[AF_MAX+1] = { 266 _sock_locks("elock-") 267 }; 268 269 /* 270 * sk_callback_lock and sk queues locking rules are per-address-family, 271 * so split the lock classes by using a per-AF key: 272 */ 273 static struct lock_class_key af_callback_keys[AF_MAX]; 274 static struct lock_class_key af_rlock_keys[AF_MAX]; 275 static struct lock_class_key af_wlock_keys[AF_MAX]; 276 static struct lock_class_key af_elock_keys[AF_MAX]; 277 static struct lock_class_key af_kern_callback_keys[AF_MAX]; 278 279 /* Run time adjustable parameters. */ 280 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; 281 EXPORT_SYMBOL(sysctl_wmem_max); 282 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; 283 EXPORT_SYMBOL(sysctl_rmem_max); 284 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; 285 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; 286 287 int sysctl_tstamp_allow_data __read_mostly = 1; 288 289 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); 290 EXPORT_SYMBOL_GPL(memalloc_socks_key); 291 292 /** 293 * sk_set_memalloc - sets %SOCK_MEMALLOC 294 * @sk: socket to set it on 295 * 296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. 297 * It's the responsibility of the admin to adjust min_free_kbytes 298 * to meet the requirements 299 */ 300 void sk_set_memalloc(struct sock *sk) 301 { 302 sock_set_flag(sk, SOCK_MEMALLOC); 303 sk->sk_allocation |= __GFP_MEMALLOC; 304 static_branch_inc(&memalloc_socks_key); 305 } 306 EXPORT_SYMBOL_GPL(sk_set_memalloc); 307 308 void sk_clear_memalloc(struct sock *sk) 309 { 310 sock_reset_flag(sk, SOCK_MEMALLOC); 311 sk->sk_allocation &= ~__GFP_MEMALLOC; 312 static_branch_dec(&memalloc_socks_key); 313 314 /* 315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward 316 * progress of swapping. SOCK_MEMALLOC may be cleared while 317 * it has rmem allocations due to the last swapfile being deactivated 318 * but there is a risk that the socket is unusable due to exceeding 319 * the rmem limits. Reclaim the reserves and obey rmem limits again. 320 */ 321 sk_mem_reclaim(sk); 322 } 323 EXPORT_SYMBOL_GPL(sk_clear_memalloc); 324 325 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 326 { 327 int ret; 328 unsigned int noreclaim_flag; 329 330 /* these should have been dropped before queueing */ 331 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); 332 333 noreclaim_flag = memalloc_noreclaim_save(); 334 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv, 335 tcp_v6_do_rcv, 336 tcp_v4_do_rcv, 337 sk, skb); 338 memalloc_noreclaim_restore(noreclaim_flag); 339 340 return ret; 341 } 342 EXPORT_SYMBOL(__sk_backlog_rcv); 343 344 void sk_error_report(struct sock *sk) 345 { 346 sk->sk_error_report(sk); 347 348 switch (sk->sk_family) { 349 case AF_INET: 350 fallthrough; 351 case AF_INET6: 352 trace_inet_sk_error_report(sk); 353 break; 354 default: 355 break; 356 } 357 } 358 EXPORT_SYMBOL(sk_error_report); 359 360 int sock_get_timeout(long timeo, void *optval, bool old_timeval) 361 { 362 struct __kernel_sock_timeval tv; 363 364 if (timeo == MAX_SCHEDULE_TIMEOUT) { 365 tv.tv_sec = 0; 366 tv.tv_usec = 0; 367 } else { 368 tv.tv_sec = timeo / HZ; 369 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; 370 } 371 372 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 373 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; 374 *(struct old_timeval32 *)optval = tv32; 375 return sizeof(tv32); 376 } 377 378 if (old_timeval) { 379 struct __kernel_old_timeval old_tv; 380 old_tv.tv_sec = tv.tv_sec; 381 old_tv.tv_usec = tv.tv_usec; 382 *(struct __kernel_old_timeval *)optval = old_tv; 383 return sizeof(old_tv); 384 } 385 386 *(struct __kernel_sock_timeval *)optval = tv; 387 return sizeof(tv); 388 } 389 EXPORT_SYMBOL(sock_get_timeout); 390 391 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, 392 sockptr_t optval, int optlen, bool old_timeval) 393 { 394 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { 395 struct old_timeval32 tv32; 396 397 if (optlen < sizeof(tv32)) 398 return -EINVAL; 399 400 if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) 401 return -EFAULT; 402 tv->tv_sec = tv32.tv_sec; 403 tv->tv_usec = tv32.tv_usec; 404 } else if (old_timeval) { 405 struct __kernel_old_timeval old_tv; 406 407 if (optlen < sizeof(old_tv)) 408 return -EINVAL; 409 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) 410 return -EFAULT; 411 tv->tv_sec = old_tv.tv_sec; 412 tv->tv_usec = old_tv.tv_usec; 413 } else { 414 if (optlen < sizeof(*tv)) 415 return -EINVAL; 416 if (copy_from_sockptr(tv, optval, sizeof(*tv))) 417 return -EFAULT; 418 } 419 420 return 0; 421 } 422 EXPORT_SYMBOL(sock_copy_user_timeval); 423 424 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, 425 bool old_timeval) 426 { 427 struct __kernel_sock_timeval tv; 428 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval); 429 long val; 430 431 if (err) 432 return err; 433 434 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) 435 return -EDOM; 436 437 if (tv.tv_sec < 0) { 438 static int warned __read_mostly; 439 440 WRITE_ONCE(*timeo_p, 0); 441 if (warned < 10 && net_ratelimit()) { 442 warned++; 443 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", 444 __func__, current->comm, task_pid_nr(current)); 445 } 446 return 0; 447 } 448 val = MAX_SCHEDULE_TIMEOUT; 449 if ((tv.tv_sec || tv.tv_usec) && 450 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))) 451 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, 452 USEC_PER_SEC / HZ); 453 WRITE_ONCE(*timeo_p, val); 454 return 0; 455 } 456 457 static bool sock_needs_netstamp(const struct sock *sk) 458 { 459 switch (sk->sk_family) { 460 case AF_UNSPEC: 461 case AF_UNIX: 462 return false; 463 default: 464 return true; 465 } 466 } 467 468 static void sock_disable_timestamp(struct sock *sk, unsigned long flags) 469 { 470 if (sk->sk_flags & flags) { 471 sk->sk_flags &= ~flags; 472 if (sock_needs_netstamp(sk) && 473 !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) 474 net_disable_timestamp(); 475 } 476 } 477 478 479 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 480 { 481 unsigned long flags; 482 struct sk_buff_head *list = &sk->sk_receive_queue; 483 484 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { 485 atomic_inc(&sk->sk_drops); 486 trace_sock_rcvqueue_full(sk, skb); 487 return -ENOMEM; 488 } 489 490 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 491 atomic_inc(&sk->sk_drops); 492 return -ENOBUFS; 493 } 494 495 skb->dev = NULL; 496 skb_set_owner_r(skb, sk); 497 498 /* we escape from rcu protected region, make sure we dont leak 499 * a norefcounted dst 500 */ 501 skb_dst_force(skb); 502 503 spin_lock_irqsave(&list->lock, flags); 504 sock_skb_set_dropcount(sk, skb); 505 __skb_queue_tail(list, skb); 506 spin_unlock_irqrestore(&list->lock, flags); 507 508 if (!sock_flag(sk, SOCK_DEAD)) 509 sk->sk_data_ready(sk); 510 return 0; 511 } 512 EXPORT_SYMBOL(__sock_queue_rcv_skb); 513 514 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, 515 enum skb_drop_reason *reason) 516 { 517 enum skb_drop_reason drop_reason; 518 int err; 519 520 err = sk_filter(sk, skb); 521 if (err) { 522 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 523 goto out; 524 } 525 err = __sock_queue_rcv_skb(sk, skb); 526 switch (err) { 527 case -ENOMEM: 528 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 529 break; 530 case -ENOBUFS: 531 drop_reason = SKB_DROP_REASON_PROTO_MEM; 532 break; 533 default: 534 drop_reason = SKB_NOT_DROPPED_YET; 535 break; 536 } 537 out: 538 if (reason) 539 *reason = drop_reason; 540 return err; 541 } 542 EXPORT_SYMBOL(sock_queue_rcv_skb_reason); 543 544 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, 545 const int nested, unsigned int trim_cap, bool refcounted) 546 { 547 int rc = NET_RX_SUCCESS; 548 549 if (sk_filter_trim_cap(sk, skb, trim_cap)) 550 goto discard_and_relse; 551 552 skb->dev = NULL; 553 554 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { 555 atomic_inc(&sk->sk_drops); 556 goto discard_and_relse; 557 } 558 if (nested) 559 bh_lock_sock_nested(sk); 560 else 561 bh_lock_sock(sk); 562 if (!sock_owned_by_user(sk)) { 563 /* 564 * trylock + unlock semantics: 565 */ 566 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); 567 568 rc = sk_backlog_rcv(sk, skb); 569 570 mutex_release(&sk->sk_lock.dep_map, _RET_IP_); 571 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { 572 bh_unlock_sock(sk); 573 atomic_inc(&sk->sk_drops); 574 goto discard_and_relse; 575 } 576 577 bh_unlock_sock(sk); 578 out: 579 if (refcounted) 580 sock_put(sk); 581 return rc; 582 discard_and_relse: 583 kfree_skb(skb); 584 goto out; 585 } 586 EXPORT_SYMBOL(__sk_receive_skb); 587 588 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *, 589 u32)); 590 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 591 u32)); 592 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) 593 { 594 struct dst_entry *dst = __sk_dst_get(sk); 595 596 if (dst && dst->obsolete && 597 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 598 dst, cookie) == NULL) { 599 sk_tx_queue_clear(sk); 600 WRITE_ONCE(sk->sk_dst_pending_confirm, 0); 601 RCU_INIT_POINTER(sk->sk_dst_cache, NULL); 602 dst_release(dst); 603 return NULL; 604 } 605 606 return dst; 607 } 608 EXPORT_SYMBOL(__sk_dst_check); 609 610 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) 611 { 612 struct dst_entry *dst = sk_dst_get(sk); 613 614 if (dst && dst->obsolete && 615 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check, 616 dst, cookie) == NULL) { 617 sk_dst_reset(sk); 618 dst_release(dst); 619 return NULL; 620 } 621 622 return dst; 623 } 624 EXPORT_SYMBOL(sk_dst_check); 625 626 static int sock_bindtoindex_locked(struct sock *sk, int ifindex) 627 { 628 int ret = -ENOPROTOOPT; 629 #ifdef CONFIG_NETDEVICES 630 struct net *net = sock_net(sk); 631 632 /* Sorry... */ 633 ret = -EPERM; 634 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) 635 goto out; 636 637 ret = -EINVAL; 638 if (ifindex < 0) 639 goto out; 640 641 /* Paired with all READ_ONCE() done locklessly. */ 642 WRITE_ONCE(sk->sk_bound_dev_if, ifindex); 643 644 if (sk->sk_prot->rehash) 645 sk->sk_prot->rehash(sk); 646 sk_dst_reset(sk); 647 648 ret = 0; 649 650 out: 651 #endif 652 653 return ret; 654 } 655 656 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) 657 { 658 int ret; 659 660 if (lock_sk) 661 lock_sock(sk); 662 ret = sock_bindtoindex_locked(sk, ifindex); 663 if (lock_sk) 664 release_sock(sk); 665 666 return ret; 667 } 668 EXPORT_SYMBOL(sock_bindtoindex); 669 670 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) 671 { 672 int ret = -ENOPROTOOPT; 673 #ifdef CONFIG_NETDEVICES 674 struct net *net = sock_net(sk); 675 char devname[IFNAMSIZ]; 676 int index; 677 678 ret = -EINVAL; 679 if (optlen < 0) 680 goto out; 681 682 /* Bind this socket to a particular device like "eth0", 683 * as specified in the passed interface name. If the 684 * name is "" or the option length is zero the socket 685 * is not bound. 686 */ 687 if (optlen > IFNAMSIZ - 1) 688 optlen = IFNAMSIZ - 1; 689 memset(devname, 0, sizeof(devname)); 690 691 ret = -EFAULT; 692 if (copy_from_sockptr(devname, optval, optlen)) 693 goto out; 694 695 index = 0; 696 if (devname[0] != '\0') { 697 struct net_device *dev; 698 699 rcu_read_lock(); 700 dev = dev_get_by_name_rcu(net, devname); 701 if (dev) 702 index = dev->ifindex; 703 rcu_read_unlock(); 704 ret = -ENODEV; 705 if (!dev) 706 goto out; 707 } 708 709 sockopt_lock_sock(sk); 710 ret = sock_bindtoindex_locked(sk, index); 711 sockopt_release_sock(sk); 712 out: 713 #endif 714 715 return ret; 716 } 717 718 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval, 719 sockptr_t optlen, int len) 720 { 721 int ret = -ENOPROTOOPT; 722 #ifdef CONFIG_NETDEVICES 723 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 724 struct net *net = sock_net(sk); 725 char devname[IFNAMSIZ]; 726 727 if (bound_dev_if == 0) { 728 len = 0; 729 goto zero; 730 } 731 732 ret = -EINVAL; 733 if (len < IFNAMSIZ) 734 goto out; 735 736 ret = netdev_get_name(net, devname, bound_dev_if); 737 if (ret) 738 goto out; 739 740 len = strlen(devname) + 1; 741 742 ret = -EFAULT; 743 if (copy_to_sockptr(optval, devname, len)) 744 goto out; 745 746 zero: 747 ret = -EFAULT; 748 if (copy_to_sockptr(optlen, &len, sizeof(int))) 749 goto out; 750 751 ret = 0; 752 753 out: 754 #endif 755 756 return ret; 757 } 758 759 bool sk_mc_loop(const struct sock *sk) 760 { 761 if (dev_recursion_level()) 762 return false; 763 if (!sk) 764 return true; 765 /* IPV6_ADDRFORM can change sk->sk_family under us. */ 766 switch (READ_ONCE(sk->sk_family)) { 767 case AF_INET: 768 return inet_test_bit(MC_LOOP, sk); 769 #if IS_ENABLED(CONFIG_IPV6) 770 case AF_INET6: 771 return inet6_test_bit(MC6_LOOP, sk); 772 #endif 773 } 774 WARN_ON_ONCE(1); 775 return true; 776 } 777 EXPORT_SYMBOL(sk_mc_loop); 778 779 void sock_set_reuseaddr(struct sock *sk) 780 { 781 lock_sock(sk); 782 sk->sk_reuse = SK_CAN_REUSE; 783 release_sock(sk); 784 } 785 EXPORT_SYMBOL(sock_set_reuseaddr); 786 787 void sock_set_reuseport(struct sock *sk) 788 { 789 lock_sock(sk); 790 sk->sk_reuseport = true; 791 release_sock(sk); 792 } 793 EXPORT_SYMBOL(sock_set_reuseport); 794 795 void sock_no_linger(struct sock *sk) 796 { 797 lock_sock(sk); 798 WRITE_ONCE(sk->sk_lingertime, 0); 799 sock_set_flag(sk, SOCK_LINGER); 800 release_sock(sk); 801 } 802 EXPORT_SYMBOL(sock_no_linger); 803 804 void sock_set_priority(struct sock *sk, u32 priority) 805 { 806 WRITE_ONCE(sk->sk_priority, priority); 807 } 808 EXPORT_SYMBOL(sock_set_priority); 809 810 void sock_set_sndtimeo(struct sock *sk, s64 secs) 811 { 812 lock_sock(sk); 813 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) 814 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ); 815 else 816 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT); 817 release_sock(sk); 818 } 819 EXPORT_SYMBOL(sock_set_sndtimeo); 820 821 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) 822 { 823 if (val) { 824 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); 825 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); 826 sock_set_flag(sk, SOCK_RCVTSTAMP); 827 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 828 } else { 829 sock_reset_flag(sk, SOCK_RCVTSTAMP); 830 sock_reset_flag(sk, SOCK_RCVTSTAMPNS); 831 } 832 } 833 834 void sock_enable_timestamps(struct sock *sk) 835 { 836 lock_sock(sk); 837 __sock_set_timestamps(sk, true, false, true); 838 release_sock(sk); 839 } 840 EXPORT_SYMBOL(sock_enable_timestamps); 841 842 void sock_set_timestamp(struct sock *sk, int optname, bool valbool) 843 { 844 switch (optname) { 845 case SO_TIMESTAMP_OLD: 846 __sock_set_timestamps(sk, valbool, false, false); 847 break; 848 case SO_TIMESTAMP_NEW: 849 __sock_set_timestamps(sk, valbool, true, false); 850 break; 851 case SO_TIMESTAMPNS_OLD: 852 __sock_set_timestamps(sk, valbool, false, true); 853 break; 854 case SO_TIMESTAMPNS_NEW: 855 __sock_set_timestamps(sk, valbool, true, true); 856 break; 857 } 858 } 859 860 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index) 861 { 862 struct net *net = sock_net(sk); 863 struct net_device *dev = NULL; 864 bool match = false; 865 int *vclock_index; 866 int i, num; 867 868 if (sk->sk_bound_dev_if) 869 dev = dev_get_by_index(net, sk->sk_bound_dev_if); 870 871 if (!dev) { 872 pr_err("%s: sock not bind to device\n", __func__); 873 return -EOPNOTSUPP; 874 } 875 876 num = ethtool_get_phc_vclocks(dev, &vclock_index); 877 dev_put(dev); 878 879 for (i = 0; i < num; i++) { 880 if (*(vclock_index + i) == phc_index) { 881 match = true; 882 break; 883 } 884 } 885 886 if (num > 0) 887 kfree(vclock_index); 888 889 if (!match) 890 return -EINVAL; 891 892 WRITE_ONCE(sk->sk_bind_phc, phc_index); 893 894 return 0; 895 } 896 897 int sock_set_timestamping(struct sock *sk, int optname, 898 struct so_timestamping timestamping) 899 { 900 int val = timestamping.flags; 901 int ret; 902 903 if (val & ~SOF_TIMESTAMPING_MASK) 904 return -EINVAL; 905 906 if (val & SOF_TIMESTAMPING_OPT_ID_TCP && 907 !(val & SOF_TIMESTAMPING_OPT_ID)) 908 return -EINVAL; 909 910 if (val & SOF_TIMESTAMPING_OPT_ID && 911 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { 912 if (sk_is_tcp(sk)) { 913 if ((1 << sk->sk_state) & 914 (TCPF_CLOSE | TCPF_LISTEN)) 915 return -EINVAL; 916 if (val & SOF_TIMESTAMPING_OPT_ID_TCP) 917 atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq); 918 else 919 atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una); 920 } else { 921 atomic_set(&sk->sk_tskey, 0); 922 } 923 } 924 925 if (val & SOF_TIMESTAMPING_OPT_STATS && 926 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) 927 return -EINVAL; 928 929 if (val & SOF_TIMESTAMPING_BIND_PHC) { 930 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc); 931 if (ret) 932 return ret; 933 } 934 935 WRITE_ONCE(sk->sk_tsflags, val); 936 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); 937 938 if (val & SOF_TIMESTAMPING_RX_SOFTWARE) 939 sock_enable_timestamp(sk, 940 SOCK_TIMESTAMPING_RX_SOFTWARE); 941 else 942 sock_disable_timestamp(sk, 943 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); 944 return 0; 945 } 946 947 void sock_set_keepalive(struct sock *sk) 948 { 949 lock_sock(sk); 950 if (sk->sk_prot->keepalive) 951 sk->sk_prot->keepalive(sk, true); 952 sock_valbool_flag(sk, SOCK_KEEPOPEN, true); 953 release_sock(sk); 954 } 955 EXPORT_SYMBOL(sock_set_keepalive); 956 957 static void __sock_set_rcvbuf(struct sock *sk, int val) 958 { 959 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it 960 * as a negative value. 961 */ 962 val = min_t(int, val, INT_MAX / 2); 963 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 964 965 /* We double it on the way in to account for "struct sk_buff" etc. 966 * overhead. Applications assume that the SO_RCVBUF setting they make 967 * will allow that much actual data to be received on that socket. 968 * 969 * Applications are unaware that "struct sk_buff" and other overheads 970 * allocate from the receive buffer during socket buffer allocation. 971 * 972 * And after considering the possible alternatives, returning the value 973 * we actually used in getsockopt is the most desirable behavior. 974 */ 975 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); 976 } 977 978 void sock_set_rcvbuf(struct sock *sk, int val) 979 { 980 lock_sock(sk); 981 __sock_set_rcvbuf(sk, val); 982 release_sock(sk); 983 } 984 EXPORT_SYMBOL(sock_set_rcvbuf); 985 986 static void __sock_set_mark(struct sock *sk, u32 val) 987 { 988 if (val != sk->sk_mark) { 989 WRITE_ONCE(sk->sk_mark, val); 990 sk_dst_reset(sk); 991 } 992 } 993 994 void sock_set_mark(struct sock *sk, u32 val) 995 { 996 lock_sock(sk); 997 __sock_set_mark(sk, val); 998 release_sock(sk); 999 } 1000 EXPORT_SYMBOL(sock_set_mark); 1001 1002 static void sock_release_reserved_memory(struct sock *sk, int bytes) 1003 { 1004 /* Round down bytes to multiple of pages */ 1005 bytes = round_down(bytes, PAGE_SIZE); 1006 1007 WARN_ON(bytes > sk->sk_reserved_mem); 1008 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes); 1009 sk_mem_reclaim(sk); 1010 } 1011 1012 static int sock_reserve_memory(struct sock *sk, int bytes) 1013 { 1014 long allocated; 1015 bool charged; 1016 int pages; 1017 1018 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk)) 1019 return -EOPNOTSUPP; 1020 1021 if (!bytes) 1022 return 0; 1023 1024 pages = sk_mem_pages(bytes); 1025 1026 /* pre-charge to memcg */ 1027 charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages, 1028 GFP_KERNEL | __GFP_RETRY_MAYFAIL); 1029 if (!charged) 1030 return -ENOMEM; 1031 1032 /* pre-charge to forward_alloc */ 1033 sk_memory_allocated_add(sk, pages); 1034 allocated = sk_memory_allocated(sk); 1035 /* If the system goes into memory pressure with this 1036 * precharge, give up and return error. 1037 */ 1038 if (allocated > sk_prot_mem_limits(sk, 1)) { 1039 sk_memory_allocated_sub(sk, pages); 1040 mem_cgroup_uncharge_skmem(sk->sk_memcg, pages); 1041 return -ENOMEM; 1042 } 1043 sk_forward_alloc_add(sk, pages << PAGE_SHIFT); 1044 1045 WRITE_ONCE(sk->sk_reserved_mem, 1046 sk->sk_reserved_mem + (pages << PAGE_SHIFT)); 1047 1048 return 0; 1049 } 1050 1051 void sockopt_lock_sock(struct sock *sk) 1052 { 1053 /* When current->bpf_ctx is set, the setsockopt is called from 1054 * a bpf prog. bpf has ensured the sk lock has been 1055 * acquired before calling setsockopt(). 1056 */ 1057 if (has_current_bpf_ctx()) 1058 return; 1059 1060 lock_sock(sk); 1061 } 1062 EXPORT_SYMBOL(sockopt_lock_sock); 1063 1064 void sockopt_release_sock(struct sock *sk) 1065 { 1066 if (has_current_bpf_ctx()) 1067 return; 1068 1069 release_sock(sk); 1070 } 1071 EXPORT_SYMBOL(sockopt_release_sock); 1072 1073 bool sockopt_ns_capable(struct user_namespace *ns, int cap) 1074 { 1075 return has_current_bpf_ctx() || ns_capable(ns, cap); 1076 } 1077 EXPORT_SYMBOL(sockopt_ns_capable); 1078 1079 bool sockopt_capable(int cap) 1080 { 1081 return has_current_bpf_ctx() || capable(cap); 1082 } 1083 EXPORT_SYMBOL(sockopt_capable); 1084 1085 /* 1086 * This is meant for all protocols to use and covers goings on 1087 * at the socket level. Everything here is generic. 1088 */ 1089 1090 int sk_setsockopt(struct sock *sk, int level, int optname, 1091 sockptr_t optval, unsigned int optlen) 1092 { 1093 struct so_timestamping timestamping; 1094 struct socket *sock = sk->sk_socket; 1095 struct sock_txtime sk_txtime; 1096 int val; 1097 int valbool; 1098 struct linger ling; 1099 int ret = 0; 1100 1101 /* 1102 * Options without arguments 1103 */ 1104 1105 if (optname == SO_BINDTODEVICE) 1106 return sock_setbindtodevice(sk, optval, optlen); 1107 1108 if (optlen < sizeof(int)) 1109 return -EINVAL; 1110 1111 if (copy_from_sockptr(&val, optval, sizeof(val))) 1112 return -EFAULT; 1113 1114 valbool = val ? 1 : 0; 1115 1116 /* handle options which do not require locking the socket. */ 1117 switch (optname) { 1118 case SO_PRIORITY: 1119 if ((val >= 0 && val <= 6) || 1120 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) || 1121 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1122 sock_set_priority(sk, val); 1123 return 0; 1124 } 1125 return -EPERM; 1126 case SO_PASSSEC: 1127 assign_bit(SOCK_PASSSEC, &sock->flags, valbool); 1128 return 0; 1129 case SO_PASSCRED: 1130 assign_bit(SOCK_PASSCRED, &sock->flags, valbool); 1131 return 0; 1132 case SO_PASSPIDFD: 1133 assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool); 1134 return 0; 1135 case SO_TYPE: 1136 case SO_PROTOCOL: 1137 case SO_DOMAIN: 1138 case SO_ERROR: 1139 return -ENOPROTOOPT; 1140 #ifdef CONFIG_NET_RX_BUSY_POLL 1141 case SO_BUSY_POLL: 1142 if (val < 0) 1143 return -EINVAL; 1144 WRITE_ONCE(sk->sk_ll_usec, val); 1145 return 0; 1146 case SO_PREFER_BUSY_POLL: 1147 if (valbool && !sockopt_capable(CAP_NET_ADMIN)) 1148 return -EPERM; 1149 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool); 1150 return 0; 1151 case SO_BUSY_POLL_BUDGET: 1152 if (val > READ_ONCE(sk->sk_busy_poll_budget) && 1153 !sockopt_capable(CAP_NET_ADMIN)) 1154 return -EPERM; 1155 if (val < 0 || val > U16_MAX) 1156 return -EINVAL; 1157 WRITE_ONCE(sk->sk_busy_poll_budget, val); 1158 return 0; 1159 #endif 1160 case SO_MAX_PACING_RATE: 1161 { 1162 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; 1163 unsigned long pacing_rate; 1164 1165 if (sizeof(ulval) != sizeof(val) && 1166 optlen >= sizeof(ulval) && 1167 copy_from_sockptr(&ulval, optval, sizeof(ulval))) { 1168 return -EFAULT; 1169 } 1170 if (ulval != ~0UL) 1171 cmpxchg(&sk->sk_pacing_status, 1172 SK_PACING_NONE, 1173 SK_PACING_NEEDED); 1174 /* Pairs with READ_ONCE() from sk_getsockopt() */ 1175 WRITE_ONCE(sk->sk_max_pacing_rate, ulval); 1176 pacing_rate = READ_ONCE(sk->sk_pacing_rate); 1177 if (ulval < pacing_rate) 1178 WRITE_ONCE(sk->sk_pacing_rate, ulval); 1179 return 0; 1180 } 1181 case SO_TXREHASH: 1182 if (val < -1 || val > 1) 1183 return -EINVAL; 1184 if ((u8)val == SOCK_TXREHASH_DEFAULT) 1185 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash); 1186 /* Paired with READ_ONCE() in tcp_rtx_synack() 1187 * and sk_getsockopt(). 1188 */ 1189 WRITE_ONCE(sk->sk_txrehash, (u8)val); 1190 return 0; 1191 } 1192 1193 sockopt_lock_sock(sk); 1194 1195 switch (optname) { 1196 case SO_DEBUG: 1197 if (val && !sockopt_capable(CAP_NET_ADMIN)) 1198 ret = -EACCES; 1199 else 1200 sock_valbool_flag(sk, SOCK_DBG, valbool); 1201 break; 1202 case SO_REUSEADDR: 1203 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); 1204 break; 1205 case SO_REUSEPORT: 1206 sk->sk_reuseport = valbool; 1207 break; 1208 case SO_DONTROUTE: 1209 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); 1210 sk_dst_reset(sk); 1211 break; 1212 case SO_BROADCAST: 1213 sock_valbool_flag(sk, SOCK_BROADCAST, valbool); 1214 break; 1215 case SO_SNDBUF: 1216 /* Don't error on this BSD doesn't and if you think 1217 * about it this is right. Otherwise apps have to 1218 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1219 * are treated in BSD as hints 1220 */ 1221 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); 1222 set_sndbuf: 1223 /* Ensure val * 2 fits into an int, to prevent max_t() 1224 * from treating it as a negative value. 1225 */ 1226 val = min_t(int, val, INT_MAX / 2); 1227 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1228 WRITE_ONCE(sk->sk_sndbuf, 1229 max_t(int, val * 2, SOCK_MIN_SNDBUF)); 1230 /* Wake up sending tasks if we upped the value. */ 1231 sk->sk_write_space(sk); 1232 break; 1233 1234 case SO_SNDBUFFORCE: 1235 if (!sockopt_capable(CAP_NET_ADMIN)) { 1236 ret = -EPERM; 1237 break; 1238 } 1239 1240 /* No negative values (to prevent underflow, as val will be 1241 * multiplied by 2). 1242 */ 1243 if (val < 0) 1244 val = 0; 1245 goto set_sndbuf; 1246 1247 case SO_RCVBUF: 1248 /* Don't error on this BSD doesn't and if you think 1249 * about it this is right. Otherwise apps have to 1250 * play 'guess the biggest size' games. RCVBUF/SNDBUF 1251 * are treated in BSD as hints 1252 */ 1253 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max))); 1254 break; 1255 1256 case SO_RCVBUFFORCE: 1257 if (!sockopt_capable(CAP_NET_ADMIN)) { 1258 ret = -EPERM; 1259 break; 1260 } 1261 1262 /* No negative values (to prevent underflow, as val will be 1263 * multiplied by 2). 1264 */ 1265 __sock_set_rcvbuf(sk, max(val, 0)); 1266 break; 1267 1268 case SO_KEEPALIVE: 1269 if (sk->sk_prot->keepalive) 1270 sk->sk_prot->keepalive(sk, valbool); 1271 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); 1272 break; 1273 1274 case SO_OOBINLINE: 1275 sock_valbool_flag(sk, SOCK_URGINLINE, valbool); 1276 break; 1277 1278 case SO_NO_CHECK: 1279 sk->sk_no_check_tx = valbool; 1280 break; 1281 1282 case SO_LINGER: 1283 if (optlen < sizeof(ling)) { 1284 ret = -EINVAL; /* 1003.1g */ 1285 break; 1286 } 1287 if (copy_from_sockptr(&ling, optval, sizeof(ling))) { 1288 ret = -EFAULT; 1289 break; 1290 } 1291 if (!ling.l_onoff) { 1292 sock_reset_flag(sk, SOCK_LINGER); 1293 } else { 1294 unsigned long t_sec = ling.l_linger; 1295 1296 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ) 1297 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT); 1298 else 1299 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ); 1300 sock_set_flag(sk, SOCK_LINGER); 1301 } 1302 break; 1303 1304 case SO_BSDCOMPAT: 1305 break; 1306 1307 case SO_TIMESTAMP_OLD: 1308 case SO_TIMESTAMP_NEW: 1309 case SO_TIMESTAMPNS_OLD: 1310 case SO_TIMESTAMPNS_NEW: 1311 sock_set_timestamp(sk, optname, valbool); 1312 break; 1313 1314 case SO_TIMESTAMPING_NEW: 1315 case SO_TIMESTAMPING_OLD: 1316 if (optlen == sizeof(timestamping)) { 1317 if (copy_from_sockptr(×tamping, optval, 1318 sizeof(timestamping))) { 1319 ret = -EFAULT; 1320 break; 1321 } 1322 } else { 1323 memset(×tamping, 0, sizeof(timestamping)); 1324 timestamping.flags = val; 1325 } 1326 ret = sock_set_timestamping(sk, optname, timestamping); 1327 break; 1328 1329 case SO_RCVLOWAT: 1330 { 1331 int (*set_rcvlowat)(struct sock *sk, int val) = NULL; 1332 1333 if (val < 0) 1334 val = INT_MAX; 1335 if (sock) 1336 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat; 1337 if (set_rcvlowat) 1338 ret = set_rcvlowat(sk, val); 1339 else 1340 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1341 break; 1342 } 1343 case SO_RCVTIMEO_OLD: 1344 case SO_RCVTIMEO_NEW: 1345 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, 1346 optlen, optname == SO_RCVTIMEO_OLD); 1347 break; 1348 1349 case SO_SNDTIMEO_OLD: 1350 case SO_SNDTIMEO_NEW: 1351 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, 1352 optlen, optname == SO_SNDTIMEO_OLD); 1353 break; 1354 1355 case SO_ATTACH_FILTER: { 1356 struct sock_fprog fprog; 1357 1358 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1359 if (!ret) 1360 ret = sk_attach_filter(&fprog, sk); 1361 break; 1362 } 1363 case SO_ATTACH_BPF: 1364 ret = -EINVAL; 1365 if (optlen == sizeof(u32)) { 1366 u32 ufd; 1367 1368 ret = -EFAULT; 1369 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1370 break; 1371 1372 ret = sk_attach_bpf(ufd, sk); 1373 } 1374 break; 1375 1376 case SO_ATTACH_REUSEPORT_CBPF: { 1377 struct sock_fprog fprog; 1378 1379 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); 1380 if (!ret) 1381 ret = sk_reuseport_attach_filter(&fprog, sk); 1382 break; 1383 } 1384 case SO_ATTACH_REUSEPORT_EBPF: 1385 ret = -EINVAL; 1386 if (optlen == sizeof(u32)) { 1387 u32 ufd; 1388 1389 ret = -EFAULT; 1390 if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) 1391 break; 1392 1393 ret = sk_reuseport_attach_bpf(ufd, sk); 1394 } 1395 break; 1396 1397 case SO_DETACH_REUSEPORT_BPF: 1398 ret = reuseport_detach_prog(sk); 1399 break; 1400 1401 case SO_DETACH_FILTER: 1402 ret = sk_detach_filter(sk); 1403 break; 1404 1405 case SO_LOCK_FILTER: 1406 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) 1407 ret = -EPERM; 1408 else 1409 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); 1410 break; 1411 1412 case SO_MARK: 1413 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 1414 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1415 ret = -EPERM; 1416 break; 1417 } 1418 1419 __sock_set_mark(sk, val); 1420 break; 1421 case SO_RCVMARK: 1422 sock_valbool_flag(sk, SOCK_RCVMARK, valbool); 1423 break; 1424 1425 case SO_RXQ_OVFL: 1426 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); 1427 break; 1428 1429 case SO_WIFI_STATUS: 1430 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); 1431 break; 1432 1433 case SO_PEEK_OFF: 1434 { 1435 int (*set_peek_off)(struct sock *sk, int val); 1436 1437 set_peek_off = READ_ONCE(sock->ops)->set_peek_off; 1438 if (set_peek_off) 1439 ret = set_peek_off(sk, val); 1440 else 1441 ret = -EOPNOTSUPP; 1442 break; 1443 } 1444 1445 case SO_NOFCS: 1446 sock_valbool_flag(sk, SOCK_NOFCS, valbool); 1447 break; 1448 1449 case SO_SELECT_ERR_QUEUE: 1450 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); 1451 break; 1452 1453 1454 case SO_INCOMING_CPU: 1455 reuseport_update_incoming_cpu(sk, val); 1456 break; 1457 1458 case SO_CNX_ADVICE: 1459 if (val == 1) 1460 dst_negative_advice(sk); 1461 break; 1462 1463 case SO_ZEROCOPY: 1464 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { 1465 if (!(sk_is_tcp(sk) || 1466 (sk->sk_type == SOCK_DGRAM && 1467 sk->sk_protocol == IPPROTO_UDP))) 1468 ret = -EOPNOTSUPP; 1469 } else if (sk->sk_family != PF_RDS) { 1470 ret = -EOPNOTSUPP; 1471 } 1472 if (!ret) { 1473 if (val < 0 || val > 1) 1474 ret = -EINVAL; 1475 else 1476 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); 1477 } 1478 break; 1479 1480 case SO_TXTIME: 1481 if (optlen != sizeof(struct sock_txtime)) { 1482 ret = -EINVAL; 1483 break; 1484 } else if (copy_from_sockptr(&sk_txtime, optval, 1485 sizeof(struct sock_txtime))) { 1486 ret = -EFAULT; 1487 break; 1488 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { 1489 ret = -EINVAL; 1490 break; 1491 } 1492 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet 1493 * scheduler has enough safe guards. 1494 */ 1495 if (sk_txtime.clockid != CLOCK_MONOTONIC && 1496 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { 1497 ret = -EPERM; 1498 break; 1499 } 1500 sock_valbool_flag(sk, SOCK_TXTIME, true); 1501 sk->sk_clockid = sk_txtime.clockid; 1502 sk->sk_txtime_deadline_mode = 1503 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); 1504 sk->sk_txtime_report_errors = 1505 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); 1506 break; 1507 1508 case SO_BINDTOIFINDEX: 1509 ret = sock_bindtoindex_locked(sk, val); 1510 break; 1511 1512 case SO_BUF_LOCK: 1513 if (val & ~SOCK_BUF_LOCK_MASK) { 1514 ret = -EINVAL; 1515 break; 1516 } 1517 sk->sk_userlocks = val | (sk->sk_userlocks & 1518 ~SOCK_BUF_LOCK_MASK); 1519 break; 1520 1521 case SO_RESERVE_MEM: 1522 { 1523 int delta; 1524 1525 if (val < 0) { 1526 ret = -EINVAL; 1527 break; 1528 } 1529 1530 delta = val - sk->sk_reserved_mem; 1531 if (delta < 0) 1532 sock_release_reserved_memory(sk, -delta); 1533 else 1534 ret = sock_reserve_memory(sk, delta); 1535 break; 1536 } 1537 1538 default: 1539 ret = -ENOPROTOOPT; 1540 break; 1541 } 1542 sockopt_release_sock(sk); 1543 return ret; 1544 } 1545 1546 int sock_setsockopt(struct socket *sock, int level, int optname, 1547 sockptr_t optval, unsigned int optlen) 1548 { 1549 return sk_setsockopt(sock->sk, level, optname, 1550 optval, optlen); 1551 } 1552 EXPORT_SYMBOL(sock_setsockopt); 1553 1554 static const struct cred *sk_get_peer_cred(struct sock *sk) 1555 { 1556 const struct cred *cred; 1557 1558 spin_lock(&sk->sk_peer_lock); 1559 cred = get_cred(sk->sk_peer_cred); 1560 spin_unlock(&sk->sk_peer_lock); 1561 1562 return cred; 1563 } 1564 1565 static void cred_to_ucred(struct pid *pid, const struct cred *cred, 1566 struct ucred *ucred) 1567 { 1568 ucred->pid = pid_vnr(pid); 1569 ucred->uid = ucred->gid = -1; 1570 if (cred) { 1571 struct user_namespace *current_ns = current_user_ns(); 1572 1573 ucred->uid = from_kuid_munged(current_ns, cred->euid); 1574 ucred->gid = from_kgid_munged(current_ns, cred->egid); 1575 } 1576 } 1577 1578 static int groups_to_user(sockptr_t dst, const struct group_info *src) 1579 { 1580 struct user_namespace *user_ns = current_user_ns(); 1581 int i; 1582 1583 for (i = 0; i < src->ngroups; i++) { 1584 gid_t gid = from_kgid_munged(user_ns, src->gid[i]); 1585 1586 if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid))) 1587 return -EFAULT; 1588 } 1589 1590 return 0; 1591 } 1592 1593 int sk_getsockopt(struct sock *sk, int level, int optname, 1594 sockptr_t optval, sockptr_t optlen) 1595 { 1596 struct socket *sock = sk->sk_socket; 1597 1598 union { 1599 int val; 1600 u64 val64; 1601 unsigned long ulval; 1602 struct linger ling; 1603 struct old_timeval32 tm32; 1604 struct __kernel_old_timeval tm; 1605 struct __kernel_sock_timeval stm; 1606 struct sock_txtime txtime; 1607 struct so_timestamping timestamping; 1608 } v; 1609 1610 int lv = sizeof(int); 1611 int len; 1612 1613 if (copy_from_sockptr(&len, optlen, sizeof(int))) 1614 return -EFAULT; 1615 if (len < 0) 1616 return -EINVAL; 1617 1618 memset(&v, 0, sizeof(v)); 1619 1620 switch (optname) { 1621 case SO_DEBUG: 1622 v.val = sock_flag(sk, SOCK_DBG); 1623 break; 1624 1625 case SO_DONTROUTE: 1626 v.val = sock_flag(sk, SOCK_LOCALROUTE); 1627 break; 1628 1629 case SO_BROADCAST: 1630 v.val = sock_flag(sk, SOCK_BROADCAST); 1631 break; 1632 1633 case SO_SNDBUF: 1634 v.val = READ_ONCE(sk->sk_sndbuf); 1635 break; 1636 1637 case SO_RCVBUF: 1638 v.val = READ_ONCE(sk->sk_rcvbuf); 1639 break; 1640 1641 case SO_REUSEADDR: 1642 v.val = sk->sk_reuse; 1643 break; 1644 1645 case SO_REUSEPORT: 1646 v.val = sk->sk_reuseport; 1647 break; 1648 1649 case SO_KEEPALIVE: 1650 v.val = sock_flag(sk, SOCK_KEEPOPEN); 1651 break; 1652 1653 case SO_TYPE: 1654 v.val = sk->sk_type; 1655 break; 1656 1657 case SO_PROTOCOL: 1658 v.val = sk->sk_protocol; 1659 break; 1660 1661 case SO_DOMAIN: 1662 v.val = sk->sk_family; 1663 break; 1664 1665 case SO_ERROR: 1666 v.val = -sock_error(sk); 1667 if (v.val == 0) 1668 v.val = xchg(&sk->sk_err_soft, 0); 1669 break; 1670 1671 case SO_OOBINLINE: 1672 v.val = sock_flag(sk, SOCK_URGINLINE); 1673 break; 1674 1675 case SO_NO_CHECK: 1676 v.val = sk->sk_no_check_tx; 1677 break; 1678 1679 case SO_PRIORITY: 1680 v.val = READ_ONCE(sk->sk_priority); 1681 break; 1682 1683 case SO_LINGER: 1684 lv = sizeof(v.ling); 1685 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); 1686 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ; 1687 break; 1688 1689 case SO_BSDCOMPAT: 1690 break; 1691 1692 case SO_TIMESTAMP_OLD: 1693 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && 1694 !sock_flag(sk, SOCK_TSTAMP_NEW) && 1695 !sock_flag(sk, SOCK_RCVTSTAMPNS); 1696 break; 1697 1698 case SO_TIMESTAMPNS_OLD: 1699 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); 1700 break; 1701 1702 case SO_TIMESTAMP_NEW: 1703 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); 1704 break; 1705 1706 case SO_TIMESTAMPNS_NEW: 1707 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); 1708 break; 1709 1710 case SO_TIMESTAMPING_OLD: 1711 case SO_TIMESTAMPING_NEW: 1712 lv = sizeof(v.timestamping); 1713 /* For the later-added case SO_TIMESTAMPING_NEW: Be strict about only 1714 * returning the flags when they were set through the same option. 1715 * Don't change the beviour for the old case SO_TIMESTAMPING_OLD. 1716 */ 1717 if (optname == SO_TIMESTAMPING_OLD || sock_flag(sk, SOCK_TSTAMP_NEW)) { 1718 v.timestamping.flags = READ_ONCE(sk->sk_tsflags); 1719 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc); 1720 } 1721 break; 1722 1723 case SO_RCVTIMEO_OLD: 1724 case SO_RCVTIMEO_NEW: 1725 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v, 1726 SO_RCVTIMEO_OLD == optname); 1727 break; 1728 1729 case SO_SNDTIMEO_OLD: 1730 case SO_SNDTIMEO_NEW: 1731 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v, 1732 SO_SNDTIMEO_OLD == optname); 1733 break; 1734 1735 case SO_RCVLOWAT: 1736 v.val = READ_ONCE(sk->sk_rcvlowat); 1737 break; 1738 1739 case SO_SNDLOWAT: 1740 v.val = 1; 1741 break; 1742 1743 case SO_PASSCRED: 1744 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); 1745 break; 1746 1747 case SO_PASSPIDFD: 1748 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags); 1749 break; 1750 1751 case SO_PEERCRED: 1752 { 1753 struct ucred peercred; 1754 if (len > sizeof(peercred)) 1755 len = sizeof(peercred); 1756 1757 spin_lock(&sk->sk_peer_lock); 1758 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); 1759 spin_unlock(&sk->sk_peer_lock); 1760 1761 if (copy_to_sockptr(optval, &peercred, len)) 1762 return -EFAULT; 1763 goto lenout; 1764 } 1765 1766 case SO_PEERPIDFD: 1767 { 1768 struct pid *peer_pid; 1769 struct file *pidfd_file = NULL; 1770 int pidfd; 1771 1772 if (len > sizeof(pidfd)) 1773 len = sizeof(pidfd); 1774 1775 spin_lock(&sk->sk_peer_lock); 1776 peer_pid = get_pid(sk->sk_peer_pid); 1777 spin_unlock(&sk->sk_peer_lock); 1778 1779 if (!peer_pid) 1780 return -ENODATA; 1781 1782 pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file); 1783 put_pid(peer_pid); 1784 if (pidfd < 0) 1785 return pidfd; 1786 1787 if (copy_to_sockptr(optval, &pidfd, len) || 1788 copy_to_sockptr(optlen, &len, sizeof(int))) { 1789 put_unused_fd(pidfd); 1790 fput(pidfd_file); 1791 1792 return -EFAULT; 1793 } 1794 1795 fd_install(pidfd, pidfd_file); 1796 return 0; 1797 } 1798 1799 case SO_PEERGROUPS: 1800 { 1801 const struct cred *cred; 1802 int ret, n; 1803 1804 cred = sk_get_peer_cred(sk); 1805 if (!cred) 1806 return -ENODATA; 1807 1808 n = cred->group_info->ngroups; 1809 if (len < n * sizeof(gid_t)) { 1810 len = n * sizeof(gid_t); 1811 put_cred(cred); 1812 return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE; 1813 } 1814 len = n * sizeof(gid_t); 1815 1816 ret = groups_to_user(optval, cred->group_info); 1817 put_cred(cred); 1818 if (ret) 1819 return ret; 1820 goto lenout; 1821 } 1822 1823 case SO_PEERNAME: 1824 { 1825 struct sockaddr_storage address; 1826 1827 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2); 1828 if (lv < 0) 1829 return -ENOTCONN; 1830 if (lv < len) 1831 return -EINVAL; 1832 if (copy_to_sockptr(optval, &address, len)) 1833 return -EFAULT; 1834 goto lenout; 1835 } 1836 1837 /* Dubious BSD thing... Probably nobody even uses it, but 1838 * the UNIX standard wants it for whatever reason... -DaveM 1839 */ 1840 case SO_ACCEPTCONN: 1841 v.val = sk->sk_state == TCP_LISTEN; 1842 break; 1843 1844 case SO_PASSSEC: 1845 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); 1846 break; 1847 1848 case SO_PEERSEC: 1849 return security_socket_getpeersec_stream(sock, 1850 optval, optlen, len); 1851 1852 case SO_MARK: 1853 v.val = READ_ONCE(sk->sk_mark); 1854 break; 1855 1856 case SO_RCVMARK: 1857 v.val = sock_flag(sk, SOCK_RCVMARK); 1858 break; 1859 1860 case SO_RXQ_OVFL: 1861 v.val = sock_flag(sk, SOCK_RXQ_OVFL); 1862 break; 1863 1864 case SO_WIFI_STATUS: 1865 v.val = sock_flag(sk, SOCK_WIFI_STATUS); 1866 break; 1867 1868 case SO_PEEK_OFF: 1869 if (!READ_ONCE(sock->ops)->set_peek_off) 1870 return -EOPNOTSUPP; 1871 1872 v.val = READ_ONCE(sk->sk_peek_off); 1873 break; 1874 case SO_NOFCS: 1875 v.val = sock_flag(sk, SOCK_NOFCS); 1876 break; 1877 1878 case SO_BINDTODEVICE: 1879 return sock_getbindtodevice(sk, optval, optlen, len); 1880 1881 case SO_GET_FILTER: 1882 len = sk_get_filter(sk, optval, len); 1883 if (len < 0) 1884 return len; 1885 1886 goto lenout; 1887 1888 case SO_LOCK_FILTER: 1889 v.val = sock_flag(sk, SOCK_FILTER_LOCKED); 1890 break; 1891 1892 case SO_BPF_EXTENSIONS: 1893 v.val = bpf_tell_extensions(); 1894 break; 1895 1896 case SO_SELECT_ERR_QUEUE: 1897 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); 1898 break; 1899 1900 #ifdef CONFIG_NET_RX_BUSY_POLL 1901 case SO_BUSY_POLL: 1902 v.val = READ_ONCE(sk->sk_ll_usec); 1903 break; 1904 case SO_PREFER_BUSY_POLL: 1905 v.val = READ_ONCE(sk->sk_prefer_busy_poll); 1906 break; 1907 #endif 1908 1909 case SO_MAX_PACING_RATE: 1910 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */ 1911 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { 1912 lv = sizeof(v.ulval); 1913 v.ulval = READ_ONCE(sk->sk_max_pacing_rate); 1914 } else { 1915 /* 32bit version */ 1916 v.val = min_t(unsigned long, ~0U, 1917 READ_ONCE(sk->sk_max_pacing_rate)); 1918 } 1919 break; 1920 1921 case SO_INCOMING_CPU: 1922 v.val = READ_ONCE(sk->sk_incoming_cpu); 1923 break; 1924 1925 case SO_MEMINFO: 1926 { 1927 u32 meminfo[SK_MEMINFO_VARS]; 1928 1929 sk_get_meminfo(sk, meminfo); 1930 1931 len = min_t(unsigned int, len, sizeof(meminfo)); 1932 if (copy_to_sockptr(optval, &meminfo, len)) 1933 return -EFAULT; 1934 1935 goto lenout; 1936 } 1937 1938 #ifdef CONFIG_NET_RX_BUSY_POLL 1939 case SO_INCOMING_NAPI_ID: 1940 v.val = READ_ONCE(sk->sk_napi_id); 1941 1942 /* aggregate non-NAPI IDs down to 0 */ 1943 if (v.val < MIN_NAPI_ID) 1944 v.val = 0; 1945 1946 break; 1947 #endif 1948 1949 case SO_COOKIE: 1950 lv = sizeof(u64); 1951 if (len < lv) 1952 return -EINVAL; 1953 v.val64 = sock_gen_cookie(sk); 1954 break; 1955 1956 case SO_ZEROCOPY: 1957 v.val = sock_flag(sk, SOCK_ZEROCOPY); 1958 break; 1959 1960 case SO_TXTIME: 1961 lv = sizeof(v.txtime); 1962 v.txtime.clockid = sk->sk_clockid; 1963 v.txtime.flags |= sk->sk_txtime_deadline_mode ? 1964 SOF_TXTIME_DEADLINE_MODE : 0; 1965 v.txtime.flags |= sk->sk_txtime_report_errors ? 1966 SOF_TXTIME_REPORT_ERRORS : 0; 1967 break; 1968 1969 case SO_BINDTOIFINDEX: 1970 v.val = READ_ONCE(sk->sk_bound_dev_if); 1971 break; 1972 1973 case SO_NETNS_COOKIE: 1974 lv = sizeof(u64); 1975 if (len != lv) 1976 return -EINVAL; 1977 v.val64 = sock_net(sk)->net_cookie; 1978 break; 1979 1980 case SO_BUF_LOCK: 1981 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK; 1982 break; 1983 1984 case SO_RESERVE_MEM: 1985 v.val = READ_ONCE(sk->sk_reserved_mem); 1986 break; 1987 1988 case SO_TXREHASH: 1989 /* Paired with WRITE_ONCE() in sk_setsockopt() */ 1990 v.val = READ_ONCE(sk->sk_txrehash); 1991 break; 1992 1993 default: 1994 /* We implement the SO_SNDLOWAT etc to not be settable 1995 * (1003.1g 7). 1996 */ 1997 return -ENOPROTOOPT; 1998 } 1999 2000 if (len > lv) 2001 len = lv; 2002 if (copy_to_sockptr(optval, &v, len)) 2003 return -EFAULT; 2004 lenout: 2005 if (copy_to_sockptr(optlen, &len, sizeof(int))) 2006 return -EFAULT; 2007 return 0; 2008 } 2009 2010 /* 2011 * Initialize an sk_lock. 2012 * 2013 * (We also register the sk_lock with the lock validator.) 2014 */ 2015 static inline void sock_lock_init(struct sock *sk) 2016 { 2017 if (sk->sk_kern_sock) 2018 sock_lock_init_class_and_name( 2019 sk, 2020 af_family_kern_slock_key_strings[sk->sk_family], 2021 af_family_kern_slock_keys + sk->sk_family, 2022 af_family_kern_key_strings[sk->sk_family], 2023 af_family_kern_keys + sk->sk_family); 2024 else 2025 sock_lock_init_class_and_name( 2026 sk, 2027 af_family_slock_key_strings[sk->sk_family], 2028 af_family_slock_keys + sk->sk_family, 2029 af_family_key_strings[sk->sk_family], 2030 af_family_keys + sk->sk_family); 2031 } 2032 2033 /* 2034 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, 2035 * even temporarly, because of RCU lookups. sk_node should also be left as is. 2036 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end 2037 */ 2038 static void sock_copy(struct sock *nsk, const struct sock *osk) 2039 { 2040 const struct proto *prot = READ_ONCE(osk->sk_prot); 2041 #ifdef CONFIG_SECURITY_NETWORK 2042 void *sptr = nsk->sk_security; 2043 #endif 2044 2045 /* If we move sk_tx_queue_mapping out of the private section, 2046 * we must check if sk_tx_queue_clear() is called after 2047 * sock_copy() in sk_clone_lock(). 2048 */ 2049 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) < 2050 offsetof(struct sock, sk_dontcopy_begin) || 2051 offsetof(struct sock, sk_tx_queue_mapping) >= 2052 offsetof(struct sock, sk_dontcopy_end)); 2053 2054 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); 2055 2056 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, 2057 prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); 2058 2059 #ifdef CONFIG_SECURITY_NETWORK 2060 nsk->sk_security = sptr; 2061 security_sk_clone(osk, nsk); 2062 #endif 2063 } 2064 2065 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, 2066 int family) 2067 { 2068 struct sock *sk; 2069 struct kmem_cache *slab; 2070 2071 slab = prot->slab; 2072 if (slab != NULL) { 2073 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); 2074 if (!sk) 2075 return sk; 2076 if (want_init_on_alloc(priority)) 2077 sk_prot_clear_nulls(sk, prot->obj_size); 2078 } else 2079 sk = kmalloc(prot->obj_size, priority); 2080 2081 if (sk != NULL) { 2082 if (security_sk_alloc(sk, family, priority)) 2083 goto out_free; 2084 2085 if (!try_module_get(prot->owner)) 2086 goto out_free_sec; 2087 } 2088 2089 return sk; 2090 2091 out_free_sec: 2092 security_sk_free(sk); 2093 out_free: 2094 if (slab != NULL) 2095 kmem_cache_free(slab, sk); 2096 else 2097 kfree(sk); 2098 return NULL; 2099 } 2100 2101 static void sk_prot_free(struct proto *prot, struct sock *sk) 2102 { 2103 struct kmem_cache *slab; 2104 struct module *owner; 2105 2106 owner = prot->owner; 2107 slab = prot->slab; 2108 2109 cgroup_sk_free(&sk->sk_cgrp_data); 2110 mem_cgroup_sk_free(sk); 2111 security_sk_free(sk); 2112 if (slab != NULL) 2113 kmem_cache_free(slab, sk); 2114 else 2115 kfree(sk); 2116 module_put(owner); 2117 } 2118 2119 /** 2120 * sk_alloc - All socket objects are allocated here 2121 * @net: the applicable net namespace 2122 * @family: protocol family 2123 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2124 * @prot: struct proto associated with this new sock instance 2125 * @kern: is this to be a kernel socket? 2126 */ 2127 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 2128 struct proto *prot, int kern) 2129 { 2130 struct sock *sk; 2131 2132 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); 2133 if (sk) { 2134 sk->sk_family = family; 2135 /* 2136 * See comment in struct sock definition to understand 2137 * why we need sk_prot_creator -acme 2138 */ 2139 sk->sk_prot = sk->sk_prot_creator = prot; 2140 sk->sk_kern_sock = kern; 2141 sock_lock_init(sk); 2142 sk->sk_net_refcnt = kern ? 0 : 1; 2143 if (likely(sk->sk_net_refcnt)) { 2144 get_net_track(net, &sk->ns_tracker, priority); 2145 sock_inuse_add(net, 1); 2146 } else { 2147 __netns_tracker_alloc(net, &sk->ns_tracker, 2148 false, priority); 2149 } 2150 2151 sock_net_set(sk, net); 2152 refcount_set(&sk->sk_wmem_alloc, 1); 2153 2154 mem_cgroup_sk_alloc(sk); 2155 cgroup_sk_alloc(&sk->sk_cgrp_data); 2156 sock_update_classid(&sk->sk_cgrp_data); 2157 sock_update_netprioidx(&sk->sk_cgrp_data); 2158 sk_tx_queue_clear(sk); 2159 } 2160 2161 return sk; 2162 } 2163 EXPORT_SYMBOL(sk_alloc); 2164 2165 /* Sockets having SOCK_RCU_FREE will call this function after one RCU 2166 * grace period. This is the case for UDP sockets and TCP listeners. 2167 */ 2168 static void __sk_destruct(struct rcu_head *head) 2169 { 2170 struct sock *sk = container_of(head, struct sock, sk_rcu); 2171 struct sk_filter *filter; 2172 2173 if (sk->sk_destruct) 2174 sk->sk_destruct(sk); 2175 2176 filter = rcu_dereference_check(sk->sk_filter, 2177 refcount_read(&sk->sk_wmem_alloc) == 0); 2178 if (filter) { 2179 sk_filter_uncharge(sk, filter); 2180 RCU_INIT_POINTER(sk->sk_filter, NULL); 2181 } 2182 2183 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); 2184 2185 #ifdef CONFIG_BPF_SYSCALL 2186 bpf_sk_storage_free(sk); 2187 #endif 2188 2189 if (atomic_read(&sk->sk_omem_alloc)) 2190 pr_debug("%s: optmem leakage (%d bytes) detected\n", 2191 __func__, atomic_read(&sk->sk_omem_alloc)); 2192 2193 if (sk->sk_frag.page) { 2194 put_page(sk->sk_frag.page); 2195 sk->sk_frag.page = NULL; 2196 } 2197 2198 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ 2199 put_cred(sk->sk_peer_cred); 2200 put_pid(sk->sk_peer_pid); 2201 2202 if (likely(sk->sk_net_refcnt)) 2203 put_net_track(sock_net(sk), &sk->ns_tracker); 2204 else 2205 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 2206 2207 sk_prot_free(sk->sk_prot_creator, sk); 2208 } 2209 2210 void sk_destruct(struct sock *sk) 2211 { 2212 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); 2213 2214 if (rcu_access_pointer(sk->sk_reuseport_cb)) { 2215 reuseport_detach_sock(sk); 2216 use_call_rcu = true; 2217 } 2218 2219 if (use_call_rcu) 2220 call_rcu(&sk->sk_rcu, __sk_destruct); 2221 else 2222 __sk_destruct(&sk->sk_rcu); 2223 } 2224 2225 static void __sk_free(struct sock *sk) 2226 { 2227 if (likely(sk->sk_net_refcnt)) 2228 sock_inuse_add(sock_net(sk), -1); 2229 2230 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) 2231 sock_diag_broadcast_destroy(sk); 2232 else 2233 sk_destruct(sk); 2234 } 2235 2236 void sk_free(struct sock *sk) 2237 { 2238 /* 2239 * We subtract one from sk_wmem_alloc and can know if 2240 * some packets are still in some tx queue. 2241 * If not null, sock_wfree() will call __sk_free(sk) later 2242 */ 2243 if (refcount_dec_and_test(&sk->sk_wmem_alloc)) 2244 __sk_free(sk); 2245 } 2246 EXPORT_SYMBOL(sk_free); 2247 2248 static void sk_init_common(struct sock *sk) 2249 { 2250 skb_queue_head_init(&sk->sk_receive_queue); 2251 skb_queue_head_init(&sk->sk_write_queue); 2252 skb_queue_head_init(&sk->sk_error_queue); 2253 2254 rwlock_init(&sk->sk_callback_lock); 2255 lockdep_set_class_and_name(&sk->sk_receive_queue.lock, 2256 af_rlock_keys + sk->sk_family, 2257 af_family_rlock_key_strings[sk->sk_family]); 2258 lockdep_set_class_and_name(&sk->sk_write_queue.lock, 2259 af_wlock_keys + sk->sk_family, 2260 af_family_wlock_key_strings[sk->sk_family]); 2261 lockdep_set_class_and_name(&sk->sk_error_queue.lock, 2262 af_elock_keys + sk->sk_family, 2263 af_family_elock_key_strings[sk->sk_family]); 2264 lockdep_set_class_and_name(&sk->sk_callback_lock, 2265 af_callback_keys + sk->sk_family, 2266 af_family_clock_key_strings[sk->sk_family]); 2267 } 2268 2269 /** 2270 * sk_clone_lock - clone a socket, and lock its clone 2271 * @sk: the socket to clone 2272 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 2273 * 2274 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 2275 */ 2276 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) 2277 { 2278 struct proto *prot = READ_ONCE(sk->sk_prot); 2279 struct sk_filter *filter; 2280 bool is_charged = true; 2281 struct sock *newsk; 2282 2283 newsk = sk_prot_alloc(prot, priority, sk->sk_family); 2284 if (!newsk) 2285 goto out; 2286 2287 sock_copy(newsk, sk); 2288 2289 newsk->sk_prot_creator = prot; 2290 2291 /* SANITY */ 2292 if (likely(newsk->sk_net_refcnt)) { 2293 get_net_track(sock_net(newsk), &newsk->ns_tracker, priority); 2294 sock_inuse_add(sock_net(newsk), 1); 2295 } else { 2296 /* Kernel sockets are not elevating the struct net refcount. 2297 * Instead, use a tracker to more easily detect if a layer 2298 * is not properly dismantling its kernel sockets at netns 2299 * destroy time. 2300 */ 2301 __netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker, 2302 false, priority); 2303 } 2304 sk_node_init(&newsk->sk_node); 2305 sock_lock_init(newsk); 2306 bh_lock_sock(newsk); 2307 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; 2308 newsk->sk_backlog.len = 0; 2309 2310 atomic_set(&newsk->sk_rmem_alloc, 0); 2311 2312 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ 2313 refcount_set(&newsk->sk_wmem_alloc, 1); 2314 2315 atomic_set(&newsk->sk_omem_alloc, 0); 2316 sk_init_common(newsk); 2317 2318 newsk->sk_dst_cache = NULL; 2319 newsk->sk_dst_pending_confirm = 0; 2320 newsk->sk_wmem_queued = 0; 2321 newsk->sk_forward_alloc = 0; 2322 newsk->sk_reserved_mem = 0; 2323 atomic_set(&newsk->sk_drops, 0); 2324 newsk->sk_send_head = NULL; 2325 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; 2326 atomic_set(&newsk->sk_zckey, 0); 2327 2328 sock_reset_flag(newsk, SOCK_DONE); 2329 2330 /* sk->sk_memcg will be populated at accept() time */ 2331 newsk->sk_memcg = NULL; 2332 2333 cgroup_sk_clone(&newsk->sk_cgrp_data); 2334 2335 rcu_read_lock(); 2336 filter = rcu_dereference(sk->sk_filter); 2337 if (filter != NULL) 2338 /* though it's an empty new sock, the charging may fail 2339 * if sysctl_optmem_max was changed between creation of 2340 * original socket and cloning 2341 */ 2342 is_charged = sk_filter_charge(newsk, filter); 2343 RCU_INIT_POINTER(newsk->sk_filter, filter); 2344 rcu_read_unlock(); 2345 2346 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { 2347 /* We need to make sure that we don't uncharge the new 2348 * socket if we couldn't charge it in the first place 2349 * as otherwise we uncharge the parent's filter. 2350 */ 2351 if (!is_charged) 2352 RCU_INIT_POINTER(newsk->sk_filter, NULL); 2353 sk_free_unlock_clone(newsk); 2354 newsk = NULL; 2355 goto out; 2356 } 2357 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); 2358 2359 if (bpf_sk_storage_clone(sk, newsk)) { 2360 sk_free_unlock_clone(newsk); 2361 newsk = NULL; 2362 goto out; 2363 } 2364 2365 /* Clear sk_user_data if parent had the pointer tagged 2366 * as not suitable for copying when cloning. 2367 */ 2368 if (sk_user_data_is_nocopy(newsk)) 2369 newsk->sk_user_data = NULL; 2370 2371 newsk->sk_err = 0; 2372 newsk->sk_err_soft = 0; 2373 newsk->sk_priority = 0; 2374 newsk->sk_incoming_cpu = raw_smp_processor_id(); 2375 2376 /* Before updating sk_refcnt, we must commit prior changes to memory 2377 * (Documentation/RCU/rculist_nulls.rst for details) 2378 */ 2379 smp_wmb(); 2380 refcount_set(&newsk->sk_refcnt, 2); 2381 2382 sk_set_socket(newsk, NULL); 2383 sk_tx_queue_clear(newsk); 2384 RCU_INIT_POINTER(newsk->sk_wq, NULL); 2385 2386 if (newsk->sk_prot->sockets_allocated) 2387 sk_sockets_allocated_inc(newsk); 2388 2389 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) 2390 net_enable_timestamp(); 2391 out: 2392 return newsk; 2393 } 2394 EXPORT_SYMBOL_GPL(sk_clone_lock); 2395 2396 void sk_free_unlock_clone(struct sock *sk) 2397 { 2398 /* It is still raw copy of parent, so invalidate 2399 * destructor and make plain sk_free() */ 2400 sk->sk_destruct = NULL; 2401 bh_unlock_sock(sk); 2402 sk_free(sk); 2403 } 2404 EXPORT_SYMBOL_GPL(sk_free_unlock_clone); 2405 2406 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst) 2407 { 2408 bool is_ipv6 = false; 2409 u32 max_size; 2410 2411 #if IS_ENABLED(CONFIG_IPV6) 2412 is_ipv6 = (sk->sk_family == AF_INET6 && 2413 !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)); 2414 #endif 2415 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */ 2416 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) : 2417 READ_ONCE(dst->dev->gso_ipv4_max_size); 2418 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk)) 2419 max_size = GSO_LEGACY_MAX_SIZE; 2420 2421 return max_size - (MAX_TCP_HEADER + 1); 2422 } 2423 2424 void sk_setup_caps(struct sock *sk, struct dst_entry *dst) 2425 { 2426 u32 max_segs = 1; 2427 2428 sk->sk_route_caps = dst->dev->features; 2429 if (sk_is_tcp(sk)) 2430 sk->sk_route_caps |= NETIF_F_GSO; 2431 if (sk->sk_route_caps & NETIF_F_GSO) 2432 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; 2433 if (unlikely(sk->sk_gso_disabled)) 2434 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2435 if (sk_can_gso(sk)) { 2436 if (dst->header_len && !xfrm_dst_offload_ok(dst)) { 2437 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 2438 } else { 2439 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; 2440 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst); 2441 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */ 2442 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1); 2443 } 2444 } 2445 sk->sk_gso_max_segs = max_segs; 2446 sk_dst_set(sk, dst); 2447 } 2448 EXPORT_SYMBOL_GPL(sk_setup_caps); 2449 2450 /* 2451 * Simple resource managers for sockets. 2452 */ 2453 2454 2455 /* 2456 * Write buffer destructor automatically called from kfree_skb. 2457 */ 2458 void sock_wfree(struct sk_buff *skb) 2459 { 2460 struct sock *sk = skb->sk; 2461 unsigned int len = skb->truesize; 2462 bool free; 2463 2464 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { 2465 if (sock_flag(sk, SOCK_RCU_FREE) && 2466 sk->sk_write_space == sock_def_write_space) { 2467 rcu_read_lock(); 2468 free = refcount_sub_and_test(len, &sk->sk_wmem_alloc); 2469 sock_def_write_space_wfree(sk); 2470 rcu_read_unlock(); 2471 if (unlikely(free)) 2472 __sk_free(sk); 2473 return; 2474 } 2475 2476 /* 2477 * Keep a reference on sk_wmem_alloc, this will be released 2478 * after sk_write_space() call 2479 */ 2480 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); 2481 sk->sk_write_space(sk); 2482 len = 1; 2483 } 2484 /* 2485 * if sk_wmem_alloc reaches 0, we must finish what sk_free() 2486 * could not do because of in-flight packets 2487 */ 2488 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) 2489 __sk_free(sk); 2490 } 2491 EXPORT_SYMBOL(sock_wfree); 2492 2493 /* This variant of sock_wfree() is used by TCP, 2494 * since it sets SOCK_USE_WRITE_QUEUE. 2495 */ 2496 void __sock_wfree(struct sk_buff *skb) 2497 { 2498 struct sock *sk = skb->sk; 2499 2500 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) 2501 __sk_free(sk); 2502 } 2503 2504 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 2505 { 2506 skb_orphan(skb); 2507 skb->sk = sk; 2508 #ifdef CONFIG_INET 2509 if (unlikely(!sk_fullsock(sk))) { 2510 skb->destructor = sock_edemux; 2511 sock_hold(sk); 2512 return; 2513 } 2514 #endif 2515 skb->destructor = sock_wfree; 2516 skb_set_hash_from_sk(skb, sk); 2517 /* 2518 * We used to take a refcount on sk, but following operation 2519 * is enough to guarantee sk_free() wont free this sock until 2520 * all in-flight packets are completed 2521 */ 2522 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 2523 } 2524 EXPORT_SYMBOL(skb_set_owner_w); 2525 2526 static bool can_skb_orphan_partial(const struct sk_buff *skb) 2527 { 2528 #ifdef CONFIG_TLS_DEVICE 2529 /* Drivers depend on in-order delivery for crypto offload, 2530 * partial orphan breaks out-of-order-OK logic. 2531 */ 2532 if (skb->decrypted) 2533 return false; 2534 #endif 2535 return (skb->destructor == sock_wfree || 2536 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); 2537 } 2538 2539 /* This helper is used by netem, as it can hold packets in its 2540 * delay queue. We want to allow the owner socket to send more 2541 * packets, as if they were already TX completed by a typical driver. 2542 * But we also want to keep skb->sk set because some packet schedulers 2543 * rely on it (sch_fq for example). 2544 */ 2545 void skb_orphan_partial(struct sk_buff *skb) 2546 { 2547 if (skb_is_tcp_pure_ack(skb)) 2548 return; 2549 2550 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) 2551 return; 2552 2553 skb_orphan(skb); 2554 } 2555 EXPORT_SYMBOL(skb_orphan_partial); 2556 2557 /* 2558 * Read buffer destructor automatically called from kfree_skb. 2559 */ 2560 void sock_rfree(struct sk_buff *skb) 2561 { 2562 struct sock *sk = skb->sk; 2563 unsigned int len = skb->truesize; 2564 2565 atomic_sub(len, &sk->sk_rmem_alloc); 2566 sk_mem_uncharge(sk, len); 2567 } 2568 EXPORT_SYMBOL(sock_rfree); 2569 2570 /* 2571 * Buffer destructor for skbs that are not used directly in read or write 2572 * path, e.g. for error handler skbs. Automatically called from kfree_skb. 2573 */ 2574 void sock_efree(struct sk_buff *skb) 2575 { 2576 sock_put(skb->sk); 2577 } 2578 EXPORT_SYMBOL(sock_efree); 2579 2580 /* Buffer destructor for prefetch/receive path where reference count may 2581 * not be held, e.g. for listen sockets. 2582 */ 2583 #ifdef CONFIG_INET 2584 void sock_pfree(struct sk_buff *skb) 2585 { 2586 if (sk_is_refcounted(skb->sk)) 2587 sock_gen_put(skb->sk); 2588 } 2589 EXPORT_SYMBOL(sock_pfree); 2590 #endif /* CONFIG_INET */ 2591 2592 kuid_t sock_i_uid(struct sock *sk) 2593 { 2594 kuid_t uid; 2595 2596 read_lock_bh(&sk->sk_callback_lock); 2597 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; 2598 read_unlock_bh(&sk->sk_callback_lock); 2599 return uid; 2600 } 2601 EXPORT_SYMBOL(sock_i_uid); 2602 2603 unsigned long __sock_i_ino(struct sock *sk) 2604 { 2605 unsigned long ino; 2606 2607 read_lock(&sk->sk_callback_lock); 2608 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; 2609 read_unlock(&sk->sk_callback_lock); 2610 return ino; 2611 } 2612 EXPORT_SYMBOL(__sock_i_ino); 2613 2614 unsigned long sock_i_ino(struct sock *sk) 2615 { 2616 unsigned long ino; 2617 2618 local_bh_disable(); 2619 ino = __sock_i_ino(sk); 2620 local_bh_enable(); 2621 return ino; 2622 } 2623 EXPORT_SYMBOL(sock_i_ino); 2624 2625 /* 2626 * Allocate a skb from the socket's send buffer. 2627 */ 2628 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 2629 gfp_t priority) 2630 { 2631 if (force || 2632 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { 2633 struct sk_buff *skb = alloc_skb(size, priority); 2634 2635 if (skb) { 2636 skb_set_owner_w(skb, sk); 2637 return skb; 2638 } 2639 } 2640 return NULL; 2641 } 2642 EXPORT_SYMBOL(sock_wmalloc); 2643 2644 static void sock_ofree(struct sk_buff *skb) 2645 { 2646 struct sock *sk = skb->sk; 2647 2648 atomic_sub(skb->truesize, &sk->sk_omem_alloc); 2649 } 2650 2651 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, 2652 gfp_t priority) 2653 { 2654 struct sk_buff *skb; 2655 2656 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ 2657 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > 2658 READ_ONCE(sock_net(sk)->core.sysctl_optmem_max)) 2659 return NULL; 2660 2661 skb = alloc_skb(size, priority); 2662 if (!skb) 2663 return NULL; 2664 2665 atomic_add(skb->truesize, &sk->sk_omem_alloc); 2666 skb->sk = sk; 2667 skb->destructor = sock_ofree; 2668 return skb; 2669 } 2670 2671 /* 2672 * Allocate a memory block from the socket's option memory buffer. 2673 */ 2674 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) 2675 { 2676 int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); 2677 2678 if ((unsigned int)size <= optmem_max && 2679 atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { 2680 void *mem; 2681 /* First do the add, to avoid the race if kmalloc 2682 * might sleep. 2683 */ 2684 atomic_add(size, &sk->sk_omem_alloc); 2685 mem = kmalloc(size, priority); 2686 if (mem) 2687 return mem; 2688 atomic_sub(size, &sk->sk_omem_alloc); 2689 } 2690 return NULL; 2691 } 2692 EXPORT_SYMBOL(sock_kmalloc); 2693 2694 /* Free an option memory block. Note, we actually want the inline 2695 * here as this allows gcc to detect the nullify and fold away the 2696 * condition entirely. 2697 */ 2698 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, 2699 const bool nullify) 2700 { 2701 if (WARN_ON_ONCE(!mem)) 2702 return; 2703 if (nullify) 2704 kfree_sensitive(mem); 2705 else 2706 kfree(mem); 2707 atomic_sub(size, &sk->sk_omem_alloc); 2708 } 2709 2710 void sock_kfree_s(struct sock *sk, void *mem, int size) 2711 { 2712 __sock_kfree_s(sk, mem, size, false); 2713 } 2714 EXPORT_SYMBOL(sock_kfree_s); 2715 2716 void sock_kzfree_s(struct sock *sk, void *mem, int size) 2717 { 2718 __sock_kfree_s(sk, mem, size, true); 2719 } 2720 EXPORT_SYMBOL(sock_kzfree_s); 2721 2722 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. 2723 I think, these locks should be removed for datagram sockets. 2724 */ 2725 static long sock_wait_for_wmem(struct sock *sk, long timeo) 2726 { 2727 DEFINE_WAIT(wait); 2728 2729 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2730 for (;;) { 2731 if (!timeo) 2732 break; 2733 if (signal_pending(current)) 2734 break; 2735 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2736 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2737 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) 2738 break; 2739 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2740 break; 2741 if (READ_ONCE(sk->sk_err)) 2742 break; 2743 timeo = schedule_timeout(timeo); 2744 } 2745 finish_wait(sk_sleep(sk), &wait); 2746 return timeo; 2747 } 2748 2749 2750 /* 2751 * Generic send/receive buffer handlers 2752 */ 2753 2754 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 2755 unsigned long data_len, int noblock, 2756 int *errcode, int max_page_order) 2757 { 2758 struct sk_buff *skb; 2759 long timeo; 2760 int err; 2761 2762 timeo = sock_sndtimeo(sk, noblock); 2763 for (;;) { 2764 err = sock_error(sk); 2765 if (err != 0) 2766 goto failure; 2767 2768 err = -EPIPE; 2769 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN) 2770 goto failure; 2771 2772 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) 2773 break; 2774 2775 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 2776 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 2777 err = -EAGAIN; 2778 if (!timeo) 2779 goto failure; 2780 if (signal_pending(current)) 2781 goto interrupted; 2782 timeo = sock_wait_for_wmem(sk, timeo); 2783 } 2784 skb = alloc_skb_with_frags(header_len, data_len, max_page_order, 2785 errcode, sk->sk_allocation); 2786 if (skb) 2787 skb_set_owner_w(skb, sk); 2788 return skb; 2789 2790 interrupted: 2791 err = sock_intr_errno(timeo); 2792 failure: 2793 *errcode = err; 2794 return NULL; 2795 } 2796 EXPORT_SYMBOL(sock_alloc_send_pskb); 2797 2798 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, 2799 struct sockcm_cookie *sockc) 2800 { 2801 u32 tsflags; 2802 2803 switch (cmsg->cmsg_type) { 2804 case SO_MARK: 2805 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) && 2806 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2807 return -EPERM; 2808 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2809 return -EINVAL; 2810 sockc->mark = *(u32 *)CMSG_DATA(cmsg); 2811 break; 2812 case SO_TIMESTAMPING_OLD: 2813 case SO_TIMESTAMPING_NEW: 2814 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) 2815 return -EINVAL; 2816 2817 tsflags = *(u32 *)CMSG_DATA(cmsg); 2818 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) 2819 return -EINVAL; 2820 2821 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; 2822 sockc->tsflags |= tsflags; 2823 break; 2824 case SCM_TXTIME: 2825 if (!sock_flag(sk, SOCK_TXTIME)) 2826 return -EINVAL; 2827 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) 2828 return -EINVAL; 2829 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); 2830 break; 2831 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ 2832 case SCM_RIGHTS: 2833 case SCM_CREDENTIALS: 2834 break; 2835 default: 2836 return -EINVAL; 2837 } 2838 return 0; 2839 } 2840 EXPORT_SYMBOL(__sock_cmsg_send); 2841 2842 int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 2843 struct sockcm_cookie *sockc) 2844 { 2845 struct cmsghdr *cmsg; 2846 int ret; 2847 2848 for_each_cmsghdr(cmsg, msg) { 2849 if (!CMSG_OK(msg, cmsg)) 2850 return -EINVAL; 2851 if (cmsg->cmsg_level != SOL_SOCKET) 2852 continue; 2853 ret = __sock_cmsg_send(sk, cmsg, sockc); 2854 if (ret) 2855 return ret; 2856 } 2857 return 0; 2858 } 2859 EXPORT_SYMBOL(sock_cmsg_send); 2860 2861 static void sk_enter_memory_pressure(struct sock *sk) 2862 { 2863 if (!sk->sk_prot->enter_memory_pressure) 2864 return; 2865 2866 sk->sk_prot->enter_memory_pressure(sk); 2867 } 2868 2869 static void sk_leave_memory_pressure(struct sock *sk) 2870 { 2871 if (sk->sk_prot->leave_memory_pressure) { 2872 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure, 2873 tcp_leave_memory_pressure, sk); 2874 } else { 2875 unsigned long *memory_pressure = sk->sk_prot->memory_pressure; 2876 2877 if (memory_pressure && READ_ONCE(*memory_pressure)) 2878 WRITE_ONCE(*memory_pressure, 0); 2879 } 2880 } 2881 2882 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); 2883 2884 /** 2885 * skb_page_frag_refill - check that a page_frag contains enough room 2886 * @sz: minimum size of the fragment we want to get 2887 * @pfrag: pointer to page_frag 2888 * @gfp: priority for memory allocation 2889 * 2890 * Note: While this allocator tries to use high order pages, there is 2891 * no guarantee that allocations succeed. Therefore, @sz MUST be 2892 * less or equal than PAGE_SIZE. 2893 */ 2894 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) 2895 { 2896 if (pfrag->page) { 2897 if (page_ref_count(pfrag->page) == 1) { 2898 pfrag->offset = 0; 2899 return true; 2900 } 2901 if (pfrag->offset + sz <= pfrag->size) 2902 return true; 2903 put_page(pfrag->page); 2904 } 2905 2906 pfrag->offset = 0; 2907 if (SKB_FRAG_PAGE_ORDER && 2908 !static_branch_unlikely(&net_high_order_alloc_disable_key)) { 2909 /* Avoid direct reclaim but allow kswapd to wake */ 2910 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | 2911 __GFP_COMP | __GFP_NOWARN | 2912 __GFP_NORETRY, 2913 SKB_FRAG_PAGE_ORDER); 2914 if (likely(pfrag->page)) { 2915 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; 2916 return true; 2917 } 2918 } 2919 pfrag->page = alloc_page(gfp); 2920 if (likely(pfrag->page)) { 2921 pfrag->size = PAGE_SIZE; 2922 return true; 2923 } 2924 return false; 2925 } 2926 EXPORT_SYMBOL(skb_page_frag_refill); 2927 2928 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 2929 { 2930 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) 2931 return true; 2932 2933 sk_enter_memory_pressure(sk); 2934 sk_stream_moderate_sndbuf(sk); 2935 return false; 2936 } 2937 EXPORT_SYMBOL(sk_page_frag_refill); 2938 2939 void __lock_sock(struct sock *sk) 2940 __releases(&sk->sk_lock.slock) 2941 __acquires(&sk->sk_lock.slock) 2942 { 2943 DEFINE_WAIT(wait); 2944 2945 for (;;) { 2946 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, 2947 TASK_UNINTERRUPTIBLE); 2948 spin_unlock_bh(&sk->sk_lock.slock); 2949 schedule(); 2950 spin_lock_bh(&sk->sk_lock.slock); 2951 if (!sock_owned_by_user(sk)) 2952 break; 2953 } 2954 finish_wait(&sk->sk_lock.wq, &wait); 2955 } 2956 2957 void __release_sock(struct sock *sk) 2958 __releases(&sk->sk_lock.slock) 2959 __acquires(&sk->sk_lock.slock) 2960 { 2961 struct sk_buff *skb, *next; 2962 2963 while ((skb = sk->sk_backlog.head) != NULL) { 2964 sk->sk_backlog.head = sk->sk_backlog.tail = NULL; 2965 2966 spin_unlock_bh(&sk->sk_lock.slock); 2967 2968 do { 2969 next = skb->next; 2970 prefetch(next); 2971 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb)); 2972 skb_mark_not_on_list(skb); 2973 sk_backlog_rcv(sk, skb); 2974 2975 cond_resched(); 2976 2977 skb = next; 2978 } while (skb != NULL); 2979 2980 spin_lock_bh(&sk->sk_lock.slock); 2981 } 2982 2983 /* 2984 * Doing the zeroing here guarantee we can not loop forever 2985 * while a wild producer attempts to flood us. 2986 */ 2987 sk->sk_backlog.len = 0; 2988 } 2989 2990 void __sk_flush_backlog(struct sock *sk) 2991 { 2992 spin_lock_bh(&sk->sk_lock.slock); 2993 __release_sock(sk); 2994 2995 if (sk->sk_prot->release_cb) 2996 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 2997 tcp_release_cb, sk); 2998 2999 spin_unlock_bh(&sk->sk_lock.slock); 3000 } 3001 EXPORT_SYMBOL_GPL(__sk_flush_backlog); 3002 3003 /** 3004 * sk_wait_data - wait for data to arrive at sk_receive_queue 3005 * @sk: sock to wait on 3006 * @timeo: for how long 3007 * @skb: last skb seen on sk_receive_queue 3008 * 3009 * Now socket state including sk->sk_err is changed only under lock, 3010 * hence we may omit checks after joining wait queue. 3011 * We check receive queue before schedule() only as optimization; 3012 * it is very likely that release_sock() added new data. 3013 */ 3014 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) 3015 { 3016 DEFINE_WAIT_FUNC(wait, woken_wake_function); 3017 int rc; 3018 3019 add_wait_queue(sk_sleep(sk), &wait); 3020 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3021 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); 3022 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 3023 remove_wait_queue(sk_sleep(sk), &wait); 3024 return rc; 3025 } 3026 EXPORT_SYMBOL(sk_wait_data); 3027 3028 /** 3029 * __sk_mem_raise_allocated - increase memory_allocated 3030 * @sk: socket 3031 * @size: memory size to allocate 3032 * @amt: pages to allocate 3033 * @kind: allocation type 3034 * 3035 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc. 3036 * 3037 * Unlike the globally shared limits among the sockets under same protocol, 3038 * consuming the budget of a memcg won't have direct effect on other ones. 3039 * So be optimistic about memcg's tolerance, and leave the callers to decide 3040 * whether or not to raise allocated through sk_under_memory_pressure() or 3041 * its variants. 3042 */ 3043 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) 3044 { 3045 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL; 3046 struct proto *prot = sk->sk_prot; 3047 bool charged = false; 3048 long allocated; 3049 3050 sk_memory_allocated_add(sk, amt); 3051 allocated = sk_memory_allocated(sk); 3052 3053 if (memcg) { 3054 if (!mem_cgroup_charge_skmem(memcg, amt, gfp_memcg_charge())) 3055 goto suppress_allocation; 3056 charged = true; 3057 } 3058 3059 /* Under limit. */ 3060 if (allocated <= sk_prot_mem_limits(sk, 0)) { 3061 sk_leave_memory_pressure(sk); 3062 return 1; 3063 } 3064 3065 /* Under pressure. */ 3066 if (allocated > sk_prot_mem_limits(sk, 1)) 3067 sk_enter_memory_pressure(sk); 3068 3069 /* Over hard limit. */ 3070 if (allocated > sk_prot_mem_limits(sk, 2)) 3071 goto suppress_allocation; 3072 3073 /* Guarantee minimum buffer size under pressure (either global 3074 * or memcg) to make sure features described in RFC 7323 (TCP 3075 * Extensions for High Performance) work properly. 3076 * 3077 * This rule does NOT stand when exceeds global or memcg's hard 3078 * limit, or else a DoS attack can be taken place by spawning 3079 * lots of sockets whose usage are under minimum buffer size. 3080 */ 3081 if (kind == SK_MEM_RECV) { 3082 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) 3083 return 1; 3084 3085 } else { /* SK_MEM_SEND */ 3086 int wmem0 = sk_get_wmem0(sk, prot); 3087 3088 if (sk->sk_type == SOCK_STREAM) { 3089 if (sk->sk_wmem_queued < wmem0) 3090 return 1; 3091 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { 3092 return 1; 3093 } 3094 } 3095 3096 if (sk_has_memory_pressure(sk)) { 3097 u64 alloc; 3098 3099 /* The following 'average' heuristic is within the 3100 * scope of global accounting, so it only makes 3101 * sense for global memory pressure. 3102 */ 3103 if (!sk_under_global_memory_pressure(sk)) 3104 return 1; 3105 3106 /* Try to be fair among all the sockets under global 3107 * pressure by allowing the ones that below average 3108 * usage to raise. 3109 */ 3110 alloc = sk_sockets_allocated_read_positive(sk); 3111 if (sk_prot_mem_limits(sk, 2) > alloc * 3112 sk_mem_pages(sk->sk_wmem_queued + 3113 atomic_read(&sk->sk_rmem_alloc) + 3114 sk->sk_forward_alloc)) 3115 return 1; 3116 } 3117 3118 suppress_allocation: 3119 3120 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { 3121 sk_stream_moderate_sndbuf(sk); 3122 3123 /* Fail only if socket is _under_ its sndbuf. 3124 * In this case we cannot block, so that we have to fail. 3125 */ 3126 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) { 3127 /* Force charge with __GFP_NOFAIL */ 3128 if (memcg && !charged) { 3129 mem_cgroup_charge_skmem(memcg, amt, 3130 gfp_memcg_charge() | __GFP_NOFAIL); 3131 } 3132 return 1; 3133 } 3134 } 3135 3136 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) 3137 trace_sock_exceed_buf_limit(sk, prot, allocated, kind); 3138 3139 sk_memory_allocated_sub(sk, amt); 3140 3141 if (charged) 3142 mem_cgroup_uncharge_skmem(memcg, amt); 3143 3144 return 0; 3145 } 3146 3147 /** 3148 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated 3149 * @sk: socket 3150 * @size: memory size to allocate 3151 * @kind: allocation type 3152 * 3153 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means 3154 * rmem allocation. This function assumes that protocols which have 3155 * memory_pressure use sk_wmem_queued as write buffer accounting. 3156 */ 3157 int __sk_mem_schedule(struct sock *sk, int size, int kind) 3158 { 3159 int ret, amt = sk_mem_pages(size); 3160 3161 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3162 ret = __sk_mem_raise_allocated(sk, size, amt, kind); 3163 if (!ret) 3164 sk_forward_alloc_add(sk, -(amt << PAGE_SHIFT)); 3165 return ret; 3166 } 3167 EXPORT_SYMBOL(__sk_mem_schedule); 3168 3169 /** 3170 * __sk_mem_reduce_allocated - reclaim memory_allocated 3171 * @sk: socket 3172 * @amount: number of quanta 3173 * 3174 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc 3175 */ 3176 void __sk_mem_reduce_allocated(struct sock *sk, int amount) 3177 { 3178 sk_memory_allocated_sub(sk, amount); 3179 3180 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3181 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); 3182 3183 if (sk_under_global_memory_pressure(sk) && 3184 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) 3185 sk_leave_memory_pressure(sk); 3186 } 3187 3188 /** 3189 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated 3190 * @sk: socket 3191 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple) 3192 */ 3193 void __sk_mem_reclaim(struct sock *sk, int amount) 3194 { 3195 amount >>= PAGE_SHIFT; 3196 sk_forward_alloc_add(sk, -(amount << PAGE_SHIFT)); 3197 __sk_mem_reduce_allocated(sk, amount); 3198 } 3199 EXPORT_SYMBOL(__sk_mem_reclaim); 3200 3201 int sk_set_peek_off(struct sock *sk, int val) 3202 { 3203 WRITE_ONCE(sk->sk_peek_off, val); 3204 return 0; 3205 } 3206 EXPORT_SYMBOL_GPL(sk_set_peek_off); 3207 3208 /* 3209 * Set of default routines for initialising struct proto_ops when 3210 * the protocol does not support a particular function. In certain 3211 * cases where it makes no sense for a protocol to have a "do nothing" 3212 * function, some default processing is provided. 3213 */ 3214 3215 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) 3216 { 3217 return -EOPNOTSUPP; 3218 } 3219 EXPORT_SYMBOL(sock_no_bind); 3220 3221 int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 3222 int len, int flags) 3223 { 3224 return -EOPNOTSUPP; 3225 } 3226 EXPORT_SYMBOL(sock_no_connect); 3227 3228 int sock_no_socketpair(struct socket *sock1, struct socket *sock2) 3229 { 3230 return -EOPNOTSUPP; 3231 } 3232 EXPORT_SYMBOL(sock_no_socketpair); 3233 3234 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, 3235 bool kern) 3236 { 3237 return -EOPNOTSUPP; 3238 } 3239 EXPORT_SYMBOL(sock_no_accept); 3240 3241 int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 3242 int peer) 3243 { 3244 return -EOPNOTSUPP; 3245 } 3246 EXPORT_SYMBOL(sock_no_getname); 3247 3248 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3249 { 3250 return -EOPNOTSUPP; 3251 } 3252 EXPORT_SYMBOL(sock_no_ioctl); 3253 3254 int sock_no_listen(struct socket *sock, int backlog) 3255 { 3256 return -EOPNOTSUPP; 3257 } 3258 EXPORT_SYMBOL(sock_no_listen); 3259 3260 int sock_no_shutdown(struct socket *sock, int how) 3261 { 3262 return -EOPNOTSUPP; 3263 } 3264 EXPORT_SYMBOL(sock_no_shutdown); 3265 3266 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) 3267 { 3268 return -EOPNOTSUPP; 3269 } 3270 EXPORT_SYMBOL(sock_no_sendmsg); 3271 3272 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) 3273 { 3274 return -EOPNOTSUPP; 3275 } 3276 EXPORT_SYMBOL(sock_no_sendmsg_locked); 3277 3278 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, 3279 int flags) 3280 { 3281 return -EOPNOTSUPP; 3282 } 3283 EXPORT_SYMBOL(sock_no_recvmsg); 3284 3285 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) 3286 { 3287 /* Mirror missing mmap method error code */ 3288 return -ENODEV; 3289 } 3290 EXPORT_SYMBOL(sock_no_mmap); 3291 3292 /* 3293 * When a file is received (via SCM_RIGHTS, etc), we must bump the 3294 * various sock-based usage counts. 3295 */ 3296 void __receive_sock(struct file *file) 3297 { 3298 struct socket *sock; 3299 3300 sock = sock_from_file(file); 3301 if (sock) { 3302 sock_update_netprioidx(&sock->sk->sk_cgrp_data); 3303 sock_update_classid(&sock->sk->sk_cgrp_data); 3304 } 3305 } 3306 3307 /* 3308 * Default Socket Callbacks 3309 */ 3310 3311 static void sock_def_wakeup(struct sock *sk) 3312 { 3313 struct socket_wq *wq; 3314 3315 rcu_read_lock(); 3316 wq = rcu_dereference(sk->sk_wq); 3317 if (skwq_has_sleeper(wq)) 3318 wake_up_interruptible_all(&wq->wait); 3319 rcu_read_unlock(); 3320 } 3321 3322 static void sock_def_error_report(struct sock *sk) 3323 { 3324 struct socket_wq *wq; 3325 3326 rcu_read_lock(); 3327 wq = rcu_dereference(sk->sk_wq); 3328 if (skwq_has_sleeper(wq)) 3329 wake_up_interruptible_poll(&wq->wait, EPOLLERR); 3330 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); 3331 rcu_read_unlock(); 3332 } 3333 3334 void sock_def_readable(struct sock *sk) 3335 { 3336 struct socket_wq *wq; 3337 3338 trace_sk_data_ready(sk); 3339 3340 rcu_read_lock(); 3341 wq = rcu_dereference(sk->sk_wq); 3342 if (skwq_has_sleeper(wq)) 3343 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | 3344 EPOLLRDNORM | EPOLLRDBAND); 3345 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3346 rcu_read_unlock(); 3347 } 3348 3349 static void sock_def_write_space(struct sock *sk) 3350 { 3351 struct socket_wq *wq; 3352 3353 rcu_read_lock(); 3354 3355 /* Do not wake up a writer until he can make "significant" 3356 * progress. --DaveM 3357 */ 3358 if (sock_writeable(sk)) { 3359 wq = rcu_dereference(sk->sk_wq); 3360 if (skwq_has_sleeper(wq)) 3361 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3362 EPOLLWRNORM | EPOLLWRBAND); 3363 3364 /* Should agree with poll, otherwise some programs break */ 3365 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3366 } 3367 3368 rcu_read_unlock(); 3369 } 3370 3371 /* An optimised version of sock_def_write_space(), should only be called 3372 * for SOCK_RCU_FREE sockets under RCU read section and after putting 3373 * ->sk_wmem_alloc. 3374 */ 3375 static void sock_def_write_space_wfree(struct sock *sk) 3376 { 3377 /* Do not wake up a writer until he can make "significant" 3378 * progress. --DaveM 3379 */ 3380 if (sock_writeable(sk)) { 3381 struct socket_wq *wq = rcu_dereference(sk->sk_wq); 3382 3383 /* rely on refcount_sub from sock_wfree() */ 3384 smp_mb__after_atomic(); 3385 if (wq && waitqueue_active(&wq->wait)) 3386 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | 3387 EPOLLWRNORM | EPOLLWRBAND); 3388 3389 /* Should agree with poll, otherwise some programs break */ 3390 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 3391 } 3392 } 3393 3394 static void sock_def_destruct(struct sock *sk) 3395 { 3396 } 3397 3398 void sk_send_sigurg(struct sock *sk) 3399 { 3400 if (sk->sk_socket && sk->sk_socket->file) 3401 if (send_sigurg(&sk->sk_socket->file->f_owner)) 3402 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); 3403 } 3404 EXPORT_SYMBOL(sk_send_sigurg); 3405 3406 void sk_reset_timer(struct sock *sk, struct timer_list* timer, 3407 unsigned long expires) 3408 { 3409 if (!mod_timer(timer, expires)) 3410 sock_hold(sk); 3411 } 3412 EXPORT_SYMBOL(sk_reset_timer); 3413 3414 void sk_stop_timer(struct sock *sk, struct timer_list* timer) 3415 { 3416 if (del_timer(timer)) 3417 __sock_put(sk); 3418 } 3419 EXPORT_SYMBOL(sk_stop_timer); 3420 3421 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) 3422 { 3423 if (del_timer_sync(timer)) 3424 __sock_put(sk); 3425 } 3426 EXPORT_SYMBOL(sk_stop_timer_sync); 3427 3428 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid) 3429 { 3430 sk_init_common(sk); 3431 sk->sk_send_head = NULL; 3432 3433 timer_setup(&sk->sk_timer, NULL, 0); 3434 3435 sk->sk_allocation = GFP_KERNEL; 3436 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default); 3437 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 3438 sk->sk_state = TCP_CLOSE; 3439 sk->sk_use_task_frag = true; 3440 sk_set_socket(sk, sock); 3441 3442 sock_set_flag(sk, SOCK_ZAPPED); 3443 3444 if (sock) { 3445 sk->sk_type = sock->type; 3446 RCU_INIT_POINTER(sk->sk_wq, &sock->wq); 3447 sock->sk = sk; 3448 } else { 3449 RCU_INIT_POINTER(sk->sk_wq, NULL); 3450 } 3451 sk->sk_uid = uid; 3452 3453 rwlock_init(&sk->sk_callback_lock); 3454 if (sk->sk_kern_sock) 3455 lockdep_set_class_and_name( 3456 &sk->sk_callback_lock, 3457 af_kern_callback_keys + sk->sk_family, 3458 af_family_kern_clock_key_strings[sk->sk_family]); 3459 else 3460 lockdep_set_class_and_name( 3461 &sk->sk_callback_lock, 3462 af_callback_keys + sk->sk_family, 3463 af_family_clock_key_strings[sk->sk_family]); 3464 3465 sk->sk_state_change = sock_def_wakeup; 3466 sk->sk_data_ready = sock_def_readable; 3467 sk->sk_write_space = sock_def_write_space; 3468 sk->sk_error_report = sock_def_error_report; 3469 sk->sk_destruct = sock_def_destruct; 3470 3471 sk->sk_frag.page = NULL; 3472 sk->sk_frag.offset = 0; 3473 sk->sk_peek_off = -1; 3474 3475 sk->sk_peer_pid = NULL; 3476 sk->sk_peer_cred = NULL; 3477 spin_lock_init(&sk->sk_peer_lock); 3478 3479 sk->sk_write_pending = 0; 3480 sk->sk_rcvlowat = 1; 3481 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; 3482 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 3483 3484 sk->sk_stamp = SK_DEFAULT_STAMP; 3485 #if BITS_PER_LONG==32 3486 seqlock_init(&sk->sk_stamp_seq); 3487 #endif 3488 atomic_set(&sk->sk_zckey, 0); 3489 3490 #ifdef CONFIG_NET_RX_BUSY_POLL 3491 sk->sk_napi_id = 0; 3492 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read); 3493 #endif 3494 3495 sk->sk_max_pacing_rate = ~0UL; 3496 sk->sk_pacing_rate = ~0UL; 3497 WRITE_ONCE(sk->sk_pacing_shift, 10); 3498 sk->sk_incoming_cpu = -1; 3499 3500 sk_rx_queue_clear(sk); 3501 /* 3502 * Before updating sk_refcnt, we must commit prior changes to memory 3503 * (Documentation/RCU/rculist_nulls.rst for details) 3504 */ 3505 smp_wmb(); 3506 refcount_set(&sk->sk_refcnt, 1); 3507 atomic_set(&sk->sk_drops, 0); 3508 } 3509 EXPORT_SYMBOL(sock_init_data_uid); 3510 3511 void sock_init_data(struct socket *sock, struct sock *sk) 3512 { 3513 kuid_t uid = sock ? 3514 SOCK_INODE(sock)->i_uid : 3515 make_kuid(sock_net(sk)->user_ns, 0); 3516 3517 sock_init_data_uid(sock, sk, uid); 3518 } 3519 EXPORT_SYMBOL(sock_init_data); 3520 3521 void lock_sock_nested(struct sock *sk, int subclass) 3522 { 3523 /* The sk_lock has mutex_lock() semantics here. */ 3524 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); 3525 3526 might_sleep(); 3527 spin_lock_bh(&sk->sk_lock.slock); 3528 if (sock_owned_by_user_nocheck(sk)) 3529 __lock_sock(sk); 3530 sk->sk_lock.owned = 1; 3531 spin_unlock_bh(&sk->sk_lock.slock); 3532 } 3533 EXPORT_SYMBOL(lock_sock_nested); 3534 3535 void release_sock(struct sock *sk) 3536 { 3537 spin_lock_bh(&sk->sk_lock.slock); 3538 if (sk->sk_backlog.tail) 3539 __release_sock(sk); 3540 3541 if (sk->sk_prot->release_cb) 3542 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb, 3543 tcp_release_cb, sk); 3544 3545 sock_release_ownership(sk); 3546 if (waitqueue_active(&sk->sk_lock.wq)) 3547 wake_up(&sk->sk_lock.wq); 3548 spin_unlock_bh(&sk->sk_lock.slock); 3549 } 3550 EXPORT_SYMBOL(release_sock); 3551 3552 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock) 3553 { 3554 might_sleep(); 3555 spin_lock_bh(&sk->sk_lock.slock); 3556 3557 if (!sock_owned_by_user_nocheck(sk)) { 3558 /* 3559 * Fast path return with bottom halves disabled and 3560 * sock::sk_lock.slock held. 3561 * 3562 * The 'mutex' is not contended and holding 3563 * sock::sk_lock.slock prevents all other lockers to 3564 * proceed so the corresponding unlock_sock_fast() can 3565 * avoid the slow path of release_sock() completely and 3566 * just release slock. 3567 * 3568 * From a semantical POV this is equivalent to 'acquiring' 3569 * the 'mutex', hence the corresponding lockdep 3570 * mutex_release() has to happen in the fast path of 3571 * unlock_sock_fast(). 3572 */ 3573 return false; 3574 } 3575 3576 __lock_sock(sk); 3577 sk->sk_lock.owned = 1; 3578 __acquire(&sk->sk_lock.slock); 3579 spin_unlock_bh(&sk->sk_lock.slock); 3580 return true; 3581 } 3582 EXPORT_SYMBOL(__lock_sock_fast); 3583 3584 int sock_gettstamp(struct socket *sock, void __user *userstamp, 3585 bool timeval, bool time32) 3586 { 3587 struct sock *sk = sock->sk; 3588 struct timespec64 ts; 3589 3590 sock_enable_timestamp(sk, SOCK_TIMESTAMP); 3591 ts = ktime_to_timespec64(sock_read_timestamp(sk)); 3592 if (ts.tv_sec == -1) 3593 return -ENOENT; 3594 if (ts.tv_sec == 0) { 3595 ktime_t kt = ktime_get_real(); 3596 sock_write_timestamp(sk, kt); 3597 ts = ktime_to_timespec64(kt); 3598 } 3599 3600 if (timeval) 3601 ts.tv_nsec /= 1000; 3602 3603 #ifdef CONFIG_COMPAT_32BIT_TIME 3604 if (time32) 3605 return put_old_timespec32(&ts, userstamp); 3606 #endif 3607 #ifdef CONFIG_SPARC64 3608 /* beware of padding in sparc64 timeval */ 3609 if (timeval && !in_compat_syscall()) { 3610 struct __kernel_old_timeval __user tv = { 3611 .tv_sec = ts.tv_sec, 3612 .tv_usec = ts.tv_nsec, 3613 }; 3614 if (copy_to_user(userstamp, &tv, sizeof(tv))) 3615 return -EFAULT; 3616 return 0; 3617 } 3618 #endif 3619 return put_timespec64(&ts, userstamp); 3620 } 3621 EXPORT_SYMBOL(sock_gettstamp); 3622 3623 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) 3624 { 3625 if (!sock_flag(sk, flag)) { 3626 unsigned long previous_flags = sk->sk_flags; 3627 3628 sock_set_flag(sk, flag); 3629 /* 3630 * we just set one of the two flags which require net 3631 * time stamping, but time stamping might have been on 3632 * already because of the other one 3633 */ 3634 if (sock_needs_netstamp(sk) && 3635 !(previous_flags & SK_FLAGS_TIMESTAMP)) 3636 net_enable_timestamp(); 3637 } 3638 } 3639 3640 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, 3641 int level, int type) 3642 { 3643 struct sock_exterr_skb *serr; 3644 struct sk_buff *skb; 3645 int copied, err; 3646 3647 err = -EAGAIN; 3648 skb = sock_dequeue_err_skb(sk); 3649 if (skb == NULL) 3650 goto out; 3651 3652 copied = skb->len; 3653 if (copied > len) { 3654 msg->msg_flags |= MSG_TRUNC; 3655 copied = len; 3656 } 3657 err = skb_copy_datagram_msg(skb, 0, msg, copied); 3658 if (err) 3659 goto out_free_skb; 3660 3661 sock_recv_timestamp(msg, sk, skb); 3662 3663 serr = SKB_EXT_ERR(skb); 3664 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); 3665 3666 msg->msg_flags |= MSG_ERRQUEUE; 3667 err = copied; 3668 3669 out_free_skb: 3670 kfree_skb(skb); 3671 out: 3672 return err; 3673 } 3674 EXPORT_SYMBOL(sock_recv_errqueue); 3675 3676 /* 3677 * Get a socket option on an socket. 3678 * 3679 * FIX: POSIX 1003.1g is very ambiguous here. It states that 3680 * asynchronous errors should be reported by getsockopt. We assume 3681 * this means if you specify SO_ERROR (otherwise whats the point of it). 3682 */ 3683 int sock_common_getsockopt(struct socket *sock, int level, int optname, 3684 char __user *optval, int __user *optlen) 3685 { 3686 struct sock *sk = sock->sk; 3687 3688 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3689 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen); 3690 } 3691 EXPORT_SYMBOL(sock_common_getsockopt); 3692 3693 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 3694 int flags) 3695 { 3696 struct sock *sk = sock->sk; 3697 int addr_len = 0; 3698 int err; 3699 3700 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len); 3701 if (err >= 0) 3702 msg->msg_namelen = addr_len; 3703 return err; 3704 } 3705 EXPORT_SYMBOL(sock_common_recvmsg); 3706 3707 /* 3708 * Set socket options on an inet socket. 3709 */ 3710 int sock_common_setsockopt(struct socket *sock, int level, int optname, 3711 sockptr_t optval, unsigned int optlen) 3712 { 3713 struct sock *sk = sock->sk; 3714 3715 /* IPV6_ADDRFORM can change sk->sk_prot under us. */ 3716 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen); 3717 } 3718 EXPORT_SYMBOL(sock_common_setsockopt); 3719 3720 void sk_common_release(struct sock *sk) 3721 { 3722 if (sk->sk_prot->destroy) 3723 sk->sk_prot->destroy(sk); 3724 3725 /* 3726 * Observation: when sk_common_release is called, processes have 3727 * no access to socket. But net still has. 3728 * Step one, detach it from networking: 3729 * 3730 * A. Remove from hash tables. 3731 */ 3732 3733 sk->sk_prot->unhash(sk); 3734 3735 /* 3736 * In this point socket cannot receive new packets, but it is possible 3737 * that some packets are in flight because some CPU runs receiver and 3738 * did hash table lookup before we unhashed socket. They will achieve 3739 * receive queue and will be purged by socket destructor. 3740 * 3741 * Also we still have packets pending on receive queue and probably, 3742 * our own packets waiting in device queues. sock_destroy will drain 3743 * receive queue, but transmitted packets will delay socket destruction 3744 * until the last reference will be released. 3745 */ 3746 3747 sock_orphan(sk); 3748 3749 xfrm_sk_free_policy(sk); 3750 3751 sock_put(sk); 3752 } 3753 EXPORT_SYMBOL(sk_common_release); 3754 3755 void sk_get_meminfo(const struct sock *sk, u32 *mem) 3756 { 3757 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); 3758 3759 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); 3760 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); 3761 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); 3762 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); 3763 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk); 3764 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); 3765 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); 3766 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); 3767 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); 3768 } 3769 3770 #ifdef CONFIG_PROC_FS 3771 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); 3772 3773 int sock_prot_inuse_get(struct net *net, struct proto *prot) 3774 { 3775 int cpu, idx = prot->inuse_idx; 3776 int res = 0; 3777 3778 for_each_possible_cpu(cpu) 3779 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; 3780 3781 return res >= 0 ? res : 0; 3782 } 3783 EXPORT_SYMBOL_GPL(sock_prot_inuse_get); 3784 3785 int sock_inuse_get(struct net *net) 3786 { 3787 int cpu, res = 0; 3788 3789 for_each_possible_cpu(cpu) 3790 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all; 3791 3792 return res; 3793 } 3794 3795 EXPORT_SYMBOL_GPL(sock_inuse_get); 3796 3797 static int __net_init sock_inuse_init_net(struct net *net) 3798 { 3799 net->core.prot_inuse = alloc_percpu(struct prot_inuse); 3800 if (net->core.prot_inuse == NULL) 3801 return -ENOMEM; 3802 return 0; 3803 } 3804 3805 static void __net_exit sock_inuse_exit_net(struct net *net) 3806 { 3807 free_percpu(net->core.prot_inuse); 3808 } 3809 3810 static struct pernet_operations net_inuse_ops = { 3811 .init = sock_inuse_init_net, 3812 .exit = sock_inuse_exit_net, 3813 }; 3814 3815 static __init int net_inuse_init(void) 3816 { 3817 if (register_pernet_subsys(&net_inuse_ops)) 3818 panic("Cannot initialize net inuse counters"); 3819 3820 return 0; 3821 } 3822 3823 core_initcall(net_inuse_init); 3824 3825 static int assign_proto_idx(struct proto *prot) 3826 { 3827 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); 3828 3829 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { 3830 pr_err("PROTO_INUSE_NR exhausted\n"); 3831 return -ENOSPC; 3832 } 3833 3834 set_bit(prot->inuse_idx, proto_inuse_idx); 3835 return 0; 3836 } 3837 3838 static void release_proto_idx(struct proto *prot) 3839 { 3840 if (prot->inuse_idx != PROTO_INUSE_NR - 1) 3841 clear_bit(prot->inuse_idx, proto_inuse_idx); 3842 } 3843 #else 3844 static inline int assign_proto_idx(struct proto *prot) 3845 { 3846 return 0; 3847 } 3848 3849 static inline void release_proto_idx(struct proto *prot) 3850 { 3851 } 3852 3853 #endif 3854 3855 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) 3856 { 3857 if (!twsk_prot) 3858 return; 3859 kfree(twsk_prot->twsk_slab_name); 3860 twsk_prot->twsk_slab_name = NULL; 3861 kmem_cache_destroy(twsk_prot->twsk_slab); 3862 twsk_prot->twsk_slab = NULL; 3863 } 3864 3865 static int tw_prot_init(const struct proto *prot) 3866 { 3867 struct timewait_sock_ops *twsk_prot = prot->twsk_prot; 3868 3869 if (!twsk_prot) 3870 return 0; 3871 3872 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", 3873 prot->name); 3874 if (!twsk_prot->twsk_slab_name) 3875 return -ENOMEM; 3876 3877 twsk_prot->twsk_slab = 3878 kmem_cache_create(twsk_prot->twsk_slab_name, 3879 twsk_prot->twsk_obj_size, 0, 3880 SLAB_ACCOUNT | prot->slab_flags, 3881 NULL); 3882 if (!twsk_prot->twsk_slab) { 3883 pr_crit("%s: Can't create timewait sock SLAB cache!\n", 3884 prot->name); 3885 return -ENOMEM; 3886 } 3887 3888 return 0; 3889 } 3890 3891 static void req_prot_cleanup(struct request_sock_ops *rsk_prot) 3892 { 3893 if (!rsk_prot) 3894 return; 3895 kfree(rsk_prot->slab_name); 3896 rsk_prot->slab_name = NULL; 3897 kmem_cache_destroy(rsk_prot->slab); 3898 rsk_prot->slab = NULL; 3899 } 3900 3901 static int req_prot_init(const struct proto *prot) 3902 { 3903 struct request_sock_ops *rsk_prot = prot->rsk_prot; 3904 3905 if (!rsk_prot) 3906 return 0; 3907 3908 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", 3909 prot->name); 3910 if (!rsk_prot->slab_name) 3911 return -ENOMEM; 3912 3913 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, 3914 rsk_prot->obj_size, 0, 3915 SLAB_ACCOUNT | prot->slab_flags, 3916 NULL); 3917 3918 if (!rsk_prot->slab) { 3919 pr_crit("%s: Can't create request sock SLAB cache!\n", 3920 prot->name); 3921 return -ENOMEM; 3922 } 3923 return 0; 3924 } 3925 3926 int proto_register(struct proto *prot, int alloc_slab) 3927 { 3928 int ret = -ENOBUFS; 3929 3930 if (prot->memory_allocated && !prot->sysctl_mem) { 3931 pr_err("%s: missing sysctl_mem\n", prot->name); 3932 return -EINVAL; 3933 } 3934 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) { 3935 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name); 3936 return -EINVAL; 3937 } 3938 if (alloc_slab) { 3939 prot->slab = kmem_cache_create_usercopy(prot->name, 3940 prot->obj_size, 0, 3941 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | 3942 prot->slab_flags, 3943 prot->useroffset, prot->usersize, 3944 NULL); 3945 3946 if (prot->slab == NULL) { 3947 pr_crit("%s: Can't create sock SLAB cache!\n", 3948 prot->name); 3949 goto out; 3950 } 3951 3952 if (req_prot_init(prot)) 3953 goto out_free_request_sock_slab; 3954 3955 if (tw_prot_init(prot)) 3956 goto out_free_timewait_sock_slab; 3957 } 3958 3959 mutex_lock(&proto_list_mutex); 3960 ret = assign_proto_idx(prot); 3961 if (ret) { 3962 mutex_unlock(&proto_list_mutex); 3963 goto out_free_timewait_sock_slab; 3964 } 3965 list_add(&prot->node, &proto_list); 3966 mutex_unlock(&proto_list_mutex); 3967 return ret; 3968 3969 out_free_timewait_sock_slab: 3970 if (alloc_slab) 3971 tw_prot_cleanup(prot->twsk_prot); 3972 out_free_request_sock_slab: 3973 if (alloc_slab) { 3974 req_prot_cleanup(prot->rsk_prot); 3975 3976 kmem_cache_destroy(prot->slab); 3977 prot->slab = NULL; 3978 } 3979 out: 3980 return ret; 3981 } 3982 EXPORT_SYMBOL(proto_register); 3983 3984 void proto_unregister(struct proto *prot) 3985 { 3986 mutex_lock(&proto_list_mutex); 3987 release_proto_idx(prot); 3988 list_del(&prot->node); 3989 mutex_unlock(&proto_list_mutex); 3990 3991 kmem_cache_destroy(prot->slab); 3992 prot->slab = NULL; 3993 3994 req_prot_cleanup(prot->rsk_prot); 3995 tw_prot_cleanup(prot->twsk_prot); 3996 } 3997 EXPORT_SYMBOL(proto_unregister); 3998 3999 int sock_load_diag_module(int family, int protocol) 4000 { 4001 if (!protocol) { 4002 if (!sock_is_registered(family)) 4003 return -ENOENT; 4004 4005 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, 4006 NETLINK_SOCK_DIAG, family); 4007 } 4008 4009 #ifdef CONFIG_INET 4010 if (family == AF_INET && 4011 protocol != IPPROTO_RAW && 4012 protocol < MAX_INET_PROTOS && 4013 !rcu_access_pointer(inet_protos[protocol])) 4014 return -ENOENT; 4015 #endif 4016 4017 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, 4018 NETLINK_SOCK_DIAG, family, protocol); 4019 } 4020 EXPORT_SYMBOL(sock_load_diag_module); 4021 4022 #ifdef CONFIG_PROC_FS 4023 static void *proto_seq_start(struct seq_file *seq, loff_t *pos) 4024 __acquires(proto_list_mutex) 4025 { 4026 mutex_lock(&proto_list_mutex); 4027 return seq_list_start_head(&proto_list, *pos); 4028 } 4029 4030 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4031 { 4032 return seq_list_next(v, &proto_list, pos); 4033 } 4034 4035 static void proto_seq_stop(struct seq_file *seq, void *v) 4036 __releases(proto_list_mutex) 4037 { 4038 mutex_unlock(&proto_list_mutex); 4039 } 4040 4041 static char proto_method_implemented(const void *method) 4042 { 4043 return method == NULL ? 'n' : 'y'; 4044 } 4045 static long sock_prot_memory_allocated(struct proto *proto) 4046 { 4047 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; 4048 } 4049 4050 static const char *sock_prot_memory_pressure(struct proto *proto) 4051 { 4052 return proto->memory_pressure != NULL ? 4053 proto_memory_pressure(proto) ? "yes" : "no" : "NI"; 4054 } 4055 4056 static void proto_seq_printf(struct seq_file *seq, struct proto *proto) 4057 { 4058 4059 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " 4060 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", 4061 proto->name, 4062 proto->obj_size, 4063 sock_prot_inuse_get(seq_file_net(seq), proto), 4064 sock_prot_memory_allocated(proto), 4065 sock_prot_memory_pressure(proto), 4066 proto->max_header, 4067 proto->slab == NULL ? "no" : "yes", 4068 module_name(proto->owner), 4069 proto_method_implemented(proto->close), 4070 proto_method_implemented(proto->connect), 4071 proto_method_implemented(proto->disconnect), 4072 proto_method_implemented(proto->accept), 4073 proto_method_implemented(proto->ioctl), 4074 proto_method_implemented(proto->init), 4075 proto_method_implemented(proto->destroy), 4076 proto_method_implemented(proto->shutdown), 4077 proto_method_implemented(proto->setsockopt), 4078 proto_method_implemented(proto->getsockopt), 4079 proto_method_implemented(proto->sendmsg), 4080 proto_method_implemented(proto->recvmsg), 4081 proto_method_implemented(proto->bind), 4082 proto_method_implemented(proto->backlog_rcv), 4083 proto_method_implemented(proto->hash), 4084 proto_method_implemented(proto->unhash), 4085 proto_method_implemented(proto->get_port), 4086 proto_method_implemented(proto->enter_memory_pressure)); 4087 } 4088 4089 static int proto_seq_show(struct seq_file *seq, void *v) 4090 { 4091 if (v == &proto_list) 4092 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", 4093 "protocol", 4094 "size", 4095 "sockets", 4096 "memory", 4097 "press", 4098 "maxhdr", 4099 "slab", 4100 "module", 4101 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n"); 4102 else 4103 proto_seq_printf(seq, list_entry(v, struct proto, node)); 4104 return 0; 4105 } 4106 4107 static const struct seq_operations proto_seq_ops = { 4108 .start = proto_seq_start, 4109 .next = proto_seq_next, 4110 .stop = proto_seq_stop, 4111 .show = proto_seq_show, 4112 }; 4113 4114 static __net_init int proto_init_net(struct net *net) 4115 { 4116 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, 4117 sizeof(struct seq_net_private))) 4118 return -ENOMEM; 4119 4120 return 0; 4121 } 4122 4123 static __net_exit void proto_exit_net(struct net *net) 4124 { 4125 remove_proc_entry("protocols", net->proc_net); 4126 } 4127 4128 4129 static __net_initdata struct pernet_operations proto_net_ops = { 4130 .init = proto_init_net, 4131 .exit = proto_exit_net, 4132 }; 4133 4134 static int __init proto_init(void) 4135 { 4136 return register_pernet_subsys(&proto_net_ops); 4137 } 4138 4139 subsys_initcall(proto_init); 4140 4141 #endif /* PROC_FS */ 4142 4143 #ifdef CONFIG_NET_RX_BUSY_POLL 4144 bool sk_busy_loop_end(void *p, unsigned long start_time) 4145 { 4146 struct sock *sk = p; 4147 4148 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 4149 return true; 4150 4151 if (sk_is_udp(sk) && 4152 !skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 4153 return true; 4154 4155 return sk_busy_loop_timeout(sk, start_time); 4156 } 4157 EXPORT_SYMBOL(sk_busy_loop_end); 4158 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4159 4160 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) 4161 { 4162 if (!sk->sk_prot->bind_add) 4163 return -EOPNOTSUPP; 4164 return sk->sk_prot->bind_add(sk, addr, addr_len); 4165 } 4166 EXPORT_SYMBOL(sock_bind_add); 4167 4168 /* Copy 'size' bytes from userspace and return `size` back to userspace */ 4169 int sock_ioctl_inout(struct sock *sk, unsigned int cmd, 4170 void __user *arg, void *karg, size_t size) 4171 { 4172 int ret; 4173 4174 if (copy_from_user(karg, arg, size)) 4175 return -EFAULT; 4176 4177 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg); 4178 if (ret) 4179 return ret; 4180 4181 if (copy_to_user(arg, karg, size)) 4182 return -EFAULT; 4183 4184 return 0; 4185 } 4186 EXPORT_SYMBOL(sock_ioctl_inout); 4187 4188 /* This is the most common ioctl prep function, where the result (4 bytes) is 4189 * copied back to userspace if the ioctl() returns successfully. No input is 4190 * copied from userspace as input argument. 4191 */ 4192 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg) 4193 { 4194 int ret, karg = 0; 4195 4196 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg); 4197 if (ret) 4198 return ret; 4199 4200 return put_user(karg, (int __user *)arg); 4201 } 4202 4203 /* A wrapper around sock ioctls, which copies the data from userspace 4204 * (depending on the protocol/ioctl), and copies back the result to userspace. 4205 * The main motivation for this function is to pass kernel memory to the 4206 * protocol ioctl callbacks, instead of userspace memory. 4207 */ 4208 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 4209 { 4210 int rc = 1; 4211 4212 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET) 4213 rc = ipmr_sk_ioctl(sk, cmd, arg); 4214 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6) 4215 rc = ip6mr_sk_ioctl(sk, cmd, arg); 4216 else if (sk_is_phonet(sk)) 4217 rc = phonet_sk_ioctl(sk, cmd, arg); 4218 4219 /* If ioctl was processed, returns its value */ 4220 if (rc <= 0) 4221 return rc; 4222 4223 /* Otherwise call the default handler */ 4224 return sock_ioctl_out(sk, cmd, arg); 4225 } 4226 EXPORT_SYMBOL(sk_ioctl); 4227